

 CONFIDENTIAL

Instruction

Z-Wave 400 Series Developer's Kit v6.02.00 Contents

Document No.: INS12035

Version: 2

Description: Describes the contents and sample applications user guides of the Z-Wave 400

Series Developer's Kit v6.0x

Written By: JFR

Date: 2012-05-25

Reviewed By: CHL;BBR

Restrictions: Partners Only

Approved by:

Date CET Initials Name Justification

2012-05-25 11:27:54 NTJ Niels Thybo Johansen

This document is the property of Sigma Designs Inc. The data contained herein, in whole
or in part, may not be duplicated, used or disclosed outside the recipient for any purpose.
This restriction does not limit the recipient's right to use information contained in the data if
it is obtained from another source without restriction.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Revision Record and Tables of Contents Page ii of vi

 CONFIDENTIAL

REVISION RECORD

Doc.
Rev

Date By Pages affected Brief description of changes

1 20090906 JFR ALL Initial draft

2 20091229 VVI 5.1.1 Added description of Z-Wave programmer f irmw are source files.

3 20100414 JFR 3 Softw are components updated

4 20100423 JFR 3.2.4.11 Alternative external non-volatile memory chip select pin

5 20100521 JFR - <appl>_ZW040x_y_devmode.hex replaces <appl>_ZW040x_y_devmode_OTP.hex

6 20100608
20100617

JFR
EFH

0
4.10.2.5

Changed pin to initiate production test mode
Added Paragraph “Serial API Node List”

7 20100624

20100702

JFR

EFH

4.5 & 4.6

4.9

Update FLiRS w akeup time for Door Bell and Door Lock

Update user interface for Prod_Test_Gen

8 20101111 JFR 3.3 & 4 Removed Prod_Test_DUT sample application, use instead ApplicationTestPoll.

8 20101203 SSE 3.3.1.13 Added new JP hex f ile for the production test generator

8 20110114 JFR 3.4.9

3.4.8

Added ZWaveProgrammer USB driver supporting Window s
XP/2003/Vista(32/64)/7(32/64).
Added Micro RF Link diagnostic programs.

9 20110126 JFR 3 Added description of Linux applications

9 20110127 EFH 3.2.1 & 4 Updated description of common makefiles for applications

10 20110419 JFR 3.5.1 & 3.5.2.1.5 Setup Information f ile for installation of a USB VCP driver.

10 20110623 JFR 3.4.9 Added SD3402 crystal calibration f irmw are for calibration box.

11 20111004 JFR 3 Removed Z/IP Router

12 20120112 JFR 4.10
3.1 & 3.4.13

Added Serial API Pow er Management
Added uVision project generator

13 20120523 JFR 3.4.7
3.4.9

Added Micro PVT tool
Added ZWaveProgrammer source code

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Revision Record and Tables of Contents Page iii of vi

 CONFIDENTIAL

Table of Contents

1 ABBREVIATIONS .. 1

2 INTRODUCTION .. 1

2.1 Purpose... 1
2.2 Audience and prerequisites ... 1

3 SOFTWARE COMPONENTS .. 2

3.1 Directory Structure ... 2
3.2 Z-Wave ... 6

3.2.1 Common .. 6
3.2.1.1 Application Makefile ... 6
3.2.1.2 Makefile.common .. 6
3.2.1.3 Makefile.common_ZW0x0x .. 7
3.2.1.4 Makefile.common_ZW0x0x_appl .. 7
3.2.1.5 Makefile.common_ZW0x0x_uvision .. 7

3.2.2 Include ... 7
3.2.3 I/O Defines ... 8
3.2.4 Libraries ... 8

3.2.4.1 Bridge Controller.. 8
3.2.4.2 Installer Controller.. 9
3.2.4.3 Portable Controller ... 9
3.2.4.4 Static Controller ... 10
3.2.4.5 Static Controller without repeater functionality.. 10
3.2.4.6 Static Controller Single... 11
3.2.4.7 Enhanced Slave .. 11
3.2.4.8 Enhanced 232 Slave .. 12
3.2.4.9 Production Test Generator ... 12
3.2.4.10 Routing Slave .. 12
3.2.4.11 External non-volatile memory ... 13
3.2.4.12 Variable initialization .. 13
3.2.4.13 RF frequency... 14

3.3 Product.. 15
3.3.1 Bin ... 15

3.3.1.1 Bin_Sensor ... 15
3.3.1.2 Bin_Sensor_Sec .. 15
3.3.1.3 Bin_Sensor_Battery ... 15
3.3.1.4 Bin_Sensor_Battery_Sec ... 16
3.3.1.5 Dev_Ctrl .. 16
3.3.1.6 Dev_Ctrl_AVR_Sec ... 17
3.3.1.7 DoorBell .. 17
3.3.1.8 DoorLock .. 17
3.3.1.9 DoorLock_Sec ... 18
3.3.1.10 LED_Dimmer... 18
3.3.1.11 LED_Dimmer_Sec ... 19
3.3.1.12 MyProduct ... 19
3.3.1.13 Prod_Test_Gen ... 19
3.3.1.14 SerialAPI_Controller_Bridge ... 20
3.3.1.15 SerialAPI_Controller_Installer ... 20
3.3.1.16 SerialAPI_Controller_Portable .. 21
3.3.1.17 SerialAPI_Controller_Static .. 22
3.3.1.18 SerialAPI_Controller_Static_Norep ... 22
3.3.1.19 SerialAPI_Controller_Static_Single ... 23

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Revision Record and Tables of Contents Page iv of vi

 CONFIDENTIAL

3.3.1.20 SerialAPI_Slave_Enhanced.. 24
3.3.1.21 SerialAPI_Slave_Enhanced_232 .. 25
3.3.1.22 SerialAPI_Slave_Routing ... 26

3.3.2 Binary Sensor... 26
3.3.3 Development Controller... 26
3.3.4 Secure Development Controller based on serial API and using an AVR as host 26
3.3.5 Doorbell ... 26
3.3.6 Door Lock .. 27
3.3.7 LED Dimmer... 27
3.3.8 MyProduct .. 27
3.3.9 Production Test Generator .. 27
3.3.10 Serial API ... 27
3.3.11 Utilities ... 28

3.4 Tools ... 30
3.4.1 ERTT ... 30
3.4.2 FixPatchCRC ... 31
3.4.3 HexTools.. 31
3.4.4 IncDep ... 31
3.4.5 Make ... 31
3.4.6 Mergehex ... 31
3.4.7 Micro PVT .. 32
3.4.8 Micro RF Link ... 33
3.4.9 Programmer ... 34
3.4.10 PVT and RF Regulatory .. 35
3.4.11 Python ... 37
3.4.12 TextTools ... 37
3.4.13 uVisionProjectGenerator ... 37
3.4.14 XML Editor ... 37
3.4.15 Zniffer .. 38

3.5 PC .. 39
3.5.1 Bin ... 39
3.5.2 Source ... 40

3.5.2.1 Libraries .. 40
3.5.2.1.1 WinForms UI ... 40
3.5.2.1.2 Zensys Framework .. 40
3.5.2.1.3 Zensys Framework UI .. 40
3.5.2.1.4 Zensys Framework UI Controls ... 40
3.5.2.1.5 ZW040x USB VCP PC Driver ... 41
3.5.2.1.6 Z-Wave Command Class ... 41
3.5.2.1.7 Z-Wave DLL .. 41
3.5.2.1.8 Z-Wave HAL.. 41

3.5.2.2 Sample Application .. 41
3.5.2.2.1 Z-Wave Installer .. 41
3.5.2.2.2 Z-Wave PC Controller .. 42
3.5.2.2.3 Z-Wave Security PC Controller ... 42
3.5.2.2.4 Z-Wave UPnP Bridge... 42

4 APPLICATION SAMPLE CODE .. 43

4.1 Binary Sensor Sample Code ... 44
4.1.1 Network Wide Inclusion ... 45
4.1.2 User Interface... 45
4.1.3 Bin_Sensor Files .. 45

4.1.3.1 Macros for accessing the LED‟s .. 47
4.2 Binary Sensor Battery Sample Code.. 48

4.2.1 Network Wide Inclusion ... 49
4.2.2 User Interface... 49
4.2.3 Bin_Sensor Files .. 50

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Revision Record and Tables of Contents Page v of vi

 CONFIDENTIAL

4.3 Development Controller Sample Code ... 51
4.3.1 Network Wide Inclusion ... 51
4.3.2 Production test mode .. 53
4.3.3 Dev_Ctrl Files ... 53

4.4 Secure Development Controller (ATmega) Sample Code.. 55
4.4.1 Dev_Ctrl_AVR_Sec Files. ... 55

4.5 Door Bell Sample Code .. 57
4.5.1 Network Wide Inclusion ... 57
4.5.2 User interface ... 57
4.5.3 Door Bell Files .. 57

4.6 Door Lock Sample Code ... 59
4.6.1 Network Wide Inclusion ... 60
4.6.2 User Interface... 60
4.6.3 Door Lock Files .. 60

4.6.3.1 Macros for accessing the Lock/Unlock .. 61
4.7 LED Dimmer Sample Code ... 63

4.7.1 Network Wide Inclusion ... 64
4.7.2 User Interface... 64
4.7.3 Production test mode .. 65
4.7.4 Secure_LED_Dimmer Files ... 65

4.7.4.1 Macros for accessing the LED‟s .. 67
4.8 MyProduct Sample Code .. 68

4.8.1 MyProduct Files .. 68
4.9 Production Test Generator .. 69

4.9.1 Production Test Generator Files .. 71
4.10 Serial API Embedded Sample Code .. 72

4.10.1 Supported API Calls.. 72
4.10.2 Implementation ... 72

4.10.2.1 Frame Layout .. 72
4.10.2.2 Frame Flow ... 75
4.10.2.3 Error handling.. 78
4.10.2.4 Restrictions on functions using buffers .. 79
4.10.2.5 Serial API Node List Command .. 80
4.10.2.6 Serial API Capabilities Command ... 81
4.10.2.7 Serial API Power Management Commands ... 82

4.10.2.7.1 Pin Configuration Command... 82
4.10.2.7.2 Power up Mode Configuration Command .. 84
4.10.2.7.3 Power Up on Z-Wave Configuration Command.. 84
4.10.2.7.4 Power Up on Timer Configuration Command ... 87
4.10.2.7.5 External Power Up Configuration Command.. 88
4.10.2.7.6 Power down Mode Configuration Command .. 89

4.10.2.8 Serial API Ready Command ... 90
4.10.2.9 Serial API Softreset Command ... 90
4.10.2.10 Serial API Watchdog Commands .. 91
4.10.2.11 Serial API Files .. 92

4.10.3 Power management .. 94
4.10.3.1 System overview ... 94
4.10.3.2 I/O pins ... 94
4.10.3.3 Power management configuration sequence ... 95
4.10.3.4 Power up sequence ... 95
4.10.3.5 Power down sequence ... 95
4.10.3.6 Power modes .. 96

4.11 PC based Controller Sample Application.. 97
4.12 PC based Installer Tool Sample Application ... 97
4.13 PC based Z-Wave Bridge Sample Application .. 97

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Revision Record and Tables of Contents Page vi of vi

 CONFIDENTIAL

5 TOOL SAMPLE CODE ... 98

5.1 Z-Wave Programmer Firmware ... 99
5.1.1 ATmega_ZWaveProgFW Files .. 99

6 REQUIRED DEVELOPMENT COMPONENTS ... 101

6.1 Software development components ... 101
6.2 100/200/300/400 Series ASIC programmer .. 101
6.3 Hardware development components for 400 Series .. 101

REFERENCES .. 102

INDEX .. 103

Table of Figures

Figure 1, NWI flow diagram for a controller that want to be added to a network 52
Figure 2, Power Management system ... 94

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Abbreviations Page 1 of 103

 CONFIDENTIAL

1 ABBREVIATIONS

Abbreviation Explanation

ACK Acknowledge

AES The Advanced Encryption Standard is a symmetric block cipher algorithm. The
AES is a NIST-standard cryptographic cipher that uses a block length of 128 bits

and key lengths of 128, 192 or 256 bits. Officially replacing the Triple DES method
in 2001, AES uses the Rijndael algorithm developed by Joan Daemen and Vincent
Rijmen of Belgium.

ANZ Australia/New Zealand

API Application Programming Interface

ASIC Application Specific Integrated Circuit

DLL Dynamic Link Library

DUT Device Under Test

EOOS Execution out of SRAM

ERTT Enhanced Reliability Test tool

EU Europe

GNU An organization devoted to the creation and support of Open Source software

HK Hong Kong

HW Hardware

IN India

JP Japan

JP_DK Japan using a lower LBT RSSI threshold

LBT Listen Before Talk

MY Malaysia

NVM Non-volatile memory

OTP One Time Programmable memory

R&D Research and Development

RF Radio Frequency

RSSI Received Signal Strength Indicator

SDK Z-Wave Software Developer‟s Kit includes software and related software

documentation.

UPnP Universal Plug and Play

US United States

VCP Virtual COM Port

XML eXtensible Markup Language

ZDK Z-Wave Developer‟s Kit includes hardware, software and related software
documentation.

2 INTRODUCTION

2.1 Purpose

The purpose of this document is to describe the contents on the Z-Wave Developer‟s Kit. Finally, a
description of all embedded sample applications including user guide or reference to relevant document.

2.2 Audience and prerequisites

The audience is Z-Wave Partners.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 2 of 103

 CONFIDENTIAL

3 SOFTWARE COMPONENTS

The Z-Wave development software packet consists of a protocol part, sample applications and a number

of tools used for developing and building the sample code.

3.1 Directory Structure

The development software is organized in the following directory structure:

/
- PC

- Bin

- ZW040x_USB_VCP_PC_Driver
- ZWaveDll
- ZWaveInstaller

- ZWavePCController
- ZWaveSecurityPCController
- ZWaveUPnPBridge

- Source
- Libraries

- WinFormsUI

- ZensysFramework
- ZensysFrameworkUI
- ZensysFrameworkUIControls

- ZW040x_USB_VCP_PC_Driver
- ZWaveCommandClasses
- ZWaveDll

- ZWaveHAL
- ZWaveSecurity

- SampleApplications

- ZWaveInstaller
- ZWavePCController
- ZWaveSecurityPCController

- ZWaveUPnPBridge

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 3 of 103

 CONFIDENTIAL

- Product
- Bin

- Bin_Sensor

- Bin_Sensor_Sec
- Bin_Sensor_Battery
- Bin_Sensor_Battery_Sec

- dev_ctrl
- dev_ctrl_AVR_Sec
- DoorBell

- DoorLock
- DoorLock_Sec
- LED_Dimmer

- LED_Dimmer_Sec
- Prod_Test_Gen
- SerialAPI_Controller_Bridge

- SerialAPI_Controller_Installer
- SerialAPI_Controller_Portable
- SerialAPI_Controller_Static

- SerialAPI_Controller_Static_Norep
- SerialAPI_Controller_Static_Single
- SerialAPI_Slave_Enhanced

- SerialAPI_Slave_Enhanced_232
- SerialAPI_Slave_Routing

- Bin_Sensor

- dev_ctrl
- dev_ctrl_AVR_Sec
- DoorBell

- DoorLock
- LED_Dimmer
- MyProduct

- Prod_Test_Gen
- SerialAPI
- Util_Func

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 4 of 103

 CONFIDENTIAL

- Tools
- ERTT

- PC

- Z-Wave_Firmware
- FixPatchCRC
- HexTools

- IncDep
- Make
- Mergehex

- Micro_PVT
- Micro_RF_Link
- Programmer

- PC
- Source

- SD3402_Calibration

- ZDP0xA_Firmware
- Source

- PVT_and_RF_regulatory

- Python
- TextTools
- uVisionProjectGenerator

- XML_Editor
- PC

- Zniffer

- PC
- FileConverter

- Z-Wave_Firmware

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 5 of 103

 CONFIDENTIAL

- Z-Wave
- Common
- include

- IO_defines
- lib

- controller_bridge_ZW040x

- controller_bridge_ZW040x_devmode
- controller_bridge_ZW040x_3CH
- controller_bridge_ZW040x_3CH_devmode

- controller_installer_ZW040x
- controller_installer_ZW040x_devmode
- controller_installer_ZW040x_3CH

- controller_installer_ZW040x_3CH_devmode
- controller_portable_ZW040x
- controller_portable_ZW040x_devmode

- controller_portable_ZW040x_3CH
- controller_portable_ZW040x_3CH_devmode
- controller_static_norep_ZW040x

- controller_static_norep_ZW040x_devmode
- controller_static_norep_ZW040x_3CH
- controller_static_norep_ZW040x_3CH_devmode

- controller_static_single_ZW040x
- controller_static_single_ZW040x_devmode
- controller_static_single_ZW040x_3CH

- controller_static_single_ZW040x_3CH_devmode
- controller_static_ZW040x
- controller_static_ZW040x_devmode

- controller_static_ZW040x_3CH
- controller_static_ZW040x_3CH_devmode
- ext_nvm

- init_vars
- rf_freq
- slave_enhanced_232_ZW040x

- slave_enhanced_232_ZW040x_devmode
- slave_enhanced_232_ZW040x_3CH
- slave_enhanced_232_ZW040x_3CH_devmode

- slave_enhanced_ZW040x
- slave_enhanced_ZW040x_devmode
- slave_enhanced_ZW040x_3CH

- slave_enhanced_ZW040x_3CH_devmode
- slave_prodtest_gen_ZW040x
- slave_prodtest_gen_ZW040x_devmode

- slave_prodtest_gen_ZW040x_3CH
- slave_prodtest_gen_ZW040x_3CH_devmode
- slave_routing_ZW040x

- slave_routing_ZW040x_devmode
- slave_routing_ZW040x_3CH
- slave_routing_ZW040x_3CH_devmode

This directory structure contains all the tools and sample applications needed, except the recommended
Keil software, which must be purchased separately. More information about where and how to buy the

Keil software development components are described in paragraph 6.1.

Note! Recommending leaving the directory structure as is due to compiler and linker issues.

The majority of the above mentioned Z-Wave specific tools and sample application are briefly described

in the following sections.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 6 of 103

 CONFIDENTIAL

3.2 Z-Wave

The Z-Wave header files and libraries are the software files needed for building a Z-Wave enabled
product. The files are organized in directories used for building Z-Wave controllers and slaves

respectively.

3.2.1 Common

The Common directory contains a set of standard make files needed for building the sample applications.

The directory contains the following files:

 Makefile.common

 Makefile.common_ZW0x0x

 Makefile.common_ZW0x0x_appl

3.2.1.1 Application Makefile

Every sample application has a main Makefile describing what can be built. It also gives the developer an
opportunity to limit what is built to a subset of this. The main Makefile includes a set of common

makefiles from Z-Wave\Common directory, which defines how to build the target.

Targets can be built in lots of variants with 5 varying parameters:

 FREQUENCY

 CODE_MEMORY_MODE

 LIBRARY

 HOST_INTERFACE

 SENSOR_TYPE

 UVISION

Not all of these parameters are relevant for all applications, but the irrelevant ones are set to a default
value in the applications Makefile.

For every one of these parameters, there are 3 different ways to set which one you want. This is
described in the Makefile for the application. You can leave parameters unspecified. Then make will build
targets for all combinations of these parameters.

The applications main Makefile defines a list of modules, which are specific for the application, and which
shall be included in the build.

The applications main Makefile also defines CDEFINES, which are specific for the application.

3.2.1.2 Makefile.common

Makefile.common is included by the applications main Makefiles.

Makefile.common defines lists of the different parameter values to build with:

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 7 of 103

 CONFIDENTIAL

 LIST_OF_FREQUENCIES

 LIST_OF_CODE_MEMORY_MODES

 LIST_OF_LIBRARIES

 LIST_OF_HOST_INTERFACES

 LIST_OF_SENSOR_TYPES

You can specify subsets of values for these lists in the applications Makefile. This will override the lists
specified in Makefile.common. Some of our sample applications use this technique.

Makefile.common contains the heart of the recursion engine for make. For every parameter that is not
defined, a list of values will be walked through.

Makefile.common includes Makefile.common_ZW0x0x_appl and Makefile.common_ZW0x0x.

3.2.1.3 Makefile.common_ZW0x0x

This common makefile contains the linker rules, and common CDEFINES for the targets built.

3.2.1.4 Makefile.common_ZW0x0x_appl

This common makefile contains all the rules that create the build directory and compile rules for the c
files and assembly .a51 files. It also contains the compiler and assembler options.

It also contains the CLASSES specification for the linking process for defining the memory layout for the

target.

3.2.1.5 Makefile.common_ZW0x0x_uvision

This common makefile enable generation of uVision project files when building embedded sample

application.

3.2.2 Include

The include directory contain all the header files ZW_xxx_api.h with declarations of API calls etc. For

further detail, refer to [19].

Warning: Disabled linker warning L25 „DATA TYPES DIFFERENT‟ to allow ZW_classcmd.h updates
as device and command class development progress.

Refer to Makefile.common_ZW0x0x_appl files in Common directory regarding linker
parameters.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 8 of 103

 CONFIDENTIAL

3.2.3 I/O Defines

The Product\IO_defines directory contains hardware definition files needed for building an application
e.g. the development controller sample application.

AppRFSetup.a51 This file defines the normal and low power transmission levels.
Change levels here if necessary.

ZW_evaldefs.h This file contains definitions of the connector pins on the controller

board.

ZW_L51_BANK.a51 This file enables code bank switching.

ZW_patchable_footer.a51 Patch system used in development mode

ZW_patchable_header.a51 Patch system used in development mode

ZW_pindefs.h This file contains definitions of the connector pins on the Z-Wave
module, and macros for accessing the I/O pins. Refer to [19]

regarding a detail description.

ZW_portdefs.h This file contains I/O port initialization vectors on the Z-Wave ASIC.

ZW_segment_tail.a51 This file enables use of XDATA located in SRAM part of the code area

in development mode.

3.2.4 Libraries

The lib directory structure contains all the supported libraries.

3.2.4.1 Bridge Controller

The lib\controller_bridge_ZW040x directory contains all files needed for building a Z-Wave bridge
controller application. The directory contains the following files:

ZW_controller_bridge_zw040x.lib
ZW_controller_bridge_zw040x_3CH.lib

These files are the compiled Z-Wave protocol and
API library hosted in OTP (normal mode) for a
400 Series based module that a Z-Wave bridge

controller application should be linked together
with. JP uses the 3CH variant.

ZW_controller_bridge_zw040x_devmode.lib

ZW_controller_bridge_zw040x_3CH_devmode.lib

These files are the same as above but used

during application development (development
mode).

extern_eep.hex This file contains the external non-volatile

memory data on the ZM4125 module. Initialize
only external non-volatile memory once by
downloading this file.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 9 of 103

 CONFIDENTIAL

The extern_eep.hex file is used to initialize the external non-volatile memory. The 32-bit home ID
(xxxxxxxx) is located in byte 8, 9, 10 and 11 (when counting from 0) in the file. Byte 8 is the most
significant byte and byte 11 is the least significant.

:200000005A654E7359730000xxxxxxxx0093

The Z-Wave protocol will automatically generate a new random home ID in case home ID is 0x00000000
in the external non-volatile memory. Random home ID interval is from 0xC0000000 to 0xFFFFFFFE.

3.2.4.2 Installer Controller

The lib\controller_installer_ZW040x directory contains all files needed for building a Z-Wave installer
controller application. The directory contains the following files:

ZW_controller_installer_ZW040x.lib
ZW_controller_installer_ZW040x_3CH.lib

These files are the compiled Z-Wave protocol
and API library hosted in OTP (normal mode)
for a 400 Series based module that a Z-Wave

installer controller application should be linked
together with. JP uses the 3CH variant.

ZW_controller_installer_ZW040x_devmode.lib

ZW_controller_installer_ZW040x_3CH_devmode.lib

These files are the same as above but used

during application development (development
mode).

extern_eep.hex This file contains the external non-volatile

memory data on the ZM4125 module. Initialize
only external non-volatile memory once by
downloading this file.

3.2.4.3 Portable Controller

The lib\controller_ZW040x directory contains all files needed for building a Z-Wave controller application.
The directory contains the following files:

ZW_controller_portable_zw040x.lib
ZW_controller_portable_zw040x_3CH.lib

These files are the compiled Z-Wave protocol
and API library hosted in OTP (normal mode)
for a 400 Series based module that a Z-Wave

portable controller application should be linked
together with. JP uses the 3CH variant.

ZW_controller_portable_zw040x_devmode.lib

ZW_controller_portable_zw040x_3CH_devmode.lib

These files are the same as above but used

during application development (development
mode).

extern_eep.hex This file contains the external non-volatile

memory data on the ZM4125 module. Initialize
only external non-volatile memory once by
downloading this file.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 10 of 103

 CONFIDENTIAL

3.2.4.4 Static Controller

The lib\controller_static_norep_ZW040x directory contains all files needed for building a Z-Wave static
controller application. The directory contains the following files:

ZW_controller_static_zw040x.lib
ZW_controller_static_zw040x_3CH.lib

These files are the compiled Z-Wave protocol and
API library hosted in OTP (normal mode) for a 400
Series based module that a Z-Wave static

controller application should be linked together
with. JP uses the 3CH variant.

ZW_controller_static_zw040x_devmode.lib

ZW_controller_static_zw040x_3CH_devmode.lib

These files are the same as above but used during

application development (development mode).

extern_eep.hex This file contains the external non-volatile memory
data on the ZM4125 module. Initialize only

external non-volatile memory once by downloading
this file.

3.2.4.5 Static Controller without repeater functionality

The lib\controller_static_norep_ZW040x directory contains all files needed for building a Z-Wave static
controller application without repeater functionality. The directory contains the following files:

ZW_controller_static_norep_zw040x.lib

ZW_controller_static_norep_zw040x_3CH.lib

These files are the compiled Z-Wave

protocol and API library hosted in OTP
(normal mode) for a 400 Series based
module that a Z-Wave static controller

application without repeater functionality
should be linked together with. JP uses the
3CH variant.

ZW_controller_static_norep_zw040x_devmode.lib
ZW_controller_static_norep_zw040x_3CH_devmode.lib

These files are the same as above but
used during application development
(development mode).

extern_eep.hex This file contains the external non-volatile
memory data on the ZM4125 module.
Initialize only external non-volatile memory

once by downloading this file.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 11 of 103

 CONFIDENTIAL

3.2.4.6 Static Controller Single

The lib\controller_static_single_ZW040x directory contains all files needed for building a Z-Wave static
single controller application. ERTT application uses this library because it supports suppression of

retransmission.

WARNING: Do not use this library in product applications

The directory contains the following files:

ZW_controller_static_single_zw040x.lib
ZW_controller_static_single_zw040x_3CH.lib

These files are the compiled Z-Wave
protocol and API library hosted in OTP
(normal mode) for a 400 Series based

module that a Z-Wave static controller
single application should be linked
together with. JP uses the 3CH variant.

ZW_controller_static_single_zw040x_devmode.lib
ZW_controller_static_single_zw040x_3CH_devmode.lib

These files are the same as above but
used during application development
(development mode).

extern_eep.hex This file contains the external non-volatile
memory data on the ZM4125 module.
Initialize only external non-volatile memory

once by downloading this file.

3.2.4.7 Enhanced Slave

The lib\slave_enhanced_ZW040x directory contains all files needed for building a Z-Wave enhanced

slave node application. The directory contains the following files:

ZW_slave_enhanced_ZW040x.lib
ZW_slave_enhanced_ZW040x_3CH.lib

These files are the compiled Z-Wave protocol and
API library hosted in OTP (normal mode) for a 400

Series based module that a Z-Wave enhanced
slave application should be linked together with.
JP uses the 3CH variant.

ZW_slave_enhanced_ZW040x_devmode.lib
ZW_slave_enhanced_ZW040x_3CH_devmode.lib

These files are the same as above but used
during application development (development
mode).

extern_eep.hex This file contains the external non-volatile memory
data on the ZM4125 module. Initialize only
external non-volatile memory once by

downloading this file.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 12 of 103

 CONFIDENTIAL

3.2.4.8 Enhanced 232 Slave

The lib\slave_enhanced_232_ZW040x directory contains all files needed for building a Z-Wave
enhanced slave node application. The directory contains the following files:

ZW_slave_enhanced_232_ZW040x.lib
ZW_slave_enhanced_232_ZW040x_3CH.lib

These files are the compiled Z-Wave
protocol and API library hosted in OTP
(normal mode) for a 400 Series based

module that a Z-Wave enhanced 232 slave
application should be linked together with. JP
uses the 3CH variant.

ZW_slave_enhanced_232_ZW040x_devmode.lib
ZW_slave_enhanced_232_ZW040x_3CH_devmode.lib

These files are the same as above but used
during application development
(development mode).

extern_eep.hex This file contains the external non-volatile
memory data on the ZM4125 module.
Initialize only external non-volatile memory

once by downloading this file.

3.2.4.9 Production Test Generator

The lib\slave_prodtest_ZW040x directory contains all files needed for building a production test

generator application on a Z-Wave module. The directory contains the following files:

ZW_slave_prodtest_gen_ZW040x.lib
ZW_slave_prodtest_gen_ZW040x_3CH.lib

These files are the compiled Z-Wave protocol
and API library hosted in OTP (normal mode)

for a 400 Series based module modules that a
Z-Wave production test generator application
should be linked together with.

ZW_slave_prodtest_gen_ZW040x_devmode.lib
ZW_slave_prodtest_gen_ZW040x_3CH_devmode.lib

These files are the same as above but used
during application development (development
mode).

3.2.4.10 Routing Slave

The lib\slave_routing_ZW040x directory contains all files needed for building a Z-Wave routing slave
node application on a Z-Wave module. The directory contains the following files:

ZW_slave_routing_ZW040x.lib
ZW_slave_routing_ZW040x_3CH.lib

These files are the compiled Z-Wave protocol and
API library hosted in OTP (normal mode) for a 400
Series based module that a Z-Wave routing slave

application should be linked together with. JP uses
the 3CH variant.

ZW_slave_routing_ZW040x_devmode.lib

ZW_slave_routing_ZW040x_3CH_devmode.lib

These files are the same as above but used during

application development (development mode).

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 13 of 103

 CONFIDENTIAL

3.2.4.11 External non-volatile memory

The ext_nvm directory contains external non-volatile memory (NVM) drivers using SPI1 and pin P2.5 as
chip select:

 ZW_at25128a_spi_if.obj – Atmel SPI Serial EEPROM AT25128A

 ZW_m25pe10_spi_if.obj – STMicroelectronics Serial Flash M25PE10 (default)

The libraries support both types of external NVM. The driver adapt automatically to the external NVM in

question. It is possible to overrule default in library by linking one of the above object files by modifying
the makefile from:

Export the variables declared above to the other makefiles.

export BASEDIR ZWLIBROOT UNDERSTAND_C

to the following:

Set another type of the non-volatile memory

NVM_TYPE:=at25128a

Export the variables declared above to the other makefiles.

export BASEDIR ZWLIBROOT UNDERSTAND_C NVM_TYPE

Drivers using alternative pins as chip select are also available:

 ZW_at25128a_p0_4_spi_if.obj, enter NVM_TYPE:=at25128a_p0_4

 ZW_at25128a_p1_4_spi_if.obj, enter NVM_TYPE:=at25128a_p1_4

 ZW_at25128a_p3_0_spi_if.obj, enter NVM_TYPE:=at25128a_p3_0

 ZW_at25128a_p3_4_spi_if.obj, enter NVM_TYPE:=at25128a_p3_4

 ZW_at25128a_p3_5_spi_if.obj, enter NVM_TYPE:=at25128a_p3_5

 ZW_at25128a_p3_6_spi_if.obj, enter NVM_TYPE:=at25128a_p3_6

 ZW_at25128a_p3_7_spi_if.obj, enter NVM_TYPE:=at25128a_p3_7

 ZW_m25pe10_p0_4_spi_if.obj, enter NVM_TYPE:=m25pe10_p0_4

 ZW_m25pe10_p1_4_spi_if.obj, enter NVM_TYPE:=m25pe10_p1_4

 ZW_m25pe10_p3_0_spi_if.obj, enter NVM_TYPE:=m25pe10_p3_0

 ZW_m25pe10_p3_4_spi_if.obj, enter NVM_TYPE:=m25pe10_p3_4

 ZW_m25pe10_p3_5_spi_if.obj, enter NVM_TYPE:=m25pe10_p3_5

 ZW_m25pe10_p3_6_spi_if.obj, enter NVM_TYPE:=m25pe10_p3_6

 ZW_m25pe10_p3_7_spi_if.obj, enter NVM_TYPE:=m25pe10_p3_7

The external NVM is accessed through the SPI1 interface. Refer to Z-Wave Memory API for details
about the NVM API interface.

3.2.4.12 Variable initialization

The init_vars directory contains an init_vars.obj object file, which replaces the standard Keil initialization
procedure. This reduces the time to detect whether a wakeup beam is present or not by postponing

initialization. Initialization happens only in case the wakeup beam is addressed to the node in question.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 14 of 103

 CONFIDENTIAL

3.2.4.13 RF frequency

The rf_freq directory contains all the possible RF initialization object files ZW_rf_040x_xx.obj:

 ZW_rf_040x_ALL.obj – Contains all frequencies (Used by Zniffer and Production Test

Generator)

 ZW_rf_040x_ANZ.obj – Australia/New Zealand

 ZW_rf_040x_EU.obj – Europe

 ZW_rf_040x_HK.obj – Hong Kong

 ZW_rf_040x_IN.obj – India

 ZW_rf_040x_JP.obj – Japan using 32.005 MHz crystal

 ZW_rf_040x_MY.obj – Malaysia

 ZW_rf_040x_US.obj – US

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 15 of 103

 CONFIDENTIAL

3.3 Product

The Product directory contains Z-Wave sample applications for a number of different product examples.
Both source code and precompiled files ready for download are supplied.

Each directory contains the necessary files for creating ANZ, EU, HK, IN, JP, MY, and US, products.
JP_DK used for testing purposes due to a LBT RSSI threshold lower than -75 dBm as required by the
Japanese authorities.

Hex files containing JP_32MHZ and JP_DK_32MHZ are temporary solutions supporting a 32MHz
crystal.

3.3.1 Bin

The Product\Bin directory structure contains the precompiled code of the Z-Wave sample applications
and the hex files needed to download to the Z-Wave ASIC via the Z-Wave Programmer.

3.3.1.1 Bin_Sensor

The Product\Bin\Bin_Sensor directory contains all files needed for running a binary sensor sample
application on a Z-Wave module. The directory contains the following files:

extern_eep.hex This file contains the external non-volatile

memory data on the ZM4125 module. Initialize
only external non-volatile memory once by
downloading this file.

Bin_Sensor_ZW040x_y.hex The compiled and linked binary sensor sample
application hosted in OTP (normal mode) for y
= ANZ, EU, HK, IN, JP, MY and US frequency

versions running on a ZM4125 (ZM4101)
module mounted on ZDP03A.

Bin_Sensor_ZW040x_y_

starter_devmode.hex
Bin_Sensor_ZW040x_y_
starter_devmode_patch_RAM.hex

Sample application hex files when working in

starter development mode [23]. Starter
indicates that only library is present in OTP.

Bin_Sensor_ZW040x_y_devmode.hex
Bin_Sensor_ZW040x_y_devmode_patch_RAM.hex

Sample application hex files when working in
development mode [23].

3.3.1.2 Bin_Sensor_Sec

Secure binary sensor sample application binaries not distributed due to export restrictions. Contact
support via support@zen-sys.com for further information.

3.3.1.3 Bin_Sensor_Battery

The Product\Bin\Bin_Sensor_Battery directory contains all files needed for running a battery operated
binary sensor sample application on a Z-Wave module. The directory contains the following files:

extern_eep.hex This file contains the external non-volatile

memory data on the ZM4125 module. Initialize

mailto:support@zen-sys.com

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 16 of 103

 CONFIDENTIAL

only external non-volatile memory once by
downloading this file.

Bin_Sensor_Battery_ZW040x_y.hex The compiled and linked battery operated

binary sensor sample application hosted in
OTP (normal mode) for y = ANZ, EU, HK, IN,
JP, MY and US frequency versions versions

running on a ZM4125 (ZM4101) module
mounted on ZDP03A.

Bin_Sensor_Battery_ZW040x_y_

starter_devmode.hex
Bin_Sensor_Battery_ZW040x_y_
starter_devmode_patch_RAM.hex

Sample application hex files when working in

starter development mode [23]. Starter
indicates that only library is present in OTP.

Bin_Sensor_Battery_ZW040x_y_
devmode.hex
Bin_Sensor_Battery_ZW040x_y_

devmode_patch_RAM.hex

Sample application hex files when working in
development mode [23].

3.3.1.4 Bin_Sensor_Battery_Sec

Secure battery operated binary sensor sample application binaries not distributed due to export

restrictions. Contact support via support@zen-sys.com for further information.

3.3.1.5 Dev_Ctrl

The Product\Bin\Dev_Ctrl directory contains all files needed for running a development controller sample

application on a Z-Wave module. The directory contains the following files:

extern_eep.hex This file contains the external non-volatile
memory data on the ZM4125 module. Initialize

only external non-volatile memory once by
downloading this file.

dev_ctrl_ZW040x_y.hex The compiled and linked development

controller sample application hosted in OTP
(normal mode) for y = ANZ, EU, HK, IN, JP,
MY and US frequency versions running on a

ZM4125 (ZM4101) module mounted on
ZDP03A.

dev_ctrl_ZW040x_y_

starter_devmode.hex
dev_ctrl_ZW040x_y_
starter_devmode_patch_RAM.hex

Sample application hex files when working in

starter development mode [23]. Starter
indicates that only library is present in OTP.

dev_ctrl_ZW040x_y_devmode.hex
dev_ctrl_ZW040x_y_devmode_patch_RAM.hex

Sample application hex files when working in
development mode [23].

mailto:support@zen-sys.com

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 17 of 103

 CONFIDENTIAL

3.3.1.6 Dev_Ctrl_AVR_Sec

Secure development controller sample application binaries not distributed due to export restrictions. The
sample application uses an AVR ATmega128 as host on a ZDP03A Development module [14]. Configure

the Z-Wave module on the ZDP03A Development module with a serial API based portable controller
sample application. Contact support via support@zen-sys.com for further information.

3.3.1.7 DoorBell

The Product\Bin\DoorBell directory contains all files needed for running a bell sample application on a
Z-Wave module. The development controller application is used as button in the doorbell application.
The directory contains the following files:

doorbell_bell_ZW040x_y.hex The compiled and linked bell sample
application hosted in OTP (normal mode) for y
= ANZ, EU, HK, IN, JP, MY and US frequency

versions running on a ZM4125 (ZM4101)
module mounted on ZDP03A.

doorbell_bell_ZW040x_y_

starter_devmode.hex
doorbell_bell_ZW040x_y_
starter_devmode_patch_RAM.hex

Sample application hex files when working in

starter development mode [23]. Starter
indicates that only library is present in OTP.

doorbell_bell_ZW040x_y_
devmode.hex
doorbell_bell_ZW040x_y_

devmode_patch_RAM.hex

Sample application hex files when working in
development mode [23].

3.3.1.8 DoorLock

The Product\Bin\DoorLock directory contains all files needed for running a doorlock sample application

on a Z-Wave module. The directory contains the following files:

doorlock_ZW040x_y.hex The compiled and linked doorlock sample
application hosted in OTP (normal mode) for y

= ANZ, EU, HK, IN, JP, MY and US frequency
versions running on a ZM4125 (ZM4101)
module mounted on ZDP03A.

doorlock_ZW040x_y_
starter_devmode.hex
doorlock_ZW040x_y_

starter_devmode_patch_RAM.hex

Sample application hex files when working in
starter development mode [23]. Starter
indicates that only library is present in OTP.

doorlock_ZW040x_y_
devmode.hex

doorlock_ZW040x_y_
devmode_patch_RAM.hex

Sample application hex files when working in
development mode [23].

mailto:support@zen-sys.com

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 18 of 103

 CONFIDENTIAL

3.3.1.9 DoorLock_Sec

The Product\Bin\DoorLock_Sec directory contains all files needed for running a secure doorlock sample
application on a Z-Wave module. The directory contains the following files:

doorlock_ZW040x_y_SCHEME_0.hex The compiled and linked secure doorlock
sample application hosted in OTP (normal
mode) for y = ANZ, EU, HK, IN, JP, MY and

US frequency versions running on a ZM4125
(ZM4101) module mounted on ZDP03A.

doorlock_ZW040x_y_SCHEME_0_

starter_devmode.hex
doorlock_ZW040x_y_SCHEME_0_
starter_devmode_patch_RAM.hex

Sample application hex files when working in

starter development mode [23]. Starter
indicates that only library is present in OTP.

doorlock_ZW040x_y_SCHEME_0_
devmode.hex
doorlock_ZW040x_y_SCHEME_0_

devmode_patch_RAM.hex

Sample application hex files when working in
development mode [23].

NOTICE: Secure door lock sample application binaries not distributed due to export restrictions. Contact
support via support@zen-sys.com for further information.

3.3.1.10 LED_Dimmer

The Product\Bin\LED_Dimmer directory contains all files needed for running a LED dimmer sample
application on a Z-Wave module. The directory contains the following files:

leddimmer_ZW040x_y.hex LED dimmer sample application hosted in OTP
(normal mode) for y = ANZ, EU, HK, IN, JP,
MY and US frequency versions running on a

ZM4125 (ZM4101) module mounted on
ZDP03A.

leddimmer_ZW040x_y_

starter_devmode.hex
leddimmer_ZW040x_y_
starter_devmode_patch_RAM.hex

Sample application hex files when working in

starter development mode [23]. Starter
indicates that only library is present in OTP.

leddimmer_ZW040x_y_devmode.hex
leddimmer_ZW040x_y_devmode_patch_RAM.hex

Sample application hex files when working in
development mode [23].

leddimmer_ZM4102_y.hex LED dimmer sample application hosted in OTP

(normal mode) for y = ANZ, EU, HK, IN, JP,
MY and US frequency versions running on a
ZM4102 based module mounted on ZDP03A.

leddimmer_ZM4102_y_
starter_devmode.hex
leddimmer_ZM4102_y_

starter_devmode_patch_RAM.hex

Sample application hex files when working in
starter development mode [23]. Starter
indicates that only library is present in OTP.

leddimmer_ZM4102_y_devmode.hex
leddimmer_ZM4102_y_devmode_patch_RAM.hex

Sample application hex files when working in
development mode [23].

mailto:support@zen-sys.com

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 19 of 103

 CONFIDENTIAL

3.3.1.11 LED_Dimmer_Sec

Secure LED dimmer sample application binaries not distributed due to export restrictions. Contact
support via support@zen-sys.com for further information.

3.3.1.12 MyProduct

No hexadecimal files available.

3.3.1.13 Prod_Test_Gen

The Product\Bin\Prod_Test_Gen directory contains all files needed for running a production test
generator sample application on a Z-Wave module. The directory contains the following files:

prod_test_gen_ZW040x_ALL.hex The compiled and linked

production test generator
sample application hosted
in OTP (normal mode) for

all frequencies versions
running on a ZM4125
(ZM4101) module mounted

on ZDP03A (except JP
frequency).

prod_test_gen_ZW040x_ALL_3CH.hex The compiled and linked

production test generator
sample application hosted
in OTP (normal mode) for

JP frequency running on a
ZM4125 (ZM4101) module
mounted on ZDP03A.

prod_test_gen_ZW040x_ALL_starter_devmode.hex
prod_test_gen_ZW040x_ALL_starter_devmode_patch_RAM.hex

prod_test_gen_ZW040x_ALL_3CH_starter_devmode.hex

prod_test_gen_ZW040x_ALL_3CH_starter_devmode_patch_RAM.hex

Sample application hex files
when working in starter
development mode [23].

Starter indicates that only
library is present in OTP.

prod_test_gen_ZW040x_ALL_devmode.hex
prod_test_gen_ZW040x_ALL_devmode_patch_RAM.hex

prod_test_gen_ZW040x_ALL_3CH_devmode.hex
prod_test_gen_ZW040x_ALL_3CH_devmode_patch_RAM.hex

Sample application hex files
when working in

development mode [23].

mailto:support@zen-sys.com

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 20 of 103

 CONFIDENTIAL

3.3.1.14 SerialAPI_Controller_Bridge

The Product\Bin\SerialAPI_Controller_Bridge directory contains all files needed for running a serial API
based bridge controller sample application on a Z-Wave module. The directory contains the following

files:

extern_eep.hex This file contains the external non-volatile
memory data on the ZM4125 module. Initialize

only external non-volatile memory once by
downloading this file.

serialapi_controller_bridge_ZW040x_y.hex The compiled and linked production serial API

sample application hosted in OTP (normal
mode) for y = ANZ, EU, HK, IN, JP, MY and
US frequency versions running on a ZM4125

(ZM4101) module mounted on ZDP03A.

serialapi_controller_bridge_ZW040x_y_
starter_devmode.hex

serialapi_controller_bridge_ZW040x_y_
starter_devmode_patch_RAM.hex

Sample application hex files when working in
starter development mode [23]. Starter

indicates that only library is present in OTP.
Non starter hex files not present due to code
space shortage.

SupportedFunc_serialapi_controller_bridge.txt Show enabled (1) and disabled (0) serial API
calls of released sample application.

3.3.1.15 SerialAPI_Controller_Installer

The Product\Bin\SerialAPI_Controller_Installer directory contains all files needed for running a serial API
based installer controller sample application on a Z-Wave module. The directory contains the following
files:

extern_eep.hex This file contains the external non-volatile
memory data on the ZM4125 module. Initialize
only external non-volatile memory once by

downloading this file.

serialapi_controller_installer_ZW040x_y.hex The compiled and linked production serial API
sample application hosted in OTP (normal

mode) for y = ANZ, EU, HK, IN, JP, MY and
US frequency versions running on a ZM4125
(ZM4101) module mounted on ZDP03A.

serialapi_controller_installer_ZW040x_y_
starter_devmode.hex
serialapi_controller_installer_ZW040x_y_

starter_devmode_patch_RAM.hex

Sample application hex files when working in
starter development mode [23]. Starter
indicates that only library is present in OTP.

serialapi_controller_installer_ZW040x_y_
devmode.hex

serialapi_controller_installer_ZW040x_y_
devmode_patch_RAM.hex

Sample application hex files when working in
development mode [23].

SupportedFunc_serialapi_controller_installer.txt Show enabled (1) and disabled (0) serial API

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 21 of 103

 CONFIDENTIAL

calls of released sample application.

3.3.1.16 SerialAPI_Controller_Portable

The Product\Bin\SerialAPI_Controller_Portable directory contains all files needed for running a serial API

based portable controller sample application on a Z-Wave module. The directory contains the following
files:

extern_eep.hex This file contains the external non-volatile

memory data on the ZM4125 module. Initialize
only external non-volatile memory once by
downloading this file.

serialapi_controller_portable_ZW040x_y.hex The compiled and linked production serial API
sample application hosted in OTP (normal
mode) for y = ANZ, EU, HK, IN, JP, MY and

US frequency versions running on a ZM4125
(ZM4101) module mounted on ZDP03A.

serialapi_controller_portable_ZW040x_y_

starter_devmode.hex
serialapi_controller_portable_ZW040x_y_
starter_devmode_patch_RAM.hex

Sample application hex files when working in

starter development mode [23]. Starter
indicates that only library is present in OTP.

serialapi_controller_portable_ZW040x_y_
devmode.hex
serialapi_controller_portable_ZW040x_y_

devmode_patch_RAM.hex

Sample application hex files when working in
development mode [23].

SupportedFunc_serialapi_controller_portable.txt Show enabled (1) and disabled (0) serial API
calls of released sample application.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 22 of 103

 CONFIDENTIAL

3.3.1.17 SerialAPI_Controller_Static

The Product\Bin\SerialAPI_Controller_Static directory contains all files needed for running a serial API
based static controller sample application on a Z-Wave module. The directory contains the following files:

extern_eep.hex This file contains the external non-volatile
memory data on the ZM4125 module. Initialize
only external non-volatile memory once by

downloading this file.

serialapi_controller_static_ZW040x_y.hex The compiled and linked production serial API
sample application hosted in OTP (normal

mode) for y = ANZ, EU, HK, IN, JP, MY and
US frequency versions running on a ZM4125
(ZM4101) module mounted on ZDP03A.

serialapi_controller_static_ZW040x_y_
starter_devmode.hex
serialapi_controller_static_ZW040x_y_

starter_devmode_patch_RAM.hex

Sample application hex files when working in
starter development mode [23]. Starter
indicates that only library is present in OTP.

Non starter hex files not present due to code
space shortage.

SupportedFunc_serialapi_controller_static.txt Show enabled (1) and disabled (0) serial API

calls of released sample application.

3.3.1.18 SerialAPI_Controller_Static_Norep

The Product\Bin\SerialAPI_Controller_Static_Norep directory contains all files needed for running a serial

API based static controller sample application without repeater functionality on a Z-Wave module. The
directory contains the following files:

extern_eep.hex This file contains the external non-volatile

memory data on the ZM4125 module.
Initialize only external non-volatile memory
once by downloading this file.

serialapi_controller_static_norep_ZW040x_y.hex The compiled and linked production serial
API sample application hosted in OTP
(normal mode) for y = ANZ, EU, HK, IN, JP,

MY and US frequency versions running on a
ZM4125 (ZM4101) module mounted on
ZDP03A.

serialapi_controller_static_norep_ZW040x_y_
starter_devmode.hex
serialapi_controller_static_norep_ZW040x_y_

starter_devmode_patch_RAM.hex

Sample application hex files when working in
starter development mode [23]. Starter
indicates that only library is present in OTP.

Non starter hex files not present due to code
space shortage.

SupportedFunc_serialapi_controller_static_norep.txt Show enabled (1) and disabled (0) serial API

calls of released sample application.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 23 of 103

 CONFIDENTIAL

3.3.1.19 SerialAPI_Controller_Static_Single

The Product\Bin\SerialAPI_Controller_Static_Single directory contains all files needed for running an
ERTT based serial API static controller sample application on a Z-Wave module. The directory contains

the following files:

extern_eep.hex This file contains the external non-volatile
memory data on the ZM4125 module.

Initialize only external non-volatile memory
once by downloading this file.

serialapi_controller_static_single_ZW040x_y.hex The compiled and linked production serial API

sample application hosted in OTP (normal
mode) for y = ANZ, EU, HK, IN, JP, MY and
US frequency versions running on a ZM4125

(ZM4101) module mounted on ZDP03A.

serialapi_controller_static_single_ZW040x_y_
starter_devmode.hex

serialapi_controller_static_single_ZW040x_y_
starter_devmode_patch_RAM.hex

Sample application hex files when working in
starter development mode [23]. Starter

indicates that only library is present in OTP.

serialapi_controller_static_single_ZW040x_y_

devmode.hex
serialapi_controller_static_single_ZW040x_y_
devmode_patch_RAM.hex

Sample application hex files when working in

development mode [23].

SupportedFunc_serialapi_controller_single.txt Show enabled (1) and disabled (0) serial API
calls of released sample application.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 24 of 103

 CONFIDENTIAL

3.3.1.20 SerialAPI_Slave_Enhanced

The Product\Bin\SerialAPI_Slave_Enhanced directory contains all files needed for running a serial API
based enhanced slave sample application on a Z-Wave module. The directory contains the following

files:

extern_eep.hex This file contains the external non-volatile
memory data on the ZM4125 module. Initialize

only external non-volatile memory once by
downloading this file.

serialapi_slave_enhanced_ZW040x_y.hex The compiled and linked production serial API

sample application hosted in OTP (normal
mode) for y = ANZ, EU, HK, IN, JP, MY and
US frequency versions running on a ZM4125

(ZM4101) module mounted on ZDP03A.

serialapi_slave_enhanced_ZW040x_y_
starter_devmode.hex

serialapi_slave_enhanced_ZW040x_y_
starter_devmode_patch_RAM.hex

Sample application hex files when working in
starter development mode [23]. Starter

indicates that only library is present in OTP.

serialapi_slave_enhanced_ZW040x_y_

devmode.hex
serialapi_slave_enhanced_ZW040x_y_
devmode_patch_RAM.hex

Sample application hex files when working in

development mode [23].

SupportedFunc_serialapi_slave_enhanced.txt Show enabled (1) and disabled (0) serial API
calls of released sample application.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 25 of 103

 CONFIDENTIAL

3.3.1.21 SerialAPI_Slave_Enhanced_232

The Product\Bin\SerialAPI_Slave_Enhanced_232 directory contains all files needed for running a serial
API based enhanced 232 slave sample application on a Z-Wave module. The directory contains the

following files:

extern_eep.hex This file contains the
external non-volatile

memory data on the
ZM4125 module. Initialize
only external non-volatile

memory once by
downloading this file.

serialapi_slave_enhanced_232_ZW040x_y.hex The compiled and linked

production serial API
sample application hosted
in OTP (normal mode) for y

= ANZ, EU, HK, IN, JP, MY
and US frequency versions
running on a ZM4125

(ZM4101) module mounted
on ZDP03A.

serialapi_slave_enhanced_232_ZW040x_y_

starter_devmode.hex
serialapi_slave_enhanced_232_ZW040x_y_
starter_devmode_patch_RAM.hex

Sample application hex files

when working in starter
development mode [23].
Starter indicates that only

library is present in OTP.

serialapi_slave_enhanced_232_ZW040x_y_
devmode.hex

serialapi_slave_enhanced_232_ZW040x_y_
devmode_patch_RAM.hex

Sample application hex files
when working in

development mode [23].

SupportedFunc_serialapi_slave_enhanced_232.txt Show enabled (1) and

disabled (0) serial API calls
of released sample
application.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 26 of 103

 CONFIDENTIAL

3.3.1.22 SerialAPI_Slave_Routing

The Product\Bin\SerialAPI_Slave_Routing directory contains all files needed for running a serial API
based routing slave sample application on a Z-Wave module. The directory contains the following files:

serialapi_slave_routing_ZW040x_y.hex The compiled and linked production
serial API sample application
hosted in OTP (normal mode) for y

= ANZ, EU, HK, IN, JP, MY and US
frequency versions running on a
ZM4125 (ZM4101) module

mounted on ZDP03A.

serialapi_slave_routing_ZW040x_y_
starter_devmode.hex

serialapi_slave_routing_ZW040x_y_
starter_devmode_patch_RAM.hex

Sample application hex files when
working in starter development

mode [23]. Starter indicates that
only library is present in OTP.

serialapi_slave_routing_ZW040x_y_

devmode.hex
serialapi_slave_routing_ZW040x_y_
devmode_patch_RAM.hex

Sample application hex files when

working in development mode [23].

SupportedFunc_serialapi_slave_routing.txt Show enabled (1) and disabled (0)
serial API calls of released sample
application.

3.3.2 Binary Sensor

The Product\Bin_Sensor directory contains sample source code for a non-secure/secure binary sensor
and non-secure/secure battery operated binary sensor application.

3.3.3 Development Controller

The Product\Dev_Ctrl directory contains sample source code for the development controller application
used on the ZM12xxRE Module mounted on the Z-Wave Development module. For further information

refer to section 4.3 and reference [8].

3.3.4 Secure Development Controller based on serial API and using an AVR as host

The Product\Dev_Ctrl_AVR_Sec directory contains sample source code for the secure development

controller. The sample application uses an AVR ATmega128 as host on a ZDP02A/ZDP03A
Development module. Configure the Z-Wave module on the ZDP02A/ZDP03A Development module with
a serial API based portable controller sample application. For further information refer to section 4.4 and

reference [11].

3.3.5 Doorbell

The Product\DoorBell directory contains sample source code for the doorbell application used on the

Z-Wave Interface module. Use the Development Controller application to control the doorbell application.
For further information, refer to section 4.5.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 27 of 103

 CONFIDENTIAL

3.3.6 Door Lock

The Product\DoorLock directory contains sample source code for the non-secure and secure door lock
application on a Z-Wave module. Use the Secure Development Controller application to control the door

lock application. For further information, refer to section 4.6.

3.3.7 LED Dimmer

The Product\LED_Dimmer directory contains sample source code for the non-secure and secure dimmer

application on a Z-Wave module, which uses the LEDs to simulate a light switch with a built in dimmer.
For further information, refer to section 4.7.

3.3.8 MyProduct

The Product\MyProduct directory contains sample source code for a routing slave application on a
Z-Wave module. For further information, refer to section 4.8.

3.3.9 Production Test Generator

The Product\Prod_Test_Gen directory contains sample source code for a production test generator
application on a Z-Wave module. For further information, refer to section 4.9.

3.3.10 Serial API

The Product\SerialAPI directory contains sample source code for the Serial API sample applications. For
further information about the Serial API, refer to section 4.10.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 28 of 103

 CONFIDENTIAL

3.3.11 Utilities

The Product\util_func directory contains some helpful functions that are used by several of the sample
applications.

AES_module.h This header file contains definitions for implementing secure

communication using AES as encrypting/decrypting engine.

association.c
association.h

The files contain sample code that shows how association between
nodes could be implemented on a Z-Wave module. This sample code
holds all associations in RAM and the number of nodes/groupings

possible using this implementation is limited.

Applications using this collection of functions must implement three
functions (ApplicationStoreAll, ApplicationInitAll, ApplicationClearAll).

These should handle the storage in nonvolatile memory if this is
desired.

battery.c
battery.h

The files contain sample code that shows how battery operated devices
may implement power down, wake up notification and network update

requests. Applications using this collection must call the following
functions at their appropriate location:

UpdateWakeupCount – call from ApplicationInitSW to update the

wakeup counter which determines the wakeup interval on application
level (200-series) – Only called when Wakeupreason is WUT-Kicked.
InitRTCActionTimer – call from ApplicationInitSW, to activate the RTC

timer. (100-Series)
HandleWakeupFrame – call from ApplicationCommandHandler to
handle incoming COMMAND_CLASS_WAKE_UP is received. Handles

WAKE_UP_INTERVAL_GET/SET/NO_MORE_INFORMATION.
SetDefaultBatteryConfiguration – is called from ApplicationInitHW when
node is reset, and from SetDefaultConfiguration. Sets the

default values for powerdown timeout, sleep time and networkupdate.
LoadBatteryConfiguration – call from LoadConfiguration. Loads the
battery related information from EEPROM and make them available for

the running application.
SaveBatteryConfiguration – call from SaveConfiguration. Saves the
battery related information to EEPROM.

StartPowerDownTimer – call from ApplicationInitSW and set as
callback function ZW_SEND_DATA methods after which the node
should enter sleep mode.

Please refer to the BatterySensor sample application for an example on
how this can be implemented.

ctrl_learn.h
ctrl_learn.c

The files contain sample code for how to handle learn mode on
controller nodes.

one_button.c

one_button.h

Enables easy use of a button. The functions detect whether a button

has been pressed shortly or is being held. To initialise the button
detection, run OneButtonInit() from ApplicationInitSW. And call
OneButtonLastAction when button information is needed (e.g. in

ApplicationPoll()).

self_heal.c Support functions to implement Lost / Self Heal functionality. This file is

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 29 of 103

 CONFIDENTIAL

self_heal_non_zero_vars.c

self_heal.h

mandatory if the battery helper functions are used and

ZW_SELF_HEAL is defined. See the battery.c and bin_sensor.c source
files for help on using the functions.

slave_learn.h
slave_learn.c

The files contain sample code for how to handle learn mode on slave
nodes. These two files are used by all slave based sample code in the

SDK. The sample application should just call StartLearnModeNow() to
enter learnmode and transmit nodeinformation. Inclusion uses normal
power. The sample application should then wait for the BOOL

learnState to go FALSE before doing transmissions.

ZW_AES128.h This header file contains definitions for the security solution on
application level.

ZW_FLiRS.c
ZW_FLiRS.h

The files contain sample code for how to handle FLiRS nodes.

ZW_Security_AES_module.c

ZW_Security_AES_module.h

The files contain sample code for the functionality supporting secure

communication using AES as encryption/decryption mechanism.

ZW_TransportLayer.h Transport layer type selector

ZW_TransportNative.h Implements functions for transporting frames over the native Z-Wave
Network.

ZW_TransportSecurity.h
ZW_TransportSecurity.c

Implements functions for transporting frames over the secure Z-Wave
Network.

ZWZip6lowPanIphc.h

ZWZip6lowPanIphc.c

Implements functions for IPv6 to 6lowPAN data conversions.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 30 of 103

 CONFIDENTIAL

3.4 Tools

The Tools directory contains various tools needed for building and debugging the sample applications.
All tools in this directory can freely be used for building Z-Wave applications.

3.4.1 ERTT

This directory contains the PC software and the embedded code for the Enhanced Reliability Test Tool
(ERTT). Notice that the PC based Controller now supports the ERTT functionality. For further details,

refer to [4].

The ERTT directory contains the following files:

PC\setup.exe

PC\ZWaveControllerSetup.msi

PC application.

Z-Wave_Firmware\extern_eep.hex This file contains the external
NVM data on the Z-Wave

module. Initialize only external
NVM once.

serialapi_controller_static_single_ZW040x_y.hex Static controller single based

serial API (COM port) sample
application hosted in OTP
(normal mode) for y = ANZ, EU,

HK, IN, JP, MY and US
frequency versions for a 400
Series based module.

serialapi_controller_static_single_ZW040x_USB_y.hex Static controller single based
serial API (USB announcing itself
as a virtual COM port) sample

application hosted in OTP
(normal mode) for y = ANZ, EU,
HK, IN, JP, MY and US

frequency versions for a 400
Series based module.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 31 of 103

 CONFIDENTIAL

3.4.2 FixPatchCRC

This directory contains a tool used when building patchable sample applicat ions.

3.4.3 HexTools

This directory contains a tool used when building patchable sample applications.

3.4.4 IncDep

This directory contains a python script that is used for making dependency files when building the sample

applications.

3.4.5 Make

This directory contains a DOS/Windows version of the GNU make utility. The make utility is used for

building the sample applications.

3.4.6 Mergehex

This directory contains a tool used for merging two files in Intel hex format. The tool is used for building

external non-volatile memory files in the sample code.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 32 of 103

 CONFIDENTIAL

3.4.7 Micro PVT

This Micro_PVT k directory contains embedded programs to check the RF performance on a device
regardless of the contents in the OTP. This makes the tool suitable to investigate the RF performance of

un-programmed or already programmed devices and when performing PVT measurements. The only
requirement for using the tool is that the programming interface to the chip must be available and the
UART0 interface for communication.This the 400 Series chip must be programmed in EOOS mode

allowing execution of code out of the 4K SRAM. For further details, refer to [25].

The Micro_RF_Link directory contains the following files:

micro_pvt_rx_9K6_calval.hex Testing RF Rx communication at 9.6kbit/s on

SD3402 or ZM4101

micro_pvt_rx_9K6_ZM4102_calval.hex Testing RF Rx communication at 9.6kbit/s on
ZM4102

micro_pvt_rx_40K_calval.hex Testing RF Rx communication at 40kbit/s on
SD3402 or ZM4101

micro_pvt_rx_40K_ZM4102_calval.hex Testing RF Rx communication at 40kbit/s on

ZM4102

micro_pvt_rx_100K_calval.hex Testing RF Rx communication at 100kbit/s on
SD3402 or ZM4101

micro_pvt_rx_100K_ZM4102_calval.hex Testing RF Rx communication at 100kbit/s on
ZM4102

micro_pvt_tx_9K6_calval.hex Testing RF Tx communication at 9.6kbit/s on

SD3402 or ZM4101

micro_pvt_tx_9K6_ZM4102_calval.hex Testing RF Tx communication at 9.6kbit/s on
ZM4102

micro_pvt_tx_40K_calval.hex Testing RF Tx communication at 40kbit/s on
SD3402 or ZM4101

micro_pvt_tx_40K_ZM4102_calval.hex Testing RF Tx communication at 40kbit/s on

ZM4102

micro_pvt_tx_100K_calval.hex Testing RF Tx communication at 100kbit/s on
SD3402 or ZM4101

micro_pvt_tx_100K_ZM4102_calval.hex Testing RF Tx communication at 100kbit/s on
ZM4102

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 33 of 103

 CONFIDENTIAL

3.4.8 Micro RF Link

This Micro_RF_Link directory contains embedded programs to check the RF link on a device regardless
of the contents in the OTP. This requires that the 400 Series chip must be programmed in EOOS mode

allowing execution of code out of the 4K SRAM. For further details, refer to [22].

The Micro_RF_Link directory contains the following files:

micro_rf_link_9K6_ZW040x.hex Testing RF link at 9.6kbit/s

micro_rf_link_40K_ZW040x.hex Testing RF link at 40kbit/s

micro_rf_link_100K_ZW040x.hex Testing RF link at 100kbit/s

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 34 of 103

 CONFIDENTIAL

3.4.9 Programmer

This Programmer directory contains the PC software and ATMega128 firmware for the non-volatile
memory programming of the Z-Wave 100/200/300/400 Series Chips. The Z-Wave Programmer also

supports programming of the external EEPROM on the Z-Wave modules. Finally, the Z-Wave
Programmer can also be used to configure transmission power and RF settings on the Z-Wave modules
and lock bits. For further details, refer to [7].

The Programmer directory contains the following files:

PC\setup.exe Programmer application.

PC\CP210x_VCP_Win_XP_S2K3_Vista_7.exe The CP210x USB to UART Bridge Virtual COM Port

(VCP) driver. This driver supports Windows

XP/2003/Vista(32/64)/7(32/64).

PC\Source\... ZWaveProgrammer PC source code providing
Windows GUI and interface to ATMega128 situated

on the ZDP02A/ZDP03A Development Platform.
For further details regarding communication
protocol interface, refer to [12].

ZDP0xA_Firmware\ATMega128_Firmware.hex The compiled and linked Z-Wave Programmer
bootloader for the ATMega128 situated on the
ZDP02A/ZDP03A Development Platform.

ZDP0xA_Firmware\ZWaveProgrammer_FW.hex The compiled and linked Z-Wave Programmer
firmware for the ATMega128 situated on the
ZDP02A/ZDP03A Development Platform.

ZDP0xA_Firmware\Source\... Z-Wave Programmer firmware source code for the
ATMega128 situated on the ZDP02A/ZDP03A
Development Platform. For further details regarding

communication protocol interface, refer to [12].

SD3402_Calibration\SD3402_Calibration.hex SD3402 crystal calibration firmware used by the
calibration box, refer to [24]. ZM4101 and ZM4102

are already calibrated during production.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 35 of 103

 CONFIDENTIAL

3.4.10 PVT and RF Regulatory

This directory contains software used in connection with PVT and RF regulatory measurements on the
hardware. All programs run in “Development Mode” and reside in the SRAM part using polling instead of

interrupt. The programs requires download of a hex file in the OTP part for wanted frequency before they
operates correct. For a guideline how to carry out the measurements, refer to [4].

The PVT_and_RF_regulatory directory contains the following 400 Series related files:

ZW0401_y_OTP.hex This hex file must be

downloaded into OTP using y =
ANZ, EU, HK, IN, JP, MY and
US frequency versions of the

400 Series based products. Hex
file contains a jump vector to
below sample applications and

RF constants. Preprogrammed
calibration value in chip is not
affected.

ZW0401_rx_100kbps_y.hex 400 Series configured to receive

100 kbps signal using y = ANZ,

EU, HK, IN, MY and US
frequency versions of the 400
Series based products.

ZW0401_rx_40kbps_y.hex 400 Series configured to receive

9.6/40 kbps signal using y =

ANZ, EU, HK, IN, MY and US
frequency versions of the 400
Series based products.

ZW0401_rx_100kbps_JP_y.hex 400 Series configured to receive

100kbps modulated signal on y

= ch0(950.9514MHz),
ch1(954.5508MHZ) and
ch2(955.3508MHz)

ZW0401_TXcar_100kbps_y.hex

ZW0401_TXcar_40kbps_y.hex
ZW0401_TXcar_9k6bps_y.hex

400 Series constantly transmits

a carrier y = 921.42MHz (ANZ)

or 868.42MHz (EU) or
919.82MHz (HK) or 865.22 MHz
(IN) or 868.10MHz (MY) or
908.42MHz (US).

ZW0401_TXcar_100kbps_JP_y.hex 400 Series constantly transmits

a carrier y = ch0(950.9514MHz),
ch1(954.5508MHZ) and
ch2(955.3508MHz)

ZW0401_TXmod_100kbps_y.hex

ZW0401_TXmod_40kbps_y.hex
ZW0401_TXmod_9k6bps_y.hex

400 Series constantly transmits

a modulated signal y +/-25kHz,

where y = 921.42MHz (ANZ) or
868.42MHz (EU) or 919.82MHz
(HK) or 865.22 MHz (IN) or

868.10MHz (MY) or 908.42MHz
(US).

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 36 of 103

 CONFIDENTIAL

ZW0401_TXmod_100kbps_JP_y.hex 400 Series configured to

constantly transmit a 100kbps
modulated signal at y =
ch0(950.9514MHz),

ch1(954.5508MHZ) and
ch2(955.3508MHz)

ZW0401_TXmod_Transient_100kbps_y.hex
ZW0401_TXmod_Transient_40kbps_y.hex

ZW0401_TXmod_Transient_9k6bps_y.hex

400 Series configured to

constantly transmit a 100kbps
modulated signal at y =

868.42MHz (EU), when
pressing IO pin P11.

ZW0401_TXmod_Transient_100kbps_JP_y.hex 400 Series configured to

constantly transmit a 100kbps
modulated signal at y =

ch0(950.9514MHz),
ch1(954.5508MHZ) and
ch2(955.3508MHz), when
pressing IO pin P11.

In addition, the PVT_and_RF_regulatory directory contains the following 200/300 Series related files:

ZW0201_rx_y.hex Puts the ZW0201 in receive mode for y = ANZ, EU, HK, IN,

MY, RU and US frequency versions of the ZW0201 based
products.

ZW0201_TXcar_y.hex ZW0201 constantly transmits a carrier y = 921.42MHz

(ANZ) or 868.42MHz (EU) or 919.82MHz (HK) or
865.22MHz (IN) or 868.10MHz (MY) or 869.0MHz (RU) or
908.42MHz (US).

ZW0201_TXmod_y.hex
ZW0201_TXmod_40kbps_y.hex

ZW0201 constantly transmits a modulated signal y +/-

25kHz, where y = 921.42MHz (ANZ) or 868.42MHz (EU) or

919.82MHz (HK) or 865.22MHz (IN) or 868.10MHz (MY) or
869.0MHz (RU) or 908.42MHz (US).
Hex file ZW0201_TXmod_y.hex covers 9.6kbit/s.

ZW0301_rx_y.hex Puts the ZW0301 in receive mode. y = ANZ, EU, HK, IN,

MY, RU and US frequency versions of the ZW0301 based
products.

ZW0301_TXcar_y.hex ZW0301 constantly transmits a carrier y = 921.42MHz

(ANZ) or 868.42MHz (EU) or 919.82MHz (HK) or
865.22MHz (IN) or 868.10MHz (MY) 868.42MHz or
908.42MHz (US).

ZW0301_TXmod_y.hex
ZW0301_TXmod_40kbps_y.hex

ZW0301 constantly transmits a modulated signal y +/-

25kHz, where y = 921.42MHz (ANZ) or 868.42MHz (EU) or

919.82MHz (HK) or 865.22MHz (IN) or 868.10MHz (MY)
868.42MHz or 908.42MHz (US).
Hex file ZW0301_TXmod_y.hex covers 9.6kbit/s.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 37 of 103

 CONFIDENTIAL

3.4.11 Python

This directory contains a python scripting language interpreter. Python is used for various purposes in
the sample code build process.

3.4.12 TextTools

This directory contains the sed stream editor used to modify text strings during the make process.

3.4.13 uVisionProjectGenerator

This directory contains uVision Project Generator program; the program generate uVision projects when
running the makefile from a DOS prompt.

The uVisionProjectGenerator directory contains the following files:

__init__py
j.py
MakePatch.bat

och51.bat
uv-find-segment-end.bat
uVisionProjectGenerator.exe

uVision Project Generator application files.

3.4.14 XML Editor

This directory contains the XML Editor program; the program can be used to define approved Z-Wave
device and command classes used by the application layer of the Z-Wave protocol. The XML file can be

used by the Zniffer for interpretation of the device and command classes. The customer can also define
device and command classes under development or proprietary command class structures enabling
interpretation by the Zniffer.

Beside a XML file containing all the information, it is also possible to generate a C# class file and C
header file as foundation for Z-Wave application development. For further details refer to [10].

The XML Editor directory contains the following files:

PC\setup.exe
PC\Setup.msi

XML Editor application.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 38 of 103

 CONFIDENTIAL

3.4.15 Zniffer

This directory contains the Zniffer program; the program is a development tool for capturing Z-Wave RF
communication and presenting the frames in a graphical user interface on a PC. The tool shows the

node ID of the Source and Destination for the communication, the type of frame being sent, and the
application content, i.e. the specific command, which is being sent.

The Zniffer tool is a passive “listener” to the Z-Wave network traffic, and will only display the RF

communications taking place within direct RF range. Be also aware that Zniffer can occasionally miss RF
communication even from Z-Wave nodes within direct range.

The tool consists of two parts, an embedded part that should be downloaded to a Z-Wave module and a

PC application that should run on a PC attached to the Z-Wave module via the serial interface. For
further details refer to [5].

The Zniffer directory contains the following files:

PC\setup.exe
PC\ZnifferSetup.msi

Zniffer application supporting Windows
XP/2003/Vista(32/64)/7(32/64)

PC\FileConverter\setup.exe

PC\FileConverter\FileConverterSetup.msi

FileConverter enable Zniffer to automatically

convert old file formats *.znf to latest *.zlf when
opening file.

Z-Wave_Firmware\sniffer_ZW040x.hex Zniffer application supporting ANZ, EU, HK, IN,

JP, MY and US versions on a 400 Series based
module.

Z-Wave_Firmware\sniffer_ZW030x_y.hex Zniffer application supporting y = ANZ, EU, HK, IN,

MY and US frequency versions on a ZW0301
based module.

Z-Wave_Firmware\sniffer_ZW020x_y.hex Zniffer application supporting y = ANZ, EU, HK, IN,

MY and US frequency versions on a ZW0201
based module.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 39 of 103

 CONFIDENTIAL

3.5 PC

The PC directory contains three PC sample applications demonstrating the use of the Z-Wave DLL and
Serial API.

3.5.1 Bin

The PC\Bin directory contains the program or installation executables of the PC sample applications.

ZW040x_USB_VCP_PC_Driver\uzb.inf Setup Information file used by

Microsoft Windows for installation
of a USB VCP driver.

ZWaveDll\setup.exe

ZWaveDll\ZWaveSetup.msi

Installation executables of the

Z-Wave DLL framework. This
framework simplifies development
of PC sample applications.

Installation includes also a help
file describing Z-Wave DLL
architecture, namespaces and

how to create a Z-Wave DLL
based PC application.

ZWaveInstaller\setup.exe

ZWaveInstaller\ZWaveInstallerToolSetup.msi

Installation executables of the

Z-Wave Installer Tool sample
application.

ZWavePCController\setup.exe

ZWavePCController\ZWaveControllerSetup.msi

Installation executables of the

Z-Wave Non-secure PC
Controller sample application.

ZWaveSecurityPCController\setup.exe

ZWaveSecurityPCController\ZWaveSecurityControllerSetup.msi

Installation executables of the

Z-Wave Secure PC Controller
sample application. Binaries not
distributed due to export

restrictions. Contact support via
support@zen-sys.com for further
information.

ZWaveUPnPBridge\setup.exe
ZWaveUPnPBridge\ZWaveUPnPBridgeSetup.msi

Installation executables of the
Z-Wave to UPnP Bridge sample
application.

mailto:support@zen-sys.com

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 40 of 103

 CONFIDENTIAL

3.5.2 Source

The PC\Source directory contains the C# source code of the PC sample applications using the Microsoft
Visual Studio 2008 environment.

3.5.2.1 Libraries

The PC\Source\Libraries directory contains various libraries used by the PC sample applications.

3.5.2.1.1 WinForms UI

The PC\Source\Libraries\WinFormsUI directory contains C# source code of the windows docking library.

WinFormsUI.csproj Microsoft Visual Studio 2008 project file containing information at the
project level and used to build the project.

3.5.2.1.2 Zensys Framework

The PC\Source\Libraries\ZensysFramework directory contains C# source code of the additional

functions, formatters, helpers.

ZensysFramework.csproj Microsoft Visual Studio 2008 project file containing information at the
project level and used to build the project.

3.5.2.1.3 Zensys Framework UI

The PC\Source\Libraries\ZensysFrameworkUI directory contains C# source code of the completed

Z-Wave UI elements that can be reused in applications:

- Associations View Control;
- Bridged UPnP Device View Control;

- Controller View Control;
- Node View Control;
- UPnP Binary Light Device View Control;

- UPnP Device Scaner View Control;
- UPnP Media Renderer View Control.

ZensysFrameworkUI.csproj Microsoft Visual Studio 2008 project file containing information at the

project level and used to build the project.

3.5.2.1.4 Zensys Framework UI Controls

The PC\Source\Libraries\ZensysFrameworkUIControls directory contains C# source code of the
additional UI elements such as:

- ListDataView;
- TreeDataView;
- BitBox;

- ThreadSafeLabel.

ZensysFrameworkUIControls.csproj Microsoft Visual Studio 2008 project file containing information
at the project level and used to build the project.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 41 of 103

 CONFIDENTIAL

3.5.2.1.5 ZW040x USB VCP PC Driver

The PC\Source\Libraries\ ZW040x_USB_VCP_PC_Driver directory contains the Setup Information file
used by Microsoft Windows for installation of a USB VCP driver. It maps an USB port into a virtual COM
port.

uzb.inf Setup Information file used by Microsoft Windows for installation of a
USB VCP driver.

3.5.2.1.6 Z-Wave Command Class

The PC\Source\Libraries\ZWaveCommandClasses directory contains C# source code for the XML

parser, which enables parsing of Z-Wave frames by the Zniffer and generating frames by the PC based
applications.

ZWaveCommandClasses.csproj Microsoft Visual Studio 2008 project file containing information at

the project level and used to build the project.

3.5.2.1.7 Z-Wave DLL

The PC\Source\Libraries\ZWaveDll directory contains C# source code of the dynamic link library used by
the PC application to communicate with a 400 Series based module via the serial API interface. Refer to
[6] for further details.

SerialZWaveDll.sln Microsoft Visual Studio 2008 solutions file containing information at
the project level and used to build the project.

3.5.2.1.8 Z-Wave HAL

The PC\Source\Libraries\ZWaveHAL directory contains C# source code of the Z-Wave High-level

Application Layer in terms of Z-Wave Dll architecture. It contains common functions that are used in
Z-Wave enabled PC applications: ZWavePCController, ZWaveProgrammer, ZWaveUPnPBridge etc .
Refer to [6] for further details.

SerialZWaveHAL.sln Microsoft Visual Studio 2008 solutions file containing information at
the project level and used to build the project.

3.5.2.2 Sample Application

The PC\Source\SampleApplications contains the various the PC applications

3.5.2.2.1 Z-Wave Installer

The PC\Source\SampleApplications\ZWaveInstaller directory contains C# sample source code for a PC
based installer tool using the Z-Wave DLL etc. Further reading on how to use the PC based Installer Tool
see [2].

ZWaveInstallerTool.sln Microsoft Visual Studio 2008 solutions file containing information at
the project level and used to build the project.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Softw are Components Page 42 of 103

 CONFIDENTIAL

3.5.2.2.2 Z-Wave PC Controller

The PC\Source\SampleApplications\ZWavePCController directory contains C# sample source code for a
PC based controller using the Z-Wave DLL etc. Further reading on how to use the PC based Controller
see [1].

ZWaveController.sln Microsoft Visual Studio 2008 solutions file containing information at
the project level and used to build the project.

3.5.2.2.3 Z-Wave Security PC Controller

The PC\Source\SampleApplications\ZWaveSecurityPCController directory contains C# sample source

code for a Secure PC based controller using the Z-Wave DLL etc. Further reading on how to use the PC
based Controller see [1].

ZWaveSecurityController.sln Microsoft Visual Studio 2008 solutions file containing information at

the project level and used to build the project.

3.5.2.2.4 Z-Wave UPnP Bridge

The PC\Source\SampleApplications\ZWaveUPnPBridge directory contains C# sample source code for a
PC based Z-Wave Bridge using the Z-Wave DLL etc. Further readings on how to use the Z-Wave UPnP
Bridge see [3].

ZWaveUPnPBridge.sln Microsoft Visual Studio 2008 solutions file containing information at
the project level and used to build the project.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 43 of 103

 CONFIDENTIAL

4 APPLICATION SAMPLE CODE

The Z-Wave Developer‟s Kit includes several sample applications: a serial controller application, a LED

dimmer application, a binary sensor and a battery operated binary sensor application for the Z-Wave
module. The sample application realizes a light control system to help the developer to understand how
the various components can interact. In addition the Z-Wave Developer‟s Kit also comprises of a number

of PC centric sample applications for illustrating advanced functionalities of the Z-Wave protocol:

1. How a Z-Wave Module can be controlled from a PC.
2. Installation including display of network topology.

3. Bridging to and from other networks.

The 400 Series build environment is different compared to previous 100/200/300 Series because the
ASIC contains 64KB OTP instead of 32KB Flash. However, the ASIC support a development mode

enabling application development. Refer to [23] for further details about the development environment.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 44 of 103

 CONFIDENTIAL

4.1 Binary Sensor Sample Code

The Developer‟s Kit contains sample code for a non-secure and secure binary sensor. This device is in
effect a binary sensor where the sensor input is the pin also used as a button input on the device

module. The Bin_Sensor_Sec will on every button release transmit a basic set frame to any associated
devices. If the button is held for a little while instead a nodeInfo frame will be transmitted. A static
controller such as the one described in [1] can control, configure and assign routes to the

Bin_Sensor_Sec.

The Bin_Sensor_Sec is a binary sensor that supports the association command class described in the
device class specification (see ref [1]). This device complies with the specific device class named routing

binary sensor device class (4.1). When included non-secure the Secure Binary Sensor application lists
the following supported command classes in the Node Information Frame:

Non-Secure Included

 Binary Sensor command class

 Association command class

 Version command class

 Manufacturer Specific command class

 Security command class

Secure Included

When included secure the Secure Binary Sensor application lists the following supported command

classes in the Node Information Frame:

 Version command class

 Manufacturer Specific command class

 Security command class

The following listed in the Security Commands Supported Report frame:

 Binary Sensor command class

 Association command class

 Manufacturer Specific command class

 Version command class

The Basic command class is secure because application does not list i t in Node Information Frame.

 The Bin_Sensor_Sec is a slave device based on the enhanced slave API. During initialization, the

Bin_Sensor_Sec will initialize the mounted button, the 4 LED‟s and a timer function that handles the
button input and sensor input (in this example the same as the button input). It will also get stored data
from the NVM. After the initialization the Z-Wave basis software will continually call the ApplicationPoll

function, which contains the Bin_Sensor_Sec main function. The ApplicationPoll function checks if the
button or the sensor input has changed state and then acts accordingly to the current state the
Bin_Sensor_Sec is in. The other main function is the ApplicationCommandHandler function that is

called every time a command has been received, destined for the Bin_Sensor_Sec. This function checks
the command and acts according to the command. When transmitting the Bin_Sensor_Sec will, if routes
have been assigned use these.

The Bin_Sensor_Sec implements Lost functionality and network topology maintenance by using a series
of methods. If the device is unsuccessful in sending a message a predefined count it will enter lost state,
and attempt to find a SUC in the network, and if successful ask the SUC for routes to the failing devices .

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 45 of 103

 CONFIDENTIAL

At regular intervals the Bin_Sensor_Sec will transmit a Static Route Request, which asks the SUC for
any updates done to the network.

The functions for AES128 encryption/decryption use the built in AES engine in the 400 Series avoiding

3
rd

 party products subjected to intellectual property (IP) rights and licensing issues.

4.1.1 Network Wide Inclusion

By default the node will enter network wide inclusion (NWI) to be added to a network when it is powered

up and have not already been included. The node will stay in NWI mode for 4 minutes or until it has been
included into the network. Any key press will terminate the NWI mode and the only way to make the node
enter NWI mode again is by doing hardware reset either by remove and reapply the power or press the

reset button on the side of the board. Refer to section 4.3.1 regarding implementation details.

4.1.2 User Interface

The following table defines the functionality of the button on the Z-Wave module.

 Button Triple

Clicked

Button Clicked

In Network Node Info Frame
/ Enter learn
mode

Basic Set (Broadcast)

Not in Network Node Info Frame

/ Enter learn
mode

None

Associated Node Info Frame
/ Enter learn

mode

Basic Set (to
associated nodes)

Learn mode is now activated by pressing the button three times within 1.5 seconds to avoid unintentional
inclusion/exclusion of the node.

4.1.3 Bin_Sensor Files

The Product\Bin_Sensor directory contains sample source code for a non-secure/secure binary sensor
and a non-secure/secure battery powered binary sensor slave application on a Z-Wave module. The

application uses also a number of utility functions described in section 3.3.11.

MK.BAT

Make bat file for building the sample application in question. To only build applications using EU

frequency enter: MK “FREQUENCY=EU” in command prompt.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 46 of 103

 CONFIDENTIAL

Makefile / Makefile.SecureTargets

This is the Makefile for the sample application in question defining the targets built. Refer to section
3.2.1.1 for additional details.

MakePatch.bat

Make hex files for patch system including the <appl>_ZW040x_<freq>_devmode_patch_RAM.hex
targeted for SRAM when using development mode.

Config_app.h

This header file contains defines for application version.

eeprom.h

This header file defines the addresses where application data are stored in the external non-volatile
memory.

Bin_Sensor.h / Bin_Sensor.c

These files contain the source code for the binary sensor application state machine. The common API
functions such as ApplicationInitHW, ApplicationInitSW, ApplicationNodeInformation,
ApplicationPoll, ApplicationSlaveUpdate and ApplicationCommandHandler are defined here.

Bin_Sensor_patch.c

This file contains the patched source code of Bin_Sensor.c

Bin_Sensor_ZW040x_....Uv2

uVision4 *.Uv2 project files created by makefile system using uVisionProjectGenerator software.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 47 of 103

 CONFIDENTIAL

4.1.3.1 Macros for accessing the LED’s

LED_ON(led)

Turn LED on.

Parameter:
led - LED number

Example:
 PIN_OUT(LED1); /* define LED1 as an output pin */

LED_ON(1); /* turn LED 1 on */

LED_OFF(led)

Turn LED off.

Parameter:
led - LED number

Example:
LED_OFF(1); /* turn LED 1 off */

LED_TOGGLE(led)

Toggle the LED OFF if the LED was ON and ON if the LED was OFF.

Parameter:
led - LED number

Example:

LED_TOGGLE(1); /* toggle LED 1 */

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 48 of 103

 CONFIDENTIAL

4.2 Binary Sensor Battery Sample Code

The Developer‟s Kit contains sample code for a non-secure and secure battery powered binary sensor.
This device is in effect a binary sensor where the sensor input is the pin also used as a button input on

the device module. When the binary sensor is inactive the ASIC will be powered down. The binary
sensor will power up when the button is pressed or the RTC / WUT

1
 is fired. Upon wakeup, be it button

press or RTC/WUT a Wakeup Notification Frame is sent either as broadcast or as singlecast to the

device that configured the wakeup settings. If the devie has any associations it will transmit a basic set to
the associated devices. If the button is held for a longer time a Node Information Frame is transmitted. A
static controller such as the one described in [1] can control, configure and assign routes to the

Bin_Sensor_Battery_Sec.

The Bin_Sensor_Battery_Sec is a binary sensor that supports the association command class and the
Wake Up command class described in the device class specification (see ref [1]). This device complies

with the specific device class named routing binary sensor device class (4.1). When included non-secure
the secure battery-operated Binary Sensor application lists the following supported command classes in
the Node Information Frame:

Non-Secure Included

 Binary Sensor command class

 Wake Up command class

 Association command class

 Version command class

 Manufacturer Specific command class

 Security command class

Secure Included

When included secure the secure battery-operated Binary Sensor application lists the following
supported command classes in the Node Information Frame:

 Version command class

 Manufacturer Specific command class

 Security command class

The following listed in the Security Commands Supported Report frame:

 Binary Sensor command class

 Wake Up command class

 Association command class

 Version command class

 Manufacturer Specific command class

The Basic command class is secure because application does not list it in Node Information Frame.

1 RTC is used in ZW0102 and WUT is used in ZW0201.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 49 of 103

 CONFIDENTIAL

The Bin_Sensor_Battery_Sec is a slave device based on the enhanced slave API. During initialization,
the Bin_Sensor_Battery_Sec will initialize the mounted button, the 4 LED‟s and a timer function that
handles the button input and sensor input (in this example the same as the button input). It will also get

stored data from the NVM. After the initialization will go in power down mode and it will wakeup again
either when the button is pressed or when the RTC timer / WUT is fired. While the
Bin_sensor_Battery_Sec is wake the Z-Wave basis software will continually call the ApplicationPoll

function, which contains the Bin_Sensor_Battery_Sec main function. The ApplicationPoll function
checks if the button or the sensor input has changed state and then acts accordingly to the current state
the Bin_Sensor_Battery_Sec is in. The other main function is the ApplicationCommandHandler

function that is called every time a command has been received, destined for the
Bin_Sensor_Battery_Sec. This function checks the command and acts according to the command. When
transmitting the Bin_Sensor_Battery_Sec will, if routes have been assigned use these. If the

Bin_sensor_Battery was waked by the sensor input or button activity, then it will power down again it is
done executing any event caused by the sensor input or the button. If the binary sensor is woken up by
RTC timer / WUT and the wakeup time interval is expired then it will send wake notification frame and

wait for 5 second before powering down again.

The Bin_Sensor_Battery_Sec implements Lost functionality and network topology maintenance by using
a series of methods. If the device is unsuccessful in sending a message a predefined count it will enter

lost state, and attempt to find a SUC in the network, and if successful ask the SUC for routes to the
failing devices. At regular intervals the Bin_Sensor_Battery_Sec will transmit a Static Route Reques t,
which asks the SUC for any updates done to the network.

Note that the wakeup notification frame will only be sent when the Bin_sensor_Battery_Sec has been
assigned a node ID.

On the 400 Series some of the uninitialized RAM bytes are used to keep track of the WUT timer. See

also [19].

The Bin_Sensor_Sec and Bin_Sensor_Battery_Sec share the same code base. They are distinquished
between by defining BATTERY when compiling which will also enable use of the utility function file

battery.c/h.

The functions for AES128 encryption/decryption use the built in AES engine in the 400 Series avoiding
3

rd
 party products subjected to intellectual property (IP) rights and licensing issues.

4.2.1 Network Wide Inclusion

By default the node will enter network wide inclusion (NWI) to be added to a network when it is powered
up and have not already been included. The node will stay in NWI mode for 4 minutes or until it has been

included into the network. Any key press will terminate the NWI mode and the only way to make the node
enter NWI mode again is by doing hardware reset either by remove and reapply the power or press the
reset button on the side of the board. Refer to section 4.3.1 regarding implementation details.

4.2.2 User Interface

The following table defines the functionality of the button on the Z-Wave module.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 50 of 103

 CONFIDENTIAL

 Button Triple

Pressed

Button Clicked

In Network Node Info Frame
/ Enter learn
mode

Basic Set (Broadcast)

Not in Network Node Info Frame

/ Enter learn
mode

None

Associated Node Info Frame
/ Enter learn

mode

Basic Set (to
associated nodes)

Wakeup Node set Node Info Frame
/ Enter learn
mode

Wake Up Notifications
(to Wake up node)

Wakeup Node not set Node Info Frame

/ Enter learn
mode

Wake Up Notifications

(Broadcast)

4.2.3 Bin_Sensor Files

Refer to chapter 4.1.3.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 51 of 103

 CONFIDENTIAL

4.3 Development Controller Sample Code

The Developer's Kit contains sample code that demonstrates how the basic tasks of adding, removing
and controlling devices in a Z-Wave network using the Z-Wave portable controller API.

The Application complies with the Generic Controller command class [20]. When included the
Development Controller application lists the following supported command classes in the Node
Information Frame:

 Controller Replication command class

 Version command class

The Development Controller controls the following command classes:

 Controller Replication command class

 Basic command class

 Association command class

Controlled command classes not listed in the Node Information Frame in this sample application because

it is optional to list.

For details regarding functionality supported by the development controller and user interface, refer to
[8].

The Z-Wave basis software continually calls the ApplicationPoll function. The ApplicationPoll function
contains a state machine, which initiates actions from user input. The ApplicationCommandHandler
function is called when the Z-Wave basis software receives a frame. This could be a Basic Get

Command to obtain the dim level of a multilevel switch.

4.3.1 Network Wide Inclusion

By default the controller will enter network wide inclusion (NWI) to be added to a network when it is

powered up and have not already been included or have included other nodes itself. The controller will
stay in NWI mode for 4 minutes or until it has been included into the network. Any key press will
terminate the NWI mode and the only way to make the controller enter NWI mode again is by doing

hardware reset by either remove and reapply the power or press the reset button on the side of the
board.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 52 of 103

 CONFIDENTIAL

The flow diagram below show how the node request NWI, which is implemented on application level. The
ctrl_learn.c file contains the implementation situated in the util_func directory.

Figure 1, NWI flow diagram for a controller that want to be added to a network

Finally, the controller will also accept network wide inclusion requests when used as primary/inclusion

controller adding nodes into its network.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 53 of 103

 CONFIDENTIAL

4.3.2 Production test mode

To initiate production test mode short-circuits J16-pin3 to J17-pin1 (ground) on ZDP03A.

After resetting the ZDP03A in production test mode the following happens:

1. Initializes RF ready to receive NOP frames and acknowledge them. Use node ID equal to
0x01 in NOP frame and home ID value is ignored in production test mode. The Production
test generator can now be used to test RF link and remember to change node ID to 0x01.

2. Radio start to send constant unmodulated signal on channel 0 by pressing push button on Z-
Wave module hosting 400 Series chip/module once.

3. Radio start to send constant modulated signal on channel 0 by pressing push button on Z-

Wave module once.

4. Radio start to send constant unmodulated signal on channel 1 by pressing push button on Z-
Wave module once.

5. Radio start to send constant modulated signal on channel 1 by pressing push button on Z-
Wave module once.

6. Radio start to send constant unmodulated signal on channel 2 by pressing push button on Z-

Wave module once (3 channels system only, for 2 channel systems it jumps back to point 2).

7. Radio start to send constant modulated signal on channel 2 by pressing push button on Z-
Wave module once (3 channels system only).

8. Jump back to point 2 by pressing push button on Z-Wave module.

The production test mode application is located in the ApplicationTestPoll function.

4.3.3 Dev_Ctrl Files

The Product\Dev_ctrl directory contains the source code for the controller application. The application
uses also a number of utility functions described in section 3.3.11.

MK.BAT

Make bat file for building the sample application in question. To only build applications using EU
frequency enter: MK “FREQUENCY=EU” in command prompt.

Makefile

This is the Makefile for the sample application in question defining the targets built. Refer to section
3.2.1.1 for additional details.

MakePatch.bat

Make hex files for patch system including the <appl>_ZW040x_<freq>_devmode_patch_RAM.hex
targeted for SRAM when using development mode.

Config_app.h

This header file contains defines for application version.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 54 of 103

 CONFIDENTIAL

eeprom.c / eeprom.h

These files contain functions and define for accessing the application data in the external non-volatile
memory.

dev_ctrl_if.h

This file defines how the IO connections on the Z-Wave module are connected to the ZDP03A Module.

dev_ctrl.c / dev_ctrl.h

These files contain the source code for the development controller application state machine. The
common API functions such as ApplicationInitHW, ApplicationInitSW, ApplicationNodeInformation,
ApplicationPoll, ApplicationSlaveUpdate and ApplicationCommandHandler are defined here.

dev_ctrl_patch.c

This file contains the patched source code of dev_ctrl.c

p_button.c / p_button.h

These files contain functions and define for detecting Push button presses. This includes de-bounce
checking.

p_button_patch.c

This file contains the patched source code of p_button.c

dev_ctrl_ZW040x_....Uv2

uVision4 *.Uv2 project files created by makefile system using uVisionProjectGenerator software.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 55 of 103

 CONFIDENTIAL

4.4 Secure Development Controller (ATmega) Sample Code

The SDK contains sample code that demonstrates how the basic tasks of adding, removing and
controlling devices in a Z-Wave network can be accomplished using a host processor to control a Serial

API based portable controller application. The application is a security updated Development Controller
application. The Z-Wave Development Platform ZDP03A [14] is used for this purpose. The host
processor is an AVR ATmega128 and software is builded by environment below:

 IAR Embedded Workbench for Atmel AVR (v. 4.30A)

 IAR C/C++ Compiler for AVR 4.30A/W32 (4.30.1.5)

The AVR ISP In-System Programmer programs the AVR Atmega128.

When included non-secure the Development Controller application lists the following supported
command classes in the Node Information Frame:

Non-Secure Included

 Controller Replication command class

 Version command class

 Security command class

Secure Included

When included secure the Development Controller lists the following supported command classes in the
Node Information Frame:

 Version command class

 Security command class

The following listed in the Security Commands Supported Report frame:

 Controller Replication command class

 Version command class

The Basic command class is secure because application does not list it in Node Information Frame.The
Development Controller controls the following command classes:

 Controller Replication command class

 Basic command class

 Association command class

Controlled command classes not listed in the Node Information Frame in this sample application because
it is optional to list.

For further information about the features of the Secure Development Controller using an AVR as host,
see [11].

4.4.1 Dev_Ctrl_AVR_Sec Files.

The Product\dev_ctrl_AVR_Sec directory contains the source code for the controller application. Only
selected files in the directory structure is described below.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 56 of 103

 CONFIDENTIAL

Portable.dep /.ewd /.ewp /.eww

Project files used to build AVR based sample application.

include\ZW_Security_AES_module.h

Header file used to implement security on application level.

include\AES_module.h

This header file contains definitions for implementing secure communication using AES as

encrypting/decrypting mechanism.

src\ZW_Security_AES.c

These files contain shared data and functions for AES128 and functions for AES128

encryption/decryption. Files are not distributed on the Developer‟s Kit CD due to export restrictions.
Contact support via support@zen-sys.com for further information.

Alternatively, implement the functions based on an Atmel‟s Application Note “AVR231: AES Bootloader”:

http://www.atmel.com/dyn/resources/prod_documents/doc2589.pdf

mailto:support@zen-sys.com
http://www.atmel.com/dyn/resources/prod_documents/doc2589.pdf

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 57 of 103

 CONFIDENTIAL

4.5 Door Bell Sample Code

The developer‟s Kit contains sample code for a Door Bell sample application. This device an example of
how a battery operated chime in a doorbell system could be build. The Door Bell uses the frequently

listening mode where it powers up the radio for a short period every 250ms@2-ch and 1000ms@3-ch
and if it receives a command it will power up entirely and turn on the LED‟s.

The Door Bell based on the routing slave library and it has its generic device class set to Binary Switch

and the specific device class set to none. The Door Bell supports the following command classes:

 Binary Switch command class

 Version command class

NOTE: This node will fail certification because when its level is set to on with a binary set command it will
toggle its state back to off again after a timeout to emulate the behavior of a doorbell.

4.5.1 Network Wide Inclusion

By default the node will enter network wide inclusion (NWI) to be added to a network when it is powered
up and have not already been included. The node will stay in NWI mode for 4 minutes or until it has been
included into the network. Any key press will terminate the NWI mode and the only way to make the node

enter NWI mode again is by doing hardware reset either by remove and reapply the power or press the
reset button on the side of the board. Refer to section 4.3.1 regarding implementation details.

4.5.2 User interface

The following list defines the functionality of the button on the Z-Wave module.

Press shortly Wake up for 2 sec.
Press 3 times within 1.5 sec. Enter learn mode and timeout after 3 sec.

The LEDs on the Z-Wave module has the following meaning:

LED D1 LED D2 LED D3 Description

Off Off Off The door bell is in powerdown mode (Frequently listening mode)

On Off Off The node was woken up by button press or reset

Off On Off The node was woken up by an RF beam

Off Off On The node is in learn mode

On On On Bell was turned on by Binary or Basic set command

4.5.3 Door Bell Files

The Product\DoorBell directory contains the source code and makefiles for the application. The
application uses also a number of utility functions described in section 3.3.11.

MK.BAT

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 58 of 103

 CONFIDENTIAL

Make bat file for building the sample application in question. To only build applications using EU
frequency enter: MK “FREQUENCY=EU” in command prompt.

Makefile

This is the Makefile for the sample application in question defining the targets built. Refer to section
3.2.1.1 for additional details.

MakePatch.bat

Make hex files for patch system including the <appl>_ZW040x_<freq>_devmode_patch_RAM.hex
targeted for SRAM when using development mode.

Config_app.h

This header file contains defines for application version.

Bell.h / Bell.c

This file contains the source code for the Door Bell sample application

Bell_patch.c

This file contains the patched source code of Bell.c

DoorBell_ZW040x_....Uv2

uVision4 *.Uv2 project files created by makefile system using uVisionProjectGenerator software.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 59 of 103

 CONFIDENTIAL

4.6 Door Lock Sample Code

The SDK contains sample code for a non-secure and secure Door Lock sample application. This device
shows an example of how a door lock system could be build.

A controller such as the Development Controller and secure Development Controller (Atmega) can
control the Door Lock. The Door Lock uses the frequently listening mode (FLiRS) where it powers up the
radio for a short period every 1000ms@2-ch and 1000ms@3-ch and in case a wakeup beam for this

particular node is detected then it stay awake to receive a command. It is now possible to turn the LED
on/off indicating lock/unlock status. After receiving one command, it returns to frequently listening mode
again to conserve battery consumption.

The Door Lock is based on the enhanced slave library and it has its generic device class set to Entry
Control and the specific device class set to Door Lock. When included non-secure the Door Lock
application lists the following supported command classes in the Node Information Frame:

Non-Secure Included

 Lock command class

 Powerlevel command class

 Version command class

 Manufacturer Specific command class

 Security command class (not used by a non-secure Door Lock application)

Secure Included

When included secure the Door Lock lists the following supported command classes in the Node
Information Frame:

 Version command class

 Manufacturer Specific command class

 Security command class

The following listed in the Security Commands Supported Report frame:

 Lock command class

 Powerlevel command class

 Version command class

 Manufacturer Specific command class

The Basic command class is secure because application does not list it in Node Information Frame.

During initialization, the Door Lock will initialize the mounted button and one LED. It will also get stored
data from the NVM. After the initialization the Z-Wave basis software will continually call the
ApplicationPoll function, which contains the Door Lock main function. The ApplicationPoll function

checks button activation and act according to the state the Door Lock is in. The other main function is the
ApplicationCommandHandler function that is called every time a command has been received,
destined for the Door Lock. This function checks the command and acts according to the command.

The functions for AES128 encryption/decryption use the built in AES engine in the 400 Series avoiding
3

rd
 party products subjected to intellectual property (IP) rights and licensing issues.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 60 of 103

 CONFIDENTIAL

4.6.1 Network Wide Inclusion

By default the node will enter network wide inclusion (NWI) to be added to a network when it is powered
up and have not already been included. The node will stay in NWI mode for 4 minutes or until i t has been

included into the network. Any key press will terminate the NWI mode and the only way to make the node
enter NWI mode again is by doing hardware reset either by remove and reapply the power or press the
reset button on the side of the board. Refer to section 4.3.1 regarding implementation details.

4.6.2 User Interface

The following table defines the functionality of the button on the Z-Wave module.

 Button Triple

Pressed

Button Clicked

In Network Node Info Frame /

Enter learn mode

Toggle on/off status

Not in Network Node Info Frame /
Enter learn mode

Toggle on/off status

Learn mode is now activated by pressing the button three times within 1.5 seconds to avoid unintentional

inclusion/exclusion of the node.

4.6.3 Door Lock Files

The Product\DoorLock directory contains the source code and makefiles for the application. The

application uses also a number of utility functions described in section 3.3.11.

MK.BAT

Make bat file for building the sample application in question. To only build applications using EU

frequency enter: MK “FREQUENCY=EU” in command prompt.

Makefile

This is the Makefile for the sample application in question defining the targets built. Refer to section

3.2.1.1 for additional details.

MakePatch.bat

Make hex files for patch system including the <appl>_ZW040x_<freq>_devmode_patch_RAM.hex

targeted for SRAM when using development mode.

Config_app.h

This header file contains defines for application version.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 61 of 103

 CONFIDENTIAL

eeprom.h

This header file contains the address definitions in the external non-volatile memory used to store
application data.

DoorLock.h / DoorLock.c

This file contains the source code for the non-secure and secure Door Lock sample application

DoorLock_patch.c

This file contains the patched source code of DoorLock.c

DoorLock_ZW040x_....Uv2

uVision4 *.Uv2 project files created by makefile system using uVisionProjectGenerator software.

4.6.3.1 Macros for accessing the Lock/Unlock

PIN_ON(pin)

Set output pin to 1.

Parameter:
pin - Z-Wave pin name

Example:
PIN_ON(TRIACpin); /* turn TRIACpin on */

PIN_OFF(pin)

Set output pin to 0.

Parameter:
pin - Z-Wave pin name

Example:
PIN_OFF(TRIACpin); /* turn TRIACpin off */

PIN_GET(pin)

Read pin value.

Parameter:

pin - Z-Wave pin name

Example:

PIN_GET(SSN); /* Read pin SSN value*/

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 62 of 103

 CONFIDENTIAL

PIN_IN(pin, pullup)

Set I/O pin as input.

Parameter:

pin - Z-Wave pin name
pullup - if not zero activate the internal pullup resistor

Example:

PIN_IN(SSN, 0); /* Set I/O pin SSN as input and activate the internal pullup resistor */

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 63 of 103

 CONFIDENTIAL

4.7 LED Dimmer Sample Code

The Developer‟s Kit contains sample code for a non-secure and secure LED Dimmer. This device is in
effect a light switch with a built in dimmer where the light bulb is substituted with 3 LED‟s when using 400

Series. A controller such as the secure or non-secure Development Controller can control the LED
Dimmer.

The LED Dimmer is a multilevel switch that supports the all switch command class, the protection

command class and the powerlevel command class described in the device class specification (see ref
[1]). This device complies with the specific device class named multilevel power switch device class. The
LED Dimmer does not support the optional Clock command class. When included non-secure the secure

LED Dimmer application lists the following supported command classes in the Node Information Frame:

Non-Secure Included

 Multilevel Switch command class

 All Switch command class

 Protection command class

 Powerlevel command class

 Version command class

 Manufacturer Specific command class

 Security command class

Secure Included

When included secure the secure LED Dimmer lists the following supported command classes in the

Node Information Frame:

 Version command class

 Manufacturer Specific command class

 Security command class

The following listed in the Security Commands Supported Report frame:

 Multilevel Switch command class

 All Switch command class

 Protection command class

 Powerlevel command class

 Version command class

 Manufacturer Specific command class

The Basic command class is secure because application does not list it in Node Information Frame.

The secure LED Dimmer is a slave device based on the slave/enhanced slave API. During initialization,
the secure LED Dimmer will initialize the mounted button and the 3 LED‟s. It will also get stored data
from the NVM. After the initialization, the Z-Wave basis software will continually call the ApplicationPoll

function, which contains the Secure LED Dimmer main function. The ApplicationPoll function checks
button activation and act according to the state the secure LED Dimmer is in. The other main function is
the ApplicationCommandHandler function that is called every time a command has been received,

destined for the secure LED Dimmer. This function checks the command and acts according to the
command.

The functions for AES128 encryption/decryption use the built in AES engine in the 400 Series avoiding

3
rd

 party products subjected to intellectual property (IP) rights and licensing issues.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 64 of 103

 CONFIDENTIAL

4.7.1 Network Wide Inclusion

By default the node will enter network wide inclusion (NWI) to be added to a network when it is powered
up and have not already been included. The node will stay in NWI mode for 4 minutes or until it has been

included into the network. Any key press will terminate the NWI mode and the only way to make the node
enter NWI mode again is by doing hardware reset either by remove and reapply the power or press the
reset button on the side of the board. Refer to section 4.3.1 regarding implementation details.

4.7.2 User Interface

The following table defines the functionality of the button on the Z-Wave module.

 Button Triple

Pressed

Button Clicked Button is held

In Network Node Info Frame

/ Enter learn
mode

Toggle on/off

status

Dim up/down

Not in Network Node Info Frame
/ Enter learn

mode

Toggle on/off
status

Dim up/down

Learn mode is now activated by pressing the button three times within 1.5 seconds to avoid unintentional
inclusion/exclusion of the node.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 65 of 103

 CONFIDENTIAL

4.7.3 Production test mode

To initiate production test mode short-circuits J17-pin10 to J17-pin1 (ground) on ZDP03A.

After resetting the ZDP03A in production test mode the following happens:

1. Initializes RF ready to receive NOP frames and acknowledge them. Use node ID equal to
0x00 in NOP frame and home ID value is ignored in production test mode. The Production
test generator can now be used to test RF link because directly default node ID used is

equal to 0x00.

2. Radio start to send constant unmodulated signal on channel 0 by pressing push button on Z-
Wave module hosting 400 Series chip/module once.

3. Radio start to send constant modulated signal on channel 0 by pressing push button on Z-
Wave module once.

4. Radio start to send constant unmodulated signal on channel 1 by pressing push button on Z-

Wave module once.

5. Radio start to send constant modulated signal on channel 1 by pressing push button on Z-
Wave module once.

6. Radio start to send constant unmodulated signal on channel 2 by pressing push button on Z-
Wave module once (3 channels system only, for 2 channel systems it jumps back to point 2).

7. Radio start to send constant modulated signal on channel 2 by pressing push button on Z-

Wave module once (3 channels system only).

8. Jump back to point 2 by pressing push button on Z-Wave module.

The production test mode application is located in the ApplicationTestPoll function.

4.7.4 Secure_LED_Dimmer Files

The Product\LED_Dimmer directory contains sample source code for a slave application on a Z-Wave
module. The application uses also a number of utility functions described in section 3.3.11.

MK.BAT

Make bat file for building the sample application in question. To only build applications using EU
frequency enter: MK “FREQUENCY=EU” in command prompt.

Makefile / Makefile.SecureTargets

This is the Makefile for the sample application in question defining the targets built. Refer to section
3.2.1.1 for additional details.

MakePatch.bat

Make hex files for patch system including the <appl>_ZW040x_<freq>_devmode_patch_RAM.hex
targeted for SRAM when using development mode.

Config_app.h

This header file contains defines for application version.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 66 of 103

 CONFIDENTIAL

eeprom.h

This header file defines the addresses where application data are stored in the external non-volatile
memory.

LEDdim.h / LEDdim.c

This file contains the source code for the LED dimmer application state machine. The common API
functions such as ApplicationInitHW, ApplicationInitSW, ApplicationNodeInformation,

ApplicationPoll, ApplicationSlaveUpdate and ApplicationCommandHandler are defined here.

LEDdim_patch.c

This file contains the patched source code of LEDdim.c. LED1 (D0 on ZDP03A) is inverted in the

patched code to differ between patchable and patched source code.

LED_Dimmer_ZW040x_....Uv2

uVision4 *.Uv2 project files created by makefile system using uVisionProjectGenerator software.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 67 of 103

 CONFIDENTIAL

4.7.4.1 Macros for accessing the LED’s

LED_ON(led)

Turn LED on.

Parameter:
led - LED number

Example:
 PIN_OUT(LED1); /* define LED1 as an output pin */

LED_ON(1); /* turn LED 1 on */

LED_OFF(led)

Turn LED off.

Parameter:
led - LED number

Example:
LED_OFF(1); /* turn LED 1 off */

LED_TOGGLE(led)

Toggle the LED OFF if the LED was ON and ON if the LED was OFF.

Parameter:

led - LED number

Example:

LED_TOGGLE(1); /* toggle LED 1 */

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 68 of 103

 CONFIDENTIAL

4.8 MyProduct Sample Code

The My Product contains the minimum framework to begin developing a slave application. To realize the
application in question it is often easier to modify the existing sample code applications than build one

from scratch based on MyProduct.

4.8.1 MyProduct Files

The Product\MyProduct directory contains sample source code for a routing slave application on a

Z-Wave module. The application uses also a number of utility functions described in section 3.3.11.

MK.BAT

Make bat file for building the sample application in question. To only build applications using EU

frequency enter: MK “FREQUENCY=EU” in command prompt.

Makefile

This is the Makefile for the sample application in question defining the targets built. Refer to section

3.2.1.1 for additional details.

MakePatch.bat

Make hex files for patch system including the <appl>_ZW040x_<freq>_devmode_patch_RAM.hex

targeted for SRAM when using development mode.

Config_app.h

This header file contains defines for application version.

MyProduct.h / MyProduct.c

This file contains the source code for the MYProduct. The common API functions such as
ApplicationInitHW, ApplicationInitSW, ApplicationNodeInformation, ApplicationPoll,

ApplicationSlaveUpdate and ApplicationCommandHandler are defined here.

MyProduct_patch.c

This file contains the patched source code of MyProduct.c

MyProduct_ZW040x_....Uv2

uVision4 *.Uv2 project files created by makefile system using uVisionProjectGenerator software.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 69 of 103

 CONFIDENTIAL

4.9 Production Test Generator

The Developer's Kit contains sample code that demonstrates how the basic tasks of testing devices in a
Z-Wave network can be accomplished using the Z-Wave API. The Z-Wave generator is used to verify the

TX / RX circuits on Z-Wave enabled products.

A simple generator consists of a ZW040x Interface Module and a ZMxx20 Z-Wave Module.

On the Interface module there are 6 LED diodes, which have these assignments in the Prod_Test_Gen

sample application:

LED # Colour Description

D6 Green Power on

D1 Red Error

D2 Red Success

D3 Red Send (flashes during transmission)

D4 Red -

D5 Red Indication of Push button

The push button on the ZMxx20 Z-Wave Module is the “Test” button.

After connection to power, the red “Error” LED „D1‟ on the Interface module will be on.

When the push button is pressed, 10 NOP‟s will be transmitted. A device under test (application in
production test mode executing ApplicationTestPoll) is expected to verify the reception of each NOP with
an ACK. During transmission, the red LED „D3‟ will flash.

If all NOP‟s are replied correctly, the red “Error” LED „D1‟ will turn off and the red “Success” LED „D2‟ will
turn on and stay on until the next test is conducted. If the DUT does not reply correctly, the red “Error”
LED „D1‟ will turn on and stay on until the next test is conducted.

The Z-Wave basis software continually calls the ApplicationPoll function. The ApplicationPoll function
contains a state machine, which initiates actions from user input. The ApplicationCommandHandler
function is only called when the Z-Wave basis software receives information for the application.

The Production Test Generator sample application is based on the ZW_slave_prodtest_gen library.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 70 of 103

 CONFIDENTIAL

The application is controlled via RS232 (115200,8,N,1) or button with fixed timings:
Device will resopond to any char received with an ASCII SPACE followed by a command answer or error
'!' followed by error information:

Following ASCII commands are implemented.
Received:

'U':

Frequency US is selected sending 9.6kbps on channel 1
Response is: ' US'

'E':

Frequency EU is selected sending 9.6kbps on channel 1
Response is: ' EU'

'Z':

Frequency ANZ is selected sending 9.6kbps on channel 1
Response is: ' ANZ‟

'M':

Frequency MY is selected sending 9.6kbps on channel 1
Response is: ' MY'

'I':

Frequency IN is selected sending 9.6kbps on channel 1
Response is: ' IN'

'J':

Frequency JP is selected sending 100kbps on channel 1
Response is: ' JP‟

'n' (where n = 0..9):

Any frequency is selected from the table of defined frequencies. The input shall be 2 decimal digits.
Response for the first digit is: ' n'
Response for the second digit is: „ n 0xnn‟ (where nn is the selected hexadecimal index in the table of

defined frequencies.

'S':
Start test

Response is ' ST'

'C':
Set the number of NOPs to send to 1000

Response: ' CO'

'N':
Set the destination node ID.

Response: ' NI'

'R':
Reset the hardware

Response: ' RS'

On Unknown:
'!' 'received Char'

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 71 of 103

 CONFIDENTIAL

4.9.1 Production Test Generator Files

The Product\Prod_Test_Gen directory contains the source code for the Production Test Generator
sample application.

MK.BAT

Make bat file for building the sample application in question.

Makefile

This is the Makefile for the sample application in question defining the targets built. Refer t o section
3.2.1.1 for additional details.

MakePatch.bat

Make hex files for patch system including the <appl>_ZW040x_<freq>_devmode_patch_RAM.hex
targeted for SRAM when using development mode.

Config_app.h

This header file contains defines for application version.

prod_test_gen.c

This file contains the main source code for the sample application. Both ApplicationPoll and

ApplicationCommandHandler are defined in this file.

Prod_test_gen_patch.c

This file contains the patched source code of prod_test_gen.c

Prod_Test_Gen_ZW040x….Uv2

uVision4 *.Uv2 project files created by makefile system using uVisionProjectGenerator software.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 72 of 103

 CONFIDENTIAL

4.10 Serial API Embedded Sample Code

The purpose of the Serial API embedded sample code is to show how a 400 Series Z-Wave module can
be controlled via the RS 232 or USB port by a host. The following host based PC applications are

available on the Developer‟s Kit CD:

 The PC based Controller application showing the available functionality in a Serial API based on
a static controller API.

 The PC based Installer Tool application showing the available functionality in a Serial API based
on an installer API.

 The PC based Z-Wave Bridge application showing the available functionality in a Serial API
based on a bridge controller API.

The Serial API can be used as it is or it can be changed to fit specific needs. The UART on the Z-Wave
Module is initialized for 115200 baud, no parity, 8 data bits and 1 stop bit.

4.10.1 Supported API Calls

Only a subset of the API calls is available via the serial interface. In [19] each API call has a description
regarding Serial API support and the corresponding frame format and flow.

4.10.2 Implementation

The Serial API embedded sample code is provided on the Z-Wave Developer‟s Kit. Be aware that
altering the function ID‟s and frame formats in the Serial API embedded sample code can result in

interoperability problems with the Z-Wave DLL supplied on the Developer‟s Kit as well as commercially
available GUI applications. Regarding how to determine the current version of the Serial API protocol in
the embedded sample code please refer to the API call ZW_Version. The following sections describe

the Serial API implementation and how a host can communicate with the Serial API embedded sample
code.

4.10.2.1 Frame Layout

The protocol between the PC (host) and the Z-Wave Module (ZW) consists of three frame types: ACK
frame, NAK frame and Data frame. Each Data frame is prefixed with SOF byte and Length byte and
suffixed with a Checksum byte. As of Serial API Version 4 a fourth frame type has been defined; the

CAN frame.

Serial API
Module

Host RS 232 or USB

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 73 of 103

 CONFIDENTIAL

ACK frame:

The ACK frame is used to acknowledge a successful transmission of a data frame. The format is as
follows:

7 6 5 4 3 2 1 0

ACK (0x06)

NAK frame:

The NAK frame is used to de-acknowledge an unsuccessful transmission of a data frame. The format is
as follows:

7 6 5 4 3 2 1 0

NAK (0x15)

Only a frame with a LRC checksum error is de-acknowledged with a NAK frame.

CAN frame:

The CAN frame is used by the ZW to instruct the host that a host transmitted data frame has been

dropped. Happens when ZW expects an ACK as handshake for a transmitted frame, but instead get a
new frame from host. The format is as follows:

7 6 5 4 3 2 1 0

CAN (0x18)

Data frame:

The Data frame contains the Serial API command including parameters for the command in question.
The format is as follows:

7 6 5 4 3 2 1 0

SOF

Length

Type

Serial API Command ID

Command Specific Data

…

Checksum

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 74 of 103

 CONFIDENTIAL

Field Description

SOF Start Of Frame. Used for synchronization and is equal to 0x01

Length Number of bytes in the frame, exclusive SOF and Checksum. The

host application is responsible for entering the correct length field.
The current Serial API embedded sample code does no validation
og the length field.

Type Used to distinguish between unsolicited calls and immediate

responses (not callback). The request (REQ) is equal to 0x00 and
response (RES) is equal to 0x01.

Serial API Command ID Unique command ID for the function to be carried out. Any data
frames returned by this function will contain the same command ID

Command Specific Data One or more bytes of command specific data. Possible callback

handling is also defined here.

Checksum LRC checksum used to check for frame integrity. Checksum
calculation includes the Length, Type, Serial API Command
Data and Command Specific Data fields. The Checksum is a

XOR checksum with an initial checksum value of 0xFF. For a
checksum implementation refer to the function ConTxFrame in the
conhandle.c module

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 75 of 103

 CONFIDENTIAL

4.10.2.2 Frame Flow

The frame flow between a host and a Z-Wave module (ZW) running the Serial API embedded sample
code depends on the API call. There are four different ways to conduct communication between the host

and ZW.

Data frame (REQ) from host, which is acknowledged by ZW when successfully received. An example

could be the API call ZW_SetExtIntLevel.

Data frame (REQ) with callback function enabled from host by setting funcID different from zero, which is
acknowledged by ZW when successfully received. The funcID is a sequence number used to correlate a

given reply with the correct request. A data frame (REQ - callback) is returned by ZW with the result at
command completion including a funcID to correlate callback with the original data frame. The host
acknowledged the data frame when successfully received. Setting the funcID equal to 0 in the original

data frame disable the callback handling. An example could be the API call ZW_SetDefault.

Data Frame (REQ)

ACK

ZW Host

Data Frame (REQ)

ACK

ZW Host

Data Frame (REQ - Callback)

ACK

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 76 of 103

 CONFIDENTIAL

Data frame from host (REQ), which is acknowledged by ZW when successfully received. A data frame
(RES) is returned by ZW with the result at command completion. The host acknowledges the data frame
when successfully received. An example could be the API call ZW_GetControllerCapabilities.

Data Frame (REQ)

ACK

ZW Host

Data Frame (RES)

ACK

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 77 of 103

 CONFIDENTIAL

Data frame (REQ) with callback function enabled from host by setting funcID different from zero, which is
acknowledged by ZW when successfully received. The funcID is a sequence number used to correlate a

given reply with the correct request. A data frame (RES) is returned by ZW with the status at command
initiation. The host acknowledges the data frame when successfully received. A data frame (REQ -
Callback) is returned by ZW with the result at command completion including a funcID to correlate

callback with the original data frame. The host acknowledged the data frame when successfully received.
Setting the funcID equal to 0 in the original data frame disable the callback handling. An example could
be the API call ZW_SendSUCID.

Data Frame (REQ)

ACK

ZW Host

Data Frame (RES)

ACK

Data Frame (REQ - Callback)

ACK

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 78 of 103

 CONFIDENTIAL

4.10.2.3 Error handling

A number of scenarios exist, which can impede the normal frame flow between the host and the Z-Wave
module running the Serial API embedded sample code (ZW).

A LRC checksum failure is the only case there is de-acknowledged by a NAK frame in the current Serial
API embedded sample code. When a host receives a NAK frame can it either retry transmission of the
frame or abandon the task. A task is defined as the whole frame flow associated with the execution of a

specific Serial API function call. If a NAK frame is received by the Z-Wave module in response to a just
transmitted frame, then the frame in question is retransmitted (max 2 retries).

Frames with an illegal length are ignored without any notification. Frames with an illegal type (only REQ

and RES exists) are ignored without any notification

The Serial API embedded sample code can only perform one host-initiated task at a time. A data frame
will be dropped without any notification (no ACK/NAK frame transmitted) by the ZW if it is not ready to

execute a new host-initiated task. As of Serial API version 4 a CAN frame is transmitted by the ZW when
a received data frame is dropped.

If no CAN frame is received the host detect the missing ACK/NAK by implementing a timeout mechanism

in the receive function. The host timeout must correspond to the timeout defined in ZW. A reasonable
timeout in the host is 2 seconds because the current Serial API embedded sample code has a default
timeout of 1.5 seconds. The timeout in the Serial API (as of SerialAPI version 4) can also be set by using

the FUNC_ID_SERIAL_API_SET_TIMEOUTS Serial API function:

Serial API:

HOST->ZW: REQ | 0x06 | RXACKtimeout | RXBYTEtimeout

ZW->HOST: RES | 0x06 | oldRXACKtimeout | oldRXBYTEtimeout

RXACKTimeout is the max no. of 10ms ticks the ZW waits for an ACK before timeout. RXBYTETimeout
is the max no. of 10ms ticks the ZW waits for a new byte before timeout; this is only valid when a frame

has been detected and is being collected.

In case the host expect an ACK but instead receive another data frame then it must read the whole data
frame and ACK/NAK accordingly, it will probably also receive a CAN frame to indicate that the ZW has

dropped the host transmitted data frame. Afterwards can the host restart transmission of the pending
frame ZW never ACK‟ed or possibly CAN‟ed.

Communication between ZW and other Z-Wave nodes can also result in deviations from the normal

frame flow. A get command on application level can for example result in multiple reports coming back
and ZW will just pass on the reports to the host. This can happen in case the Z-Wave node did not hear
ZW acknowledge the report and therefore it is retransmitted. To handle such scenarios requires a

relaxed state machine on application level to handle multiple reports. The same apply for set and get
commands.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 79 of 103

 CONFIDENTIAL

4.10.2.4 Restrictions on functions using buffers

The Serial API is implemented with buffers for queuing requests and responses. This restricts how much
data that can be transferred through MemoryGetBuffer() and MemoryPutBuffer() compared to using them

directly from the Z-Wave API.

The PC application should not try to get or put buffers larger than approx. 80 bytes.

If an application requests too much data through MemoryGetBuffer() the buffer will be truncated and the

application will not be notified.

If an application tries to store too much data with MemoryPutBuffer() the buffer will be truncated before
the data is sent to the Z-Wave module, again without the application being notified.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 80 of 103

 CONFIDENTIAL

4.10.2.5 Serial API Node List Command

As of Serial API protocol version 4 it is possible to call Serial API Node List Command to determine
Serial API protocol version number, Serial API capabilities, nodes currently stored in the EEPROM (only

controllers) and chip used in a specific Serial API Z-Wave Module with the
FUNC_ID_SERIAL_API_GET_INIT_DATA Serial API function:

Serial API:

HOST->ZW: REQ | 0x02

(Controller) ZW->HOST: RES | 0x02 | ver | capabilities | 29 | nodes[29] | chip_type | chip_version

(Slave) ZW->HOST: RES | 0x02 | ver | capabilities | 0 | chip_type | chip_version

“ver” is the Serial API application Version number.

“capabilities” is a byte holding various flags describing the actual mode.

29 | 0 is the length of “nodes[]”

nodes[29] is a node bitmask.

Capabilities flag:

Bit 0: 0 = Controller API; 1 = Slave API
Bit 1: 0 = Timer functions not supported; 1 = Timer functions supported.
Bit 2: 0 = Primary Controller; 1 = Secondary Controller

Bit 3-7: reserved

The chip used can be determined as follows:

Z-Wave Chip Chip_type Chip_version

ZW0102 0x01 0x02

ZW0201 0x02 0x01

ZW0301 0x03 0x01

Timer functions are TimerStart, TimerRestart and TimerCancel.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 81 of 103

 CONFIDENTIAL

4.10.2.6 Serial API Capabilities Command

As of Serial API protocol version 4 (to determine Serial API protocol version please refer to the Serial API
Function described in paragraph 4.10.2.5) it is possible to call Serial API Capabilities Command to

determine exactly which Serial API functions a specific Serial API Z-Wave Module supports with the
FUNC_ID_SERIAL_API_GET_CAPABILITIES Serial API function:

Serial API:

HOST->ZW: REQ | 0x07

ZW->HOST: RES | 0x07 | SERIAL_APPL_VERSION | SERIAL_APPL_REVISION |
SERIALAPI_MANUFACTURER_ID1 | SERIALAPI_MANUFACTURER_ID2 |

SERIALAPI_MANUFACTURER_PRODUCT_TYPE1 |
SERIALAPI_MANUFACTURER_PRODUCT_TYPE2 |
SERIALAPI_MANUFACTURER_PRODUCT_ID1 | SERIALAPI_MANUFACTURER_PRODUCT_ID2 |

FUNCID_SUPPORTED_BITMASK[]

SERIAL_APPL_VERSION is the Serial API application Version number.

SERIAL_APPL_REVISION is the Serial API application Revision number.

SERIALAPI_MANUFACTURER_ID1 is the Serial API application manufacturer_id (MSB).

SERIALAPI_MANUFACTURER_ID2 is the Serial API application manufacturer_id (LSB).

SERIALAPI_MANUFACTURER_PRODUCT_TYPE1 is the Serial API application manufacturer product

type (MSB).

SERIALAPI_MANUFACTURER_PRODUCT_TYPE2 is the Serial API application manufacturer product
type (LSB).

SERIALAPI_MANUFACTURER_PRODUCT_ID1 is the Serial API application manufacturer product id
(MSB).

SERIALAPI_MANUFACTURER_PRODUCT_ID2 is the Serial API application manufacturer product id

(LSB).

FUNCID_SUPPORTED_BITMASK[] is a bitmask where every Serial API function ID which is
supported has a corresponding bit in the bitmask set to „1‟. All Serial API function IDs which are not

supported have their corresponding bit set to „0‟. First byte in bitmask corresponds to FuncIDs 1-8
where bit 0 corresponds to FuncID 1 and bit 7 corresponds to FuncID 8. Second byte in bitmask then
corresponds to FuncIDs 9-16 and so on.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 82 of 103

 CONFIDENTIAL

4.10.2.7 Serial API Power Management Commands

The Serial API Power Management Commands is designed for use in a system where a Z-Wave module
is connected to a host CPU system via a serial port and a number of I/O pins are used for control of the

power to the Host CPU system.

4.10.2.7.1 Pin Configuration Command

The Pin Configuration Command is used to map the power management input pin PoweredUp to a
physical IO pin.

7 6 5 4 3 2 1 0

FUNC_ID_POWER_MANAGEMENT

PM_PIN_UP_CONFIGURATION_CMD

IO Pin

Active Level

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 83 of 103

 CONFIDENTIAL

IO pin (8bit):

The IO pin field specifies the physical I/O pin that should be used for this signal. The table of I/O pins is
shown below

IO Pin defines Value

PM_PHYSICAL_PIN_P00 0x00

PM_PHYSICAL_PIN_P01 0x01

PM_PHYSICAL_PIN_P02 0x02

PM_PHYSICAL_PIN_P03 0x03

PM_PHYSICAL_PIN_P04 0x04

PM_PHYSICAL_PIN_P05 0x05

PM_PHYSICAL_PIN_P06 0x06

PM_PHYSICAL_PIN_P07 0x07

PM_PHYSICAL_PIN_P10 0x10

PM_PHYSICAL_PIN_P11 0x11

PM_PHYSICAL_PIN_P12 0x12

PM_PHYSICAL_PIN_P13 0x13

PM_PHYSICAL_PIN_P14 0x14

PM_PHYSICAL_PIN_P15 0x15

PM_PHYSICAL_PIN_P16 0x16

PM_PHYSICAL_PIN_P17 0x17

PM_PHYSICAL_PIN_P22 0x22

PM_PHYSICAL_PIN_P23 0x23

PM_PHYSICAL_PIN_P24 0x24

PM_PHYSICAL_PIN_P30 0x30

PM_PHYSICAL_PIN_P31 0x31

PM_PHYSICAL_PIN_P32 0x32

PM_PHYSICAL_PIN_P33 0x33

PM_PHYSICAL_PIN_P34 0x34

PM_PHYSICAL_PIN_P35 0x35

PM_PHYSICAL_PIN_P36 0x36

PM_PHYSICAL_PIN_P37 0x37

Active Level (8bit):

The level the PoweredUp pin should have when it is active. Optional and not given then active state
defaults to active Low.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 84 of 103

 CONFIDENTIAL

0 – Low

1 – High

4.10.2.7.2 Power up Mode Configuration Command

The Power up Mode Configuration Command is used to configure the state of the PowerCtrl pins when

the Serial API has to power up the host CPU system

7 6 5 4 3 2 1 0

FUNC_ID_POWER_MANAGEMENT

PM_POWERUP_MODE_CONFIGURATION_CMD

Number of Pins (max 4)

IO Pin 1

Level 1

IO Pin ..

Level ..

IO Pin x

Level x

Number of Pins (8 bit):

The number of pins that is contained in the command. The max number of pins is 4

IO Pin x (8 bit):

The physical pin that should be changed when the Serial API has to wake up the host CPU system. A full
list of physical pins can be found in section 4.10.2.7.1.

Level x (8 bit):

The level the output pin should have when the specified power mode is set.

0 – Low

1 – High

4.10.2.7.3 Power Up on Z-Wave Configuration Command

The Power Up on Z-Wave Configuration Command is used to specify what Z-Wave command that
should trigger a power up of the host CPU system. All Z-Wave commands received are checked if they
match the wakeup values and masks configured.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 85 of 103

 CONFIDENTIAL

7 6 5 4 3 2 1 0

FUNC_ID_POWER_MANAGEMENT

PM_POWERUP_ZWAVE_CONFIGURATION_CMD

Wakeup Match Mode

Number of match bytes (max 8)

Wakeup Value 1

Wakeup Value ..

Wakeup Value x

Wakeup Mask 1

Wakeup Mask ..

Wakeup Mask x

Wakeup Match Mode (8bit):

PM_WAKEUP_ALL

Wake up on all Z-Wave application commands received by the Z-Wave module.

PM_WAKEUP_ALL_NO_BROADCAST

Wake up on all Z-Wave application commands received by the Z-Wave module, except frames send as
broadcast frames.

PM_WAKEUP_MASK

Wake up the host CPU when receiving a Z-Wave command where the first 5 bytes of the frame matches
the specified value and mask.

Wakeup Mode define Value

PM_WAKEUP_ ALL 0x01

PM_WAKEUP_ALL_NO_BROADCAST 0x02

PM_WAKEUP_MASK 0x03

Number of Match Bytes (8bit):

Number of bytes used to match an incoming Z-Wave command with, to see if it should trigger a wakeup.
The max number of match bytes is 8.

Wakeup Value n (8bit*x):

The wakeup value is the value an incoming Z-Wave frame should be checked against to see if it should
trigger a wakeup.

Wakeup Mask n (8 bit*x):

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 86 of 103

 CONFIDENTIAL

The wakeup mask is a mask that can be used to mask out bits or bytes in the received Z-Wave frame
before it is compared with the Wakeup value.

The Wakeup value and Wakeup mask are checked like this in the Serial API

If ((Z-Wave Frame & Wakeup Mask) == Wakeup Value)

 DoWakeup();

Example:

If the host CPU wants to trigger a wakeup on an Simple AV Set command with the Command Power the
following command should be send to the Z-Wave module.

The simple AV Set command has the following structure:

7 6 5 4 3 2 1 0

COMMAND_CLASS_SIMPLE_AV_CONTROL

SIMPLE_AV_CONTROL_SET

Sequence Number

Reserved Key Attributes

Item ID MSB

Item ID LSB

AV Command MSB,1

AV Command LSB,1

In this Z-Wave command we want to match the command class, the command, the key attributes and the
AV command. We do not care about the sequence number, the reserved field and the item ID. So the
Power Up on Z-Wave command would look like this:

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 87 of 103

 CONFIDENTIAL

7 6 5 4 3 2 1 0

FUNC_ID_POWER_MANAGEMENT

PM_POWERUP_ZWAVE_CONFIGURATION_CMD

PM_WAKEUP_MASK

8 (Match the 8 first bytes)

COMMAND_CLASS_SIMPLE_AV_CONTROL

SIMPLE_AV_CONTROL_SET

0 (don‟t care)

0 (key down)

0 (don‟t care)

0 (don‟t care)

0 (AV Command MSB)

0x27 (AV command Power)

0xFF (match all bits)

0xFF (match all bits)

0x00 (don‟t match)

0x07 (match bits 0,1,2)

0x00 (don‟t match)

0x00 (don‟t match)

0xFF (match all bits)

0xFF (match all bits)

4.10.2.7.4 Power Up on Timer Configuration Command

The Power Up on Timer Configuration Command is used to specify that the Z-Wave module should
power up the host CPU system after a specified time has passed.

7 6 5 4 3 2 1 0

FUNC_ID_POWER_MANAGEMENT

PM_POWERUP_TIMER_CONFIGURATION_CMD

Timer Resolution

Timer (MSB)

Timer (LSB)

Timer Resolution (8bit):

PM_TIMER_SECONDS The timer resolution is in Seconds.

PM_TIMER_MINUTES The timer resolution is in minutes.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 88 of 103

 CONFIDENTIAL

Timer Resolution define Value

PM_TIMER_SECONDS 0x01

PM_TIMER_MINUTES 0x02

Timer (16bit):

The time that should elapse before the host CPU is set to the POWER_MODE_RUNNING again

4.10.2.7.5 External Power Up Configuration Command

The External Power Up Configuration Command is used to specify that a level change on an input pin
should trigger a power up of the host CPU system.

7 6 5 4 3 2 1 0

FUNC_ID_POWER_MANAGEMENT

PM_POWERUP_EXTERNAL_CONFIGURATION_CMD

IO Pin

Power Up Level

IO pin (8bit):

The IO pin field specifies the physical I/O pin that should be used for this signal. The full table of I/O pins
can be found in section 4.10.2.7.1

Power Up Level (8bit):

The level the input pin should trigger a power up of the host CPU system.

0 – Low

1 – High

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 89 of 103

 CONFIDENTIAL

4.10.2.7.6 Power down Mode Configuration Command

The Power down Mode Configuration Command is used to request that the Z-Wave module sets a
specific power down mode. If the PoweredUp pin is configured the PowerCtrl pins will not be changed
before the PoweredUp pin goes NOT active.

7 6 5 4 3 2 1 0

FUNC_ID_POWER_MANAGEMENT

PM_POWERDOWN_MODE_CONFIGURATION_CMD

Number of Pins (max 4)

IO Pin 1

Level ..

IO Pin x

Level 1

IO Pin ..

Level x

Number of Pins (8 bit):

The number of pins that is contained in the command. The max number of pins is 4

IO Pin x (8 bit):

The physical pin that should be changed when the Serial API powers down the host CPU system. A full
list of physical pins can be found in section 4.10.2.7.1.

Level x (8 bit):

The level the output pin should have when the specified power mode is set.

0 – Low

1 – High

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 90 of 103

 CONFIDENTIAL

4.10.2.8 Serial API Ready Command

The Ready Command is used by the host to inform the Z-Wave module that it is ready to receive
command on the UART.

7 6 5 4 3 2 1 0

FUNC_ID_READY

[SerialLinkState]

SerialLinkState (8 bit):

Set the Serial link state between HOST and the SerialAPI Z-Wave module.

SERIAL_LINK_DETACHED – The Serial link state should be DETACHED or SerialAPI stops sending

data to HOST until either READY is transmitted again in connected state or any valid SerialAPI
command is received from HOST.

SERIAL_LINK_CONNECTED – The Serial link state should be CONNECTED or SerialAPI sends data to

HOST when needed.

The SerialAPI Z-Wave module starts up after reset in the Serial link state DETACHED.

SerialLinkState define Value

SERIAL_LINK_DETACHED 0x00

SERIAL_LINK_CONNECTED 0x01

4.10.2.9 Serial API Softreset Command

The host CPU system can make a software reset of the Z-Wave module by using the Softreset
Command.

7 6 5 4 3 2 1 0

FUNC_ID_SERIAL_API_SOFT_RESET

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 91 of 103

 CONFIDENTIAL

4.10.2.10 Serial API Watchdog Commands

Some PC based applications cannot guarantee kicking the watchdog before timeout causing the
watchdog to reset the Z-Wave ASIC unintentionally. The following Watchdog Commands are therefore

available to avoid this:

 Start watchdog: Enable watchdog and ApplicationPoll kick watchdog

 Stop watchdog: Disable watchdog and stop kick watchdog in ApplicationPoll

Watchdog handling disabled when powered up and Sleep/FLiRS mode will temporary stop watchdog.

The host CPU system can start watchdog functionality by using the Serial API function
FUNC_ID_ZW_WATCHDOG_START:

7 6 5 4 3 2 1 0

FUNC_ID_ZW_WATCHDOG_START

The host CPU system can stop watchdog functionality by using the Serial API function
FUNC_ID_ZW_WATCHDOG_STOP:

7 6 5 4 3 2 1 0

FUNC_ID_ZW_WATCHDOG_STOP

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 92 of 103

 CONFIDENTIAL

4.10.2.11 Serial API Files

The Product\SerialAPI directory contains sample source code for controller/slave applications on a
Z-Wave module. The application uses also a number of utility functions described in section 3.3.11.

MK.BAT

Make bat file for building the sample application in question. To only build applications using EU
frequency enter: MK “FREQUENCY=EU” in command prompt.

Makefile

This is the Makefile for the sample application in question defining the targets built. Refer to section
3.2.1.1 for additional details.

Makefile.common_ZW0x0x_supported_functions

This makefile makes a text file showing the supported serial API functions for the given target.

MakePatch.bat

Make hex files for patch system including the <appl>_ZW040x_<freq>_devmode_patch_RAM.hex
targeted for SRAM when using development mode.

Config_app.h

This header file contains defines for application version.

UART_buf_io.h / UART_buf_io.c

Low level routines for handling buffered transmit/receive of data through the UART.

conhandle.h / conhandle.c

Routines for handling Serial API protocol between PC and Z-Wave module.

serialappl.h / serialappl.c

This module implements the handling of Serial API protocol. That is, parses the frames, calls the
appropriate Z-Wave API library functions and returns results etc. to the PC. Enable/disable support of a
given Serial API function in serialappl.h header file.

serialappl_patch.c

This file contains the patched source code of serialappl.c

SerialAPI_Ctl_Bridge_ZW040x.mpw / SerialAPI_Ctl_Bridge_ZW040x_....Uv2

SerialAPI_Ctl_Installer_ZW040x.mpw / SerialAPI_Ctl_Installer_ZW040x_....Uv2
.
.

.
SerialAPI_ Slave_Routing_ZW040x_....Uv2

uVision4 *.Uv2 project files created by makefile system using uVisionProjectGenerator software.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 93 of 103

 CONFIDENTIAL

Supported.bat

Batch file called by Makefile.common_ZW0x0x_supported_function to obtain delayed environment
variable expansion when using SET in DOS prompt.

make-supported-functions-include.bat

Windows batch script for generating SerialAPI defines for supported functions based on what exists in
library.

serialapi-supported-func-list.txtt

Template file for generating SerialAPI defines for supported functions based on what exists in library.
Enable/disable support of a given Serial API function in serialappl.h header file.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 94 of 103

 CONFIDENTIAL

4.10.3 Power management

4.10.3.1 System overview

The power management API is designed for use in a system where a Z-Wave module is connected to a

host CPU system via a serial port and a number of I/O pins are used for control of the power to the Host
CPU system.

Figure 2, Power Management system

In a system like this it is necessary to have a communication protocol between the two CPU systems that

ensures that the correct power state is selected and the Z-Wave module and the host CPU system
always is in agreement about what power state they are using at all times.

All power management configuration and setup is done runtime using the serial API interface from the

host processor system. The Z-Wave module must therefore be powered at all times in the system and
decisions to power down the system always comes from the host CPU system. Power management is
also possible on a Z-Wave module without external non-volatile memory.

4.10.3.2 I/O pins

A number of I/O pins on the Z-Wave module and the host processor system can be used for the power
management API. No GPIO pins will be configured or changed before the host CPU configures the pin.

All GPIO pins will be in their reset state (input, pull up enabled) until the host CPU issues an serial API
command that configures or change status of a pin.

All GPIO‟s used as input on the Z-Wave module must be asserted for at least 20ms when changing level

to allow the firmware to detect the change of the input pin status.

PoweredUp pin (Optional)

An input pin on the Z-Wave module is needed to communicate from the host processor to the Z-Wave

module that the host processor system is now ready to be powered down. This pin is necessary if the
host CPU system is not able to send commands on the UART during the power down sequence because
the UART driver or the OS has been stopped. If configured the PoweredUp pin is set active on system

power on.

Z-Wave module Input

Host CPU Output

PowerCtrl(1..4)

The PowerCtrl pins are used to control the power management hardware from the Z-Wave module.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 95 of 103

 CONFIDENTIAL

Z-Wave Output

Host CPU N/A

4.10.3.3 Power management configuration sequence

When the serial API starts up for the first time it assumes that there is no power management present.
The power management is activated in the Z-Wave module by configuring the power up mode.

See section 4.10.2.7 for a detailed description of the serial API commands.

When configuring the power management the following sequence of events should happen:

 The host configures the PoweredUp pin by using the Serial API Power Management Pin
Configuration command. (Optional)

 The host configures the Power Up PowerCtrl pin(s) by using the Serial API Power Management
Pin Configuration command

 The host configures the Wake up criteria‟s by using the Power Up on Z-Wave Configuration
Command (see section 4.10.2.7.3) and/or the Power Up on Timer Configuration Command (see

section 4.10.2.7.4).

4.10.3.4 Power up sequence

When powering up the following sequence of events should happen:

1. The Z-Wave module receives a command via RF that triggers a power up of the system.

2. The Z-Wave module changes the state of the power control I/O pins to the
POWER_MODE_RUNNING state

3. The Z-Wave module waits for the Serial API Ready command on the UART

4. The host CPU system powers up and sets the PoweredUp pin active. (Optional)

5. When ready the host CPU system sends the serial API Ready command.

6. When the Ready command is received the Z-Wave module sends the command that triggered
the power up to the host CPU system.

4.10.3.5 Power down sequence

When powering down the following sequence of events should happen:

1. The host must have performed the configuration sequence specified in section 4.10.3.3

2. The host processor determines that the system should power down now (based on, activity,

timer, received commands, etc.)

3. The host processor sends an Serial API Set Power Mode command to the Z-Wave module

4. The Z-Wave module starts to monitor the PoweredUp pin (if configured) and continues to next

state in power down sequence when the PoweredUp pin goes NOT active.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 96 of 103

 CONFIDENTIAL

5. The Z-Wave module changes the state of the power control I/O pins according to the power
mode requested by the host.

4.10.3.6 Power modes

The power management API supports any number of power modes that the host CPU system wants to
use. The power modes can be divided into 2 different groups:

POWER_MODE_RUNNING

In power mode running the host CPU system is running. The host CPU system can receive commands
send from the Z-Wave module on the UART.

POWER_MODE_POWERDOWN

In power mode power down the host CPU system is unable to receive commands send on the UART. All
Z-Wave RF commands received by the Z-Wave module will be discarded if they do not trigger a wakeup.
The only transition of power mode from this mode it to go to the POWER_MODE_RUNNING.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Application Sample Code Page 97 of 103

 CONFIDENTIAL

4.11 PC based Controller Sample Application

The PC\Source\SampleApplications\ZWavePCController directory contains sample application source
code in C# that implements a PC based Controller using the development tool Visual Studio 2008.

For further information about the features of the PC based Controller, see [1].

4.12 PC based Installer Tool Sample Application

The PC\Source\SampleApplications\ZWaveInstaller directory contains sample application source code in

C# that implements a PC based Installer Tool using the development tool Visual Studio 2008.

For further information about the features of the PC based Installer Tool, see [2].

4.13 PC based Z-Wave Bridge Sample Application

The PC\Source\SampleApplications\ZWaveUPnPBridge directory contains sample application source
code in C# that implements a PC based Z-Wave to UPnP Bridge using the development tool Visual
Studio 2008.

The Z-Wave to UPnP bridge sample application contains UPnP.dll and UPnP_AV.dll from
http://opentools.homeip.net/dev-tools-for-upnp

For further information about the features of the PC based Z-Wave to UPnP Bridge, see [3].

http://opentools.homeip.net/dev-tools-for-upnp

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Tool Sample Code Page 98 of 103

 CONFIDENTIAL

5 TOOL SAMPLE CODE

The Z-Wave Developer‟s Kit includes tool sample code to enable customization of production

environment.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Tool Sample Code Page 99 of 103

 CONFIDENTIAL

5.1 Z-Wave Programmer Firmware

The SDK contains sample code that demonstrates how to program the 100/200/300/400 Series ASIC.
The ZDP03A Z-Wave Development Platform [14] supports this purpose. The Z-Wave Programmer

firmware resides on the AVR ATmega128 chip on ZDP03A and controlled by the PC based Z-Wave
Programmer application [7]. For a detailed description of the communication protocol between the AVR
and PC based Z-Wave Programmer application, refer to [12].

Source code developed in the following environment:

- WinAVR v20071221:
o GNU Binutils 2.18 (including assembler, linker, etc.)

o Compiler Collection (GCC) 4.2.2
o avr-libc 1.6.0

- Z-Wave Library v2.91

- Keil uVision PK51 v8

Project environment:

- Eclipse Platform v3.5 with plugins:

o AVR Eclipse Plugin
o (optional) Polarion Subversive SVN Connectors
o (optional) Eclipse Subversive - SVN Team Provider Project

The AVR ISP In-System Programmer programs the AVR Atmega128.

5.1.1 ATmega_ZWaveProgFW Files

The Tools\Programmer\ATmega_ZWaveProgFW directory contains the source code for the 400 Series

low level programming application.

MK.BAT

Batch file used to build AVR based sample applications in versions for the firmwave update (via Z-Wave

Programmer) and complete ATMega128 firmware (via AVR ISP In-System Programmer).

MAKE_FIRMWARE.BAT

Batch file used to make complete ATMega128 firmware from bootloader firmware and firmware update.

Called by MK.BAT.

MAKE_MTP.BAT

Batch file used to build the ZW040x Execute Out of SRAM application, that give the ability to the

ATMega128 firmware to access the MTP memory of the ZW040x chip. Called by MK.BAT.

.cproject; .project; .settings

Project files of the Eclipse IDE used to edit AVR based sample application source code.

src\ATMega_spi.c; .h

Source code of the implementation of the software SPI, which is connected to the Z-Wave Module.

src\commands.h

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Tool Sample Code Page 100 of 103

 CONFIDENTIAL

This header file contains definitions of the commands of the Z-Wave Programmer Communication
Protocol [12].

src\conhandle.c; .h

Source files, contains the functions for handling the Programmer frames via the UART.

src\eeprom_if.c; .h

Source code of the Z-Wave Module External non-volatile memory interface. Reading / writing of the Z-

Wave Module External non-volatile memory via the software SPI was implemented.

src\mtp.c; .h

Source code of the ZW040x Execute out of SRAM application, which implements the ZW040x MTP

memory interface.

src\ports.h

Header file with definitions of port names of the ATMega128 in ZDP03 (ZDP02) board.

src\UART_buf_io.c; .h

Source code of buffered transmit/receive of data through the UART.

src\ZWaveFlash.c; .h

Main source code of the Z-Wave Programmer Firmware. Contains the implementation of all programmer
commands handlers and Z-Wave chips programming algorithms.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Required Development components Page 101 of 103

 CONFIDENTIAL

6 REQUIRED DEVELOPMENT COMPONENTS

6.1 Software development components

There is an additional 3
rd

 party software tool that is required to develop Z-Wave applications that is not
supplied with the Z-Wave Developer‟s Kit. That is the Keil PK51 v9.0 Professional Developer‟s Kit for the
8051 microcontroller:

Z-Wave libraries and sample applications are built and tested on version 9.02a but newer versions
should also apply according to Keil‟s recommendations. It is not possible to use earlier Keil PK51
versions than v9.0 in connection with this SDK because Keil changed object format.

The Keil Developer‟s Kits can be purchased directly from Keil or from one of their local distributors.
Please visit www.keil.com for details. Alternatively can it be purchased from Sigma Designs.

Keil Software, Inc.
1501 10th Street, Suite 110

Plano, TX 75074
USA

 Keil Elektronik GmbH
Bretonischer Ring 15

D-85630 Grasbrunn
Germany

Toll Free: 800-348-8051

Toll Free: -

Phone: 972-312-1107

Phone: (49) (089) 45 60 40 0

Fax: 972-312-1159

Fax: (49) (089) 46 81 62

Sales: sales.us@keil.com

Sales: sales.intl@keil.com

Support: support.us@keil.com

Support: support.intl@keil.com

6.2 100/200/300/400 Series ASIC programmer

This Z-Wave Developer‟s Kit comes with the Z-Wave Programmer included. The Z-Wave Programmer is
used for downloading new firmware to the Z-Wave ASIC. The Z-Wave Programmer is also used when
setting lock bits, programming the external non-volatile memory on the Z-Wave module etc.

For a detailed description of the ZDP03A Z-Wave Development Platform refer to [14].

6.3 Hardware development components for 400 Series

The 400 Series based embedded sample application are designed for the ZDP03A Z-Wave

Development Platform in combination with a Z-Wave module hosting the sample application. Some
applications use also the AVR processor on ZDP03A as host together with a serial API application
running on the Z-Wave module. The Z-Wave modules exist in two variants:

 ZM4101 Z-Wave Module [15] mounted on a ZM4125 Z-Wave Module [17].

 SD3402 Z-Wave ASIC [16] mounted on a ZM4225 Z-Wave Module [18].

http://www.keil.com/
mailto:sales.us@keil.com
mailto:sales.intl@keil.com
mailto:support.us@keil.com
mailto:support.intl@keil.com

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. References Page 102 of 103

 CONFIDENTIAL

REFERENCES

[1] SD, INS10240, Instruction, PC Based Controller User Guide.

[2] SD, INS10241, Instruction, PC Installer Tool Application User Guide.
[3] SD, INS10245, Instruction, Z-Wave Bridge User Guide.
[4] SD, INS10336, Instruction, Z-Wave Reliability Test Guideline.

[5] SD, INS10249, Instruction, Z-Wave Zniffer User Guide.
[6] SD, INS10250, Instruction, Z-Wave DLL User‟s Manual.
[7] SD, INS10679, Instruction, Z-Wave Programmer User Guide.

[8] SD, INS10236, Instruction, Development Controller User Guide.
[9] SD, INS10326, Instruction, ZW0201 Single Chip Implementation Guidelines.
[10] SD, INS10680, Instruction, Z-Wave XML Editor.

[11] SD, INS10681, Instruction, Secure Development Controller (AVR) User Guide.
[12] SD, INS11072, Instruction, Z-Wave Programmer Communication Protocol.
[13] SD, INS10326, Instruction, ZW0201 Single Chip Implementation Guidelines.

[14] SD, DSH11243, Datasheet, ZDP03A Z-Wave Development Platform.
[15] SD, DSH11055, Datasheet, ZM4101 Module / ZW0401 Single Chip.
[16] SD, DSH11036, Datasheet, SD3402 Datasheet.

[17] SD, DSH11307, Datasheet, Z-Wave ZM4125 Module
[18] SD, DSH11306, Datasheet, Z-Wave ZM4225 Module.
[19] SD, INS12034, Instruction, Z-Wave 400 Series Application Programming Guide v6.01.03.

[20] SD, SDS10242, Software Design Specification, Z-Wave Device Class Specification.
[21] SD, SDS11060, Software Design Specification, Z-Wave Command Class Specification.
[22] SD, INS11596, Instruction, Micro RF Link Tool.

[23] SD, INS11709, Instruction, Working in 400 Series Environment User Guide.
[24] SD, INS11552, Instruction, 400 Series Crystal Calibration User Guide.
[25] SD, INS12131, Instruction, Micro PVT Tool.

INS12035-2 Z-Wave 400 Series Developer's Kit v6.02.00 Contents 2012-05-25

Sigma Designs Inc. Index Page 103 of 103

 CONFIDENTIAL

INDEX

AES128 encryption/decryption .. 45, 49, 56, 59, 64

ApplicationTestPoll ... 53, 65, 69
AVR ATmega128..17, 26
Calibration... 34

Carrier signal ..53, 65
Creating a Z-Wave DLL based PC application ... 39
Crystal calibration .. 34

Enhanced Reliability Test Tool .. 30
ERTT ...11, 30
extern_eep.hex .. 9

External non-volatile memory ... 9, 13
FUNC_ID_SERIAL_API_GET_CAPABILITIES .. 81
FUNC_ID_SERIAL_API_GET_INIT_DATA .. 80

FUNC_ID_SERIAL_API_SET_TIMEOUTS .. 78
funcID ..75, 77
Home ID ... 9

Intellectual property rights ... 45, 49, 59, 64
JP_32MHZ .. 15
JP_DK .. 15

JP_DK_32MHZ ... 15
Keil ... 101
Low power transmission levels ... 8

Modulated signal ..53, 65
Normal power transmission levels ... 8
Production test mode ..53, 65

PVT and RF regulatory measurements.. 35
Random home ID .. 9
Serial API ACK frame... 73

Serial API buffers ... 79
Serial API CAN frame .. 73
Serial API Capabilities Command ... 81

Serial API communication error handling ... 78
Serial API Data frame .. 73
Serial API frame flow ... 75

Serial API NAK frame... 73
Serial API Node List Command .. 80
Serial API PM External Power Up Configuration Command .. 88

Serial API PM Pin Configuration Command ... 82
Serial API PM Power down Mode Configuration Command .. 89
Serial API PM Power up Mode Configuration Command... 84

Serial API PM Power Up on Timer Configuration Command ... 87
Serial API Power Management Commands ... 82
Serial API Ready Command ... 90

Serial API Softreset Command ... 90
serial API Watchdog Commands .. 91
Serial EEPROM... 13

Serial Flash ... 13
uninitialized RAM bytes .. 49
ZDP02A Development module.. 26

ZDP03A Development module...17, 26
Z-Wave DLL architecture.. 39
Z-Wave DLL namespaces .. 39

Z-Wave Programmer ... 101

