Instruction

Z-Wave 400 Series Developer's Kit v6.02.00 Contents

Document No.: INS12035

Version: 2

Description: Describes the contents and sample applications user guides of the Z-Wawe 400
Series Deweloper's Kit v6.0x

Written By: JFR
Date: 2012-05-25
Reviewed By: CHL;BBR

Restrictions: Partners Only

Approved by:

Date CET Initials Name Justification
2012-05-25 11:27:54 NTJ Niels Thybo Johansen

This documentis the property of Sigma Designs Inc. The data contained herein, in whole
or in part, may not be duplicated, used or disclosed outside the recipient for any purpose.
This restriction does notlimitthe recipient's right to use information contained in the data if
itis obtained from another source without restriction.

SIGMA

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

REVISION RECORD

Date By Pages affected Brief description of changes
Rev
1 20090906 JFR ALL Initial draft
2 20091229 |VVI 5.11 Added description of Z-Wave programmer firmw are source files.
3 20100414 |JFR 3 Softw are components updated
4 20100423 |JFR 3.24.11 Alternative external non-volatile memory chip select pin
5 20100521 JFR - <appl>_ZWO040x_y_devmode.hex replaces <appl>_ZWO040x_y devmode_OTP.hex
6 20100608 |JFR 0 Changed pin to initiate production test mode
20100617 |EFH 4.10.2.5 Added Paragraph “Serial APl Node List”
7 20100624 JFR 45&4.6 Update FLIRS w akeup time for Door Bell and Door Lock
20100702 |EFH 4.9 Update user interface for Prod_Test_Gen
8 20101111 |JFR 3.3&4 Removed Prod_Test_DUT sample application, use instead ApplicationTestPoll.
8 20101203 SSE 3.3.1.13 Added new JP hex file for the production test generator
8 20110114 |JFR 3.4.9 Added ZWaveProgrammer USB driver supporting Window s
XP/2003/Vista(32/64)/7(32/64).
3.4.8 Added Micro RF Link diagnostic programs.
9 20110126 |JFR 3 Added description of Linux applications
9 20110127 |EFH 3.21&4 Updated description of common makefiles for applications
10 20110419 |JFR 3.5.1&3.5.2.1.5 Setup Information file for installation of a USB VCP driver.
10 20110623 |JFR 3.4.9 Added SD3402 crystal calibration firmw are for calibration box.
11 20111004 JFR 3 Removed Z/IP Router
12 20120112 |JFR 4.10 Added Serial API Pow er Management
3.1&3.4.13 Added uVision project generator
13 20120523 JFR 347 Added Micro PVT tool
3.4.9 Added ZWaveProgrammer source code
Sigma Designs Inc. Revision Record and Tables of Contents Page ii of vi

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Table of Contents

R AN = = = L 7 I N 1
P22 |2 (0 15 16 L I [PSRN 1
2 T U [0T oL PP 1
2.2 AUdIENCE AN PrerEGUISITESvuiieieeet ettt ettt et e ettt et e et e e et e r e e eens 1
3 SOFTWARE COMPONENTS ...ttt ittt ettt e e et e e ettt e e e e et e e et e e et e e et e eean e aeaneeenss 2
70 R B 1 = Tod (o VS £ 18 o3 AU (= PP 2
Bi2 Z-WAVE e et n 6
3.2.1 (67e] 101 11 o] o HE PP 6
3.21.1 AppPlication MaKefil@oiii e 6
3.2.1.2 MaKEfIl@.COMMON ... et e e 6
3.2.1.3 Makefile.cOMMON_ZWOXOXiiuiiiiieiiie ettt et e e e et e e e e anes 7
3.2.1.4 Makefile.common_ZWOXO0X_@PPlovniiniiieiie e 7
3.2.1.5 Makefile.common_ZWOXOX_UVISIONcuuiiiiiiiei e e e e et e e e 7
3.2.2 o Tod [Lo [PP P T PPPTRPPTPPN 7
3.2.3 /O DBIINES ..ttt 8
3.24] o =V = TP PPPTRPPTRPPN 8
3.24.1 2 T4To (o= @0 o1 1 o] 1= 8
3.2.4.2 INStAlEr CONLIOIETt ettt e eens 9
3.24.3 POrtable CONIOIET ...ttt e 9
3.2.4.4] = [@o 11 £ | 1= PP 10
3.245 Static Controller without repeater functionality..............ocoiiiiiiiiiiiin e, 10
3.24.6 Static CoONLroller SINGIE..... .o e 11
3.2.4.7 ENNANCEA SIAVE ..ot 11
3.2.4.8 ENNanCed 232 SIAVE ... oo 12
3.2.4.9 Production TESt GENEIALONiuuiieiiieii et e e e eans 12
3.2.4.10 ROULING SIBVE ...t eaens 12
3.24.11 External NoN-volatile MEMOIYooouiiiiei e 13
3.2.4.12 Variable iNitialiZation ... 13
3.2.4.13 L L (=T 11 1= 1) PP 14

TR T = (0o LT PP 15
3.3.1 2] 1o PP 15
3.3.1.1 |27 TS T=1 01T o PPN 15
3.3.1.2 BN S NS OF S B . ittt ittt e 15
3.3.1.3 BiN S NS Or BallOrY . iuuiiiiii it et 15
3.3.1.4 BiN_SENSOr_ BaterY SEBC ...uiiiiiiiiiii e et e e e e 16
3.3.1.5 = 11 PP 16
3.3.1.6 DEV_CUH_ AV R S ittt ittt ettt e e e 17
3.3.1.7 DOOTBEIL ... e 17
3.3.1.8 D0 o] 1 Io o] QPP UPT PP 17
3.3.1.9 [0 oY o o] QS Y=o PP 18
3.3.1.10 [' o 1= 18
3.3.1.11 [T)] = S = o 19
3.3.1.12 Y2 (0T [o3 19
3.3.1.13 PrOO_TEST G N ..ot et e 19
3.3.1.14 SerialAP |_Controller Bridge .. ouuu it 20
3.3.1.15 SeralAP |_Controller_INSTAller 20
3.3.1.16 SerialAP_Controller Portableoouiiiii e 21
3.3.1.17 SerialAP |_CoNntroller_STAtiCeieei e 22
3.3.1.18 SerialAP_Controller_StatiCc_ NOTEPuveuii e 22
3.3.1.19 SerialAP_Controller_Static_SiNgleooeiiiii 23
Sigma Designs Inc. Revision Record and Tables of Contents Page iii of vi

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.3.1.20 SerialAP_Slave_EnhanCed..........coooiiiiiiii e 24
3.3.1.21 SerialAP|_Slave_Enhanced 232 ..o 25
3.3.1.22 SeralAP |_SIave _ROULINGiieii e e e 26
3.3.2 21T Ty YRS Y= T 0 1Yo | PP 26
3.3.3 DeVEIOPMENT CONLIOIIEN et eaaeeanns 26
3.34 Secure Development Controller based on serial APl and using an AVR as host................ 26
3.35 [0 o] 1 1= | PP 26
3.3.6 oo gl I Tod QPP 27
3.3.7 LED DM BT .ttt ettt et et e et et ettt e e 27
3.3.8 Y2 = (0o [T P 27
3.3.9 Production TESE GENEIALONcvuue ittt et e e e 27
3.3.10 SBIIAI AP e e 27
3.3.11 Ui - e e 28

G 7 1 To £ 30
3.4.1 S 30
3.4.2 D= (o] 4 31
3.4.3 [1= G o Yo £ PP 31
3.4.4 L T0] 5 =T o PP 31
3.4.5 1Y =1 31
3.4.6 V=T (o= T PSPPI 31
3.4.7 Y T o T Y 32
3.4.8 Yo o T I o G 33
3.4.9 PrOgIaMIMET ... et e e 34
3.4.10 PVT and RF REQUIBLOIYivuieiiii et ettt e e e e e e e e e aae e es 35
3.4.11 Y21 0o o P 37
3.4.12 LIS e o PP 37
3.4.13 UVISIONPTOJECIGENEIALONiviit et ee et e e e e e e e e e e e e e e et e e e e e e e e e et 37
3.4.14 DY I o 1) o PPN 37
3.4.15 4 011 1= PP 38
S T = O PRSP 39
3.5.1 2]] PP 39
3.5.2 Yo 0o = PP PP PP PP 40
3.5.21 [o = [S PP UPPT PP 40
3.5.2.1. 1 WINFOIMS Ul ettt e e e e eaaaeees 40
3.5.2.1.2 ZeNSYS FramMeEWOIKiiniiiiiiie et 40
3.5.2.1.3 Zensys FrameWOrK Ult e e e e 40
3.5.2.1.4 Zensys Framework Ul CONLIOIScvuiiiiii i e e e e e anes 40
3.5.2.1.5 ZWO040X USB VCP PC DIIVEL ...ttt ettt et e eaae e 41
3.5.2.1.6 Z-Wave COMMANT ClaSSuiiuiiiiiiiii et et e e e e e anneenns 41
B.5.2.0.7 ZAWAVE DLL ..o 41
3B.5.2.1.8 ZWAVE HAL ..ouniiiiii ettt e e e e r e 41
3.5.2.2 SaAMPIE APPIICALION ...t e e 41
3.5.2.2. 1 Z-WaAVE INSTAIIET ... e e 41
3.5.2.2.2 Z-WaVe PC CONIOIETot 42
3.5.2.2.3 Z-Wave Security PC CONLIOIENiiiieiiei et 42
3.5.2.2.4 Z-WaVe UPNP BriAge.......iiiiiiiiiieiii ettt e e 42

4 APPLICATION SAMPLE CODE ... ittt et e e et e et e e e e et e e e eeeneees 43
4.1 Binary Sensor SAMPIE COUE e e et 44
4.1.1 NEtWOrk Wide INCIUSION e 45
41.2 (0= g 1= £ = Lo = PP RPN 45
4.1.3 BIN_ SENS O FIlES ..ottt e 45
4.13.1 Macros for accessing the LED’S ... a7

4.2 Binary Sensor Battery SampPle COciuiiiiiiiii e 48
42.1 NEtWOrK Wide INCIUSTIONceuiiii e e aa e 49
4.2.2 (07T g (0145 1 2= o S PP TUPTPTR 49
4.2.3 BiN_SENS O FIlES ..ottt e 50
Sigma Designs Inc. Revision Record and Tables of Contents Page iv of vi

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.3 Development Controller SAMpPIe COOEceuiiniiiii e e eans 51
431 NEetWOrk Wide INCIUSIONuii e 51
4.3.2 Production teSt MOAEcoeuuiiiie e e e 53
4.3.3 DRV 1 T PP 53

4.4 Secure Development Controller (ATmega) Sample COde.......cc.oevviiiiiiiiiiiiiie e 55
4.4.1 DEV_CH_AVR_SEC FlBS. ..oniiiiiiei e 55

4.5 D0OT Bell SAMPIE COUE ...ouiiiiiiieii e e e e e e e e e et 57
45.1 NEtWOrK Wide INCIUSIONceuniii et 57
45.2 US I INEEITACE ... ettt e e 57
4.5.3 DOOK BEIIFIIES ... ettt e 57

T B o To ¥ g o o] LS TV 4 o] F =T o Yo = 59
46.1 NEtWOrK Wide INCIUSTION ..ottt 60
46.2 (0T o [0 £ 1= o] - S TP TP 60
4.6.3 90T Y g 1o od S 1 = 60

46.3.1 Macros for accessing the Lock/UNIOCKcocuviiiiiiiiiiiii e 61

4.7 LED DIMMeEr SAMPIE COUEouuiiiieiiie ettt et ettt et e e e e e 63
4.7.1 NEtWOrK Wide INCIUSIONeeei e e e e e e e enns 64
4.7.2 L LS a1 1= 1 = Lo = 64
4.7.3 Production tEST MOAEiei e e e e 65
4.7.4 Secure_LED _DIMMET FIlESeuii e et 65

4741 Macros for accessing the LED'Soiiiiiiiiii e 67

4.8 MyProduCt SAMPIE COAEuiiiiieiiiiee ettt et et 68
48.1 MYPTIOTUCT FIES ... et 68

4.9 ProducCtion TEST GENEIALONeu it ettt ettt et e e et et e et e et e et e e e et e et e ebaenaeenns 69
49.1 Production Test Generator FIlES ... e 71

4,10 Serial APIEmbedded Sample COAEciiiiiiii e 72
4.10.1 SUPPOEA APT CallS. ... 72
4.10.2 LaaY ol L= g g1 a1 =14 o] o PP 72

4.10.2.1 [=T LS I 1Yo 1| PSPPI 72
4.10.2.2 FrAM @ FLOW ...t e et e e e aens 75
4.10.2.3 ErrOr NaNAliNg e 78
4.10.2.4 Restrictions on functions using buffers ..o 79
4.10.2.5 Serial API Node List COMMANGcc.uuiiiiiiiiiii e e 80
4.10.2.6 Serial API Capabilities COMMANGccuiviniiiiie e 81
4.10.2.7 Serial APl Power Management COmMMandsSvvuuiviniiieiineiineieeieeee e eeaeeaneeneens 82
4.10.2.7.1 Pin Configuration COMMANG.........ciuuiiiiiie e e e e e e eanes 82
4.10.2.7.2 Power up Mode Configuration COmMmMandccoeuieiiiiiiieiiiiic e e e 84
4.10.2.7.3 Power Up on Z-Wave Configuration Command.............ccovvuiiiiiiiineiiniiieciieeneeeeaieeenns 84
4.10.2.7.4 Power Up on Timer Configuration COMMAaNdcc.uiiiiiiiiiiiiiiieiieeieeeie e 87
4.10.2.7.5 External Power Up Configuration Command.............ccoviiiiiiiiiiiiiiiii e e 88
4.10.2.7.6 Power down Mode Configuration COMMaNdc..ivieriiiiniieiiiieiieeie e e 89
4.10.2.8 Serial APl Ready COMMANTc.uuiiiiiiieii e e 90
4.10.2.9 Serial APl Softreset ComMmMaNndoveniiiiiii e 90
4.10.2.10 Serial APIWatchdog COMMANGSiiruiiiiiiei e e 91
4.10.2.11 Selal AP FilES cuniiei e e e 92
4.10.3 POWET MaNAgEMENT e e e e 94
4.10.3.1 SYSEEIM OVEIVIEW ...ttt ettt ettt e e e e et et er e een s 94
4.10.3.2 @ o 1 PR 94
4.10.3.3 Power management configuration SEQUENCEc..iieuiiiiiiiiiiee e e e 95
4.10.3.4 POWET UP SEOUENCE ...ttt e ettt e et e e et et aaeneaens 95
4.10.3.5 POWET dOWN SEQUENCEitiii et e e e e e e e e e e e e e e et e e e e e e aeeanns 95
4.10.3.6 POWET MOAES ..ottt e et e e et e e e e e e eeenns 96

4,11 PC based Controller Sample APPlCation............iiiiii e 97

4,12 PC based Installer Tool Sample ApPlCAtioNiiiiiii i 97

4,13 PC based Z-Wave Bridge Sample AppliCationooiuiiiiiiiiiiee e 97

Sigma Designs Inc. Revision Record and Tables of Contents Page v of vi

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

5 TOOL SAMPLE CODE ...ttt ettt et e e et e et e e et e e et e e e e eeannas 98
5.1 Z-Wave Programmer FilMWAIEc.iii e et e e e e e e e e e et e e e e e e aaeaees 99

5.1.1 ATmega_ZWaVvePTOgFW FilES ... 99
6 REQUIRED DEVELOPMENT COMPONENTS ...ttt e e e e e eeeens 101
6.1 Software developmeNnt COMPONENTS it et e e e e et e aaeeanns 101
6.2 100/200/300/400 SerieS ASIC PrOgramMIMETu.iue i eeieee et e e et e e e e e e e et e et et e et e an e aneeanns 101
6.3 Hardware development components for 400 SEIHESvvuiiiiiii i 101
REFERENGCES ...ttt et ettt et et ettt ettt et e e et ae e e et e e et e e et e e an e eanaaes 102
1NN PP P T UPTUPPRPIN 103

Table of Figures

Figure 1, NWI flow diagram for a controller that want to be added to a networkcccoeieiiiinnnnn. 52
Figure 2, POWEr Managem Nt SYSTBIM e e et et et e e e e e e e e et e et e et e et e aaeeanns 94
Sigma Designs Inc. Revision Record and Tables of Contents Page vi of vi

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

1 ABBREVIATIONS

Abbreviation Explanation

ACK Acknowledge

AES The Advanced Encryption Standard is a symmetric block cipher algorithm. The
AES is a NIST-standard cryptographic cipher that uses a block length of 128 bits
and key lengths of 128, 192 or 256 bits. Officially replacing the Triple DES method
in 2001, AES uses the Rijndael algorithm deweloped by Joan Daemen and Vincent
Rijmen of Belgium.

ANZ Australia/New Zealand

API Application Programming Interface

ASIC Application Specific Integrated Circuit

DLL Dynamic Link Library

DUT Device Under Test

EOOS Execution out of SRAM

ERTT Enhanced Reliability Test tool

EU Europe

GNU An organization dewoted tothe creation and support of Open Source software

HK Hong Kong

HW Hardware

IN India

JP Japan

JP_DK Japan using a lower LBT RSSI threshold

LBT Listen Before Talk

MY Malaysia

NVM Non-wolatile memory

OoTP One Time Programmable memory

R&D Research and Dewelopment

RF Radio Frequency

RSSI Received Signal Strength Indicator

SDK Z-Wawe Software Deweloper's Kitincludes software and related software
documentation.

UPnP Universal Plug and Play

uUs United States

VCP Virtual COM Port

XML eXtensible Markup Language

ZDK Z-Wave Deweloper's Kitincludes hardware, software and related software
documentation.

2 INTRODUCTION

2.1 Purpose

The purpose of this document is to describe the contents on the Z-Wawe Deweloper's Kit. Finally, a
description of all embedded sample applications including user guide or reference to relevant document.

2.2 Audience and prerequisites

The audience is Z-Wawve Partners.

Sigma Designs Inc. Abbreviations Page 1 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25
3 SOFTWARE COMPONENTS

The Z-Wawe dewelopment software packet consists of a protocol part, sample applications and a humber
of tools used for developing and building the sample code.

3.1 Directory Structure

The dewelopment software is organized in the following directory structure:

/
-PC
- Bin

- ZW040x_USB_VCP_PC_Diriver

- ZWaweDll

- ZWavwelnstaller

- ZWawePCController

- ZWawveSecurityPCController

- ZWaweUPnPBridge

- Source

- Libraries
- WinFormsuUl
- ZensysFramework
- ZensysFrameworkUI
- ZensysFrameworkUIControls
- ZW040x_USB_VCP_PC_Driver
- ZWaveCommandClasses
- ZWaweDll
- ZWaveHAL
- ZWaweSecurity

- SampleApplications
- ZWawelnstaller
- ZWavePCController
- ZWaweSecurityPCController
- ZWaweUPnPBridge

Sigma Designs Inc. Softw are Components Page 2 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

- Product

- Bin
- Bin_Sensor
- Bin_Sensor_Sec
- Bin_Sensor_Battery
- Bin_Sensor_Battery_Sec
- dev_ctrl
- dev_ctrl_AVR_Sec
- DoorBell
- DoorLock
- DoorLock_Sec
- LED_Dimmer
- LED_Dimmer_Sec
- Prod_Test_Gen
- SerialAP|_Controller_Bridge
- SerialAP1_Controller_Installer
- SerialAPI_Controller_Portable
- SerialAPI_Controller_Static
- SerialAPI_Controller_Static_Norep
- SerialAPI_Controller_Static_Single
- SerialAPI_Slave_Enhanced
- SerialAPI_Slave_Enhanced_232
- SerialAPI_Slave_Routing

- Bin_Sensor

- dev_ctrl

- dev_ctrl_AVR_Sec

- DoorBell

- DoorLock

- LED_Dimmer

- MyProduct

- Prod_Test_Gen

- SerialAPI

- Util_Func

Sigma Designs Inc. Softw are Components Page 3 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

- Tools
- ERTT
-PC
- Z-Wawe_Firmware
- FixPatchCRC
- HexTools
- IncDep
- Make
- Mergehex
- Micro_PVT
- Micro_RF_Link
- Programmer
-PC
- Source
- SD3402_Calibration
- ZDPOXA_Firmware
- Source
- PVT_and_RF_regulatory
- Python
- TextTools
- uVisionProjectGenerator
- XML_Editor
-PC
- Zniffer
-PC
- FileConwerter
- Z-Wawe_Firmware
Sigma Designs Inc. Softw are Components Page 4 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

- Z-Wawe

- Common

- include

- 10_defines

- lib
- controller_bridge_ZW040x
- controller_bridge_ZW040x_devmode
- controller_bridge_ZW040x_3CH
- controller_bridge_ZW040x_3CH_devmode
- controller_installer_ZwW040x
- controller_installer_ZwW040x_devmode
- controller_installer_ Zw040x_3CH
- controller_installer_ ZwW040x_3CH_devmode
- controller_portable_ZW040x
- controller_portable_2W040x__devmode
- controller_portable_Z2W040x_3CH
- controller_portable_ZW040x_3CH_devmode
- controller_static_norep_2ZW040x
- controller_static_norep_ZW040x_devmode
- controller_static_norep_ZW040x_3CH
- controller_static_norep_ZW040x_3CH_devmode
- controller_static_single_2W040x
- controller_static_single_2W040x_devmode
- controller_static_single_ZW040x_3CH
- controller_static_single_2W040x_3CH_devmode
- controller_static_ZW040x
- controller_static_ZW040x_devmode
- controller_static_ZW040x_3CH
- controller_static_ZW040x_3CH_devmode
- ext_nvm
- init_vars
- rf_freq
- slave_enhanced_232_ZW040x
- slave_enhanced_232_ZW040x_devmode
- slave_enhanced_232 ZW040x_3CH
- slave_enhanced_232 ZWO040x_3CH_devmode
- slave_enhanced_ZW040x
- slave_enhanced_ZW040x_devmode
- slave_enhanced_ZW040x_3CH
- slave_enhanced_2ZW040x_3CH_devmode
- slave_prodtest_gen_2ZW040x
- slave_prodtest_gen_ZW040x_devmode
- slave_prodtest_gen_ZwW040x_3CH
- slave_prodtest_gen_2ZW040x_3CH_devmode
- slave_routing_ZW040x
- slave_routing_ZW040x_devmode
- slave_routing_ZW040x_3CH
- slave_routing_ZW040x_3CH_devmode

This directory structure contains all the tools and sample applications needed, except the recommended
Keil software, which must be purchased separately. More information about where and how to buy the
Keil software development components are described in paragraph 6.1.

Note! Recommending leaving the directory structure as is due to compiler and linker issues.

The majority of the above mentioned Z-Wave specific tools and sample application are briefly described
in the following sections.

Sigma Designs Inc. Softw are Components Page 5 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.2 Z-Wave

The Z-Wave header files and libraries are the software files needed for building a Z-Wave enabled
product. The files are organized in directories used for building Z-Wawve controllers and slaves
respectively.

3.2.1 Common

The Common directory contains a set of standard make files needed for building the sample applications.
The directory contains the following files:

e Makefile.common

o Makefile.common_ZWO0x0x
e Makefile.common_2ZWO0x0x_appl

3.21.1 Application Makefile
Every sample application has a main Makefile describing what can be built. It also gives the developer an
opportunity to limit what is built to a subset of this. The main Makefile includes a set of common
makefiles from Z-Wawe\Common directory, which defines how to build the target.
Targets can be built in lots of variants with 5 varying parameters:
e FREQUENCY
e CODE_MEMORY_MODE
e LIBRARY
e HOST_INTERFACE
e SENSOR_TYPE

e UVISION

Not all of these parameters are relevant for all applications, but the irrelevant ones are setto a default
value in the applications Makefile.

For every one of these parameters, there are 3 different ways to set which one you want. This is
described in the Makefile for the application. You can leave parameters unspecified. Then make will build
targets for all combinations of these parameters.

The applications main Makefile defines a list of modules, which are specific for the application, and which
shall be included in the build.

The applications main Makefile also defines CDEFINES, which are specific for the application.

3.2.1.2 Makefile.common
Makefile.common is included by the applications main Makefiles.

Makefile.common defines lists of the different parameter values to build with:

Sigma Designs Inc. Softw are Components Page 6 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25
e LIST_OF_FREQUENCIES
e LIST_OF_CODE_MEMORY_MODES
e LIST_OF_LIBRARIES
e LIST_OF_HOST_INTERFACES
e LIST_OF_SENSOR_TYPES

You can specify subsets of values for these lists in the applications Makefile. This will override the lists
specified in Makefile.common. Some of our sample applications use this technique.

Makefile.common contains the heart of the recursion engine for make. For every parameter that is not
defined, a list of values will be walked through.

Makefile.common includes Makefile.common_2ZWO0x0x_appl and Makefile.common_2ZWO0x0x.

3.2.1.3 Makefile.common_2ZWO0x0x

This common makefile contains the linker rules, and common CDEFINES for the targets built.

3.21.4 Makefile.common_2ZWO0x0x_appl

This common makefile contains all the rules that create the build directory and compile rules for the c
files and assembly .a51 files. It also contains the compiler and assembler options.

It also contains the CLASSES specification for the linking process for defining the memory layout for the
target.

3.2.1.5 Makefile.common_ZWO0x0x_uvision

This common makefile enable generation of uVision project files when building embedded sample
application.

3.2.2 Include

The include directory contain all the header files ZW_xxx_api.h with declarations of API calls etc. For
further detalil, refer to [19].

Warning: Disabled linker warning L25 ‘DATA TYPES DIFFERENT to allow ZW_classcmd.h updates
as device and command class development progress.
Refer to Makefile.common_2ZWO0x0x_appl! files in Common directory regarding linker
parameters.

Sigma Designs Inc. Softw are Components Page 7 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.2.3 I/0O Defines

The Product\lO_defines directory contains hardware definition files needed for building an application
e.g. the dewelopment controller sample application.

AppRFSetup.a51 This file defines the normal and low power transmission lewels.
Change lewels here if necessary.

ZW_evaldefs.h This file contains definitions of the connector pins on the controller
board.

ZW_L51 BANK.a51 This file enables code bank switching.

ZW_patchable_footer.a51 Patch system used in development mode

ZW_patchable_header.a51 Patch system used in development mode

ZW_pindefs.h This file contains definitions of the connector pins on the Z-Wave

module, and macros for accessing the I/O pins. Refer to [19]
regarding a detail description.

ZW_portdefs.h This file contains I/O port initialization vectors on the Z-Wawe ASIC.

ZW_segment_tail.a51 This file enables use of XDATA located in SRAM part of the code area
in development mode.

3.2.4 Libraries

The lib directory structure contains all the supported libraries.

3.24.1 Bridge Controller

The lib\controller_bridge_ZW040x directory contains all files needed for building a Z-Wawe bridge
controller application. The directory contains the following files:

ZW_controller_bridge_zw040x.lib These files are the compiled Z-Wawe protocol and

ZW_controller_bridge_zw040x_3CH.lib API library hosted in OTP (normal mode) for a
400 Series based module that a Z-Wawve bridge
controller application should be linked together
with. JP uses the 3CH variant.

ZW_controller_bridge_zw040x_devmode.lib These files are the same as abowe but used

ZW_controller_bridge_zw040x_3CH_devmode.lib during application development (development
mode).

extern_eep.hex This file contains the external non-wolatile

memory data on the ZM4125 module. Initialize
only external non-volatile memory once by
downloading this file.

Sigma Designs Inc. Softw are Components Page 8 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

The extern_eep.hex file is used to initialize the external non-wolatile memory. The 32-bit home ID
(xxxxxxxx) is located in byte 8, 9, 10 and 11 (when counting from 0) in the file. Byte 8 is the most
significant byte and byte 11 is the least significant.

:200000005A654E7359730000xxxxxxxx0093

The Z-Wawe protocol will automatically generate a new random home ID in case home ID is 0x00000000
in the external non-wolatile memory. Random home ID interval is from 0xC0000000 to OXFFFFFFFE.

3.2.4.2 Installer Controller

The lib\controller_installer_ ZW040x directory contains all files needed for building a Z-Wave installer
controller application. The directory contains the following files:

ZW_controller_installer_ZwW040x.lib These files are the compiled Z-Wawve protocol

ZW_controller_installer_2ZW040x_3CH.lib and API library hosted in OTP (normal mode)
for a 400 Series based module that a Z-Wawe
installer controller application should be linked
together with. JP uses the 3CH variant.

ZW_controller_installer_ZW040x_devmode.lib These files are the same as abowe but used

ZW_controller_installer_ZW040x_3CH_devmode.lib during application development (development
mode).

extern_eep.hex This file contains the external non-wolatile

memory data on the ZM4125 module. Initialize
only external non-volatile memory once by
downloading this file.

3.2.4.3 Portable Controller

The lib\controller_ZW040x directory contains all files needed for building a Z-Wawve controller application.
The directory contains the following files:

ZW_controller_portable_zw040x.lib These files are the compiled Z-Wave protocol

ZW_controller_portable_zw040x_3CH.lib and APl library hosted in OTP (normal mode)
for a 400 Series based module that a Z-Wawe
portable controller application should be linked
together with. JP uses the 3CH variant.

ZW_controller_portable_zw040x_devmode.lib These files are the same as abowe but used

ZW_controller_portable_zw040x_3CH_devmode.lib during application development (dewvelopment
mode).

extern_eep.hex This file contains the external non-wolatile

memory data on the ZM4125 module. Initialize
only external non-wolatile memory once by
downloading this file.

Sigma Designs Inc. Softw are Components Page 9 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.24.4 Static Controller

The lib\controller_static_norep_ZW040x directory contains all files needed for building a Z-Wawe static
controller application. The directory contains the following files:

ZW_controller_static_zw040x.lib These files are the compiled Z-Wawve protocol and

ZW_controller_static_zw040x_3CH.lib APl library hosted in OTP (normal mode) for a 400
Series based module that a Z-Wawe static
controller application should be linked together
with. JP uses the 3CH variant.

ZW_controller_static_zw040x_devmode.lib These files are the same as above but used during
ZW_controller_static_zw040x_3CH_devmode.lib application development (dewelopment mode).

extern_eep.hex This file contains the external non-volatile memory
data on the ZM4125 module. Initialize only
external non-volatile memory once by downloading
this file.

3.2.4.5 Static Controller without repeater functionality

The lib\controller_static_norep_ZW040x directory contains all files needed for building a Z-Wawe static
controller application without repeater functionality. The directory contains the following files:

ZW_controller_static_norep_zw040x.lib These files are the compiled Z-Wave

ZW_controller_static_norep_zw040x_3CH.lib protocol and API library hosted in OTP
(normal mode) for a 400 Series based
module that a Z-Wawe static controller
application without repeater functionality
should be linked together with. JP uses the
3CH variant.

ZW_controller_static_norep_zw040x_devmode.lib These files are the same as above but
ZW_controller_static_norep_zw040x_3CH_devmode.lib used during application development
(development mode).

extern_eep.hex This file contains the external non-wolatile
memory data on the ZM4125 module.
Initialize only external non-volatile memory
once by downloading this file.

Sigma Designs Inc. Softw are Components Page 10 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.2.4.6 Static Controller Single

The lib\controller_static_single_ZWO040x directory contains all files needed for building a Z-Wave static
single controller application. ERTT application uses this library because it supports suppression of
retransmission.

WARNING: Do not use this library in product applications
The directory contains the following files:

ZW_controller_static_single_zw040x.lib These files are the compiled Z-Wave

ZW_controller_static_single_zw040x_3CH.lib protocol and API library hosted in OTP
(normal mode) for a 400 Series based
module that a Z-Wawe static controller
single application should be linked
together with. JP uses the 3CH variant.

ZW_controller_static_single_zw040x_devmode.lib These files are the same as abowe but
ZW_controller_static_single_zw040x_3CH_devmode.lib used during application development
(development mode).

extern_eep.hex This file contains the external non-volatile
memory data on the ZM4125 module.
Initialize only external non-wolatile memory
once by downloading this file.

3.2.4.7 Enhanced Slave

The lib\slave_enhanced _ZW040x directory contains all files needed for building a Z-Wave enhanced
slave node application. The directory contains the following files:

ZW_slave_enhanced_ZwW040x.lib These files are the compiled Z-Wawe protocol and

ZW_slave_enhanced_ZW040x_3CH.lib API library hosted in OTP (normal mode) for a 400
Series based module that a Z-Wawve enhanced
slave application should be linked together with.
JP uses the 3CH variant.

ZW_slave_enhanced_ZW040x_devmode.lib These files are the same as abowe but used

ZW_slave_enhanced_ZW040x_3CH_devmode.lib during application development (dewvelopment
mode).

extern_eep.hex This file contains the external non-wolatile memory

data on the ZM4125 module. Initialize only
external non-wolatile memory once by
downloading this file.

Sigma Designs Inc. Softw are Components Page 11 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25
3.2.4.8 Enhanced 232 Slave

The lib\slave_enhanced_232_ ZW040x directory contains all files needed for building a Z-Wawe
enhanced slave node application. The directory contains the following files:

ZW_slave_enhanced_232_ ZW040x.lib These files are the compiled Z-Wave

ZW_slave_enhanced_ 232 ZwW040x_3CH.lib protocol and API library hosted in OTP
(normal mode) for a 400 Series based
module that a Z-Wawve enhanced 232 slave
application should be linked together with. JP
uses the 3CH variant.

ZW_slave_enhanced_232_ZW040x_devmode.lib These files are the same as above but used
ZW_slave_enhanced_232 ZW040x_3CH_devmode.lib during application development
(development mode).

extern_eep.hex This file contains the external non-volatile
memory data on the ZM4125 module.
Initialize only external non-volatile memory
once by downloading this file.

3.2.4.9 Production Test Generator

The lib\slave_prodtest ZW040x directory contains all files needed for building a production test
generator application on a Z-Wawe module. The directory contains the following files:

ZW_slave_prodtest_gen_2ZWO040x.lib These files are the compiled Z-Wawve protocol

ZW_slave_prodtest_gen_2ZWO040x_3CH.lib and APl library hosted in OTP (normal mode)
for a 400 Series based module modules that a
Z-Wawve production test generator application
should be linked together with.

ZW_slave_prodtest_gen_2ZWO040x_devmode.lib These files are the same as abowve but used

ZW_slave_prodtest_gen_ZWO040x_3CH_devmode.lib during application development (development
mode).

3.2.4.10 Routing Slave

The lib\slave_routing_ZW040x directory contains all files needed for building a Z-Wawe routing slave
node application on a Z-Wave module. The directory contains the following files:

ZW_slave_routing_ZW040x.lib These files are the compiled Z-Wawe protocol and

ZW_slave_routing_ZW040x_3CH.lib APl library hosted in OTP (normal mode) for a 400
Series based module that a Z-Wawe routing slave
application should be linked together with. JP uses
the 3CH variant.

ZW_slave_routing_ZWO040x_devmode.lib These files are the same as above but used during
ZW_slave_routing_ZWO040x_3CH_devmode.lib application development (development mode).

Sigma Designs Inc. Softw are Components Page 12 of 103

CONFIDENTIAL

INS12035

3.24.11

-2

External non-volatile memory

Z-Wave 400 Series Developer's Kit v6.02.00 Contents

2012-05-25

The ext_nvm directory contains external non-wolatiie memory (NVM) drivers using SPI1 and pin P2.5 as
chip select:

ZW_at25128a_spi_if.obj — Atmel SPI Serial EEPROM AT25128A

2ZW_m25pel0_spi_if.obj — STMicroelectronics Serial Flash M25PE10 (default)

The libraries support both types of external NVM. The driver adapt automatically to the external NVM in
question. It is possible to overrule default in library by linking one of the above object files by modifying
the makefile from:

Export the variables declared above to the other makefiles.

export BASEDIR ZWLIBROOT UNDERSTAND C

to the fo

llowing:

Set another type of the non-volatile memory
NVM TYPE:=at25128a

Export the variables declared above to the other makefiles.

export BASEDIR ZWLIBROOT UNDERSTAND C NVM TYPE

Drivers using alternative pins as chip select are also available:

ZW_at25128a p0_4 spi_if.obj,
ZW_at25128a pl 4 spi_if.obj,
ZW_at25128a p3_0_spi_if. obj,
ZW_at25128a_p3_4_ spi_if.obj,
ZW_at25128a p3_5 spi_if.obj,
ZW_at25128a p3_6_spi_if.obj,
ZW_at25128a_p3_7_spi_if.obj,
ZW_m25pel0_p0_4 spi_if.obj,
ZW_m25pel0_pl_4 spi_if.obj,
ZW_m25pel0_p3_0_spi_if.obj,
ZW_m25pel0 _p3_4 spi_if.obj,
ZW_m25pel0_p3_5 spi_if.obj,
ZW_m25pel0_p3_6_spi_if.obj,
ZW_m25pel0_p3_7_spi_if.obj,

The external NVM is accessed through

about th

3.2.4.12

e NVM API interface.

Variable initialization

enter NVM_TYPE
enter NVM_TYPE
enter NVM_TYPE
enter NVM_TYPE
enter NVM_TYPE
enter NVM_TYPE
enter NVM_TYPE
enter NVM_TYPE
enter NVM_TYPE
enter NVM_TYPE
enter NVM_TYPE
enter NVM_TYPE
enter NVM_TYPE
enter NVM_TYPE

:=at25128a pl0 4
:=at25128a pl 4
:=at25128a p3 0
:=at25128a p3 4
:=at25128a p3 5
:=at25128a p3 6
:=at25128a p3 7

:=m25pel0 pO0 4
:=m25pel0 pl 4
:=m25pel0 p3 0
:=m25pel0 p3 4
:=m25pel0 p3 5
:=m25pel0 p3 6
:=m25pel0 p3 7

the SPI1 interface. Refer to Z-Wave Memory API for details

The init_vars directory contains an init_vars.obj object file, which replaces the standard Keil initialization
procedure. This reduces the time to detect whether a wakeup beam is present or not by postponing
initialization. Initialization happens only in case the wakeup beam is addressed to the node in question.

Sigma Designs Inc.

Softw are Components

CONFIDENTIAL

Page 13 of 103

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25
3.2.4.13 RF frequency
The rf_freq directory contains all the possible RF initialization object files ZW _rf_040x_xx.obj:

e ZW_rf 040x_ALL.obj — Contains all frequencies (Used by Zniffer and Production Test
Generator)

o ZW_rf 040x_ANZ.0obj — Australia/New Zealand

ZW_rf_ 040x_EU.obj — Europe

Z2W_rf_040x_HK.obj — Hong Kong

o ZW_rf 040x_IN.obj — India

ZW _rf_040x_JP.obj — Japan using 32.005 MHz crystal
o ZW_rf 040x_MY.obj — Malaysia

e ZW_rf 040x_US.obj —US

Sigma Designs Inc. Softw are Components Page 14 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.3 Product

The Product directory contains Z-Wave sample applications for a number of different product examples.
Both source code and precompiled files ready for download are supplied.

Each directory contains the necessary files for creating ANZ, EU, HK, IN, JP, MY, and US, products.
JP_DK used for testing purposes due to a LBT RSSI threshold lower than -75 dBm as required by the
Japanese authorities.

Hex files containing JP_32MHZ and JP_DK_32MHZ are temporary solutions supporting a 32MHz
crystal.

3.3.1 Bin

The Product\Bin directory structure contains the precompiled code of the Z-Wawve sample applications
and the hex files needed to download to the Z-Wawe ASIC via the Z-Wave Programmer.

3.3.1.1 Bin_Sensor

The Product\Bin\Bin_Sensor directory contains all files needed for running a binary sensor sample
application on a Z-Wawe module. The directory contains the following files:

extern_eep.hex This file contains the external non-volatile
memory data on the ZM4125 module. Initialize
only external non-volatile memory once by
downloading this file.

Bin_Sensor_ZWO040x_y.hex The compiled and linked binary sensor sample
application hosted in OTP (normal mode) for y
=ANZ, EU, HK, IN, JP, MY and US frequency
versions running on a ZM4125 (ZM4101)
module mounted on ZDPO3A.

Bin_Sensor_ZWO040x_y Sample application hex files when working in
starter_devmode.hex starter development mode [23]. Starter
Bin_Sensor_ZWO040x vy indicates that only library is present in OTP.

starter_devmode_patch_RAM.hex

Bin_Sensor_ZWO040x_y devmode.hex Sample application hex files when working in
Bin_Sensor_ZWO040x_y devmode_patch_RAM.hex dewelopment mode [23].

3.3.1.2 Bin_Sensor_Sec

Secure binary sensor sample application binaries not distributed due to export restrictions. Contact
support via support@zen-sys.com for further information.

3.3.1.3 Bin_Sensor_Battery

The Product\Bin\Bin_Sensor_Battery directory contains all files needed for running a battery operated
binary sensor sample application on a Z-Wave module. The directory contains the following files:

extern_eep.hex This file contains the external non-wolatile
memory data on the ZM4125 module. Initialize

Sigma Designs Inc. Softw are Components Page 15 of 103

CONFIDENTIAL

mailto:support@zen-sys.com

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

only external non-volatile memory once by
downloading this file.

Bin_Sensor_Battery_ZW040x_y.hex The compiled and linked battery operated
binary sensor sample application hosted in
OTP (normal mode) for y = ANZ, EU, HK, IN,
JP, MY and US frequency versions \ersions
running on a ZM4125 (ZM4101) module
mounted on ZDPO3A.

Bin_Sensor_Battery_ZW040x_y Sample application hex files when working in
starter_devmode.hex starter development mode [23]. Starter
Bin_Sensor_Battery_ZW040x vy __ indicates that only library is present in OTP.
starter_devmode_patch_RAM.hex

Bin_Sensor_Battery_ZW040x vy __ Sample application hex files when working in
devmode.hex dewelopment mode [23].

Bin_Sensor_Battery_ZW040x vy __
devmode_patch_RAM.hex

3.3.14 Bin_Sensor_Battery_Sec

Secure battery operated binary sensor sample application binaries not distributed due to export
restrictions. Contact support via support@zen-sys.com for further information.

3.3.1.5 Dev_Citrl

The Product\Bin\Dev_Ctrl directory contains all files needed for running a development controller sample
application on a Z-Wawe module. The directory contains the following files:

extern_eep.hex This file contains the external non-volatile
memory data on the ZM4125 module. Initialize
only external non-wolatile memory once by
downloading this file.

dev_ctrl_ZWO040x_y.hex The compiled and linked development
controller sample application hosted in OTP
(normal mode) for y = ANZ, EU, HK, IN, JP,
MY and US frequency versions running on a
ZM4125 (ZM4101) module mounted on

ZDPO3A.
dev_ctrl_2ZW040x_y_ Sample application hex files when working in
starter_devmode.hex starter development mode [23]. Starter
dev_ctrl_2ZW040x_y_ indicates that only library is present in OTP.
starter_devmode_patch_RAM.hex
dev_ctrl_ZWO040x_y_devmode.hex Sample application hex files when working in
dev_ctrl_ZW040x_y_devmode_patch_RAM.hex dewelopment mode [23].
Sigma Designs Inc. Softw are Components Page 16 of 103

CONFIDENTIAL

mailto:support@zen-sys.com

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.3.1.6 Dev_Citrl_AVR_Sec

Secure dewvelopment controller sample application binaries not distributed due to export restrictions. The
sample application uses an AVR ATmegal28 as host on a ZDP03A Development module [14]. Configure
the Z-Wave module on the ZDP0O3A Dewvelopment module with a serial APl based portable controller
sample application. Contact support via support@zen-sys.com for further information.

3.3.1.7 DoorBell

The Product\Bin\DoorBell directory contains all files needed for running a bell sample application on a
Z-Wave module. The dewelopment controller application is used as button in the doorbell application.

The directory contains the following files:

doorbell_bell_ZW040x_y.hex

doorbell_bell_ZW040x_y
starter_devmode.hex
doorbell_bell_ZW040x_y
starter_devmode_patch_RAM.hex

doorbell_bell_ZW040x_y
devmode.hex

doorbell_bell_ZW040x_y_
devmode_patch_RAM.hex

3.3.1.8 DoorLock

The compiled and linked bell sample
application hosted in OTP (normal mode) for y
=ANZ, EU, HK, IN, JP, MY and US frequency
versions running on a ZM4125 (ZM4101)
module mounted on ZDPO3A.

Sample application hex files when working in
starter development mode [23]. Starter
indicates that only library is present in OTP.

Sample application hex files when working in
development mode [23].

The Product\Bin\DoorLock directory contains all files needed for running a doorlock sample application
on a Z-Wave module. The directory contains the following files:

doorlock_ZW040x_y.hex

doorlock_ZW040x_y_
starter_devmode.hex
doorlock_ZWO040x_y_
starter_devmode_patch_RAM.hex

doorlock_ZWO040x_y_
devmode.hex
doorlock_ZWO040x_y_
devmode_patch_RAM.hex

The compiled and linked doorlock sample
application hosted in OTP (normal mode) for y
=ANZ, EU, HK, IN, JP, MY and US frequency
versions running on a ZM4125 (ZM4101)
module mounted on ZDPO3A.

Sample application hex files when working in
starter development mode [23]. Starter
indicates that only library is present in OTP.

Sample application hex files when working in
development mode [23].

Sigma Designs Inc.

Softw are Components Page 17 of 103

CONFIDENTIAL

mailto:support@zen-sys.com

INS12035-2

3.3.1.9 DoorLock_Sec

Z-Wave 400 Series Developer's Kit v6.02.00 Contents

2012-05-25

The Product\Bin\DoorLock_Sec directory contains all files needed for running a secure doorlock sample
application on a Z-Wawe module. The directory contains the following files:

doorlock_ZW040x_y SCHEME_O0.hex

doorlock_ZW040x_y SCHEME_O_
starter_devmode.hex

doorlock_ZW040x_y SCHEME_O_
starter_devmode_patch_RAM.hex

doorlock_ZW040x_y SCHEME_O_
devmode.hex
doorlock_ZW040x_y SCHEME_O_
devmode_patch_RAM.hex

The compiled and linked secure doorlock
sample application hosted in OTP (normal
mode) for y = ANZ, EU, HK, IN, JP, MY and
US frequency versions running on a ZM4125
(ZM4101) module mounted on ZDPO3A.

Sample application hex files when working in
starter development mode [23]. Starter
indicates that only library is present in OTP.

Sample application hex files when working in
dewelopment mode [23].

NOTICE: Secure door lock sample application binaries not distributed due to export restrictions. Contact

support via support@zen-sys.com for further information.

3.3.1.10 LED _Dimmer

The Product\Bin\LED_Dimmer directory contains all files needed for running a LED dimmer sample
application on a Z-Wawve module. The directory contains the following files:

leddimmer_ZWO040x_y.hex

leddimmer_ZWO040x_y
starter_devmode.hex
leddimmer_ZWO040x_y
starter_devmode_patch_RAM.hex

leddimmer_2ZWO040x_y_devmode.hex
leddimmer_ZW040x_y devmode_patch_RAM.hex

leddimmer_2ZM4102_y.hex

leddimmer_ZM4102_y
starter_devmode.hex
leddimmer_ZM4102 y
starter_devmode_patch_RAM.hex

leddimmer_ZM4102_y _devmode.hex
leddimmer_ZM4102_y _devmode_patch_RAM.hex

LED dimmer sample application hosted in OTP
(normal mode) for y = ANZ, EU, HK, IN, JP,
MY and US frequency versions running on a
ZM4125 (ZM4101) module mounted on
ZDPO3A.

Sample application hex files when working in
starter development mode [23]. Starter
indicates that only library is present in OTP.

Sample application hex files when working in
development mode [23].

LED dimmer sample application hosted in OTP
(normal mode) for y = ANZ, EU, HK, IN, JP,
MY and US frequency versions running on a
ZMA4102 based module mounted on ZDPO3A.

Sample application hex files when working in
starter development mode [23]. Starter
indicates that only library is present in OTP.

Sample application hex files when working in
dewelopment mode [23].

Sigma Designs Inc.

Softw are Components

Page 18 of 103

CONFIDENTIAL

mailto:support@zen-sys.com

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.3.1.11 LED Dimmer_Sec

Secure LED dimmer sample application binaries not distributed due to export restrictions. Contact
support via support@zen-sys.com for further information.

3.3.1.12 MyProduct

No hexadecimal files available.

3.3.1.13 Prod_Test_Gen

The Product\Bin\Prod_Test_Gen directory contains all files needed for running a production test
generator sample application on a Z-Wawve module. The directory contains the following files:

prod_test gen_ZWO040x_ALL.hex The compiled and linked
production test generator
sample application hosted
in OTP (normal mode) for
all frequencies wersions
running on a ZM4125
(ZM4101) module mounted
on ZDPO3A (except JP
frequency).

prod_test gen_ZWO040x_ALL_3CH.hex The compiled and linked
production test generator
sample application hosted
in OTP (normal mode) for
JP frequency running on a
ZM4125 (ZM4101) module
mounted on ZDPO3A.

prod_test gen_ZWO040x_ALL _starter_devmode.hex Sample application hex files
prod_test_gen_ZWO040x_ALL _starter_devmode_patch_RAM.hex when working in starter

development mode [23].
prod_test gen_ZWO040x_ALL_3CH_starter_devmode.hex Starter indicates that only
prod_test gen _ZW040x_ALL_3CH_starter_devmode_patch_ RAM.hex library is present in OTP.
prod_test gen_ZWO040x_ALL_devmode.hex Sample application hex files
prod_test gen_ZWO040x_ALL_devmode_patch_RAM.hex when working in

development mode [23].
prod_test gen_ZWO040x_ALL_3CH_devmode.hex
prod_test gen_ZWO040x_ALL_3CH_devmode_patch_RAM.hex

Sigma Designs Inc. Softw are Components Page 19 of 103

CONFIDENTIAL

mailto:support@zen-sys.com

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.3.1.14 Serial API_Controller_Bridge

The Product\Bin\SerialAPI_Controller_Bridge directory contains all files needed for running a serial API
based bridge controller sample application on a Z-Wave module. The directory contains the following

files:

extern_eep.hex

serialapi_controller_bridge_ZWO040x_y.hex

serialapi_controller_bridge_ZWO040x_y
starter_devmode.hex
serialapi_controller_bridge_ZWO040x_y
starter_devmode_patch_RAM.hex

SupportedFunc_serialapi_controller_bridge.txt

3.3.1.15 Serial API_Controller_Installer

This file contains the external non-volatile
memory data on the ZM4125 module. Initialize
only external non-volatile memory once by
downloading this file.

The compiled and linked production serial API
sample application hosted in OTP (normal
mode) for y = ANZ, EU, HK, IN, JP, MY and
US frequency versions running on a ZM4125
(ZM4101) module mounted on ZDPO3A.

Sample application hex files when working in
starter development mode [23]. Starter
indicates that only library is present in OTP.
Non starter hex files not present due to code
space shortage.

Show enabled (1) and disabled (0) serial API
calls of released sample application.

The Product\Bin\SerialAP1_Controller_Installer directory contains all files needed for running a serial API
based installer controller sample application on a Z-Wave module. The directory contains the following

files:

extern_eep.hex

serialapi_controller_installer_ZW040x_y.hex

serialapi_controller_installer_ZW040x_y
starter_devmode.hex
serialapi_controller_installer_ZW040x_y
starter_devmode_patch_RAM.hex

serialapi_controller_installer_ZW040x_y
devmode.hex
serialapi_controller_installer_ZW040x_y
devmode_patch_RAM.hex

SupportedFunc_serialapi_controller_installer.txt

This file contains the external non-wolatile
memory data on the ZM4125 module. Initialize
only external non-wolatile memory once by
downloading this file.

The compiled and linked production serial API
sample application hosted in OTP (normal
mode) for y = ANZ, EU, HK, IN, JP, MY and
US frequency wersions running on a ZM4125
(ZM4101) module mounted on ZDPO3A.

Sample application hex files when working in
starter development mode [23]. Starter
indicates that only library is present in OTP.

Sample application hex files when working in
dewelopment mode [23].

Show enabled (1) and disabled (0) serial API

Sigma Designs Inc.

Softw are Components

Page 20 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.3.1.16 Serial API_Controller_Portable

calls of released sample application.

The Product\Bin\SerialAPI_Controller_Portable directory contains all files needed for running a serial API
based portable controller sample application on a Z-Wave module. The directory contains the following

files:

extern_eep.hex

serialapi_controller_portable_ZW040x_y.hex

serialapi_controller_portable_ZWO040x_y
starter_devmode.hex
serialapi_controller_portable_ZWO040x_y
starter_devmode_patch_RAM.hex

serialapi_controller_portable_ZWO040x_y
devmode.hex
serialapi_controller_portable_ZW040x_y_
devmode_patch_RAM.hex

SupportedFunc_serialapi_controller_portable.txt

This file contains the external non-volatile
memory data on the ZM4125 module. Initialize
only external non-volatile memory once by
downloading this file.

The compiled and linked production serial API
sample application hosted in OTP (normal
mode) for y = ANZ, EU, HK, IN, JP, MY and
US frequency versions running on a ZM4125
(ZM4101) module mounted on ZDPO3A.

Sample application hex files when working in
starter development mode [23]. Starter
indicates that only library is present in OTP.

Sample application hex files when working in
dewelopment mode [23].

Show enabled (1) and disabled (0) serial API
calls of released sample application.

Sigma Designs Inc.

Softw are Components

Page 21 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.3.1.17 Serial API_Controller_Static

The Product\Bin\SerialAPI_Controller_Static directory contains all files needed for running a serial API
based static controller sample application on a Z-Wave module. The directory contains the following files:

extern_eep.hex This file contains the external non-volatile
memory data on the ZM4125 module. Initialize
only external non-volatile memory once by
downloading this file.

serialapi_controller_static_ZW040x_y.hex The compiled and linked production serial API
sample application hosted in OTP (normal
mode) for y = ANZ, EU, HK, IN, JP, MY and
US frequency wversions running on a ZM4125
(ZM4101) module mounted on ZDPO3A.

serialapi_controller_static_ZW040x_y__ Sample application hex files when working in
starter_devmode.hex starter development mode [23]. Starter
serialapi_controller_static_ZW040x_y__ indicates that only library is present in OTP.
starter_devmode_patch_RAM.hex Non starter hex files not present due to code

space shortage.

SupportedFunc_serialapi_controller_static.txt Show enabled (1) and disabled (0) serial API
calls of released sample application.

3.3.1.18 Serial API_Controller_Static_Norep

The Product\Bin\SerialAP1_Controller_Static_Norep directory contains all files needed for running a serial
API based static controller sample application without repeater functionality on a Z-Wave module. The
directory contains the following files:

extern_eep.hex This file contains the external non-wolatile
memory data on the ZM4125 module.
Initialize only external non-wolatile memory
once by downloading this file.

serialapi_controller_static_norep_2ZW040x_y.hex The compiled and linked production serial
APl sample application hosted in OTP
(normal mode) for y = ANZ, EU, HK, IN, JP,
MY and US frequency versions running on a
ZM4125 (ZM4101) module mounted on

ZDPO3A.
serialapi_controller_static_norep_2ZW040x_y__ Sample application hex files when working in
starter_devmode.hex starter development mode [23]. Starter
serialapi_controller_static_norep_ZWO040x_y indicates that only library is present in OTP.
starter_devmode_patch_RAM.hex Non starter hex files not present due to code

space shortage.

SupportedFunc_serialapi_controller_static_norep.txt Show enabled (1) and disabled (0) serial API
calls of released sample application.

Sigma Designs Inc. Softw are Components Page 22 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.3.1.19 Serial API_Controller_Static_Single

The Product\Bin\SerialAPI_Controller_Static_Single directory contains all files needed for running an
ERTT based serial API static controller sample application on a Z-Wawvwe module. The directory contains

the following files:

extern_eep.hex

serialapi_controller_static_single_ZW040x_y.hex

serialapi_controller_static_single_ZWO040x_y

starter_devmode.hex

serialapi_controller_static_single_ZWO040x_y

starter_devmode_patch_RAM.hex

serialapi_controller_static_single_ZWO040x_y

devmode.hex

serialapi_controller_static_single_ZW040x_y

devmode_patch_RAM.hex

SupportedFunc_serialapi_controller_single.txt

This file contains the external non-volatile
memory data on the ZM4125 module.
Initialize only external non-volatile memory
once by downloading this file.

The compiled and linked production serial API
sample application hosted in OTP (normal
mode) for y = ANZ, EU, HK, IN, JP, MY and
US frequency wversions running on a ZM4125
(ZM4101) module mounted on ZDPO3A.

Sample application hex files when working in
starter development mode [23]. Starter
indicates that only library is present in OTP.

Sample application hex files when working in
dewelopment mode [23].

Show enabled (1) and disabled (0) serial API
calls of released sample application.

Sigma Designs Inc.

Softw are Components

Page 23 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.3.1.20 SerialAPI_Slave_Enhanced

The Product\Bin\SerialAPI_Slave_Enhanced directory contains all files needed for running a serial API
based enhanced slave sample application on a Z-Wawe module. The directory contains the following

files:

extern_eep.hex

serialapi_slave_enhanced_2ZWO040x_y.hex

serialapi_slave_enhanced_ZWO040x_y
starter_devmode.hex
serialapi_slave_enhanced_ZWO040x_y
starter_devmode_patch_RAM.hex

serialapi_slave_enhanced_ZWO040x vy
devmode.hex
serialapi_slave_enhanced_2ZW040x_y
devmode_patch_RAM.hex

SupportedFunc_serialapi_slave_enhanced.txt

This file contains the external non-volatile
memory data on the ZM4125 module. Initialize
only external non-volatile memory once by
downloading this file.

The compiled and linked production serial API
sample application hosted in OTP (normal
mode) for y = ANZ, EU, HK, IN, JP, MY and
US frequency versions running on a ZM4125
(ZM4101) module mounted on ZDPO3A.

Sample application hex files when working in
starter development mode [23]. Starter
indicates that only library is present in OTP.

Sample application hex files when working in
dewelopment mode [23].

Show enabled (1) and disabled (0) serial API
calls of released sample application.

Sigma Designs Inc. Softw are Components Page 24 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents

3.3.1.21 SerialAPI_Slave_Enhanced_232

2012-05-25

The Product\Bin\SerialAPI_Slave_Enhanced_232 directory contains all files needed for running a serial
APl based enhanced 232 slave sample application on a Z-Wawvwe module. The directory contains the

following files:

extern_eep.hex

serialapi_slave_enhanced_232_ZWO040x_y.hex

serialapi_slave_enhanced_232_ZWO040x_y
starter_devmode.hex
serialapi_slave_enhanced_232_ZW040x_y__
starter_devmode_patch_RAM.hex

serialapi_slave_enhanced_232_ZWO040x_y_
devmode.hex
serialapi_slave_enhanced_232_ZWO040x_y
devmode_patch_RAM.hex

SupportedFunc_serialapi_slave_enhanced_232.txt

This file contains the
external non-volatile
memory data on the
ZM4125 module. Initialize
only external non-volatile
memory once by
downloading this file.

The compiled and linked
production serial API
sample application hosted
in OTP (normal mode) for y
=ANZ, EU, HK, IN, JP, MY
and US frequency versions
running on a ZM4125
(ZM4101) module mounted
on ZDPO3A.

Sample application hex files
when working in starter
development mode [23].
Starter indicates that only
library is present in OTP.

Sample application hex files
when working in
development mode [23].

Show enabled (1) and
disabled (0) serial API calls
of released sample
application.

Sigma Designs Inc. Softw are Components

CONFIDENTIAL

Page 25 of 103

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.3.1.22 SerialAPI_Slave_Routing

The Product\Bin\SerialAPI_Slave_Routing directory contains all files needed for running a serial API
based routing slave sample application on a Z-Wave module. The directory contains the following files:

serialapi_slave_routing_ZW040x_y.hex The compiled and linked production
serial APl sample application
hosted in OTP (normal mode) for y
=ANZ, EU, HK, IN, JP, MY and US
frequency wversions running on a
ZM4125 (ZM4101) module
mounted on ZDPO3A.

serialapi_slave_routing_ZW040x_y__ Sample application hex files when
starter_devmode.hex working in starter development
serialapi_slave_routing_ZW040x_y__ mode [23]. Starter indicates that
starter_devmode_patch_RAM.hex only library is present in OTP.
serialapi_slave_routing_ZW040x_y__ Sample application hex files when
devmode.hex working in development mode [23].

serialapi_slave_routing_ZW040x_y__
devmode_patch_RAM.hex

SupportedFunc_serialapi_slave_routing.txt Show enabled (1) and disabled (0)
serial API calls of released sample
application.

3.3.2 Binary Sensor

The Product\Bin_Sensor directory contains sample source code for a non-secure/secure binary sensor
and non-secure/secure battery operated binary sensor application.

3.3.3 Development Controller

The Product\Dev_Ctrl directory contains sample source code for the development controller application
used on the ZM12xxRE Module mounted on the Z-Wave Dewvelopment module. For further information
refer to section 4.3 and reference [8].

3.34 Secure Development Controller based on serial APl and using an AVR as host

The Product\Dev_Ctrl_AVR_Sec directory contains sample source code for the secure development
controller. The sample application uses an AVR ATmegal28 as host on a ZDP02A/ZDP0O3A

Dewelopment module. Configure the Z-Wave module on the ZDP02A/ZDP03A Development module with
a serial API based portable controller sample application. For further information refer to section 4.4 and
reference [11].

3.3.5 Doorbell

The Product\DoorBell directory contains sample source code for the doorbell application used on the
Z-Wawe Interface module. Use the Development Controller application to control the doorbell application.
For further information, refer to section 4.5.

Sigma Designs Inc. Softw are Components Page 26 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.3.6 Door Lock
The Product\DoorLock directory contains sample source code for the non-secure and secure door lock

application on a Z-Wavwe module. Use the Secure Development Controller application to control the door
lock application. For further information, refer to section 4.6.

3.3.7 LED Dimmer
The Product\LED_Dimmer directory contains sample source code for the non-secure and secure dimmer

application on a Z-Wave module, which uses the LEDs to simulate a light switch with a built in dimmer.
For further information, refer to section 4.7.

3.3.8 MyProduct

The Product\MyProduct directory contains sample source code for a routing slave application on a
Z-Wave module. For further information, refer to section 4.8.

3.3.9 Production Test Generator

The Product\Prod_Test_Gen directory contains sample source code for a production test generator
application on a Z-Wawe module. For further information, refer to section 4.9.

3.3.10 Serial API

The Product\SerialAPI directory contains sample source code for the Serial APl sample applications. For
further information about the Serial API, refer to section 4.10.

Sigma Designs Inc. Softw are Components Page 27 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25
3.3.11 Utilities

The Product\util_func directory contains some helpful functions that are used by seweral of the sample
applications.

AES_module.h This header file contains definitions for implementing secure
communication using AES as encrypting/decrypting engine.

association.c The files contain sample code that shows how association between
association.h nodes could be implemented on a Z-Wave module. This sample code
holds all associations in RAM and the number of nodes/groupings
possible using this implementation is limited.

Applications using this collection of functions must implement three
functions (ApplicationStoreAll, ApplicationinitAll, ApplicationClearAll).
These should handle the storage in nonwolatile memory if this is

desired.
battery.c The files contain sample code that shows how battery operated devices
battery.h may implement power down, wake up notification and network update

requests. Applications using this collection must call the following
functions at their appropriate location:

UpdateWakeupCount — call from ApplicationlnitSW to update the
wakeup counter which determines the wakeup interval on application
level (200-series) — Only called when Wakeupreason is WUT-Kicked.
INitRTCActionTimer — call from ApplicationinitSW, to activate the RTC
timer. (100-Series)

HandleWak eupFrame — call from ApplicationCommandHandler to
handle incoming COMMAND_CLASS_WAKE_UP is received. Handles
WAKE_UP_INTERVAL_GET/SET/NO_MORE_INFORMATION.
SetDefaultBatteryConfiguration —is called from ApplicationlnitHW when
node is reset, and from SetDefaultConfiguration. Sets the

default values for powerdown timeout, sleep time and networkupdate.
LoadBatteryConfiguration — call from LoadConfiguration. Loads the
battery related information from EEPROM and make them available for
the running application.

SaveBatteryConfiguration — call from SaveConfiguration. Sawes the
battery related information to EEPROM.

StartPowerDownTimer — call from ApplicationinitSW and set as
callback function ZW_SEND_DATA methods after which the node
should enter sleep mode.

Please refer tothe BatterySensor sample application for an example on
how this can be implemented.

ctrl_learn.h The files contain sample code for how to handle learn mode on
ctrl_learn.c controller nodes.

one_button.c Enables easy use of a button. The functions detect whether a button
one_button.h has been pressed shortly or is being held. To initialise the button

detection, run OneButtonlnit() from ApplicationinitSW. And call
OneButtonLastAction when button information is needed (e.g. in
ApplicationPoll()).

self heal.c Support functions to implement Lost / Self Heal functionality. This file is

Sigma Designs Inc. Softw are Components Page 28 of 103

CONFIDENTIAL

INS12035-2

Z-Wave 400 Series Developer's Kit v6.02.00 Contents

2012-05-25

self_heal_non_zero_vars.c
self_heal.h

mandatory if the battery helper functions are used and
ZW_SELF_HEAL is defined. See the battery.c and bin_sensor.c source
files for help on using the functions.

slave_learn.h
slave_learn.c

The files contain sample code for how to handle learn mode on slave
nodes. These two files are used by all slave based sample code in the
SDK. The sample application should just call StartLearnModeNow() to
enter learnmode and transmit nodeinformation. Inclusion uses normal
power. The sample application should then wait for the BOOL
learnState to go FALSE before doing transmissions.

ZW_AES128.h This header file contains definitions for the security solution on
application level.

ZW_FLiRS.c The files contain sample code for how to handle FLIRS nodes.

ZW_FLiRS.h

ZW_Security_AES_module.c
ZW_Security_AES_module.h

The files contain sample code for the functionality supporting secure
communication using AES as encryption/decryption mechanism.

ZW_TransportLayer.h

Transport layer type selector

ZW_TransportNative.h

Implements functions for transporting frames ower the native Z-Wave
Network.

ZW_TransportSecurity.h
ZW_TransportSecurity.c

Implements functions for transporting frames owver the secure Z-Wave
Network.

ZWZip6lowPanlphc.h
ZWZip6lowPanlphc.c

Implements functions for IPv6 to 6lowPAN data conversions.

Sigma Designs Inc.

Softw are Components

CONFIDENTIAL

Page 29 of 103

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.4 Tools

The Tools directory contains various tools needed for building and debugging the sample applications.
All tools in this directory can freely be used for building Z-Wawe applications.

3.4.1 ERTT

This directory contains the PC software and the embedded code for the Enhanced Reliability Test Tool
(ERTT). Notice that the PC based Controller now supports the ERTT functionality. For further details,
refer to [4].

The ERTT directory contains the following files:

PC\setup.exe PC application.
PC\ZWaveControllerSetup.msi

Z-Wave_Firmware\extern_eep.hex This file contains the external
NVM data on the Z-Wawe
module. Initialize only external
NVM once.

serialapi_controller_static_single_ZW040x_y.hex Static controller single based
serial APl (COM port) sample
application hosted in OTP
(normal mode) for y = ANZ, EU,
HK, IN, JP, MY and US
frequency wversions for a 400
Series based module.

serialapi_controller_static_single_ZW040x_USB_y.hex Static controller single based
serial APl (USB announcing itself
as avirtual COM port) sample
application hosted in OTP
(normal mode) for y = ANZ, EU,
HK, IN, JP, MY and US
frequency wversions for a 400
Series based module.

Sigma Designs Inc. Softw are Components Page 30 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.4.2 FixPatchCRC

This directory contains a tool used when building patchable sample applications.

3.4.3 HexTools

This directory contains a tool used when building patchable sample applications.

3.4.4 IncDep

This directory contains a python script that is used for making dependency files when building the sample
applications.

3.45 Make

This directory contains a DOS/Windows wersion of the GNU make utility. The make utility is used for
building the sample applications.

3.4.6 Mergehex

This directory contains a tool used for merging two files in Intel hex format. The tool is used for building
external non-wolatile memory files in the sample code.

Sigma Designs Inc. Softw are Components Page 31 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.4.7 Micro PVT

This Micro_PVT k directory contains embedded programs to check the RF performance on a device
regardless of the contents in the OTP. This makes the tool suitable to investigate the RF performance of
un-programmed or already programmed devices and when performing PVT measurements. The only
requirement for using the tool is that the programming interface to the chip must be available and the
UARTO interface for communication. This the 400 Series chip must be programmed in EOOS mode

allowing execution of code out of the 4K SRAM. For further details, refer to [25].

The Micro_RF_Link directory contains the following files:

micro_pvt_rx_9K6_calval.hex

micro_pvt_rx_9K6_ZM4102_calval.hex

micro_pvt_rx_40K_calval.hex

micro_pvt_rx_40K_ZM4102_calval.hex

micro_pvt_rx_100K_calval.hex

micro_pvt_rx_100K_ZM4102_calval.hex

micro_pvt_tx_9K6_calval.hex

micro_pvt_tx_9K6_ZM4102_calval.hex

micro_pvt_tx_40K_calval.hex

micro_pvt_tx_40K_ZM4102_calval.hex

micro_pvt_tx_100K_calval.hex

micro_pvt_tx_100K_ZM4102_calval.hex

Testing RF Rx communication
SD3402 or ZM4101

Testing RF Rx communication
ZM4102

Testing RF Rx communication
SD3402 or ZM4101

Testing RF Rx communication
ZM4102

Testing RF Rx communication
SD3402 or ZM4101

Testing RF Rx communication
ZM4102

Testing RF Tx communication
SD3402 or ZM4101

Testing RF Tx communication
ZM4102

Testing RF Tx communication
SD3402 or ZM4101

Testing RF Tx communication
ZM4102

Testing RF Tx communication
SD3402 or ZM4101

Testing RF Tx communication
ZM4102

at 9.6kbit/s on

at 9.6kbit/s on

at 40kbit/s on

at 40kbit/s on

at 100kbit/s on

at 100kbit/s on

at 9.6kbit/s on

at 9.6kbit/s on

at 40kbit/s on

at 40kbit/s on

at 100kbit/s on

at 100kbit/s on

Sigma Designs Inc.

Softw are Components

CONFIDENTIAL

Page 32 of 103

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.4.8 Micro RF Link

This Micro_RF_Link directory contains embedded programs to check the RF link on a device regardless
of the contents in the OTP. This requires that the 400 Series chip must be programmed in EOOS mode
allowing execution of code out of the 4K SRAM. For further details, refer to [22].

The Micro_RF_Link directory contains the following files:

micro_rf link_9K6_ZW040x.hex Testing RF link at 9.6kbit/s
micro_rf_link_40K_ZW040x.hex Testing RF link at 40kbit/s
micro_rf_link_100K_ZWO040x.hex Testing RF link at 100kbit/s

Sigma Designs Inc. Softw are Components Page 33 of 103

CONFIDENTIAL

INS12035-2

3.4.9 Programmer

Z-Wave 400 Series Developer's Kit v6.02.00 Contents

2012-05-25

This Programmer directory contains the PC software and ATMegal28 firmware for the non-wvolatile
memory programming of the Z-Wawe 100/200/300/400 Series Chips. The Z-Wave Programmer also
supports programming of the external EEPROM on the Z-Wave modules. Finally, the Z-Wawve
Programmer can also be used to configure transmission power and RF settings on the Z-Wawe modules

and lock bits. For further details, refer to [7].

The Programmer directory contains the following files:

PC\setup.exe

PC\CP210x_VCP_Win_XP_S2K3 Vista_7.exe

PC\Source\...

ZDPOxXA_Firmware\ATMegal28 Firmware.hex

ZDPOXA_Firmware\ZWaveProgrammer_FW.hex

ZDPOxA_Firmware\Source\...

SD3402_Calibration\SD3402_Calibration.hex

Programmer application.

The CP210x USB to UART Bridge Virtual COM Port
(VCP) driver. This driver supports Windows
XP/2003/Vista(32/64)/7(32/64).

ZWaveProgrammer PC source code providing
Windows GUI and interface to ATMegal28 situated
on the ZDP02A/ZDP03A Dewelopment Platform.
For further details regarding communication
protocol interface, refer to [12].

The compiled and linked Z-Wave Programmer
bootloader for the ATMegal28 situated on the
ZDP02A/ZDPO0O3A Development Platform.

The compiled and linked Z-Wave Programmer
firmware for the ATMegal28 situated on the
ZDP02A/ZDPO3A Development Platform.

Z-Wave Programmer firmware source code for the
ATMegal28 situated on the ZDP02A/ZDP0O3A
Dewvelopment Platform. For further details regarding
communication protocol interface, refer to [12].

SD3402 crystal calibration firmware used by the
calibration box, refer to[24]. ZM4101 and ZM4102
are already calibrated during production.

Sigma Designs Inc.

Softw are Components

Page 34 of 103

CONFIDENTIAL

INS12035-2

3.4.10 PVT and RF Regulatory

Z-Wave 400 Series Developer's Kit v6.02.00 Contents

2012-05-25

This directory contains software used in connection with PVT and RF regulatory measurements on the
hardware. All programs run in “Development Mode” and reside in the SRAM part using polling instead of
interrupt. The programs requires download of a hex file in the OTP part for wanted frequency before they
operates correct. For a guideline how to carry out the measurements, refer to [4].

The PVT_and_RF _regulatory directory contains the following 400 Series related files:

ZW0401_y OTP.hex

ZW0401_rx_100kbps_y.hex

ZWO0401 _rx_40kbps_y.hex

ZW0401_rx_100kbps_JP_y.hex

ZW0401_TXcar_100kbps_y.hex
ZW0401_TXcar_40kbps_y.hex
ZW0401 _TXcar_9k6bps_y.hex

ZW0401 _TXcar_100kbps_JP_y.hex

ZW0401_TXmod_100kbps_y.hex
ZW0401_TXmod_40kbps_y.hex
ZW0401_TXmod_9k6bps_y.hex

This hex file must be
downloaded into OTP using y =
ANZ, EU, HK, IN, JP, MY and
US frequency versions of the
400 Series based products. Hex
file contains a jump vector to
below sample applications and
RF constants. Preprogrammed
calibration value in chip is not
affected.

400 Series configured to receive
100 kbps signal using y = ANZ,
EU, HK, IN, MY and US
frequency versions of the 400
Series based products.

400 Series configured to receive
9.6/40 kbps signal using y =
ANZ, EU, HK, IN, MY and US
frequency wversions of the 400
Series based products.

400 Series configured to receive
100kbps modulated signal ony
= ch0(950.9514MHz),
ch1(954.5508MHZ) and
ch2(955.3508MHz)

400 Series constantly transmits
a carrier y = 921.42MHz (ANZ)
or 868.42MHz (EU) or
919.82MHz (HK) or 865.22 MHz
(IN) or 868.10MHz (MY) or
908.42MHz (US).

400 Series constantly transmits
a carrier y = ch0(950.9514MHz),
ch1(954.5508MHZ) and
ch2(955.3508MHz)

400 Series constantly transmits
a modulated signal y +/-25kHz,
where y = 921.42MHz (ANZ) or
868.42MHz (EU) or 919.82MHz
(HK) or 865.22 MHz (IN) or
868.10MHz (MY) or 908.42MHz
(Us).

Sigma Designs Inc.

Softw are Components

CONFIDENTIAL

Page 35 of 103

INS12035-2

ZW0401_TXmod_100kbps_JP_y.hex

ZW0401_TXmod_Transient_100kbps_y.hex
ZW0401_TXmod_Transient_40kbps_y.hex
ZW0401_TXmod_Transient_9k6bps_y.hex

ZW0401_TXmod_Transient_100kbps_JP_y.hex

Z-Wave 400 Series Developer's Kit v6.02.00 Contents

2012-05-25

400 Series configured to
constantly transmit a 100kbps
modulated signal aty =
ch0(950.9514MHz),
ch1(954.5508MHZ) and
ch2(955.3508MHz)

400 Series configured to
constantly transmit a 100kbps
modulated signal aty =
868.42MHz (EU), when
pressing 10 pin P11.

400 Series configured to
constantly transmit a 100kbps
modulated signal aty =
ch0(950.9514MHz),
ch1(954.5508MHZ) and
ch2(955.3508MHz), when
pressing 10 pin P11.

In addition, the PVT_and_RF_regulatory directory contains the following 200/300 Series related files:

ZW0201_rx_y.hex

ZW0201_TXcar_y.hex

ZW0201_TXmod_y.hex
ZW0201_TXmod_40kbps_y.hex

ZW0301_rx_y.hex

ZW0301_TXcar_y.hex

ZW0301_TXmod_y.hex
ZWO0301_TXmod_40kbps_y.hex

Puts the ZW0201 in receive mode for y = ANZ, EU, HK, IN,
MY, RU and US frequency \ersions of the ZW0201 based
products.

ZW0201 constantly transmits a carrier y = 921.42MHz
(ANZ) or 868.42MHz (EU) or 919.82MHz (HK) or
865.22MHz (IN) or 868.10MHz (MY) or 869.0MHz (RU) or
908.42MHz (US).

ZW0201 constantly transmits a modulated signal y +/-
25kHz, where y = 921.42MHz (ANZ) or 868.42MHz (EU) or
919.82MHz (HK) or 865.22MHz (IN) or 868.10MHz (MY) or

869.0MHz (RU) or 908.42MHz (US).
Hex file ZW0201_TXmod_y.hex cowers 9.6kbit/s.

Puts the ZW0301 in receive mode. y = ANZ, EU, HK, IN,
MY, RU and US frequency versions of the ZW0301 based
products.

ZWO0301 constantly transmits a carrier y = 921.42MHz
(ANZ) or 868.42MHz (EU) or 919.82MHz (HK) or
865.22MHz (IN) or 868.10MHz (MY) 868.42MHz or
908.42MHz (US).

ZWO0301 constantly transmits a modulated signal y +/-
25kHz, where y = 921.42MHz (ANZ) or 868.42MHz (EU) or
919.82MHz (HK) or 865.22MHz (IN) or 868.10MHz (MY)
868.42MHz or 908.42MHz (US).

Hex file ZW0301_TXmod_y.hex cowers 9.6kbit/s.

Sigma Designs Inc.

Softw are Components Page 36 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.4.11 Python

This directory contains a python scripting language interpreter. Python is used for various purposes in
the sample code build process.

3.4.12 TextTools

This directory contains the sed stream editor used to modify text strings during the make process.

3.4.13 uVisionProjectGenerator

This directory contains uVision Project Generator program; the program generate uVision projects when
running the makefile from a DOS prompt.

The uVisionProjectGenerator directory contains the following files:

__init__py uVision Project Generator application files.
j-py

MakePatch.bat

ochb51l.bat

uv-find-segment-end.bat

uVisionProjectGenerator.exe

3.4.14 XML Editor

This directory contains the XML Editor program; the program can be used to define approved Z-Wave
device and command classes used by the application layer of the Z-Wave protocol. The XML file can be
used by the zniffer for interpretation of the device and command classes. The customer can also define
device and command classes under development or proprietary command class structures enabling
interpretation by the Zniffer.

Beside a XML file containing all the information, it is also possible to generate a C# class file and C
header file as foundation for Z-Wave application development. For further details refer to [10].

The XML Editor directory contains the following files:

PC\setup.exe XML Editor application.
PC\Setup.msi

Sigma Designs Inc. Softw are Components Page 37 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.4.15 Zniffer

This directory contains the Zniffer program; the program is a development tool for capturing Z-Wave RF
communication and presenting the frames in a graphical user interface on a PC. The tool shows the
node ID of the Source and Destination for the communication, the type of frame being sent, and the
application content, i.e. the specific command, which is being sent.

The Zniffer tool is a passive ‘listener” to the Z-Wave network traffic, and will only display the RF
communications taking place within direct RF range. Be also aware that Zniffer can occasionally miss RF
communication even from Z-Wawe nodes within direct range.

The tool consists of two parts, an embedded part that should be downloaded to a Z-Wave module and a
PC application that should run on a PC attached to the Z-Wave module via the serial interface. For
further details refer to [5].

The Zzniffer directory contains the following files:

PC\setup.exe Zniffer application supporting Windows
PC\znifferSetup.msi XP/2003/Vista(32/64)/7(32/64)
PC\FileConverter\setup.exe FileConwerter enable Zniffer to automatically
PC\FileConverter\FileConverterSetup.msi convert old file formats *.znf to latest *.zIf when
opening file.
Z-Wave_Firmware\sniffer_ZwW040x.hex Zniffer application supporting ANZ, EU, HK, IN,
JP, MY and US versions on a 400 Series based
module.
Z-Wave_Firmware\sniffer_ZW030x_y.hex Zniffer application supporting y = ANZ, EU, HK, IN,

MY and US frequency versions on a ZW0301
based module.

Z-Wave_Firmware\sniffer_ZW020x_y.hex Zniffer application supporting y = ANZ, EU, HK, IN,
MY and US frequency versions on a ZwW0201
based module.

Sigma Designs Inc. Softw are Components Page 38 of 103

CONFIDENTIAL

INS12035-2

35 PC

Z-Wave 400 Series Developer's Kit v6.02.00 Contents

2012-05-25

The PC directory contains three PC sample applications demonstrating the use of the Z-Wawe DLL and

Serial API.

351 Bin

The PC\Bin directory contains the program or installation executables of the PC sample applications.

ZW040x_USB_VCP_PC_Driver\uzb.inf

ZWaveDll\setup.exe
ZWaveDIlI\ZWaveSetup.msi

ZWavelnstaller\setup.exe
ZWavelnstaller\ZWavelnstallerToolSetup.msi

ZWavePCController\setup.exe
ZWavePCController\ZWaveControllerSetup.msi

ZWaveSecurityPCController\setup.exe
ZWaveSecurityPCController\ZWave SecurityControllerSetup.msi

ZWaveUPnPBridge\setup.exe
ZWaveUPnPBridge\ZWaveUPnPBridgeSetup.msi

Setup Information file used by
Microsoft Windows for installation
of a USB VCP driver.

Installation executables of the
Z-Wawve DLL framework. This
framework simplifies development
of PC sample applications.
Installation includes also a help
file describing Z-Wave DLL
architecture, namespaces and
how to create a Z-Wawe DLL
based PC application.

Installation executables of the
Z-Wawe Installer Tool sample
application.

Installation executables of the
Z-Wave Non-secure PC
Controller sample application.

Installation executables of the
Z-Wawve Secure PC Controller
sample application. Binaries not
distributed due to export
restrictions. Contact support via
support@zen-sys.com for further
information.

Installation executables of the
Z-Wawe to UPnP Bridge sample
application.

Sigma Designs Inc. Softw are Components

CONFIDENTIAL

Page 39 of 103

mailto:support@zen-sys.com

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.5.2 Source

The PC\Source directory contains the C# source code of the PC sample applications using the Microsoft
Visual Studio 2008 environment.

3.5.21 Libraries
The PC\Sourcel\lLibraries directory contains various libraries used by the PC sample applications.

35211 WinForms Ul
The PC\Source\lLibraries\WinFormsUI directory contains C# source code of the windows docking library.

WinFormsUl.csproj Microsoft Visual Studio 2008 project file containing information at the
project level and used to build the project.

3.5.21.2 Zensys Framework

The PC\Source\Libraries\ZensysFramework directory contains C# source code of the additional
functions, formatters, helpers.

ZensysFramework.csproj Microsoft Visual Studio 2008 project file containing information at the
project level and used to build the project.

3.5.2.1.3 Zensys Framework Ul

The PC\Sourcel\Libraries\ZensysFrameworkUI directory contains C# source code of the completed
Z-Wawve Ul elements that can be reused in applications:

- Associations View Control;

- Bridged UPnP Device View Control;

- Controller View Control;

- Node View Control;

- UPnP Binary Light Device View Control;
- UPnP Device Scaner View Control;

- UPnP Media Renderer View Control.

ZensysFrameworkUl.csproj Microsoft Visual Studio 2008 project file containing information at the
project level and used to build the project.

35214 Zensys Framework Ul Controls

The PC\Source\lLibraries\ZensysFrameworkUIControls directory contains C# source code of the
additional Ul elements such as:

- ListDataView;

- TreeDataView;

- BitBox;

- ThreadSafelLabel.

ZensysFrameworkUIControls.csproj Microsoft Visual Studio 2008 project file containing information
at the project level and used to build the project.

Sigma Designs Inc. Softw are Components Page 40 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

3.5.2.15 ZW040x USB VCP PC Driver

The PC\Sourcel\lLibraries\ ZW040x_USB_VCP_PC_Driver directory contains the Setup Information file
used by Microsoft Windows for installation of a USB VCP driver. It maps an USB port into a virtual COM
port.

uzb.inf Setup Information file used by Microsoft Windows for installation of a
USB VCP driver.

3.5.2.16 Z-Wave Command Class

The PC\Source\Libraries\ZWaveCommandClasses directory contains C# source code for the XML
parser, which enables parsing of Z-Wawe frames by the Zniffer and generating frames by the PC based
applications.

ZWaveCommandClasses.csproj Microsoft Visual Studio 2008 project file containing information at
the project level and used to build the project.

3.5.2.1.7 Z-Wave DLL

The PC\Source\lLibraries\ZWaveDIl directory contains C# source code of the dynamic link library used by
the PC application to communicate with a 400 Series based module via the serial API interface. Refer to
[6] for further details.

SerialZWaveDll.sln Microsoft Visual Studio 2008 solutions file containing information at
the project level and used to build the project.

3.5.2.1.8 Z-Wave HAL

The PC\Source\Libraries\ZWaveHAL directory contains C# source code of the Z-Wave High-lewel
Application Layer in terms of Z-Wawve DIl architecture. It contains common functions that are used in
Z-Wawve enabled PC applications: ZWavePCController, ZWaveProgrammer, ZWaveUPnPBridge etc.
Refer to [6] for further details.

SerialZWaveHAL.sIn Microsoft Visual Studio 2008 solutions file containing information at
the project level and used to build the project.

3.5.2.2 Sample Application
The PC\Source\SampleApplications contains the various the PC applications

3.5.2.2.1 Z-Wave Installer

The PC\Source\SampleApplications\ZWawelnstaller directory contains C# sample source code for a PC
based installer tool using the Z-Wawve DLL etc. Further reading on how to use the PC based Installer Tool
see [2].

ZWavelnstallerTool.sln Microsoft Visual Studio 2008 solutions file containing information at
the project level and used to build the project.

Sigma Designs Inc. Softw are Components Page 41 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

35222 Z-Wave PC Controller

The PC\Source\SampleApplications\ZWaveP CController directory contains C# sample source code for a
PC based controller using the Z-Wave DLL etc. Further reading on how to use the PC based Controller
see [1].

ZWaveController.sIn Microsoft Visual Studio 2008 solutions file containing information at
the project level and used to build the project.

3.5.2.2.3 Z-Wave Security PC Controller

The PC\Source\SampleApplications\ZWaveSecurityPCController directory contains C# sample source
code for a Secure PC based controller using the Z-Wave DLL etc. Further reading on how to use the PC
based Controller see [1].

ZWaveSecurityController.sln Microsoft Visual Studio 2008 solutions file containing information at
the project level and used to build the project.

3.5.2.24 Z-Wave UPnP Bridge

The PC\Source\SampleApplications\ZWaveUPnPBridge directory contains C# sample source code for a
PC based Z-Wawe Bridge using the Z-Wawe DLL etc. Further readings on how to use the Z-Wavwe UPnP
Bridge see [3].

ZWaveUPnPBridge.sln Microsoft Visual Studio 2008 solutions file containing information at
the project level and used to build the project.

Sigma Designs Inc. Softw are Components Page 42 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4 APPLICATIONSAMPLE CODE

The Z-Wawe Deweloper's Kit includes several sample applications: a serial controller application, a LED
dimmer application, a binary sensor and a battery operated binary sensor application for the Z-Wave
module. The sample application realizes a light control system to help the dewveloper to understand how
the various components can interact. In addition the Z-Wave Developer's Kit also comprises of a number
of PC centric sample applications for illustrating advanced functionalities of the Z-Wawe protocol:

1. How a Z-Wave Module can be controlled from a PC.
2. Installation including display of network topology.
3. Bridging to and from other networks.

The 400 Series build environment is different compared to previous 100/200/300 Series because the
ASIC contains 64KB OTP instead of 32KB Flash. However, the ASIC support a development mode
enabling application development. Refer to [23] for further details about the dewvelopment environment.

Sigma Designs Inc. Application Sample Code Page 43 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.1 Binary Sensor Sample Code

The Deweloper’'s Kit contains sample code for a non-secure and secure binary sensor. This device is in
effect a binary sensor where the sensor input is the pin also used as a button input on the device
module. The Bin_Sensor_Sec will on every button release transmit a basic set frame to any associated
devices. If the button is held for a little while instead a nodelnfo frame will be transmitted. A static
controller such as the one described in [1] can control, configure and assign routes to the
Bin_Sensor_Sec.

The Bin_Sensor_Sec is a binary sensor that supports the association command class described in the
device class specification (see ref [1]). This device complies with the specific device class named routing
binary sensor device class (4.1). When included non-secure the Secure Binary Sensor application lists
the following supported command classes in the Node Information Frame:

Non-Secure Included

Binary Sensor command class
Association command class

Version command class

Manufacturer Specific command class
Security command class

Secure Included

When included secure the Secure Binary Sensor application lists the following supported command
classes in the Node Information Frame:

e Version command class
e Manufacturer Specific command class
e Security command class

The following listed in the Security Commands Supported Report frame:

e Binary Sensor command class

e Association command class

e Manufacturer Specific command class
e Version command class

The Basic command class is secure because application does not listitin Node Information Frame.

The Bin_Sensor_Sec is a slave device based on the enhanced slave API. During initialization, the
Bin_Sensor_Sec will initialize the mounted button, the 4 LED’s and a timer function that handles the
button input and sensor input (in this example the same as the button input). It will also get stored data
from the NVM. After the initialization the Z-Wawe basis software will continually call the ApplicationPoll
function, which contains the Bin_Sensor_Sec main function. The ApplicationPoll function checks if the
button or the sensor input has changed state and then acts accordingly to the current state the
Bin_Sensor_Sec is in. The other main function is the ApplicationCommandHandler function that is
called ewvery time a command has been received, destined for the Bin_Sensor_Sec. This function checks
the command and acts according to the command. When transmitting the Bin_Sensor_Sec will, if routes
have been assigned use these.

The Bin_Sensor_Sec implements Lost functionality and network topology maintenance by using a series
of methods. If the device is unsuccessful in sending a message a predefined count it will enter lost state,
and attempt to find a SUC in the network, and if successful ask the SUC for routes to the failing devices.

Sigma Designs Inc. Application Sample Code Page 44 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

At regular intervals the Bin_Sensor_Sec will transmit a Static Route Request, which asks the SUC for
any updates done to the network.

The functions for AES128 encryption/decryption use the built in AES engine in the 400 Series awoiding
3" party products subjected to intellectual property (IP) rights and licensing issues.

4.1.1 Network Wide Inclusion

By default the node will enter network wide inclusion (NWI) to be added to a network when it is powered
up and have not already been included. The node will stay in NWI mode for 4 minutes or until it has been
included into the network. Any key press will terminate the NWI mode and the only way to make the node
enter NWI mode again is by doing hardware reset either by remowve and reapply the power or press the
reset button on the side of the board. Refer to section 4.3.1 regarding implementation details.

4.1.2 User Interface

The following table defines the functionality of the button on the Z-Wawe module.

Button Triple Button Clicked
Clicked

In Network Node Info Frame | Basic Set (Broadcast)
/ Enter learn
mode

Not in Network Node Info Frame | None
/ Enter learn
mode

Associated Node Info Frame | Basic Set (to
/ Enter learn associated nodes)
mode

Learn mode is now activated by pressing the button three times within 1.5 seconds to awoid unintentional
inclusion/exclusion of the node.

4.1.3 Bin_Sensor Files

The Product\Bin_Sensor directory contains sample source code for a non-secure/secure binary sensor
and a non-secure/secure battery powered binary sensor slave application on a Z-Wavwe module. The
application uses also a number of utility functions described in section 3.3.11.

MK.BAT

Make bat file for building the sample application in question. To only build applications using EU
frequency enter: MK “FREQUENCY=EU” in command prompt.

Sigma Designs Inc. Application Sample Code Page 45 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Makefile / Makefile.SecureTargets

This is the Makefile for the sample application in question defining the targets built. Refer to section
3.2.1.1 for additional details.

MakePatch.bat

Make hex files for patch system including the <appl>_ZW040x_<freq>_ devmode_patch_RAM. hex
targeted for SRAM when using dewvelopment mode.

Config_app.h
This header file contains defines for application version.
eeprom.h

This header file defines the addresses where application data are stored in the external non-wolatile
memory.

Bin_Sensor.h /Bin_Sensor.c

These files contain the source code for the binary sensor application state machine. The common API
functions such as ApplicationInitHW, ApplicationInitSW, ApplicationNodelnformation,
ApplicationPoll, ApplicationSlaveUpdate and ApplicationCommandHandler are defined here.
Bin_Sensor_patch.c

This file contains the patched source code of Bin_Sensor.c

Bin_Sensor_ZWO040x_....Uv2

uVision4 *.U\2 project files created by makefile system using uVisionProjectGenerator software.

Sigma Designs Inc. Application Sample Code Page 46 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents

4131 Macros for accessing the LED’s
LED_ON(led)
Turn LED on.

Parameter:
led - LED number

Example:
PIN_OUT(LED1); /* define LED1 as an output pin */
LED_ON(1); /* turn LED 1 on */

LED_OFF(led)

Turn LED off.

Parameter:
led - LED number

Example:

LED_OFF(1); /*tum LED 1 off ¥/

LED_TOGGLE(led)

Toggle the LED OFF if the LED was ON and ON if the LED was OFF.

Parameter:
led - LED number

Example:
LED_TOGGLE(1); /* toggle LED 1 */

2012-05-25

Sigma Designs Inc. Application Sample Code

CONFIDENTIAL

Page 47 of 103

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.2 Binary Sensor Battery Sample Code

The Deweloper's Kit contains sample code for a non-secure and secure battery powered binary sensor.
This device is in effect a binary sensor where the sensor input is the pin also used as a button input on
the device module. When the binary sensor is inactive the ASIC will be powered down. The binary
sensor will power up when the button is pressed or the RTC / WUT? is fired. Upon wakeup, be it button
press or RTC/WUT a Wakeup Notification Frame is sent either as broadcast or as singlecast to the
device that configured the wakeup settings. If the devie has any associations it will transmit a basic set to
the associated devices. If the button is held for a longer time a Node Information Frame is transmitted. A
static controller such as the one described in [1] can control, configure and assign routes to the
Bin_Sensor_Battery_Sec.

The Bin_Sensor_Battery_Sec is a binary sensor that supports the association command class and the
Wake Up command class described in the device class specification (see ref [1]). This device complies
with the specific device class named routing binary sensor device class (4.1). When included non-secure
the secure battery-operated Binary Sensor application lists the following supported command classes in
the Node Information Frame:

Non-Secure Included

e Binary Sensor command class

Wake Up command class

Association command class

Version command class

Manufacturer Specific command class
Security command class

Secure Included

When included secure the secure battery-operated Binary Sensor application lists the following
supported command classes in the Node Information Frame:

e Version command class
e Manufacturer Specific command class
e Security command class

The following listed in the Security Commands Supported Report frame:

e Binary Sensor command class

e Wake Up command class

e Association command class

e Version command class

e Manufacturer Specific command class

The Basic command class is secure because application does not list it in Node Information Frame.

! RTC is usedin ZW0102 and WUT is used in ZW0201.

Sigma Designs Inc. Application Sample Code Page 48 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

The Bin_Sensor_Battery Sec is a slave device based on the enhanced slave API. During initialization,
the Bin_Sensor_Battery Sec will initialize the mounted button, the 4 LED’s and a timer function that
handles the button input and sensor input (in this example the same as the button input). It will also get
stored data from the NVM. After the initialization will go in power down mode and it will wakeup again
either when the button is pressed or when the RTC timer / WUT is fired. While the
Bin_sensor_Battery_Sec is wake the Z-Wawe basis software will continually call the ApplicationPoll
function, which contains the Bin_Sensor_Battery _Sec main function. The ApplicationPoll function
checks if the button or the sensor input has changed state and then acts accordingly tothe current state
the Bin_Sensor_Battery_Sec isin. The other main function is the ApplicationCommandHandler
function that is called every time a command has been received, destined for the
Bin_Sensor_Battery_Sec. This function checks the command and acts according to the command. When
transmitting the Bin_Sensor_Battery_Sec will, if routes have been assigned use these. If the
Bin_sensor_Battery was waked by the sensor input or button activity, then it will power down again it is
done executing any event caused by the sensor input or the button. If the binary sensor is woken up by
RTC timer / WUT and the wakeup time interval is expired then it will send wake notification frame and
wait for 5 second before powering down again.

The Bin_Sensor_Battery_Sec implements Lost functionality and network topology maintenance by using
a series of methods. If the device is unsuccessful in sending a message a predefined count it will enter
lost state, and attempt to find a SUC in the network, and if successful ask the SUC for routes to the
failing devices. At regular intervals the Bin_Sensor_Battery_Sec will transmit a Static Route Request,
which asks the SUC for any updates done to the network.

Note that the wakeup notification frame will only be sent when the Bin_sensor_Battery_Sec has been
assigned a node ID.

On the 400 Series some of the uninitialized RAM bytes are used to keep track of the WUT timer. See
also [19].

The Bin_Sensor_Sec and Bin_Sensor_Battery_Sec share the same code base. They are distinquished
between by defining BATTERY when compiling which will also enable use of the utility function file

battery.c/h.

The functions for AES128 encryption/decryption use the built in AES engine in the 400 Series awiding
3" party products subjected to intellectual property (IP) rights and licensing issues.

4.2.1 Network Wide Inclusion

By default the node will enter network wide inclusion (NWI) to be added to a network when itis powered
up and have not already been included. The node will stay in NWI mode for 4 minutes or until it has been
included into the network. Any key press will terminate the NWI mode and the only way to make the node
enter NWI mode again is by doing hardware reset either by remove and reapply the power or press the
reset button on the side of the board. Refer to section 4.3.1 regarding implementation details.

4.2.2 User Interface

The following table defines the functionality of the button on the Z-Wawe module.

Sigma Designs Inc. Application Sample Code Page 49 of 103

CONFIDENTIAL

INS12035-2

Z-Wave 400 Series Developer's Kit v6.02.00 Contents

In Network

Node Info Frame
[Enter learn
mode

Basic Set (Broadcast)

Not in Network

Node Info Frame
/ Enter learn
mode

None

Associated

Node Info Frame
/ Enter learn
mode

Basic Set (to
associated nodes)

Wakeup Node set

Node Info Frame
/ Enter learn
mode

Wake Up Notifications
(to Wake up node)

Wakeup Node not set

Node Info Frame
[Enter learn
mode

Wake Up Notifications
(Broadcast)

423 Bin_Sensor Files

Refer to chapter 4.1.3.

2012-05-25

Sigma Designs Inc.

Application Sample Code

CONFIDENTIAL

Page 50 of 103

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.3 Development Controller Sample Code

The Deweloper's Kit contains sample code that demonstrates how the basic tasks of adding, removing
and controlling devices in a Z-Wave network using the Z-Wawve portable controller API.

The Application complies with the Generic Controller command class [20]. When included the
Dewelopment Controller application lists the following supported command classes in the Node
Information Frame:

e Controller Replication command class
e Version command class

The Dewelopment Controller controls the following command classes:

e Controller Replication command class
e Basic command class
e Association command class

Controlled command classes not listed in the Node Information Frame in this sample application because
it is optional to list.

For details regarding functionality supported by the dewvelopment controller and user interface, refer to

(8].

The Z-Wawe basis software continually calls the ApplicationPoll function. The ApplicationPoll function
contains a state machine, which initiates actions from user input. The ApplicationCommandHandler
function is called when the Z-Wawe basis software receives a frame. This could be a Basic Get
Command to obtain the dim level of a multilevel switch.

4.3.1 Network Wide Inclusion

By default the controller will enter network wide inclusion (NWI) to be added to a network when it is
powered up and have not already been included or have included other nodes itself. The controller will
stay in NWI mode for 4 minutes or until it has been included into the network. Any key press will
terminate the NWI mode and the only way to make the controller enter NWI mode again is by doing
hardware reset by either remove and reapply the power or press the reset button on the side of the
board.

Sigma Designs Inc. Application Sample Code Page 51 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

The flow diagram below show how the node request NWI, which is implemented on application level. The
ctrl_learn.c file contains the implementation situated in the util_func directory.

A. PONVER IS
APPLIED
6. TRANSMIT
WITHIN
0.5-1.5 SECCNDS
= RANDOMLY < 7.2. WAIT 5 SEC
1‘ ALLREAOY EXPLORER FRAME
|NCLUDED? INCLUSION
REQUEST
No
4
2. START
INCLUSION
REQUEST RANDOM
TINEOUT

8. WAIT FOR
COMPLETION OF
NWI| LEARN MODE

REQUEST TIMEOUT
EXCEEDED?

‘No-

4. ENTER
INCLUSION
FUNCTION

r

FOR 30 MIN. NWI LEARN MoDE
No

s

B. CONTINUE TO
APPLICATICN SPECIFIC
FUNCTIONS

Figure 1, NWI flow diagram for a controller that want to be added to a network

Finally, the controller will also accept network wide inclusion requests when used as primary/inclusion
controller adding nodes into its network.

Sigma Designs Inc.

Application Sample Code

CONFIDENTIAL

Page 52 of 103

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.3.2 Production test mode
To initiate production test mode short-circuits J16-pin3 to J17-pinl (ground) on ZDPO3A.
After resetting the ZDPO3A in production test mode the following happens:
1. Initializes RF ready to receive NOP frames and acknowledge them. Use node ID equal to
0x01 in NOP frame and home ID value is ignored in production test mode. The Production

test generator can now be used to test RF link and remember to change node ID to 0x01.

2. Radio startto send constant unmodulated signal on channel 0 by pressing push button on Z-
Wave module hosting 400 Series chip/module once.

3. Radio startto send constant modulated signal on channel 0 by pressing push button on Z-
Wawve module once.

4. Radio startto send constant unmodulated signal on channel 1 by pressing push button on Z-
Wawve module once.

5. Radio startto send constant modulated signal on channel 1 by pressing push button on Z-
Wawve module once.

6. Radio startto send constant unmodulated signal on channel 2 by pressing push button on Z-
Wawve module once (3 channels system only, for 2 channel systems it jumps back to point 2).

7. Radio startto send constant modulated signal on channel 2 by pressing push button on Z-
Wave module once (3 channels system only).

8. Jump back to point 2 by pressing push button on Z-Wawe module.

The production test mode application is located in the ApplicationTestPoll function.

4.3.3 Dev_Citrl Files

The Product\Dev_ctrl directory contains the source code for the controller application. The application
uses also a number of utility functions described in section 3.3.11.

MK.BAT

Make bat file for building the sample application in question. To only build applications using EU
frequency enter: MK “FREQUENCY=EU” in command prompt.

Makefile

This is the Makefile for the sample application in question defining the targets built. Refer to section
3.2.1.1 for additional details.

MakePatch.bat

Make hex files for patch system including the <appl>_ZW040x_<freq>_devmode_patch_RAM. hex
targeted for SRAM when using dewvelopment mode.

Config_app.h

This header file contains defines for application version.

Sigma Designs Inc. Application Sample Code Page 53 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

eeprom.c/eeprom.h

These files contain functions and define for accessing the application data in the external non-volatile
memory.

dev_ctrl_if.h

This file defines how the IO connections on the Z-Wawve module are connected to the ZDP0O3A Module.
dev_ctrl.c /dev_ctrl.h

These files contain the source code for the development controller application state machine. The
common API functions such as ApplicationInitHW, ApplicationInitSW, ApplicationNodelnformation,
ApplicationPoll, ApplicationSlaveUpdate and ApplicationCommandHandler are defined here.
dev_ctrl_patch.c

This file contains the patched source code of dev_ctrl.c

p_button.c / p_button.h

These files contain functions and define for detecting Push button presses. This includes de-bounce
checking.

p_button_patch.c
This file contains the patched source code of p_button.c
dev_ctrl_ZwW040x_....Uv2

uVision4 *.Uv2 project files created by makefile system using uVisionProjectGenerator software.

Sigma Designs Inc. Application Sample Code Page 54 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.4 Secure Development Controller (ATmega) Sample Code

The SDK contains sample code that demonstrates how the basic tasks of adding, removing and
controlling devices in a Z-Wave network can be accomplished using a host processor to control a Serial
API based portable controller application. The application is a security updated Development Controller
application. The Z-Wawe Development Platform ZDP03A [14] is used for this purpose. The host
processor is an AVR ATmegal28 and software is builded by environment below:

¢ |IAR Embedded Workbench for Atmel AVR (v. 4.30A)
e IAR C/C++ Compiler for AVR 4.30A/W32 (4.30.1.5)

The AVR ISP In-System Programmer programs the AVR Atmegal28.

When included non-secure the Dewelopment Controller application lists the following supported
command classes in the Node Information Frame:

Non-Secure Included
e Controller Replication command class
e Version command class
e Security command class

Secure Included

When included secure the Dewvelopment Controller lists the following supported command classes in the
Node Information Frame:

e Version command class
e Security command class

The following listed in the Security Commands Supported Report frame:

e Controller Replication command class
e Version command class

The Basic command class is secure because application does not list it in Node Information Frame.The
Dewelopment Controller controls the following command classes:

e Controller Replication command class
e Basic command class
e Association command class

Controlled command classes not listed in the Node Information Frame in this sample application because
it is optional to list.

For further information about the features of the Secure Dewelopment Controller using an AVR as host,
see [11].

4.4.1 Dev_Ctrl_AVR_Sec Files.

The Product\dev ctrl_ AVR_Sec directory contains the source code for the controller application. Only
selected files in the directory structure is described below.

Sigma Designs Inc. Application Sample Code Page 55 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Portable.dep /.ewd /.ewp /.eww

Project files used to build AVR based sample application.
include\ZW_Security_ AES_module.h

Header file used to implement security on application level.
include\AES_module.h

This header file contains definitions for implementing secure communication using AES as
encrypting/decrypting mechanism.

src\ZW_Security_AES.c
These files contain shared data and functions for AES128 and functions for AES128

encryption/decryption. Files are not distributed on the Developer's Kit CD due to export restrictions.
Contact support via support@zen-sys.com for further information.

Alternatively, implement the functions based on an Atmel’'s Application Note “AVR231: AES Bootloader”:

http://www.atmel.com/dyn/resources/prod_documents/doc2589.pdf

Sigma Designs Inc. Application Sample Code Page 56 of 103

CONFIDENTIAL

mailto:support@zen-sys.com
http://www.atmel.com/dyn/resources/prod_documents/doc2589.pdf

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.5 Door Bell Sample Code

The deweloper's Kit contains sample code for a Door Bell sample application. This device an example of
how a battery operated chime in a doorbell system could be build. The Door Bell uses the frequently
listening mode where it powers up the radio for a short period every 250ms@2-ch and 1000ms@3-ch
and if it receives a command it will power up entirely and turn on the LED’s.

The Door Bell based on the routing slave library and it has its generic device class set to Binary Switch
and the specific device class set to none. The Door Bell supports the following command classes:

e Binary Switch command class
e Version command class

NOTE: This node will fail certification because when its lewvel is set to on with a binary set command it will
toggle its state back to off again after a timeout to emulate the behavior of a doorbell.

451 Network Wide Inclusion

By default the node will enter network wide inclusion (NWI) to be added to a network when it is powered
up and have not already been included. The node will stay in NWI mode for 4 minutes or until it has been
included into the network. Any key press will terminate the NWI mode and the only way to make the node

enter NWI mode again is by doing hardware reset either by remove and reapply the power or press the
reset button on the side of the board. Refer to section 4.3.1 regarding implementation details.

45.2 User interface
The following list defines the functionality of the button on the Z-Wawve module.

Press shortly Wake up for 2 sec.
Press 3 times within 1.5 sec. Enter learn mode and timeout after 3 sec.

The LEDs on the Z-Wawe module has the following meaning:

LED D1 | LED D2 | LED D3 | Description

Off Off Off The door bell is in powerdown mode (Frequently listening mode)
On Off Off The node was woken up by button press or reset

Off On Off The node was woken up by an RF beam

Off Off On The node is in learn mode

On On On Bell was turned on by Binary or Basic set command

45.3 Door Bell Files

The Product\DoorBell directory contains the source code and makefiles for the application. The
application uses also a number of utility functions described in section 3.3.11.

MK.BAT

Sigma Designs Inc. Application Sample Code Page 57 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Make bat file for building the sample application in question. To only build applications using EU
frequency enter: MK “FREQUENCY=EU” in command prompt.

Makefile

This is the Makefile for the sample application in question defining the targets built. Refer to section
3.2.1.1 for additional details.

MakePatch.bat

Make hex files for patch system including the <appl>_ZW040x_<freq>_devmode_patch_RAM. hex
targeted for SRAM when using dewvelopment mode.

Config_app.h

This header file contains defines for application version.

Bell.h /Bell.c

This file contains the source code for the Door Bell sample application
Bell_patch.c

This file contains the patched source code of Bell.c
DoorBell_ZW040x_....Uv2

uVision4 *.Uv2 project files created by makefile system using uVisionProjectGenerator software.

Sigma Designs Inc. Application Sample Code Page 58 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.6 Door Lock Sample Code

The SDK contains sample code for a non-secure and secure Door Lock sample application. This device
shows an example of how a door lock system could be build.

A controller such as the Dewvelopment Controller and secure Development Controller (Atmega) can
control the Door Lock. The Door Lock uses the frequently listening mode (FLiRS) where it powers up the
radio for a short period every 1000ms@2-ch and 1000ms@3-ch and in case a wakeup beam for this
particular node is detected then it stay awake to receive a command. It is now possible to turn the LED
on/off indicating lock/unlock status. After receiving one command, it returns to frequently listening mode
again to consene battery consumption.

The Door Lock is based on the enhanced slawe library and it has its generic device class setto Entry
Control and the specific device class set to Door Lock. When included non-secure the Door Lock
application lists the following supported command classes in the Node Information Frame:

Non-Secure Included

e Lock command class

e Powerlevel command class

e Version command class

e Manufacturer Specific command class

e Security command class (not used by a non-secure Door Lock application)

Secure Included

When included secure the Door Lock lists the following supported command classes in the Node
Information Frame:

e Version command class
e Manufacturer Specific command class
e Security command class

The following listed in the Security Commands Supported Report frame:

e Lock command class

e Powerlevel command class

e Version command class

e Manufacturer Specific command class

The Basic command class is secure because application does not list it in Node Information Frame.

During initialization, the Door Lock will initialize the mounted button and one LED. It will also get stored
data from the NVM. After the initialization the Z-Wawve basis software will continually call the
ApplicationPoll function, which contains the Door Lock main function. The ApplicationPoll function
checks button activation and act according to the state the Door Lock is in. The other main function is the
ApplicationCommandHandler function that is called every time a command has been received,
destined for the Door Lock. This function checks the command and acts according to the command.

The functions for AES128 encryption/decryption use the built in AES engine in the 400 Series awiding
3" party products subjected to intellectual property (IP) rights and licensing issues.

Sigma Designs Inc. Application Sample Code Page 59 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.6.1 Network Wide Inclusion

By default the node will enter network wide inclusion (NWI) to be added to a network when it is powered
up and have not already been included. The node will stay in NWI mode for 4 minutes or until it has been
included into the network. Any key press will terminate the NWI mode and the only way to make the node
enter NWI mode again is by doing hardware reset either by remove and reapply the power or press the
reset button on the side of the board. Refer to section 4.3.1 regarding implementation details.

4.6.2 User Interface

The following table defines the functionality of the button on the Z-Wave module.

Button Triple Button Clicked
Pressed
In Network Node Info Frame / Toggle on/off status

Enter learn mode

Not in Network Node Info Frame / Toggle on/off status
Enter learn mode

Learn mode is now activated by pressing the button three times within 1.5 seconds to awoid unintentional
inclusion/exclusion of the node.

4.6.3 Door Lock Files

The Product\DoorLock directory contains the source code and makefiles for the application. The
application uses also a number of utility functions described in section 3.3.11.

MK.BAT

Make bat file for building the sample application in question. To only build applications using EU
frequency enter: MK “FREQUENCY=EU” in command prompt.

Makefile

This is the Makefile for the sample application in question defining the targets built. Refer to section
3.2.1.1 for additional details.

MakePatch.bat

Make hex files for patch system including the <appl>_ZW040x_<freq>_devmode_patch_RAM. hex
targeted for SRAM when using dewvelopment mode.

Config_app.h

This header file contains defines for application version.

Sigma Designs Inc. Application Sample Code Page 60 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25
eeprom.h

This header file contains the address definitions in the external non-wolatile memory used to store
application data.

DoorLock.h / DoorLock.c

This file contains the source code for the non-secure and secure Door Lock sample application
DoorLock_patch.c

This file contains the patched source code of DoorLock.c

DoorLock_ZW040x_....Uv2

uVision4 *.Uv2 project files created by makefile system using uVisionProjectGenerator software.

4.6.3.1 Macros for accessing the Lock/Unlock
PIN_ON(pin)
Set output pin to 1.

Parameter:
pin - Z-Wawe pin name

Example:

PIN_ON(TRIACpin); /* turn TRIACpin on */
PIN_OFF(pin)
Set output pin to 0.

Parameter:
pin - Z-Wawe pin name

Example:

PIN_OFF(TRIACpin); /*turn TRIACpin off */
PIN_GET(pin)
Read pin value.

Parameter:
pin - Z-Wawe pin name

Example:
PIN_GET(SSN); /* Read pin SSN value*/
Sigma Designs Inc. Application Sample Code Page 61 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25
PIN_IN(pin, pullup)

Set I/O pin as input.

Parameter:

pin - Z-Wawe pin name
pullup - if not zero activate the internal pullup resistor

Example:
PIN_IN(SSN, 0); * Set I/O pin SSN as input and activate the internal pullup resistor */
Sigma Designs Inc. Application Sample Code Page 62 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.7 LED Dimmer Sample Code

The Deweloper’'s Kit contains sample code for a non-secure and secure LED Dimmer. This device is in
effect a light switch with a built in dimmer where the light bulb is substituted with 3 LED’s when using 400
Series. A controller such as the secure or non-secure Development Controller can control the LED
Dimmer.

The LED Dimmer is a multilevel switch that supports the all switch command class, the protection
command class and the powerlevel command class described in the device class specification (see ref
[1]). This device complies with the specific device class named multilevel power switch device class. The
LED Dimmer does not support the optional Clock command class. When included non-secure the secure
LED Dimmer application lists the following supported command classes in the Node Information Frame:

Non-Secure Included

Multilevel Switch command class

All Switch command class

Protection command class

Powerlevel command class

Version command class

e Manufacturer Specific command class
e Security command class

Secure Included

When included secure the secure LED Dimmer lists the following supported command classes in the
Node Information Frame:

e Version command class
e Manufacturer Specific command class
e Security command class

The following listed in the Security Commands Supported Report frame:

e Multilevel Switch command class

All Switch command class

Protection command class

Powerlevel command class

Version command class

Manufacturer Specific command class

The Basic command class is secure because application does not list it in Node Information Frame.

The secure LED Dimmer is a slave device based on the slave/enhanced slave API. During initialization,
the secure LED Dimmer will initialize the mounted button and the 3 LED’s. It will also get stored data
from the NVM. After the initialization, the Z-Wave basis software will continually call the ApplicationPoll
function, which contains the Secure LED Dimmer main function. The ApplicationPoll function checks
button activation and act according to the state the secure LED Dimmer is in. The other main function is
the ApplicationCommandHandler function that is called every time a command has been received,
destined for the secure LED Dimmer. This function checks the command and acts according to the
command.

The functions for AES128 encryption/decryption use the built in AES engine in the 400 Series awiding
3" party products subjected to intellectual property (IP) rights and licensing issues.

Sigma Designs Inc. Application Sample Code Page 63 of 103

CONFIDENTIAL

INS12035-2

4.7.1 Network Wide Inclusion

Z-Wave 400 Series Developer's Kit v6.02.00 Contents

2012-05-25

By default the node will enter network wide inclusion (NWI) to be added to a network when it is powered
up and have not already been included. The node will stay in NWI mode for 4 minutes or until it has been
included into the network. Any key press will terminate the NWI mode and the only way to make the node
enter NWI mode again is by doing hardware reset either by remove and reapply the power or press the
reset button on the side of the board. Refer to section 4.3.1 regarding implementation details.

4.7.2 User Interface

The following table defines the functionality of the button on the Z-Wave module.

Button Triple

Button Clicked

Button is held

[Enter learn
mode

status

Pressed

In Network Node Info Frame | Toggle on/off Dim up/down
/ Enter learn status
mode

Not in Network Node Info Frame | Toggle on/off Dim up/down

Learn mode is now activated by pressing the button three times within 1.5 seconds to avoid

inclusion/exclusion of the node.

unintentional

Sigma Designs Inc.

Application Sample Code

CONFIDENTIAL

Page 64 of 103

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.7.3 Production test mode
To initiate production test mode short-circuits J17-pin10 to J17-pinl (ground) on ZDPO3A.
After resetting the ZDPO3A in production test mode the following happens:
1. Initializes RF ready to receive NOP frames and acknowledge them. Use node ID equal to
0x00 in NOP frame and home ID value is ignored in production test mode. The Production
test generator can now be used to test RF link because directly default node ID used is

equal to 0x00.

2. Radio startto send constant unmodulated signal on channel 0 by pressing push button on Z-
Wawve module hosting 400 Series chip/module once.

3. Radio startto send constant modulated signal on channel 0 by pressing push button on Z-
Wawve module once.

4. Radio startto send constant unmodulated signal on channel 1 by pressing push button on Z-
Wawve module once.

5. Radio startto send constant modulated signal on channel 1 by pressing push button on Z-
Wawve module once.

6. Radio startto send constant unmodulated signal on channel 2 by pressing push button on Z-
Wave module once (3 channels system only, for 2 channel systems it jumps back to point 2).

7. Radio startto send constant modulated signal on channel 2 by pressing push button on Z-
Wave module once (3 channels system only).

8. Jump back to point 2 by pressing push button on Z-Wawe module.

The production test mode application is located in the ApplicationTestPoll function.

4.7.4 Secure_LED Dimmer Files

The Product\LED_Dimmer directory contains sample source code for a slave application on a Z-Wave
module. The application uses also a number of utility functions described in section 3.3.11.

MK.BAT

Make bat file for building the sample application in question. To only build applications using EU
frequency enter: MK “FREQUENCY=EU” in command prompt.

Makefile / Makefile.SecureTargets

This is the Makefile for the sample application in question defining the targets built. Refer to section
3.2.1.1 for additional details.

MakePatch.bat

Make hex files for patch system including the <appl>_ZW040x_<freq>_devmode_patch_RAM. hex
targeted for SRAM when using development mode.

Config_app.h

This header file contains defines for application version.

Sigma Designs Inc. Application Sample Code Page 65 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25
eeprom.h

This header file defines the addresses where application data are stored in the external non-wvolatile
memory.

LEDdim.h / LEDdim.c

This file contains the source code for the LED dimmer application state machine. The common API
functions such as ApplicationInitHW, ApplicationInitSW, ApplicationNodelnformation,
ApplicationPoll, ApplicationSlaveUpdate and ApplicationCommandHandler are defined here.

LEDdim_patch.c

This file contains the patched source code of LEDdim.c. LED1 (DO on ZDPO3A) is inverted in the
patched code to differ between patchable and patched source code.

LED _Dimmer_ZWO040x _....Uv2

uVision4 *. U2 project files created by makefile system using uVisionProjectGenerator software.

Sigma Designs Inc. Application Sample Code Page 66 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents

4.7.4.1 Macros for accessing the LED’s
LED_ON(led)
Turn LED on.

Parameter:
led - LED number

Example:
PIN_OUT(LED1); /* define LED1 as an output pin */
LED_ON(1); /* turn LED 1 on */

LED_OFF(led)

Turn LED off.

Parameter:
led - LED number

Example:
LED_OFF(1); [* turn LED 1 off */

LED_TOGGLE(led)

Toggle the LED OFF if the LED was ON and ON if the LED was OFF.

Parameter:
led - LED number

Example:
LED_TOGGLE(1); /* toggle LED 1 */

2012-05-25

Sigma Designs Inc. Application Sample Code

CONFIDENTIAL

Page 67 of 103

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.8 MyProduct Sample Code

The My Product contains the minimum framework to begin dewveloping a slave application. To realize the
application in question it is often easier to modify the existing sample code applications than build one
from scratch based on MyProduct.

48.1 MyProduct Files

The Product\MyProduct directory contains sample source code for a routing slave application on a
Z-Wawve module. The application uses also a number of utility functions described in section 3.3.11.

MK.BAT

Make bat file for building the sample application in question. To only build applications using EU
frequency enter: MK “FREQUENCY=EU” in command prompt.

Makefile

This is the Makefile for the sample application in question defining the targets built. Refer to section
3.2.1.1 for additional details.

MakePatch.bat

Make hex files for patch system including the <appl>_ZW040x_<freq>_devmode_patch_RAM. hex
targeted for SRAM when using dewvelopment mode.

Config_app.h

This header file contains defines for application version.

MyProduct.h / MyProduct.c

This file contains the source code for the MYProduct. The common API functions such as
ApplicationlnitHW, ApplicationInitSW, ApplicationNodelnformation, ApplicationPoll,
ApplicationSlaveUpdate and ApplicationCommandHandler are defined here.
MyProduct_patch.c

This file contains the patched source code of MyProduct.c

MyProduct_ZWO040x_....Uv2

uVision4 *.Uv2 project files created by makefile system using uVisionProjectGenerator software.

Sigma Designs Inc. Application Sample Code Page 68 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.9 Production Test Generator

The Deweloper's Kit contains sample code that demonstrates how the basic tasks of testing devices in a
Z-Wawve network can be accomplished using the Z-Wawe API. The Z-Wave generator is used to verify the
TX / RX circuits on Z-Wawe enabled products.

A simple generator consists of a ZW040x Interface Module and a ZMxx20 Z-Wave Module.

On the Interface module there are 6 LED diodes, which hawe these assignments in the Prod_Test_Gen
sample application:

LED # | Colour | Description

D6 Green | Power on

D1 Red Error

D2 Red Success

D3 Red Send (flashes during transmission)
D4 Red -

D5 Red Indication of Push button

The push button on the ZMxx20 Z-Wave Module is the “Test” button.
After connection to power, the red “Error” LED ‘D1’ on the Interface module will be on.

When the push button is pressed, 10 NOP’s will be transmitted. A device under test (application in
production test mode executing ApplicationTestPoll) is expected to verify the reception of each NOP with
an ACK. During transmission, the red LED ‘D3’ will flash.

If all NOP’s are replied correctly, the red “Error” LED ‘D1’ will turn off and the red “Success” LED ‘D2’ will
turn on and stay on until the next test is conducted. If the DUT does not reply correctly, the red “Error”
LED ‘D1’ will turn on and stay on until the next test is conducted.

The Z-Wawe basis software continually calls the ApplicationPoll function. The ApplicationPoll function
contains a state machine, which initiates actions from user input. The ApplicationCommandHandler
function is only called when the Z-Wawe basis software receives information for the application.

The Production Test Generator sample application is based on the ZW_slave_prodtest_gen library.

Sigma Designs Inc. Application Sample Code Page 69 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

The application is controlled via RS232 (115200,8,N,1) or button with fixed timings:

Device will resopond to any char received with an ASCIl SPACE followed by a command answer or error
'I' followed by error information:

Following ASCIl commands are implemented.

Received:

‘Ut
Frequency US is selected sending 9.6kbps on channel 1
Response is: ' US'

'E"
Frequency EU is selected sending 9.6kbps on channel 1
Response is:'EU'

'Z:
Frequency ANZ is selected sending 9.6kbps on channel 1
Response is: ' ANZ

‘™"
Frequency MY is selected sending 9.6kbps on channel 1
Response is: ' MY"

T
Frequency IN is selected sending 9.6kbps on channel 1
Response is: ' IN'

J"
Frequency JP is selected sending 100kbps on channel 1
Response is: ' JP’

'n' (where n=0..9):

Any frequency is selected from the table of defined frequencies. The input shall be 2 decimal digits.
Response for the first digit is: ' n'

Response for the second digit is: * n Oxnn’ (where nn is the selected hexadecimal index in the table of
defined frequencies.

gn
Start test
Response is' ST

'Ct
Set the number of NOPs to send to 1000
Response: ' CO'

NG
Set the destination node ID.
Response: ' NI

R
Reset the hardware
Response: ' RS’

On Unknown:
" 'received Char'

Sigma Designs Inc. Application Sample Code Page 70 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.9.1 Production Test Generator Files

The Product\Prod_Test_Gen directory contains the source code for the Production Test Generator
sample application.

MK.BAT
Make bat file for building the sample application in question.
Makefile

This is the Makefile for the sample application in question defining the targets built. Refer to section
3.2.1.1 for additional details.

MakePatch.bat

Make hex files for patch system including the <appl>_ZW040x_<freq>_devmode_patch_RAM. hex
targeted for SRAM when using dewvelopment mode.

Config_app.h
This header file contains defines for application version.
prod_test gen.c

This file contains the main source code for the sample application. Both ApplicationPoll and
ApplicationCommandHandler are defined in this file.

Prod_test_gen_patch.c
This file contains the patched source code of prod_test_gen.c
Prod_Test_Gen_ZW040x....Uv2

uVision4 *.Uv2 project files created by makefile system using uVisionProjectGenerator software.

Sigma Designs Inc. Application Sample Code Page 71 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.10 Serial APIEmbedded Sample Code

The purpose of the Serial APl embedded sample code is to show how a 400 Series Z-Wave module can
be controlled via the RS 232 or USB port by a host. The following host based PC applications are
available on the Developer's Kit CD:

e The PC based Controller application showing the available functionality in a Serial API based on
a static controller API.

e The PC based Installer Tool application showing the available functionality in a Serial API based
on an installer API.

e The PC based Z-Wawe Bridge application showing the available functionality in a Serial API
based on a bridge controller API.

Serial API RS 232 or USB
Module

Host

The Serial API can be used as itis or it can be changed to fit specific needs. The UART on the Z-Wave
Module is initialized for 115200 baud, no parity, 8 data bits and 1 stop bit.

4.10.1 Supported API Calls

Only a subset of the API calls is available via the serial interface. In [19] each API call has a description
regarding Serial API support and the corresponding frame format and flow.

4.10.2 Implementation

The Serial APl embedded sample code is provided on the Z-Wawe Deweloper’'s Kit. Be aware that
altering the function ID’s and frame formats in the Serial APl embedded sample code can result in
interoperability problems with the Z-Wave DLL supplied on the Deweloper's Kit as well as commercially
available GUI applications. Regarding how to determine the current version of the Serial API protocol in
the embedded sample code please refer to the API call ZW_Version. The following sections describe
the Serial APl implementation and how a host can communicate with the Serial AP| embedded sample
code.

4.10.2.1 Frame Layout

The protocol between the PC (host) and the Z-Wave Module (ZW) consists of three frame types: ACK
frame, NAK frame and Data frame. Each Data frame is prefixed with SOF byte and Length byte and
suffixed with a Checksum byte. As of Serial APl Version 4 a fourth frame type has been defined; the
CAN frame.

Sigma Designs Inc. Application Sample Code Page 72 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

ACK frame:

The ACK frame is used to acknowledge a successful transmission of a data frame. The format is as
follows:

7 6 5 4 3 2 1 0

ACK (0x06)

NAK frame:

The NAK frame is used to de-acknowledge an unsuccessful transmission of a data frame. The format is
as follows:

7 6 5 4 3 2 1 0

NAK (0x15)

Only a frame with a LRC checksum error is de-acknowledged with a NAK frame.
CAN frame:
The CAN frame is used by the ZW to instruct the host that a host transmitted data frame has been

dropped. Happens when ZW expects an ACK as handshake for a transmitted frame, but instead get a
new frame from host. The format is as follows:

7 6 5 4 3 2 1 0

CAN (0x18)

Data frame:

The Data frame contains the Serial API command including parameters for the command in question.
The format is as follows:

SOF

Length

Type

Serial API Command ID

Command Specific Data

Checksum

Sigma Designs Inc. Application Sample Code Page 73 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Field Description
SOF Start Of Frame. Used for synchronization and is equal to 0x01
Length Number of bytes in the frame, exclusive SOF and Checksum. The

host application is responsible for entering the correct length field.
The current Serial APl embedded sample code does no validation
og the length field.

Type Used to distinguish between unsolicited calls and immediate
responses (not callback). The request (REQ) is equal to 0x00 and
response (RES) is equal to Ox01.

Serial APl Command ID Unique command ID for the function to be carried out. Any data
frames returned by this function will contain the same command ID

Command Specific Data One or more bytes of command specific data. Possible callback
handling is also defined here.

Checksum LRC checksum used to check for frame integrity. Checksum
calculation includes the Length, Type, Serial API Command
Data and Command Specific Data fields. The Checksum is a
XOR checksum with an initial checksum value of OxFF. For a
checksum implementation refer to the function ConTxFrame in the
conhandle.c module

Sigma Designs Inc. Application Sample Code Page 74 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.10.2.2 Frame Flow

The frame flow between a host and a Z-Wawve module (ZW) running the Serial APl embedded sample
code depends on the API call. There are four different ways to conduct communication between the host
and ZW.

W Host
Data Frame (REQ)

ACK

Data frame (REQ) from host, which is acknowledged by ZW when successfully received. An example
could be the API call ZW_SetExtintLevel.

W Host
Data Frame (REQ)

ACK

Data Frame (REQ - Callback)

ACK

Data frame (REQ) with callback function enabled from host by setting funcID different from zero, which is
acknowledged by ZW when successfully received. The funcID is a sequence number used to correlate a
given reply with the correct request. A data frame (REQ - callback) is returned by ZW with the result at
command completion including a funclD to correlate callback with the original data frame. The host
acknowledged the data frame when successfully received. Setting the funcIlD equal to O in the original
data frame disable the callback handling. An example could be the API call ZW_SetDefault.

Sigma Designs Inc. Application Sample Code Page 75 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

W Host
Data Frame (REQ)

ACK

Data Frame (RES)

ACK

Data frame from host (REQ), which is acknowledged by ZW when successfully received. A data frame
(RES) is returned by ZW with the result at command completion. The host acknowledges the data frame
when successfully received. An example could be the API call ZW_GetControllerCapabilities.

Sigma Designs Inc. Application Sample Code Page 76 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

W Host
Data Frame (REQ)

ACK

Data Frame (RES)

ACK

Data Frame (REQ - Callback)

ACK

Data frame (REQ) with callback function enabled from host by setting funclD different from zero, which is
acknowledged by ZW when successfully received. The funciD is a sequence number used to correlate a
given reply with the correct request. A data frame (RES) is returned by ZW with the status at command
initiation. The host acknowledges the data frame when successfully received. A data frame (REQ -
Callback) is returned by ZW with the result at command completion including a funcID to correlate
callback with the original data frame. The host acknowledged the data frame when successfully received.
Setting the funclD equal to 0 in the original data frame disable the callback handling. An example could
be the API call ZW_SendSUCID.

Sigma Designs Inc. Application Sample Code Page 77 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.10.2.3 Error handling

A number of scenarios exist, which can impede the normal frame flow between the host and the Z-Wawve
module running the Serial API embedded sample code (ZW).

A LRC checksum failure is the only case there is de-acknowledged by a NAK frame in the current Serial
APl embedded sample code. When a host receives a NAK frame can it either retry transmission of the
frame or abandon the task. A task is defined as the whole frame flow associated with the execution of a
specific Serial API function call. If a NAK frame is received by the Z-Wave module in response to a just
transmitted frame, then the frame in question is retransmitted (max 2 retries).

Frames with an illegal length are ignored without any notification. Frames with an illegal type (only REQ
and RES exists) are ignored without any notification

The Serial APl embedded sample code can only perform one host-initiated task at a time. A data frame
will be dropped without any notification (no ACK/NAK frame transmitted) by the ZW if it is not ready to
execute a new host-initiated task. As of Serial APl version 4 a CAN frame is transmitted by the ZW when
a received data frame is dropped.

If no CAN frame is received the host detect the missing ACK/NAK by implementing a timeout mechanism
in the receive function. The host timeout must correspond to the timeout defined in ZW. A reasonable
timeout in the host is 2 seconds because the current Serial APl embedded sample code has a default
timeout of 1.5 seconds. The timeout in the Serial API (as of SerialAPI version 4) can also be set by using
the FUNC_ID_SERIAL_API_SET_TIMEOUTS Serial API function:

Serial API:
HOST->ZW: REQ | 0x06 | RXACKtimeout | RXBY TEtimeout
ZW->HOST: RES | 0x06 | oldRXACKtimeout | oldRXBYTEtimeout

RXACKTimeout is the max no. of 10ms ticks the ZW waits for an ACK before timeout. RXBY TETimeout
is the max no. of 10ms ticks the ZW waits for a new byte before timeout; this is only valid when a frame
has been detected and is being collected.

In case the host expect an ACK but instead receive another data frame then it must read the whole data
frame and ACK/NAK accordingly, it will probably also receive a CAN frame to indicate that the ZW has
dropped the host transmitted data frame. Afterwards can the host restart transmission of the pending
frame ZW never ACK’ed or possibly CAN'ed.

Communication between ZW and other Z-Wawve nodes can also result in deviations from the normal
frame flow. A get command on application level can for example result in multiple reports coming back
and ZW will just pass on the reports to the host. This can happen in case the Z-Wave node did not hear
ZW acknowledge the report and therefore it is retransmitted. To handle such scenarios requires a
relaxed state machine on application level to handle multiple reports. The same apply for set and get
commands.

Sigma Designs Inc. Application Sample Code Page 78 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25
4.10.2.4 Restrictions on functions using buffers

The Serial API is implemented with buffers for queuing requests and responses. This restricts how much

data that can be transferred through MemoryGetBuffer() and MemoryPutBuffer() compared to using them
directly from the Z-Wawe API.

The PC application should not try to get or put buffers larger than approx. 80 bytes.

If an application requests too much data through MemoryGetBuffer() the buffer will be truncated and the
application will not be natified.

If an application tries to store too much data with MemoryPutBuffer() the buffer will be truncated before
the data is sent to the Z-Wawe module, again without the application being notified.

Sigma Designs Inc. Application Sample Code Page 79 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.10.2.5 Serial APl Node List Command
As of Serial API protocol version 4 it is possible to call Serial APl Node List Command to determine
Serial API protocol version number, Serial API capabilities, nodes currently stored in the EEPROM (only
controllers) and chip used in a specific Serial APl Z-Wave Module with the
FUNC_ID_SERIAL_API_GET_INIT_DATA Serial API function:

Serial API:

HOST->ZW: REQ | 0x02

(Controller) ZW->HOST: RES | 0x02 | ver | capabilities | 29 | nodes[29] | chip_type | chip_wversion

(Slave) ZW->HOST: RES | 0x02 | ver | capabilities | O | chip_type | chip_version

“ver’ is the Serial API application Version number.

“capabilities” is a byte holding various flags describing the actual mode.

29 | 0 is the length of “nodes|[]”

nodes[29] is a node bitmask.

Capabilities flag:

Bit 0: 0 = Controller API; 1 = Slave API

Bit 1: 0 = Timer functions not supported; 1 = Timer functions supported.
Bit 2: 0 = Primary Controller; 1 = Secondary Controller

Bit 3-7: reserned

The chip used can be determined as follows:

Z-Wawve Chip | Chip_type | Chip_version

Z2W0102 0x01 0x02
ZW0201 0x02 0x01
ZW0301 0x03 0x01

Timer functions are TimerStart, TimerRestart and TimerCancel.

Sigma Designs Inc. Application Sample Code Page 80 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.10.2.6 Serial API Capabilities Command

As of Serial API protocol version 4 (to determine Serial API protocol version please refer to the Serial API
Function described in paragraph 4.10.2.5) it is possible to call Serial API Capabilities Command to
determine exactly which Serial API functions a specific Serial APl Z-Wave Module supports with the
FUNC_ID_SERIAL_API_GET_CAPABILITIES Serial API function:

Serial API:
HOST->ZW: REQ | 0x07

ZW->HOST: RES | 0x07 | SERIAL_APPL_VERSION | SERIAL_APPL_REVISION |
SERIALAPI_MANUFACTURER_ID1 | SERIALAPI_MANUFACTURER_ID2
SERIALAPI_MANUFACTURER_PRODUCT_TYPE1 |
SERIALAPI_MANUFACTURER_PRODUCT_TYPE2 |
SERIALAPI_MANUFACTURER_PRODUCT _ID1 | SERIALAPI_MANUFACTURER_PRODUCT_ID2
FUNCID_SUPPORTED_BITMASK]]

SERIAL_APPL_VERSION is the Serial APl application Version number.
SERIAL_APPL_REVISION is the Serial API application Revision number.
SERIALAPI_MANUFACTURER_ID1 isthe Serial APl application manufacturer_id (MSB).
SERIALAPI_MANUFACTURER_ID2 isthe Serial API application manufacturer_id (LSB).

SERIALAPI_MANUFACTURER_PRODUCT_TYPEL is the Serial API application manufacturer product
type (MSB).

SERIALAPI_MANUFACTURER_PRODUCT_TYPEZ2 is the Serial API application manufacturer product
type (LSB).

SERIALAPI_MANUFACTURER_PRODUCT_ID1 isthe Serial API application manufacturer product id
(MSB).

SERIALAPI_MANUFACTURER_PRODUCT_ID2 is the Serial API application manufacturer product id
(LSB).

FUNCID_SUPPORTED_BITMASK]] is a bitmask where every Serial API function ID which is
supported has a corresponding bit in the bitmask set to ‘1’. All Serial API function IDs which are not
supported have their corresponding bit set to ‘0. First byte in bitmask corresponds to FuncIDs 1-8
where bit 0 corresponds to FuncID 1 and bit 7 corresponds to FuncID 8. Second byte in bitmask then
corresponds to FuncIDs 9-16 and so on.

Sigma Designs Inc. Application Sample Code Page 81 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.10.2.7 Serial APl Power Management Commands

The Serial APl Power Management Commands is designed for use in a system where a Z-Wawe module
is connected to a host CPU system via a serial port and a number of /O pins are used for control of the
power to the Host CPU system.

4.10.2.7.1 Pin Configuration Command

The Pin Configuration Command is used to map the power management input pin PoweredUp to a
physical 1O pin.

7 6 5 4 3 2 1 0

FUNC_ID_POWER_MANAGEMENT

PM_PIN_UP_CONFIGURATION_CMD

IO Pin

Active Lewel

Sigma Designs Inc. Application Sample Code Page 82 of 103

CONFIDENTIAL

INS12035-2

10 pin (8bit):

Z-Wave 400 Series Developer's Kit v6.02.00 Contents

2012-05-25

The 10 pin field specifies the physical I/O pin that should be used for this signal. The table of I/O pins is

shown below

Active Level (8bit):

The lewvel the PoweredUp pin should have when it is active.

defaults to active Low.

IO Pin defines Value
PM_PHYSICAL_PIN_POO 0x00
PM_PHYSICAL_PIN_PO1 0x01
PM_PHYSICAL_PIN_P02 0x02
PM_PHYSICAL_PIN_PO3 0x03
PM_PHYSICAL_PIN_P04 0x04
PM_PHYSICAL_PIN_P05 0x05
PM_PHYSICAL_PIN_P06 0x06
PM_PHYSICAL_PIN_P07 0x07
PM_PHYSICAL_PIN_P10 0x10
PM_PHYSICAL_PIN_P11 Ox11
PM_PHYSICAL_PIN_P12 0x12
PM_PHYSICAL_PIN_P13 0x13
PM_PHYSICAL_PIN_P14 0x14
PM_PHYSICAL_PIN_P15 0x15
PM_PHYSICAL_PIN_P16 0x16
PM_PHYSICAL_PIN_P17 0x17
PM_PHYSICAL_PIN_P22 0x22
PM_PHYSICAL_PIN_P23 0x23
PM_PHYSICAL_PIN_P24 0x24
PM_PHYSICAL_PIN_P30 0x30
PM_PHYSICAL_PIN_P31 0x31
PM_PHYSICAL_PIN_P32 0x32
PM_PHYSICAL_PIN_P33 0x33
PM_PHYSICAL_PIN_P34 0x34
PM_PHYSICAL_PIN_P35 0x35
PM_PHYSICAL_PIN_P36 0x36
PM_PHYSICAL_PIN_P37 0x37

Optional and not given then active state

Sigma Designs Inc.

Application Sample Code

CONFIDENTIAL

Page 83 of 103

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

0 - Low
1 — High
4.10.2.7.2 Power up Mode Configuration Command

The Power up Mode Configuration Command is used to configure the state of the PowerCtrl pins when
the Serial API has to power up the host CPU system

7 6 5 4 3 2 1 0

FUNC_ID_POWER_MANAGEMENT

PM_POWERUP_MODE_CONFIGURATION_CMD

Number of Pins (max 4)

IO Pin 1

Lewel 1

10 Pin ..

Lewel ..

10 Pin x

Lewvel x

Number of Pins (8 bit):
The number of pins that is contained in the command. The max number of pins is 4
10 Pin x (8 bit):

The physical pin that should be changed when the Serial API has to wake up the host CPU system. A full
list of physical pins can be found in section 4.10.2.7.1.

Level x (8 bit):

The lewvel the output pin should have when the specified power mode is set.
0 — Low

1 — High

4.10.2.7.3 Power Up on Z-Wave Configuration Command

The Power Up on Z-Wawve Configuration Command is used to specify what Z-Wave command that
should trigger a power up of the host CPU system. All Z-Wave commands received are checked if they
match the wakeup values and masks configured.

Sigma Designs Inc. Application Sample Code Page 84 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

7 6 5 4 3 2 1 0

FUNC_ID_POWER_MANAGEMENT

PM_POWERUP_ZWAVE_CONFIGURATION_CMD

Wakeup Match Mode

Number of match bytes (max 8)

Wakeup Value 1

Wakeup Value ..

Wakeup Value x

Wakeup Mask 1

Wakeup Mask ..

Wakeup Mask x

Wakeup Match Mode (8bit):

PM_WAKEUP_ALL

Wake up on all Z-Wawve application commands received by the Z-Wave module.
PM_WAKEUP_ALL_NO _BROADCAST

Wake up on all Z-Wawve application commands received by the Z-Wave module, except frames send as
broadcast frames.

PM_WAKEUP_MASK

Wake up the host CPU when receiving a Z-Wave command where the first 5 bytes of the frame matches
the specified value and mask.

Wakeup Mode define Value
PM_WAKEUP_ ALL 0x01
PM_WAKEUP_ALL NO_BROADCAST | 0x02

PM_WAKEUP_MASK 0x03

Number of Match Bytes (8bit):

Number of bytes used to match an incoming Z-Wave command with, to see if it should trigger a wakeup.
The max number of match bytes is 8.

Wakeup Value n (8bit*x):

The wakeup value is the value an incoming Z-Wawve frame should be checked against to see if it should
trigger a wakeup.

Wakeup Mask n (8 bit*x):

Sigma Designs Inc. Application Sample Code Page 85 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

The wakeup mask is a mask that can be used to mask out bits or bytes in the received Z-Wawe frame
before it is compared with the Wakeup value.

The Wakeup value and Wakeup mask are checked like this in the Serial API
If (Z-Wave Frame & Wakeup Mask) == Wakeup Value)

DoWak eup();
Example:

If the host CPU wants to trigger a wakeup on an Simple AV Set command with the Command Power the
following command should be send to the Z-Wave module.

The simple AV Set command has the following structure:

7 6 5 4 3 2 1 0

COMMAND_CLASS_SIMPLE_AV_CONTROL

SIMPLE_AV_CONTROL_SET

Sequence Number

Resened Key Attributes

Item ID MSB

Item ID LSB

AV Command MSB,1

AV Command LSB,1

In this Z-Wavwe command we want to match the command class, the command, the key attributes and the
AV command. We do not care about the sequence number, the reserved field and the item ID. So the
Power Up on Z-Wave command would look like this:

Sigma Designs Inc. Application Sample Code Page 86 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents

7 6 5 4 3 2 1 0

FUNC_ID_POWER_MANAGEMENT

PM_POWERUP_ZWAVE_CONFIGURATION_CMD

PM_WAKEUP_MASK

8 (Match the 8 first bytes)

COMMAND_CLASS_SIMPLE_AV_CONTROL

SIMPLE_AV_CONTROL_SET

0 (don’t care)

0 (key down)

0 (don’t care)

0 (don’t care)

0 (AV Command MSB)

0x27 (AV command Power)

OXFF (match all bits)

OxFF (match all bits)

0x00 (don’t match)

0x07 (match bits 0,1,2)

0x00 (don’t match)

0x00 (don’t match)

OxFF (match all bits)

OxFF (match all bits)

4.10.2.7.4 Power Up on Timer Configuration Command

2012-05-25

The Power Up on Timer Configuration Command is used to specify that the Z-Wave module should

power up the host CPU system after a specified time has passed.

7 6 5 4 3 2 1 0

FUNC_ID_POWER_MANAGEMENT

PM_POWERUP_TIMER_CONFIGURATION_CMD

Timer Resolution

Timer (MSB)
Timer (LSB)
Timer Resolution (8bit):
PM_TIMER_SECONDS The timer resolution is in Seconds.
PM_TIMER_MINUTES The timer resolution is in minutes.
Sigma Designs Inc. Application Sample Code Page 87 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Timer Resolution define Value
PM_TIMER_SECONDS 0x01
PM_TIMER_MINUTES 0x02

Timer (16bit):
The time that should elapse before the host CPU is set to the POWER_MODE_RUNNING again

4.10.2.7.5 External Power Up Configuration Command

The External Power Up Configuration Command is used to specify that a level change on an input pin
should trigger a power up of the host CPU system.

7 6 5 4 3 2 1 0

FUNC_ID_POWER_MANAGEMENT

PM_POWERUP_EXTERNAL_CONFIGURATION_CMD

IO Pin

Power Up Lewel

10 pin (8bit):

The 10 pin field specifies the physical I/O pin that should be used for this signal. The full table of I/O pins
can be found in section 4.10.2.7.1

Power Up Level (8bit):
The lewel the input pin should trigger a power up of the host CPU system.
0 — Low

1 — High

Sigma Designs Inc. Application Sample Code Page 88 of 103

CONFIDENTIAL

INS12035-2

4.10.2.7.6

Z-Wave 400 Series Developer's Kit v6.02.00 Contents

Power down Mode Configuration Command

2012-05-25

The Power down Mode Configuration Command is used to request that the Z-Wave module sets a
specific power down mode. If the PoweredUp pin is configured the PowerCtrl pins will not be changed
before the PoweredUp pin goes NOT active.

7

6 5 4 3 2 1

FUNC_ID_POWER_MANAGEMENT

PM_POWERDOWN_MODE_CONFIGURATION_CMD

Number of Pins (max 4)

IO Pin1

Lewel ..

10 Pin x

Lewel 1

10 Pin ..

Lewvel x

Number of Pins (8 bit):

The number of pins that is contained in the command. The max number of pins is 4

10 Pin x (8 bit):

The physical pin that should be changed when the Serial API powers down the host CPU system. A full
list of physical pins can be found in section 4.10.2.7.1.

Level x (8 bit):

The level the output pin should have when the specified power mode is set.

0 - Low
1 — High
Sigma Designs Inc. Application Sample Code Page 89 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.10.2.8 Serial APl Ready Command

The Ready Command is used by the host to inform the Z-Wave module that it is ready to receive
command on the UART.

7 6 5 4 3 2 1 0

FUNC_ID_READY

[SerialLinkState]

SerialLinkState (8 bit):

Set the Serial link state between HOST and the SerialAPl Z-Wave module.
SERIAL_LINK_DETACHED - The Serial link state should be DETACHED or SerialAPI stops sending
data to HOST until either READY is transmitted again in connected state or any valid SerialAPI

command is received from HOST.

SERIAL_LINK_CONNECTED - The Serial link state should be CONNECTED or SerialAPIl sends data to
HOST when needed.

The SerialAPI Z-Wave module starts up after reset in the Serial link state DETACHED.

SerialLinkState define Value

SERIAL_LINK_DETACHED 0x00
SERIAL_LINK_CONNECTED | 0x01

4.10.2.9 Serial APl Softreset Command

The host CPU system can make a software reset of the Z-Wawe module by using the Softreset
Command.

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_AP|_SOFT_RESET

Sigma Designs Inc. Application Sample Code Page 90 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.10.2.10 Serial APlI Watchdog Commands
Some PC based applications cannot guarantee kicking the watchdog before timeout causing the
watchdog to reset the Z-Wawe ASIC unintentionally. The following Watchdog Commands are therefore
available to awid this:

e Start watchdog: Enable watchdog and ApplicationPoll kick watchdog

e Stop watchdog: Disable watchdog and stop kick watchdog in ApplicationPoll

Watchdog handling disabled when powered up and Sleep/FLIRS mode will temporary stop watchdog.

The host CPU system can start watchdog functionality by using the Serial API function
FUNC_ID_ZW_WATCHDOG_START:

7 6 5 4 3 2 1 0

FUNC_ID_ZW_WATCHDOG_START

The host CPU system can stop watchdog functionality by using the Serial API function
FUNC_ID_ ZW_WATCHDOG_STOP:

7 6 5 4 3 2 1 0

FUNC_ID_ZW_WATCHDOG_STOP

Sigma Designs Inc. Application Sample Code Page 91 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.10.2.11 Serial API Files

The Product\SerialAPI directory contains sample source code for controller/slave applications on a
Z-Wave module. The application uses also a number of utility functions described in section 3.3.11.

MK.BAT

Make bat file for building the sample application in question. To only build applications using EU
frequency enter: MK “FREQUENCY=EU” in command prompt.

Makefile

This is the Makefile for the sample application in question defining the targets built. Refer to section
3.2.1.1 for additional details.

Makefile.common_ZWO0x0x_supported_functions
This makefile makes a text file showing the supported serial API functions for the given target.
MakePatch.bat

Make hex files for patch system including the <appl>_ZW040x_<freq>_devmode_patch_RAM. hex
targeted for SRAM when using dewvelopment mode.

Config_app.h

This header file contains defines for application version.

UART buf_io.h /UART buf io.c

Low lewel routines for handling buffered transmit/receive of data through the UART.
conhandle.h / conhandle.c

Routines for handling Serial API protocol between PC and Z-Wave module.
serialappl.h / serialappl.c

This module implements the handling of Serial API protocol. That is, parses the frames, calls the
appropriate Z-Wawve API library functions and returns results etc. to the PC. Enable/disable support of a
given Serial API function in serialappl.h header file.

serialappl_patch.c

This file contains the patched source code of serialappl.c

SerialAPI_Ctl_Bridge_ZWO040x.mpw / SerialAPI_Ctl_Bridge_ZW040x _....Uv2
SerialAPI_Ctl_Installer_ZW040x.mpw / SerialAPI_Ctl_Installer_ZwW040x _....Uv2

SerialAPI_Slave_Routing_ZW040x _....Uv2

uVision4 *.U\2 project files created by makefile system using uVisionProjectGenerator software.

Sigma Designs Inc. Application Sample Code Page 92 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Supported.bat

Batch file called by Makefile.common_2ZWO0x0x_supported_function to obtain delayed environment
variable expansion when using SET in DOS prompt.

make-supported-functions-include.bat

Windows batch script for generating SerialAPI defines for supported functions based on what exists in
library.

serialapi-supported-func-list.txtt

Template file for generating SerialAPI defines for supported functions based on what exists in library.
Enable/disable support of a given Serial API function in serialappl.h header file.

Sigma Designs Inc. Application Sample Code Page 93 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.10.3 Power management

4.10.3.1 System overview

The power management API is designed for use in a system where a Z-Wave module is connected to a
host CPU system via a serial port and a number of I/O pins are used for control of the power to the Host
CPU system.

UART
W Host CPU
System
t——PoweredUp (Optional)
Z-Wave
Module 2 |-a-PowerUpExt (Optional) O
=3
o
-
Power Control (1..4) > Power Control

Figure 2, Power Management system

In a system like this it is necessary to have a communication protocol between the two CPU systems that
ensures that the correct power state is selected and the Z-Wave module and the host CPU system
always is in agreement about what power state they are using at all times.

All power management configuration and setup is done runtime using the serial APl interface from the
host processor system. The Z-Wave module must therefore be powered at all times in the system and
decisions to power down the system always comes from the host CPU system. Power management is
also possible on a Z-Wave module without external non-volatile memory.

4.10.3.2 I/0 pins

A number of /O pins on the Z-Wave module and the host processor system can be used for the power
management API. No GPIO pins will be configured or changed before the host CPU configures the pin.
All GPIO pins will be in their reset state (input, pull up enabled) until the host CPU issues an serial API
command that configures or change status of a pin.

All GPIO’s used as input on the Z-Wave module must be asserted for at least 20ms when changing lewel
to allow the firmware to detect the change of the input pin status.

PoweredUp pin (Optional)

An input pin on the Z-Wawe module is needed to communicate from the host processor to the Z-Wave
module that the host processor system is now ready to be powered down. This pin is necessary if the
host CPU system is not able to send commands on the UART during the power down sequence because
the UART driver or the OS has been stopped. If configured the PoweredUp pin is set active on system
power on.

Z-Wave module Input

Host CPU Output

PowerCtrl(1..4)

The PowerCtrl pins are used to control the power management hardware from the Z-Wave module.

Sigma Designs Inc. Application Sample Code Page 94 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Z-Wave Output
Host CPU N/A
4.10.3.3 Power management configuration sequence

When the serial API starts up for the first time it assumes that there is no power management present.
The power management is activated in the Z-Wave module by configuring the power up mode.

See section 4.10.2.7 for a detailed description of the serial APl commands.
When configuring the power management the following sequence of events should happen:

e The host configures the PoweredUp pin by using the Serial APl Power Management Pin
Configuration command. (Optional)

e The host configures the Power Up PowerCtrl pin(s) by using the Serial API Power Management
Pin Configuration command

e The host configures the Wake up criteria’s by using the Power Up on Z-Wawe Configuration

Command (see section 4.10.2.7.3) and/or the Power Up on Timer Configuration Command (see
section 4.10.2.7.4).

4.10.3.4 Power up sequence
When powering up the following sequence of events should happen:
1. The Z-Wawe module receives a command via RF that triggers a power up of the system.

2. The Z-Wave module changes the state of the power control I/O pins to the
POWER_MODE_RUNNING state

3. The Z-Wave module waits for the Serial APl Ready command on the UART
4. The host CPU system powers up and sets the PoweredUp pin active. (Optional)
5. When ready the host CPU system sends the serial APl Ready command.

6. When the Ready command is received the Z-Wave module sends the command that triggered
the power up to the host CPU system.

4.10.3.5 Power down sequence
When powering down the following sequence of events should happen:
1. The host must have performed the configuration sequence specified in section 4.10.3.3

2. The host processor determines that the system should power down now (based on, activity,
timer, received commands, etc.)

3. The host processor sends an Serial APl Set Power Mode command to the Z-Wave module

4. The Z-Wave module starts to monitor the PoweredUp pin (if configured) and continues to next
state in power down sequence when the PoweredUp pin goes NOT active.

Sigma Designs Inc. Application Sample Code Page 95 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

5. The Z-Wawe module changes the state of the power control I/O pins according to the power
mode requested by the host.

4.10.3.6 Power modes

The power management API supports any number of power modes that the host CPU system wants to
use. The power modes can be divided into 2 different groups:

POWER_MODE_RUNNING

In power mode running the host CPU system is running. The host CPU system can receive commands
send from the Z-Wawe module on the UART.

POWER_MODE_POWERDOWN
In power mode power down the host CPU system is unable to receive commands send on the UART. All

Z-Wave RF commands received by the Z-Wave module will be discarded if they do not trigger a wakeup.
The only transition of power mode from this mode it to go to the POWER_MODE_RUNNING.

Sigma Designs Inc. Application Sample Code Page 96 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

4.11 PC based Controller Sample Application

The PC\Source\SampleApplications\ZWaveP CController directory contains sample application source
code in C# that implements a PC based Controller using the development tool Visual Studio 2008.

For further information about the features of the PC based Controller, see [1].

4.12 PC based Installer Tool Sample Application

The PC\Source\SampleApplications\ZWawelnstaller directory contains sample application source code in
C# that implements a PC based Installer Tool using the development tool Visual Studio 2008.

For further information about the features of the PC based Installer Tool, see [2].

4.13 PC based Z-Wave Bridge Sample Application

The PC\Source\SampleApplications\ZWaveUPnPBridge directory contains sample application source
code in C# that implements a PC based Z-Wawe to UPnP Bridge using the development tool Visual
Studio 2008.

The Z-Wawe to UPnP bridge sample application contains UPnP.dll and UPnP_AV.dIl from
http://opentools.homeip.net/dev-tools-for-upnp

For further information about the features of the PC based Z-Wawe to UPnP Bridge, see [3].

Sigma Designs Inc. Application Sample Code Page 97 of 103

CONFIDENTIAL

http://opentools.homeip.net/dev-tools-for-upnp

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25
5 TOOL SAMPLE CODE

The Z-Wawve Developer's Kit includes tool sample code to enable customization of production
environment.

Sigma Designs Inc. Tool Sample Code Page 98 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

5.1 Z-Wave Programmer Firmware

The SDK contains sample code that demonstrates how to program the 100/200/300/400 Series ASIC.
The ZDPO3A Z-Wave Dewvelopment Platform [14] supports this purpose. The Z-Wave Programmer
firmware resides on the AVR ATmegal28 chip on ZDP0O3A and controlled by the PC based Z-Wawve
Programmer application [7]. For a detailed description of the communication protocol between the AVR
and PC based Z-Wave Programmer application, refer to [12].

Source code deweloped in the following environment:
- WIinAVR v20071221:
o GNU Binutils 2.18 (including assembler, linker, etc.)
o Compiler Collection (GCC) 4.2.2
o aw-ibc 1.6.0
- ZWawe Library v2.91
- Keil uVvision PK51 8
Project environment:
- Eclipse Platform v3.5 with plugins:
o AVR Eclipse Plugin
o (optional) Polarion Subversive SVN Connectors
o (optional) Eclipse Subversive - SVN Team Provider Project

The AVR ISP In-System Programmer programs the AVR Atmegal28.

5.1.1 ATmega_ZWaveProgFW Files

The Tools\Programmer\ATmega_ZWaveProgFW directory contains the source code for the 400 Series
low level programming application.

MK.BAT

Batch file used to build AVR based sample applications in versions for the firmwave update (Ma Z-Wave
Programmer) and complete ATMegal28 firmware (via AVR ISP In-System Programmer).

MAKE_FIRMWARE.BAT

Batch file used to make complete ATMegal28 firmware from bootloader firmware and firmware update.
Called by MK.BAT.

MAKE_MTP.BAT

Batch file used to build the ZW040x Execute Out of SRAM application, that give the ability to the
ATMegal28 firmware to accessthe MTP memory of the ZW040x chip. Called by MK.BAT.

.cproject; .project; .settings

Project files of the Eclipse IDE used to edit AVR based sample application source code.
src\ATMega_spi.c; .h

Source code of the implementation of the software SPI, which is connected to the Z-Wave Module.

src\commands.h

Sigma Designs Inc. Tool Sample Code Page 99 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

This header file contains definitions of the commands of the Z-Wawe Programmer Communication
Protocol [12].

src\conhandle.c; .h
Source files, contains the functions for handling the Programmer frames via the UART.
src\eeprom_if.c; .h

Source code of the Z-Wave Module External non-wolatile memory interface. Reading / writing of the Z-
Wawve Module External non-wolatile memory via the software SPI was implemented.

src\mtp.c; .h

Source code of the ZW040x Execute out of SRAM application, which implements the ZW040x MTP
memory interface.

src\ports.h

Header file with definitions of port names of the ATMegal28 in ZDP03 (ZDP02) board.
src\UART _buf _io.c; .h

Source code of buffered transmit/receive of data through the UART.
src\ZWaveFlash.c; .h

Main source code of the Z-Wave Programmer Firmware. Contains the implementation of all programmer
commands handlers and Z-Wave chips programming algorithms.

Sigma Designs Inc. Tool Sample Code Page 100 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

6 REQUIRED DEVELOPMENT COMPONENTS

6.1 Software developmentcomponents

There is an additional 3" party software tool that is required to dewelop Z-Wawe applications that is not
supplied with the Z-Wawve Deweloper's Kit. That is the Keil PK51 0.0 Professional Deweloper’s Kit for the
8051 microcontroller:

Z-Wawe libraries and sample applications are built and tested on version 9.02a but newer versions
should also apply according to Keil's recommendations. It is not possible to use earlier Keil PK51
versions than V9.0 in connection with this SDK because Keil changed object format.

The Keil Deweloper's Kits can be purchased directly from Keil or from one of their local distributors.
Please visit www.keil.com for details. Alternatively can it be purchased from Sigma Designs.

Keil Software, Inc. Keil Elektronik GmbH

1501 10th Street, Suite 110 Bretonischer Ring 15

Plano, TX 75074 D-85630 Grasbrunn

USA Germany

Toll Free: | 800-348-8051 Toll Free: | -

Phone: 972-312-1107 Phone: (49) (089) 4560400
Fax: 972-312-1159 Fax: (49) (089) 46 81 62
Sales: sales.us@keil.com Sales: sales.intl@keil.com
Support: | support.us@keil.com Support: | support.intl@keil.com

6.2 100/200/300/400 Series ASIC programmer

This Z-Wave Deweloper’'s Kit comes with the Z-Wave Programmer included. The Z-Wave Programmer is
used for downloading new firmware tothe Z-Wave ASIC. The Z-Wave Programmer is also used when
setting lock bits, programming the external non-wolatile memory on the Z-Wave module etc.

For a detailed description of the ZDPO3A Z-Wave Dewelopment Platform refer to [14].

6.3 Hardware development components for 400 Series

The 400 Series based embedded sample application are designed for the ZDPO3A Z-Wawe
Dewelopment Platform in combination with a Z-Wawe module hosting the sample application. Some
applications use also the AVR processor on ZDPO3A as host together with a serial API application
running on the Z-Wave module. The Z-Wawe modules exist in two variants:

e 7ZM4101 Z-Wave Module [15] mounted on a ZM4125 Z-Wave Module [17].
e SD3402 Z-Wawe ASIC [16] mounted on a ZM4225 Z-Wave Module [18].

Sigma Designs Inc. Required Development components Page 101 of 103

CONFIDENTIAL

http://www.keil.com/
mailto:sales.us@keil.com
mailto:sales.intl@keil.com
mailto:support.us@keil.com
mailto:support.intl@keil.com

INS12035-2

REFERENCES

[1] SD, INS10240,
[2] SD, INS10241,
[3] SD, INS10245,
[4] SD, INS10336,
[5] SD, INS10249,
[6] SD, INS10250,
[7] SD, INS10679,
[8] SD, INS10236,
[9] SD, INS10326,
[10] SD, INS10680,
[11] SD, INS10681,
[12] SD, INS11072,
[13] SD, INS10326,
[14] SD, DSH11243,
[15] SD, DSH11055,
[16] SD, DSH11036,
[17] SD, DSH11307,
[18] SD, DSH11306,
[19] SD, INS12034,
[20] SD, SDS10242,
[21] SD, SDS11060,
[22] SD, INS11596,
[23] SD, INS11709,
[24] SD, INS11552,
[25] SD, INS12131,

Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Instruction, PC Based Controller User Guide.

Instruction, PC Installer Tool Application User Guide.

Instruction, Z-Wave Bridge User Guide.

Instruction, Z-Wave Reliability Test Guideline.

Instruction, Z-Wawe Zniffer User Guide.

Instruction, Z-Wawe DLL User's Manual.

Instruction, Z-Wave Programmer User Guide.

Instruction, Development Controller User Guide.

Instruction, ZW0201 Single Chip Implementation Guidelines.
Instruction, Z-Wave XML Editor.

Instruction, Secure Dewvelopment Controller (AVR) User Guide.
Instruction, Z-Wawe Programmer Communication Protocol.
Instruction, ZW0201 Single Chip Implementation Guidelines.
Datasheet, ZDP0O3A Z-Wave Dewelopment Platform.

Datasheet, ZM4101 Module / ZW0401 Single Chip.

Datasheet, SD3402 Datasheet.

Datasheet, Z-Wave ZM4125 Module

Datasheet, Z-Wawe ZM4225 Module.

Instruction, Z-Wawve 400 Series Application Programming Guide v6.01.03.
Software Design Specification, Z-Wave Device Class Specification.
Software Design Specification, Z-Wave Command Class Specification.
Instruction, Micro RF Link Tool.

Instruction, Working in 400 Series Environment User Guide.
Instruction, 400 Series Crystal Calibration User Guide.

Instruction, Micro PVT Tool.

Sigma Designs Inc.

References Page 102 of 103

CONFIDENTIAL

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

INDEX

AES128 encryption/dECIYPLION .. .cuuiie i e 45, 49, 56, 59, 64
F Y o] o] o= 1o T == 1 o | P 53, 65, 69
F NV o N 1 Y=o - 2 17, 26
(0521 [1 o] =11 o] o D PP 34
L@= 4 T=Y = T [F- P 53, 65
Creating a Z-Wave DLL based PC appliCationc..oiuiiiii e e e e eaees 39
(@3 253 =TI o= 1o = 14 o o PP 34
Enhanced Reliability TESEt TOOI......c.u i et e e e et e e e e eanes 30
] PSP UPPT PP 11, 30
XN B . X e e 9
EXternal NON-VOIALtIle MEMOIY ...t 9,13
FUNC _ID_SERIAL API_GET CAPABILITIES ...uiiiiiiiii et e e e e e e e e e e e e aaaneeaens 81
FUNC _ID_SERIAL AP GE T INIT DA T A ettt e e e e e e e e e e et e e et e e e e eeens 80
FUNC _ID_SERIAL AP SET TIMEOUTS ...iiiiiiiiii ittt e e a e e e e e et e e e e eanne e e e e eneeeens 78
00 T 0 75, 77
[(0T 0 (T | D PP 9
Intellectual Property MGNS ... et 45, 49, 59, 64
08| 2/ o PP 15
0 | 5 PR 15
8| N 121V 1 172 PR 15
= PPN 101
LOW POWET tranSMISSION [EVEISiviiiiiiiii e e e e e e e e e e e et e e e e e eens 8
YT Yo (U= =T =Y T T = PP 53, 65
Normal POWEr traNSMISSION IEVEISt e e e e ans 8
Production tESE MOAEoouiiii e e ettt e e e et e e e e e e e 53, 65
PVT and RF regulatorny MEaSUIBM ENTS ittt e ettt e e e e et e e e e e e e e et e e e et e et eaneeanns 35
RANAOM NOME D ..ottt e e e et et e e e et e e et e e et e ean e eanas 9
Serial APT A CK frAIME ... et ettt ettt e e e 73
Sl AP DUTTEIS .. e e ettt et 79
Serial APT CAN FraMIE ..o e et et ettt e et et e 73
Serial API CapabilitieS COMMEANG ..o e e e e e e e e e e e et neenaeanaenaes 81
Serial APl communication error Randlingoceeiiuiii e 78
Serial API DAta fTAMEcouniiii et et et 73
Serial APTframe fIOW ... e 75
Serial APT NAK fTaMIE ..ottt ettt e 73
Serial API Node LiSt COMMEANGuiiiiiiiiie et e e e e e e e e e e e enneen e e e neenees 80
Serial API PM External Power Up Configuration COMMAaNGcouuiiiiiiiiiiieiiiineee e 88
Serial API PM Pin Configuration COMMANGceuuiiitiiiiieiii ettt eae s 82
Serial API PM Power down Mode Configuration COMMaNdcouueiiiiiiiiieiiiiieeeie e e 89
Serial API PM Power up Mode Configuration COMMaNdc.uieiiiiiriiiiinieee e 84
Serial API PM Power Up on Timer Configuration COMMAaNGcc.uveiriiiiiiiiiiiieieieee e 87
Serial API Power Management COMMEANTSuieuuierieiei et ettt et e e e e e e eae s 82
Serial APl Ready COMIMANGttt e e et e et e et e ea e e e e e e e et e et e e aeaaenaes 90
Serial API Softreset COMMEANT ... et e e e e e e e et e e e een e 90
serial API WatChdog COMMANGSiuiiiiiiie e e et et e e et e e e e e e e e e e e eens 91
Seral EEPROM ... e e e et e ean s 13
SEIAI FIASK <. e et e e e e a e 13
UNINILIALIZEA RAM YOS ... it e e e e e e e e e et e e e e e e e e e e eanaes 49
ZDPO2A DeVvelopment MOQUIE...........oi e e e e e e e e e e e e e e aneeens 26
ZDPO3A DeVvelopment MOAUIE...........oii et e e e e e e e e aas 17, 26
Z-WaAVE DLL @IrCHILECIUIE ... ettt et et et e e e e e e ean s 39
Z-WaAVE DLL NAMESPACES .. vuitueiuiteintteie e et et ettt ettt e et et et et et e et e e e e e e e e e e e et e e e e e n et e et eaneanaes 39
y VoA I e (o Yo = V0 0] 11 SO PRSP 101
Sigma Designs Inc. Index Page 103 of 103

CONFIDENTIAL

