Instruction

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

Document No.: INS12034

Version: 2

Description: Guideline for dewveloping 400 Series based applications using the application
programming interface (API) based on Deweloper's Kit v6.0x

Written By: JFR;JBU
Date: 2012-05-25
Reviewed By: CHL;PSH;BBR

Restrictions: Partners Only

Approved by:

Date CET Initials Name Justification
2012-05-25 14:07:39 NTJ Niels Thybo Johansen

This documentis the property of Sigma Designs Inc. The data contained herein, in whole

or in part, may not be duplicated, used or disclosed outside the recipient for any purpose. SIGMA
This restriction does notlimitthe recipient's rightto use information contained in the data if

itis obtained from another source without restriction.

CONFIDENTIAL

INS12034-2

Doc. Rev Date

1 20091206
1 20120111
2 20120509
2 20120524

By

JFR
PSH
JFR
JFR

JBU

Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

All

5.1
5.4.3
54.111
54.9.1
553

Pages affected Brief description of changes

REVISION RECORD

Based on INS10682-1 Z-Wave Z-Wave 400 Series Appl. Prg. Guide v6.10.00
Added API using guidelines

Removed JP only API call ZW_SetOneChannelTransmit()

Added ApplicationRFNotify to supportto external pow er amplifier (PA)
Updated ZW_SetSleepMode descriptionw rt. beamCount and POR
Documented TRANSMIT_COMPLETE_NOROUTE callback.

Sigma Designs Inc.

Revision Record and Tables of Contents Page ii of ix

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Table of Contents

1 ABBREVIATIONS ..ottt ettt et e et e et e e e 1
2 INTRODUCTION ...ttt ettt et et et et e et et e e et e ettt e e et e et e e et e e era e ennaees 1
P2 R ¥ (1 0L 0 1] = PSPPI 2
2.2 AUdIENCE AN PIerEQUISITESiiieiiiiti ettt ettt e e et e e e et e e eenaeens 2
3 Z-WAVE SOFTWARE ARCHITECTURE .. .oitiiiii et 3
3.1 Z-Wave SYStem StartuUp COOEttt e e e 4
3.2 Z-WAVE IMAIN LOOD -ttt ettt ettt ettt et 4
3.3 Z-WAVE PrOtOCOI LAYEISceiiiiitiieeeie ettt ettt et et et e e e e e neas 4
3.4 Z-WAVE SYSTEIM LAYET ..ot 4
3.5 Z-WaAVe SOWAIE TIMEIS ... e et e e e e e e e e e e e et e e anes 6
3.6 Z-WaVe HArdWAre TIMEIS ...ttt e e e e e et e e e e ea e e e e e e e e et e e e e e eeenns 7
3.7 Z-Wave HardWare INTEITUPESoevuieieei ettt ettt ettt e e e e e e e eees 7
3.8 INTEITUPL SEIVICE FOULINES. ...eetiiiiti ettt ettt e et r et et et e et e e e e e eeens 8
3.8.1 SR PAOES ... e 8
3.8.2 Calling fuNCtioNS fromM ISR ... et 8
e T NV (o To [PP 9
3.9.1 Z-Wave Portable Controller NOE ... e 9
3.9.2 Z-Wave Static CONroller NOGEiiui e 11
3.9.3 Z-Wave Installer Controller NOGEiiiuiiiii e 12
3.9.4 Z-Wave Bridge Controller NOEcoouiiiiiii e e 13
3.9.5 Z-Wave ROULING SIAVE NOGEcoiiiiiiii e 14
3.9.6 Z-Wave Enhanced SIave NOGEoouuiiiiie e 16
3.9.7 Z-Wave Enhanced 232 SIave NOGEcouuiiiiiiiiiii e 17
3.9.8 Adding and Removing Nodes to/from the NetWOrkccceviiiiiiiii e, 18
3.9.8.1 Adding @ NOAE NOMMaAIIYouie e e aaans 18
3.9.8.2 Adding a new controller and make it the primary controllerccoeviiiiiiiiiieennnnnn. 18
3.9.8.3 Create a New pPrimary CONIOIEr cuuii e e e ens 18
3.9.84 SUGC ID SOV ..ttt et e e e 19
3.9.9 The Automatic NetWOrk UPateocoeiiiiiiieii e e e e e e e e ees 19

4 DEVELOPMENT ENVIRONMENT ...ttt ettt ettt ettt e e e et e e e eeneees 21
5 Z-WAVE APPLICATION INTERFACES ...t 22
5.1 APIUSAQE QUIAEINES ...ttt 22
5.1.1 2 L0111 a0 o =4 o o 22
51.2 OVerlappPiNg AP CaAIISo e 22
5.2 ZAWAVE LIDTAIES ..ttt 23
521 Library FUNCHONAIITYuiiei et 23
5.2.1.1 Library Functionality without & SUC/SIS ... 24
5.2.1.2 Library Functionality With @ SUCoiiiiiiiii e 25
5.2.1.3 Library Functionality With @ SIS ... 26
5.2.1.4 Library MemoOry USAQEcu ittt ettt e et e e e e e e e e eanas 26

5.3 Z-WaAVE HEaU Bl FlES ... e e e e e ettt 27
5.4 Z-WaAVe COMMON AP L e et et e e 29
54.1 Required Application FUNCLIONSc.iiuiiiiiie e e e e e e aae e e 29
54.1.1 APPHCAtiONINITHWV L. e 30
5.4.1.2 APPLICAtIONINIESWV .o e 31
5.4.1.3 APPLICAtIONTESIPOI ... 31
5.4.1.4 APPLICALIONP Ol .ee e 32
5.4.1.5 ApplicationCommandHandler (Not Bridge Controller library)ccooooeeiiiiiiiiiniinnn.. 32
5.4.1.6 ApplicationNodeINformMationcoiu i 34
5.4.1.7 ApplicationSlaveUpdate (All slave libraries)c.ccovviiiiiiiiiii e, 37
5.4.1.8 ApplicationControllerUpdate (All controller libraries)ccoooveiiiiiiiiiiii e, 38
Sigma Designs Inc. Revision Record and Tables of Contents Page iii of ix

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
5.4.1.9 ApplicationCommandHandler_Bridge (Bridge Controller library only)......................... 40
5.4.1.10 ApplicationSlaveNodelnformation (Bridge Controller library only)cooooiiiiiiniis 42
5.4.1.11 APPlICAtiONRINOLIY ..t 44

5.4.2 Z-WAVE BASIS AP .. e 45
5.4.2.1 ZW _EXPloreReqUESHINCIUSIONuiiti e 45
5.4.2.2 ZW _ GEtPIOtOCOISIAIUS. . ..u e 46
5.4.2.3 ZW_GetRaANAOMWOIToe i e e e e e aaas 46
5.4.2.4 W _POIL .. e 48
5.4.2.5 AL = 1T [0] o 2 48
5.4.2.6 ZW _REPOWEILEVEISEL.....eii i e e s 49
5.4.2.7 ZW _REFPOWEILEVEIGELiiiiiiieii et e e e e e anas 50
5.4.2.8 ZW_ReqUESTNEtWOrKUPALEceuiieiiei e e e e 51
5.4.2.9 ZW_RFPoOWerevelReAISCOVEIYSELouuiiiiiiei e e e 53
5.4.2.10 ZW_RFADOVE3VSUPPIYGUArANTEEA .. .eveiiiieiiie et 54
54.2.11 ZW_SendNOdeINfOrMAatioNiiiiiiii e 55
5.4.2.12 W _SENATESIFIAME ...ttt et e 57
5.4.2.13 ZW_SEetEXIINTLEVEI ... e 58
54.2.14 ZW_SetPromiscuousMode (Not Bridge Controller library)........ccccooveiiiiiiiiineinncnnnnn. 59
5.4.2.15 ZW_SetRFRECEIVEMOU ittt 60
5.4.2.16 W _TYPE_LIBIAIY .t e 61
5.4.2.17 F AT Y=Y £ (o) [P PPT 62
5.4.2.18 ZW_VERSION_MAJOR/ ZW_VERSION_MINOR / ZW_VERSION_BETA 63
5.4.2.19 ZW_WatChDOGENADIEceeiii e 64
5.4.2.20 ZW_WatchDogDisSablecouiiiiii e 64
54.2.21 ZW_WALChDOGKICK ...ttt 65

5.4.3 Z-WaVve TranSPOrt AP ... e 66
5.4.3.1 W SENADALA ... ceuiitei e e 66
5.4.3.2 ZW_SendData_Briageoiuuiiieiieee e 71
5.4.3.3 ZW_SendDataMeta Bridgeciuiiiiiii i 75
5.4.3.4 ZW_SendDataMUIti........couiiiiiie e 77
5.4.3.5 ZW_SendDataMulti_Bridgecouiiiiiii e 79
5.4.3.6 ZW _SeNADAtaA DO ...t e 81
5.4.3.7 YL S 1= 2 o [0 o 1 S 82
5.4.3.8 ZW_SetListenBeforeTalkThreshold...........c.oviiiiiii e 83

5.4.4 Z-Wave NOde Mask AP ... et 84
5.4.4.1 ZW _NOAEMASKSEBIL.....cee e e e e e e e e e e enas 84
5.4.4.2 ZW _NOAEMASKCIEAIBIL.......ue i e e s 84
5.4.4.3 ZW _NOAEMASKCIBAT ... e ettt e e e e e e e e ea e eenns 85
5444 ZW _NOAEMASKBILSIN ... et e e e 85
5.4.4.5 ZW _NOAEMASKNOUEINeeee e e e e e e e e ea e enas 86

5.4.5 L = 87
5.4.5.1 AV @ S T - 88

5.4.6 (€] o (O 2 1 1 - Tod (0 SR TPPP 89
5.4.6.1 | L 89
5.4.6.2 PN TN e e e e e a e aaans 89
5.4.6.3 |V 1 90
5.4.6.4 |V (T 90
5.4.6.5 |V 1O 1 €1 I 90
5.4.6.6 |V 1 PP 91

5.4.7 Z-WaAVE MEMONY AP . e enas 92
54.7.1 MEMOIYGELID ... vt e e e e e 92
5.4.7.2 MM O Y GO B Y ... e e 93
5.4.7.3 MEMO Y P U B YL ..ttt e e e 94
5.4.7.4 MEMOTY GEIBUTEI ... et e e 95
5.4.7.5 MEMONY P ULBUI BT e e e 96
5.4.7.6 YV =LY o] o] 41 [P 97
5.4.7.7 ZW_MEeMOIYFIUSH .o e 97

Sigma Designs Inc. Revision Record and Tables of Contents Page iv of ix

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.8 Z-WaAVe TIMEE AP | e ettt ans 98
5.4.8.1 LI AT=T 6] ¥ 1 SRR 98
5.4.8.2 TIMEIRESTAI ...t ettt e e e et e e e e ea s 99
5.4.8.3 TIMEICANCEL ... i e 100

5.4.9 POWET CONLFOI AP ..o et et e e et e e e e e et e e e aee 101
5.4.9.1 ZW _SEtSIEEPMOU e it 101

5.4.10 SPHINEITACE AP | ..o et 104
5.4.10.1 W _SP I INIE et e e 104
5.4.10.2 ZW _SP I X G ettt 105
5.4.10.3 ZW _SPIL aCtiVe gt it 106
5.4.10.4 ZW _SPIL COll et i 107
5.4.10.5 W _SP L X SOttt 108
5.4.10.6 pA T S | = I =T - 1 = P 109
5.4.10.7 AV Y = [0 T T o 110
5.4.10.8 A Y o [0 T o G -] S 112
5.4.10.9 AT\ S Y o (T ot 1YY o T 113
5.4.10.10 2ZW_SPIO _COll QB iuuuiiiiiiiiiieii ettt e e e e 114
5.4.10.11 2ZW_SPIO Nt O 1oiiiiiiii et e 115
oI 0 I 2 VL Y (0 o Y = 116
5.4.10.13 ZW_SPI0_ENADIE . ceuiiii e 117
5.4.10.14 2ZW_SPIO Nt _CIEAT ...n it 118

5411 ADC INTEITACE AP ... e e 119
5.4.11.1 AV 2 @ o P 121
5.4.11.2 ZW_ADC_POWEr_€Nable......couiiiiiii e 122
5.4.11.3 ZW_ADC_€NADIE ... 122
5.4.11.4 ZW _ADC _PIN SEIECT ..ottt e 123
5.4.11.5 ZW_ADC_threshold mode Stcoiiiiiiiiiiiii e 123
5.4.11.6 ZW_ADC _threshold Set........ciiuiiiiiiie e 124
5.4.11.7 ZW_ADC _iNt_€NAbIEt 124
5.4.11.8 ZW _ADC N ClB AT e ittt e 125
5.4.11.9 ZW_ADC _iS_fITEQ .. e 125
Lo 0 O T4 VAV N I T O /=] | o = P 126
5.4.11.11 ZW_ADC_buffer_enable ..o 126
5.4.11.12 ZW _ADC _AULO_ZEIO S Bl iuuitnieiiiitieiiit et ie ettt e e e e et e e e aaas 127
5.4.11.13 ZW_ADC _reSOIULION S . .uuiiiiiiiiiiiii it e e e e e 127
5.4.11.14 ZW_ADC_batt_monitor_enablec.oeiiiiii 128

5.4.12 UART INEEIACE AP ..o et 129
5.4.12.1 TRANSIMISSION ...ttt et ettt et ettt e e e 129
5.4.12.2 RECEPLION . .. 129
5.4.12.3 RS 23 e 129
54.12.4 INtegration t0 the ProtOCOlcouuiiii e 130
5.4.12.5 Serial INterfaCe APl e 131
5.4.12.6 ZW_UARTO init / ZW_UARTL NIt ..uuiiiiiiiiieeiee e e e e e et e e eeaens 131
5.4.12.7 ZW_UARTO_zm4102_mode_enable ..o 132
5.4.12.8 ZW_UARTO_rx_data_get / ZW_UARTL rx_data_getc.oeeuiieniieiiiiiiiiieieieeieees 132
5.4.12.9 ZW_UARTO_rx_data_wait_get / ZW_UART1_rx_data_wait_getc..cceeeeneennne. 133
5.4.12.10 ZW_UARTO_tx_active_get / ZW_UARTL tx_active_getccoveeiiiiiiiiiiiiiiceenn. 133
5.4.12.11 ZW_UARTO_tx_data_wait_set / ZW_UART1_tx_data_wait_setcccoeenvieniennnes 134
5.4.12.12 ZW_UARTO_tx_data_set / ZW_UARTL_tx_data_Set........cccoeeiiiiiiiiiiiiiiaiieeiieeenne. 134
5.4.12.13 ZW_UARTO_tx_send num / ZW_UART1 tX_send_Numccccoeiiiiiiiiiiiiiiininnnnns 135
5.4.12.14 2W_UARTO_tx_send_str/ ZW_UARTL tX_send_Str.......cccccoviiiieiiieiiieiieiieieeineeann, 135
5.4.12.15 2ZW_UARTO_ tx_send_nl/ ZW_UARTI1 tx_send Nlccoiiiiiiiiiiiiiiiiineeeeene, 136
5.4.12.16 2ZW_UARTO_tx_int_clear/ ZW_UARTL tx_int_clearccooeeiveiiiiiiiiiiiicieeeen, 136
5.4.12.17 2ZW_UARTO_rx_int_clear/ ZW_UARTL_rx_int_clear...........ccoeiveiiiiiiiiiiiiiieiecieenn, 136
5.4.12.18 2ZW_UARTO_tx_int_get/ ZW_UARTL tX_int_getccoviiiiiiiiiiiiiiiieeee e, 137
5.4.12.19 ZW_UARTO_rx_int_get / ZW_UARTL rX_int_getcoooiiiiiiiiiiiiiiieiee e, 137

5.4.13 Application HW Timers/PWM interface APloiiiiiiiiii e 138

Sigma Designs Inc. Revision Record and Tables of Contents Page v of ix

CONFIDENTIAL

INS12034-2

5.4.13.1 ZW_TIMERO NIt ceiiiti e e
5.4.13.2 ZW_TIMERO _INT_CLEAR ..ot
5.4.13.3 ZW_TIMERO_INT_ENABLE ...cootiiiiii e
5.4.13.4 ZW_TIMERO_ENABLE ...t
5.4.13.5 ZW_TIMERO_eXt_CIK ...oieuiiiiiiiii e
5.4.13.6 ZW_TIMERO_ Xt _gall...iuiiiiiiieiiiieiei e
5.4.13.7 ZW_TIMERO_LOWBY TE_SET ...ttt
5.4.13.8 ZW_TIMERO_HIGHBY T TE_SET ..ot
5.4.13.9 ZW_TIMERO_HIGHBY T TE_GET ...cictiiiiiiiiiieiiec e
5.4.13.10 ZW_TIMERO_LOWBYTE_GET ..ccotiiiiiiiiiiiii e
54.13.11 ZW_TIMERO_WOrd_get....ccuiiriiiiiiiiiii e ev e e e
54.13.12 ZW_GPTIMER_INIT c.uoiiiii e
5.4.13.13 ZW_GPTIMER_INt_Clear.......cccvviiiiiiieii e
54.13.14 ZW_GPTIMER Nt QL. .uiiiiiiiiieiiii e v e e e
5.4.13.15 ZW_GPTIMER_int_enableccoeveiiiiiiiiiiieii e
5.4.13.16 ZW_GPTIMER_€enable........ccccuiiiiiiiiiii e
5.4.13.17 2ZW_GPTIMER_PAUSE ...uivviieiiiieiiiie e e e et e e eeanaeeaen
5.4.13.18 ZW_GPTIMER_reload_Set.......ccoveiiiiiiiiieiiieiie e
5.4.13.19 ZW_GPTIMER_reload_get.......coovuieieieiiiiei e
541320 ZW_GPTIMER Q€L ... iiiiiiiiiiei et e e
5.4.13.21 2ZW_PWM_INIt oot e
5.4.13.22 ZW_PWM_€enable. ...
5.4.13.23 ZW_PWM_INt_CIEAIceiiiiiiieiie e
5.4.13.24 2ZW_PWM_INt_get..ceuiiiiiiiii et
5.4.13.25 ZW_PWM_int_enable ..o
5.4.13.26 ZW_PWM_waveform_Set.........cooiiiiiiiiiiiiiic e
5.4.13.27 2ZW_PWM_waveform_get.......cccoviiiiiiiii e
5.4.14 AES API (Only available in a secure SDK)........cccoevvieiiieiiiiiecieiieenn,
5.4.14.1 ZW_AES _€Ch Sl i
5.4.14.2 ZW_AES _€Ch_get i
5.4.14.3 ZW_AES _€nableooviii
5.4.14.4 ZW_AES_aCtiVe_get...c.oiieiiiiii i
5.4.15 TRIAC CoNtroller AP ...
5.4.15.1 ZW_TRIAC NIt e
5.4.15.2 ZW_TRIAC_€nable....cc.ieiiiiic e
5.4.15.3 ZW_TRIAC _dimlevel_Setocoviiiiiiiiieee e,
5.4.15.4 ZW_TRIAC_int_enablecoooiiiiiiii e,
5.4.15.5 ZW_TRIAC _INt_ QL ..eii it
5.4.15.6 ZW_TRIAC _INt_ClEAN ovvn i
5.4.16 LED Controller APceeii e
5.4.16.1 AV X {1
5.4.16.2 ZW_LED _waveforms_Set.......ccoviiiiiiiiiieiee e
5.4.16.3 ZW_LED_waveform_Setcooiiiiiiiiiii e
5.4.16.4 ZW_LED BUSY . eeiieii e
5.4.17 Infrared Controller AP
54.17.1 Carrier DeteCtor/GeNEratorvvuu e
5.4.17.2 Organization of Mark/Space data in Memorycccooceeeeeennn.
5.4.17.3 IR TraNSMITLEr ... e e e e e
5.4.17.4 IR RECEIVET ..t
5.4.17.5 W IR _EX NIt Lo
5.4.17.6 ZW IR X _dala ..vvniicii e
5.4.17.7 ZW IR _tX_StatUS_geL. ..t
5.4.17.8 ZW IR _1earn_init......ccouiiiii e
5.4.17.9 ZW IR _learn_data.......coccuviiniiiii e
5.417.10 ZW_IR_IX_StatUS_geL ..iuuiuiiiiiiiiiii i e e e
5.4.17.11 ZW_IR_Status_Clearccoovuiiiiiiiii e
54.17.12 ZW_IR_diSableooiiiiii

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

2012-05-25

Sigma Designs Inc.

Revision Record and Tables of Contents

CONFIDENTIAL

Page vi of ix

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
5.4.18 Keypad Scanner Controller AP e 192
5.4.18.1 A NS T [o1 S PP 195
5.4.18.2 ZW _KS _BNADIE ..o 197
5.4.18.3 ZW _KS PO _BNADIE ... 198
5.4.19 USB CONEIOIEE AP ... et e et e e e eaens 199
5.4.19.1 W _USB NIt .t 200
5.4.19.2 ZW _USB _diS@hle ... 200
5.4.19.3 AT O 5] 2 =Y o LY) = PPN 201
5.4.19.4 WA O 5] = =Y o Y2 LY 11 = 201
5.4.19.5 pA T O 5] = =Y o A 1= Vo PP 202
5.4.19.6 pA T O 5] = =Y o Y2 = Vo 203
5.4.19.7 ZW _USB _iNt_€NADIE ..oeiiieii e 204
5.4.19.8 ZW _USB _int_SIC_€Nable 205
5.4.19.9 ZW _USB _INE_SIC_Q@L. .. ietieieieeei ettt et 206
5.4.19.10 2ZW_USB _INt_SIC_ClRAI ... ittt 206

LR I VL N = @ o] o1 (0] =T N = 207
5.5.1 ZW_AdANOAETONEEWOIK. ...ttt e e e 207
5.5.2 ZW_AreNOdESNEIGNDOUIS ...ttt e e 210
5.5.3 ZW _ASSIGNREIUMROULEeniiie e et 211
554 ZW_ASSIGNSUCRETUMBROULEiiiiciti ettt e e e 212
5.5.5 ZW_CONIOIEICNANGEeeeiiit ettt et et e e 213
5.5.6 ZW _DeleteREtUINROULEt et e e e e e e e e e e e eans 215
5.5.7 ZW _DeleteSUCREIUIMROULE ceiiei e ettt et e e e e e eans 216
5.5.8 ZW_GetControllerCapabilitieS........ouuivuiiiieii e 217
5.5.9 ZW_GEtNEIGNDOTCOUNT ... ettt et e e e 218
5.5.10 ZW _GetNOdEPIOtOCOIINTO . .uuiit i e e 219
5.5.11 ZW _GEtROULINGINTO ... et 220
5.5.12 ZW_GELROULINGMA X .ttt e ettt e et e e e e et e eeeaeeeana e 221
5.5.13 ZW_GELSUCNOUEID ... ettt et ettt e e e et e et e e e ees 221
5.5.14 ATV] = V1 =T N (o o = PPN 222
5.5.15 ZW _ISPHMANYCI ooee e e et e e 222
5.5.16 ZW_RemoVeFaIl@dNOAEIDccuiiie e e 223
5.5.17 ATV = (=Y o] = o= o= 1 =T\ o Yo 225
5.5.18 ZW_RemoVENOdEFTOMMNEIWOIKuiieiiii e e e e e e 227
5.5.19 ZW_ReplicationReCeiVE COMPIELEc.uiiieiie e 229
5.5.20 ATV = (=Y o] [To2= 14T 1S T= o o 230
5.5.21 ZW _ReQUESTNOAEINTO .. .iue i e 231
5.5.22 ZW_RequestNodeNeighborUpdateovvuiiiii e e e 232
5.5.23 AT Y=Y o 1S L 1 R 233
5.5.24 W _SetDETAUIL . .oeeeee e e 234
5.5.25 AT ST =T V4 011 o T = 235
5.5.26 ZW_SEtROULINGINTO ...t et e 237
5.5.27 ZW_SEEROUIINGMA X L. ettt ettt et e et e e e e e et e e e e et e e e et reaan e eeanaeeeneeanneees 238
5.5.28 AL Y=Y £ 1 U @3 NN o o L= | 5 238
5.6 Z-Wave Static CoNtroller AP oo 240
5.6.1 A g = o] =] U 240
5.6.2 ZW_Create NeWPTIMANYCLIT ..ot e e e 241
5.7 Z-Wave Bridge CONroller AP e 243
5.7.1 ZW_SendSlaveNodelnformationoeuiiiiiii e 243
5.7.2 ZW_SetSIaveLearNMOUEovuiiiii i e 245
5.7.3 ATV Y AT (0 = U Lo Yo PPN 248
5.7.4 ZW _GEtVIRtUAINOGESieeiiiii e et e e e e e e e e e et e et e e aaes 249
5.8 Z-Wave Installer Controller AP e e e 250
5.8.1 ZWTTANSIMIECOUNT ...ttt et e e e e et e et e et e e et e et e e an e eean e 250
5.8.2 ZW _StOrENOAEINTO e e 251
5.8.3 ZW_STOTEHOMEID ..ooiiiiiiii e 252
5.9 Z-WAVE SIAVE AP ..o 253
Sigma Designs Inc. Revision Record and Tables of Contents Page vii of ix

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.9.1 WALV Y= == 11, oo = 253
5.9.2 W SEtDETAUIL ...t 255
5.10 Z-Wave Routing and Enhanced SIave APl ... 256
5.10.1 ZW_GELSUCNOUEID ... ettt et et ettt e e e et e e e e e eaaees 257
5.10.2 ZW _ISNOdeWIithinDIir€CIRANGEcvuiii e e e e e e 258
5.10.3 ZW _RediSCOVEIYNEEUEA.t et e e e e 259
5.10.4 ZW_RequestNeWROULEDESTINALIONScuuiiiiii e e e 261
5.10.5 ZW_ReqUESTNOAEINTO ... cui i e 262
5.11 Serial Command Line DeDUG QT ...cvniieiiii e 263
5.11.1 AT 1= o o | P 265
5.11.2 AT 1= o] o | = o | 266
5.12 RF Settings in App_RFSetup.abl fille.......ovuiiiiie e 267
6 APPLICATION NOTE: SUC/SIS IMPLEMENTATION ..ottt 268
6.1 Implementing SUC support iN @ll NOAESiiiuiiiiii e 268
T S - L o3 ©o g1 1o 1 5 268
6.2.1 Request for DeCOMING SUC e e e e e e e ees 268
6.2.1.1 Request for becoming a SUC Node ID Server (SIS)ooveuiiiiiiiiiiiiiieie e 268
6.2.2 Updates from the Primary CONtroller ..o 269
6.2.3 Assigning SUC Routes t0 ROULING SIAVESviriiiiiiiii e 269
6.2.4 Receiving Requests for NetWOrk UPAatescouviiuiiiiiiiiiiiicieee e 269
6.2.5 Receiving Requests for new Node ID (SIS ONlY) ...coviiiiiiiiiiiiee e 269
6.3 The Primary CONrOIIErttt eeens 269
6.4 Secondary CONIOIEISiiiiiiii et ettt eeens 270
6.4.1 KNOWING The SUC ..o e et 270
6.4.2 Asking for and reCceiving UPAALESoiiriiiiiiiiiie et 270
6.5 INCIUSION CONLIOIEIS .. .o et e et e e e e en e an e anns 271
B.6 ROULING SIAVES .. ciniiiii e et e e e e e e e e e et r e 271
7 APPLICATION NOTE: INCLUSION/EXLUCSION IMPLEMENTATIONoiiiiiiiiieiiieee e 273
7.1 Including Nnew Nodes t0 the NEEWOIKcoiuiii e e 273
7.2 Excluding nodes from the NEIWOIKciuniiiiiie e e e e e aaas 278
8 APPLICATION NOTE: CONTROLLER SHIFT IMPLEMENTATIONooiiiiiiiiiiiiiieceeei e 281
9 REFERENGCES ...ttt ettt et e et e a e e eans 282
1NN PP TUPPUPPRRPIN 283

Figure 1. SOftWare arChitECIUIEcii e e e e e e e e e e e e e e anaeans 3
Figure 2. Multiple copies of the same Set framMe.........oiiiiii e 5
Figure 3. Multiple copies of the same Get/Report framecccoviiiiiiii e 5
Figure 4. Simultaneous communication to a number 0f NOAES............cvviiiiiiiiii e, 6
Figure 5. Portable controller node arChiteCtUreco.uiiiiiiiiii e 10
Figure 6. Routing slave N0de arChit@CTUIEc.uiii e e 14
Figure 7. Enhanced slave Node arChiteCtUIE e 16
Figure 8. 400 Series Z-Wave Single Chip memory map in the different modes............c.c.cccovvviiiiinnennn. 21
Figure 9. Node Information Frame structure on application levelc.c.oooiiiiiiiiiiii e, 36
Figure 10. Threshold functionality when threshold gradient set to highccooooiiiiiiiis 119
Figure 11. Threshold functionality when threshold gradient set to lOW.............ccoiviiiiiiiiiiinies 119
Figure 12. Configuration Of INPUL PINSc.uuiiiei et et e e e e e e e 120
Figure 13. Serial WaVETOIM ettt e e raeees 129
FIQUIE 14, RS 232 SBIUD ..itinetiieiei ettt ettt ettt et et et et e e eae e eaaaeees 129
Sigma Designs Inc. Revision Record and Tables of Contents Page viii of ix

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Figure 15. Principle of Timer0’s Clock CONIOliiiiiiiiiiiiii e e 138
Figure 16. PWM WaVETOIM .. ettt ettt et et et e et e et e e e e e eneaens 150
Figure 17. Example of ECB ciphering. Vectors are from FIPS—197. ..cociuiiiiiuiiiiiaiiiieeiieeine e eeieens 153
Figure 18. Half-bridge A Zero-X SIigNalcouiiiiieiiiiiii e e e e e e e e e aaas 161
Figure 19. Half-bridge B Z€ro-X SIigNalcouiiuiieiiiiiiiiii e e e e e e e e e aneaas 161
Figure 20. Example 1 of a full bridge zero-X Signalccciiiiiiiiii e 162
Figure 21. Example 2 of a full bridge zero-x signalccooiiiiiiiiiiii e 162
Figure 22. Masked Zero-X SIgNalcouiiiiiiiiiiei e 162
Figure 23. PulseLength and PulseRepLength used in TriaC MOdEcccevviiiiiiiiiiiii e, 163
Figure 24. EXternal IR NAIAWAIEciuiiiiiii it e e e e e e e neaens 174
Figure 25. IR signal with and WithOUL Carfiercooiiiii e 174
Figure 26. IR Coded MeSSage WIth CaITIEFciuuiiiei e e e e e ens 175
FIguUre 27. Carmier WaVETOMM e e e e e e e e e e e e e e e eaans 175
Figure 28. Mark/Space Data Memory OrganiZationcoeuveeuieiuieiineieiiei e e e e e e e eeneeens 176
Figure 29. Code example on use Of IR tranSmMItter...........oouiiiiiiii e 179
Figure 30. Code example 0N USE€ Of IR FECEIVET ...ccuuiieiii i ees 181
T 1= I (= Y/ o - T I 42T D 192
T LU= Y20 Yo - Vo T o) 192
Figure 33. Example of the API calls for the KeyPad SCanNercc.oviiiiiiiiiiiiiii e 193
Figure 34. Node Information frame structure without command ClassSes................ccoviiiieiiiiiciiiineeenns 219
Figure 35. Inclusion of a node having a SUC in the NetWOTKoooeiiiiiiiiiii e 269
Figure 36. Requesting network updates from a SUC in the networkcoooviiiiiiiniiiiniieeees 270
Figure 37. Inclusion of a node having a SIS inthe NetWOrkcocoeiiiiiiii e 271
Figure 38. Lost routing slave frame flOW ... 272
Figure 39. Node inClusion frame flOWoouiiii i e 274
Figure 40. Node exclusion frame flOW.........o.uiiiiiii e 279
Figure 41. Controller shift frame oW ... e 281

List of Tables

Table 1. 100/200/300/400 Series Z-Wave Single Chips hardware timer allocationccceeeevnnenenn. 7
Table 2. 100/200/300/400 Series Z-Wave Single Chip Application ISR availability..................cccooceeiinnn. 7
Table 3. Controller FUNCHIONAIITYccuuii ettt e e e e 19
Table 4. Library fUNCHONEAIITYooriiiiie ettt et e ea e ees 23
Table 5. Library functionality without @ SUC/ISISiiiiii e 24
Table 6. Library functionality With @ SUC ..o e 25
Table 7. Library functionality With @ SIS e 26
Table 8. ApplicatioNPOll FrEQUENCYcuiiiiiii e e e e e e e et e et e e a e aaes 32
Table 9. Transmit options behavior for portable and installer librariescc.cooeiiiiiiiiiici, 67
Table 10. IO functions (Some of the functions are not yet available)ccoooiiiii i, 87
Table 11. App_RFSetup.a51 module definitions for ZW0201/ZWO0301.........cceviiiniiiiiiiieeii e eeeeeieeeas 267
Sigma Designs Inc. Revision Record and Tables of Contents Page ix of ix

CONFIDENTIAL

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

1 ABBREVIATIONS

Abbreviation

Explanation

ACK

Acknowledge

AES The Advanced Encryption Standard is a symmetric block cipher algorithm. The
AES is a NIST-standard cryptographic cipher that uses a block length of 128 bits
and key lengths of 128, 192 or 256 bits. Officially replacing the Triple DES method
in 2001, AES uses the Rijndael algorithm deweloped by Joan Daemen and Vincent
Rijmen of Belgium.

ANZ Australia/New Zealand

API Application Programming Interface

ASIC Application Specific Integrated Circuit

CR Carriage Return, mowe the position of the cursor to the first position on the same
line

DLL Dynamic Link Library

DUT Device Under Test

ECB Electronic CookBook (block cipher mode)

ERTT Enhanced Reliability Test tool

EU Europe

FET Field-Effect Transistor

GNU An organization dewoted tothe creation and support of Open Source software

HK Hong Kong

HW Hardware

IGBT Insulated Gate Bipolar Transistor

IN India

ISR Interrupt Senice Routines

LF Line Feed, Mowe cursor to the next line

LRC Longitudinal Redundancy Check

MTP Many Times Programmable memory

MY Malaysia

NAK Not Acknowledged

NWI Network Wide Inclusion

OTP One time programmable memory

PA Power Amplifier

POR Power On Reset

PRNG Pseudo-Random Number Generator

PWM Pulse Width Modulator

R&D Research and Development

RF Radio Frequency

SFR Special Function Registers

SIS SUC ID Sener

SOF Start Of Frame

SPI Serial Peripheral Interface

SUC Static Update Controller

UPnP Universal Plug and Play

uUs United States

WUT Wake Up Timer

XML eXtensible Markup Language

2 INTRODUCTION

Sigma Designs Inc.

Abbreviations

CONFIDENTIAL

2012-05-25

Page 1 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

21 Purpose

The purpose of this document is to guide the Z-Wawve application programmer through the very first
Z-Wawve software system build. This programming guide describes the software components and how to
build a complete program and load it on a 400 Series Z-Wave module. The document is also API
reference guide for programmers.

2.2 Audience and Prerequisites

The audience is Sigma Designs R&D and external R&D software application programmers. The
programmer should be familiar with the PK51 Keil Development Tool Kit for 8051 micro controllers and
the GNU make utility.

Sigma Designs Inc. Introduction Page 2 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

3 Z-WAVE SOFTWARE ARCHITECTURE

Z-Wawe software is designed on polling of functions, command complete callback function calls, and
delayed function calls.

The software is split into two groups of program modules: Z-Wave basis software and Application
software. The Z-Wawe basis software includes system startup code, low-level poll function, main poll
loop, Z-Wawve protocol layers, and memory and timer senice functions. From the Z-Wawe basis point of
view the Application software include application hardware and software initialization functions,
application state machine (called from the Z-Wawe main poll loop), command complete callback
functions, and a received command handler function. In addition to that, the application software can
include hardware drivers.

Application state Comnletad d
machine Completed
callback P
SW Init Received
command
handler

Application modules

I
|
|
|
|
|
|
|
|
|
|
|
|
|
i
function |— 1
I
|
|
I
|
|
I
|
|
I
|
|
|
|
|
|
|
|

Timer
Z-Wave Application layer

i i
i i
I I
I I
i i
I I
I I
i i
I i
I I
i i
I i
I I
i i
| |
i i
! Mainloop 1
i I
i i
I I
| ¢ 3
} Low-lev el poll }
i

I I
i I
i i
I i
I I
i i
I i
I I
i i
I i
I I
i i
I i
I I
I I
i i
I I
i I
i i
I I
i I
|]

Z-Wave protocol layers

°
\—V

Fgure 1. Software architecture

Sigma Designs Inc. Z-Wave softw are Architecture Page 3 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

3.1 Z-Wave System Startup Code

The Z-Wave modules include the system startup function (main). The Z-Wawe system startup function
first initializes the Z-Wave hardware and then calls the application hardware initialization function
ApplicationInitHW. Then initializing the Z-Wawve software (including the software timer used by the timer
module) and finally calling the application software initialization function ApplicationInitSW. Execution
then proceeds in the Z-Wawe main loop.

3.2 Z-Wave Main Loop

The Z-Wawve main loop will call the list of Z-Wawve protocol functions, including the ApplicationPoll
function. Hence, the functions must be designed to return to the caller as fast as possible to allow the
CPU to do other tasks. Busy loops are not allowed. This will make it possible to receive RF data, transfer
data via the UART, check user-activated buttons; “simultaneously” etc.

For production testing the application can be forced into the ApplicationTestPoll function instead of the
ApplicationPoll function.

3.3 Z-Wave Protocol Layers

When the System layer requests a transmission of data to another node, the Z-Wawe protocol layer adds
a frame header and a checksum to the data before transmission. The protocol layer also handles frame
retransmissions, as well as routing of frames through “repeater” nodes to Z-Wawe nodes that are not
within direct RF reach. When the frame transmission is completed, an application-specified transmit
complete callback function is called. The transmission complete callback function includes a parameter
that indicates the transmission result.

The Z-Wawe frame receiver module (within the MAC layer) can include more than one frame receive
buffer, sothe upper layers can interpret one frame while the next frame is received.

3.4 Z-Wave System Layer

The Systemt Layer provides the interface to the communications environment, which is used by the
application process. The application software is located in the hardware initialization function
ApplicationlnitHW, software initialization function ApplicationlnitSW, application state machine (called
from the Z-Wave main poll loop) ApplicationPoll, command complete callback functions, and a receive
command handler function ApplicationCommandHandler.

The application implements communication on application level with other nodes in the network. On
application lewvel, a framework is defined of Device and Command Classes [1] to obtain interoperability
between Z-Wawve enabled products from different vendors. The basic structure of these commands
provides the capability to set parameters in a node and to request parameters from a node responding
with a report containing the requested parameters. The Device and Command Classes are defined in the
header file ZW_classcmd.h.

Wireless communication is by nature unreliable because a well-defined cowverage area simply does not
exist since propagation characteristics are dynamic and unpredictable. The Z-Wawe protocol minimizes
these "noise and distortion” problems by using a transmission mechanisms of the frame there include
two re-transmissions to ensure reliable communication. In addition are single casts acknowledged by the
receiving node so the application is notified about how the transmission went. No precautions can
unfortunately prevent that multiple copies of the same frame are passed to the application. Therefore is it

Sigma Designs Inc. Z-Wave softw are Architecture Page 4 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

2012-05-25

very important to implement a robust state machine on application level there can handle multiple copies

of the same frame. Below are shown a couple of examples how this can happen:

Node A Node B
SetCmd

————_——_——_——_——_——_——_——_—__—_““—————»

Random

backoff \

Ack
< / Time

y v

Fgure 2. Multiple copies of the same Set frame

Node A Node B

R

———sdomeew
. S

R
Ack
 ‘ Time

v A 4

FHgure 3. Multiple copies of the same Get/Report frame

Sigma Designs Inc. Z-Wave softw are Architecture

CONFIDENTIAL

Page 5 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

A Z-Wawe protocol is designed to have low latency on the expense of handling simultaneously
communication to a number of nodes in the Z-Wawe network. To obtain this is the number of random
backoff values limited to 4 (0, 1, 2, and 3). The figure below shows how simultaneous communication to
even a small number of nodes easily can block the communication completely.

Node A Nodes within direct range

Get Cmd as Broadcast

100% of the nodes responds

|

25% of the nodes responds (RB=0)

T

25% of the nodes responds (RB=1)

B

1

25% of the nodes responds (RB=2) —

T

25% of the nodes responds (RB=3) —

T

Time

Fgure 4. Simultaneous communication to a number of nodes
Awid simultaneous request to a number of nodes in a Z-Wawe network in case the nodes in question

respond on the application level.

3.5 Z-Wave Software Timers

The Z-Wawe timer module is designed to handle a limited number of simultaneous active software timers.

A delayed function call is initiated by a TimerStart API call to the timer module, which saves the function
address, sets up the timeout value and returns a timer-handle. The timer-handle can be used to cancel
the timeout action e.g. an action completed before the time runs out.

The timer can also be used for frequent inspection of special hardware e.g. a keypad. Specifying the time
settings to 50 ms and repeating forever will call the timer call-back function every 50 ms.

Sigma Designs Inc. Z-Wave softw are Architecture Page 6 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

3.6 Z-Wave Hardware Timers

The 100/200/300/400 Series Z-Wawve Single Chips have a number of hardware timers/counters. Some

are resernved by the protocol and others are free to be used by the application as shown in the table

below:
Table 1.100/200/300/400 Series Z-Wave Single Chips hardware timer allocation

100 Series 200 Series 300 Series 400 Series
TIMERO Available for the Protocol system Protocol system Available for the

application clock clock application
TIMER2 Available for the Available for the Available for the Available for the

application application application application
TIMERS Protocol system Not available Not available Not available

clock

The TIMERO and TIMERL1 are standard 8051 timers/counters. TIMERL1 is used by the protocol.

3.7 Z-Wave Hardware Interrupts

Application interrupt service routines (ISR) must use 8051 register bank 0. Howewver, do not use USING 0

attribute when declaring ISR’s. The Z-Wawe protocol uses 8051 register bank 1 for protocol ISR’s, see
table below regarding application ISR availability:

Table 2.100/200/300/400 Series Z-Wave Single Chip Application ISR availability

100 Series 200 Series 300 Series 400 Series
INUM_INTO INUM_INTO INUM_INTO INUM_INTO
INUM_TIMERO INUM_INT1 INUM_INT1 INUM_INT1
INUM_TIMER1 INUM_TIMER1 INUM_TIMER1 INUM_TIMERO
INUM_TIMERZ2 INUM_SERIAL INUM_SERIAL INUM_SERIALO
INUM_SERIALO INUM_SPI INUM_SPI INUM_SPIO
INUM_ADC INUM_TRIAC INUM_TRIAC INUM_TRIAC
INUM_GP_TIMER INUM_GP_TIMER INUM_GP_TIMER
INUM_ADC INUM_ADC INUM_ADC
INUM_USB
INUM_IR

Refer to ZW010x.h ZW020x, ZW030x.h and ZW040x.h header files with respect to ISR definitions. For
an example, refer to UART ISR in serial APl sample application.

Sigma Designs Inc.

Z-Wave softw are Architecture

CONFIDENTIAL

Page 7 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

3.8 Interrupt service routines.

When using interrupt senice routines from one of the hardware interfaces such as ADC, GP timer or
UART, then one should be aware about two things as described in the following two sections.

3.8.1 SFR pages

The 400 Series Z-Wawve Single Chip uses multiple pages of 8051 SFR registers. The page selection is
set using SFRPAGE. Consequently the SFRPAGE must be presened when calling an Interrupt Senice
Routine (ISR) in your code. In order to do this the intrinsic functions _push_() and _pop_() must be
called. Function _push_() must be called when the ISR starts, and _pop_() just before returning from the
ISR.

For example, the ISR of the ADC should be look as follow:

void ADC int (void) interrupt INUM ADC

{
push(SFRPAGE) ';

call api’s
pop (SFRPAGE) ;
}

3.8.2 Calling functions from ISR

The 8051 core of the 400 Series Z-Wawve Single Chip has no register-to-register mowve. Therefore, the
compiler generates register to memory mowes instead. Since the compiler knows the register bank, the
physical address of a register in a register bank can be calculated. For example, when the compiler
calculates the address of register R2 in register bank 0, the address is 0x02. If the register bank selected
is not really 0, then the function overwrites this register. This might result in unpredictable behavior of the
program.

This technique of accessing a register using its absolute address is called absolute register addressing.

In the Z-Wave system the system timer and RF interrupt use register bank 1. The default register bank
used for non-interrupt code is register bank 0. Therefore, if a function is called from an ISR it might be
looking in the wrong place for its register values.

To solve this problem, one of these solutions can be used:

1. Use the C51's REGISTERBANK directive to specify that a certain function uses the same
register bank as the ISR that calls the function. Hence, no code is generated in the function to
switch the register bank. For example:

#fpragma registerbank (1)
void foo (void)

{

}

2. Use the NOAREGS directive to specify that the compiler should not use absolute register
addressing. This make the function register bank independent sothat it may be called from any
function that uses a different register bank than the default.

T The push_and _pop_ functions are intrinsic functions and the header file INTRINS.H. Therefore, INTRINS.H should be included
in order to be able to use them.

Sigma Designs Inc. Z-Wave softw are Architecture Page 8 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

3.9 Z-Wave Nodes

From a protocol point of view, there are seven types of Z-Wawve nodes: Portable Controller nodes, Static
Controller nodes, Installer Controller nodes, Bridge Controller nodes, Routing Slave nodes, and
Enhanced Slave nodes. All controller based nodes stores information about other nodes in the Z-Wave
network. The node information includes the nodes each of the nodes can communicate with (routing
information). The Installation node will present itself as a Controller node, which includes extra
functionality to help a professional installer setup, configure, and troubleshoot a Z-Wave network. The
bridge controller node stores information about the nodes in the Z-Wawe network and in addition is it
possible to generate up to 128 Virtual Slave nodes.

3.9.1 Z-Wave Portable Controller Node

The software components of a Z-Wawve portable controller are splitinto the controller application and the
Z-Wawe-Controller basis software, which includes the Z-Wawve protocol layers and control of the various
data stored into the non-wolatile memory.

Portable controller nodes include an external EEPROM in which the non-volatile application data area
can be placed. The Z-Wawe basis software has resened the first area of the external EEPROM. The
header file “ZW_nvm_addr.h” contains a definition of the physical application memory offset
NVM_APPL_OFFSET.

Sigma Designs Inc. Z-Wave softw are Architecture Page 9 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Controller
Application

Controller API

LT
Memory API
Basis API Timer API RTC API
PR

Appl. data

Timer RTC

External Z-Wave
EEPROM Controller

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| I
I I
I I
I I
I I
I I
| |
I I
I I
I |
I I
I I
I I
I I
I I

I
| |
} Z-Wav e data |
| T |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| I
I I
I I
I I
I I
I I
I I
I I
I I
I |
I I
I I
I I
I I
I I
I I
I I
I I
| |
| |
| |
| |
| |
| |

Transport API

EEPROM/Flash

A 4

Z-Wave protocol

o
=V

Figure 5. Portable controller node architecture

The Portable Controller node has a uniqgue home ID number assigned, which is stored in the Z-Wave
basis area of the external EEPROM. Care must be taken, when reprogramming the external EEPROM,
that different controller nodes do not get the same home ID number.

When new Slave nodes are registered to the Z-Wawe network, the Controller node assigns the home ID
and a unique node ID to the Slave node. The Slavwe node stores the home ID and node ID.

When a controller is primary, it will send any networks changes to the SUC node in the network.
Controllers can request network topology updates from the SUC node.

The routing algorithm in a portable controller tries to reach the destination depending on the transmit
options as follows:

Sigma Designs Inc. Z-Wave softw are Architecture Page 10 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

e If last working route does not exist and TRANSMIT_OPTION_ACK set. Try direct with retries.

e If last working route exist and TRANSMIT_OPTION_ACK set. Try direct without retries. In case it
fails, try the last working route. In case the last working route also fails, purge it.

e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_AUTO_ROUTE are set then calculate
up to two routing attempts per entry/repeater node. In case TRANSMIT_OPTION_EXPLORE
set, a maximum number limits number of tries.

e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_AUTO_ROUTE are set, then direct with
retries.

e If TRANSMIT_OPTION_ACK and TRANSMIT OPTION_EXPLORE are set then issue an
explore frame as last resort.

The last working route comprises of 232 destinations having up to one route/direct each, which are
stored in non-wolatile memory. Last working route can also contain direct attempts. Updating last working
route happens in the following situations:

e When receiving a successful explorer frame route.

e When receiving a successful routed/direct request from another node.

e When receiving a successful acknowledge for a transmitted explorer frame.

e When receiving a successful acknowledge for a transmitted routed/direct frame.

When deweloping application software the header file “ZW_controller_api.h” also include the other
Z-Wawve API header files e.g. ZW_timer_api.h.

The following define must be set when compiling the application: ZW_CONTROLLER.

The application must be linked with ZW_CONTROLLER_PORTABLE_ZW *S.LIB
(* = 040X for 400 Series Z-Wave modules, etc).

3.9.2 Z-Wave Static Controller Node

The software components of a Z-Wawve static controller node are split into a Static Controller application
and the Z-Wawe Static Controller basis software, which includes the Z-Wawe protocol layers and control
of the various data stored into the non-wlatile memory.

The difference between the static controller and the controller described in chapter 3.9.1 is that the static
controller cannot be powered down, that is it cannot be used for battery-operated devices. The static
controller has the ability to look for neighbors when requested by a controller. This ability makes it
possible for a primary controller to assign static routes from a routing slave to a static controller.

The Static Controller can be set as a SUC node, so it can sends network topology updates to any
requesting secondary controller. A secondary static controller not functioning as SUC can also request
network Topology updates.

The routing algorithm in a static controller tries to reach the destination depending on the transmit
options as follows:

Sigma Designs Inc. Z-Wave softw are Architecture Page 11 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

e If last working route does not exist and TRANSMIT_OPTION_ACK set. Try direct when
neighbors.

e If last working route exist and TRANSMIT_OPTION_ACK set. Try the last working route. In case
the last working route fails, purge it and try direct if neighbor.

e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_AUTO_ROUTE are set then calculate
up totwo routing attempts per entry/repeater node. In case TRANSMIT_OPTION_EXPLORE
set, a maximum number limits number of tries.

e If TRANSMIT_OPTION_ACK and TRANSMIT _OPTION_AUTO_ROUTE are set, then direct with
retries.

e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_EXPLORE are set then issue an
explore frame as last resort.

The last working route comprises of 232 destinations having up to one route/direct each, which are
stored in non-wolatile memory. Last working route can also contain direct attempts. Updating last working
route happens in the following situations:

e When receiving a successful explorer frame route.

e When receiving a successful routed/direct request from another node.

e When receiving a successful acknowledge for a transmitted explorer frame.

e When receiving a successful acknowledge for a transmitted routed/direct frame.

When deweloping application software the header file “2ZW_controller_static_api.h” also include the other
Z-Wave API header files e.g. ZW_timer_api.h.

The following define is being included compiling the application: ZW_CONTROLLER_STATIC.

The application must be linked with ZW_CONTROLLER_STATIC_ZW=S.LIB
(* = 040X for 400 Series Z-Wave modules, etc).

3.9.3 Z-Wave Installer Controller Node

The software components of a Z-Wawve Installer Controller are split into an Installer Controller application
and the Z-Wawe Installer Controller basis software, which includes the Z-Wave protocol layer.

The Installer Controller is essentially a Z-Wawve Controller node, which incorporates extra functionality
that can be used to implement controllers especially targeted towards professional installers who support
and setup a large number of networks.

The routing algorithm in an installer controller tries to reach the destination depending on the transmit
options as follows:

e If last working route does not exist and TRANSMIT_OPTION_ACK set. Try direct with retries.

e If last working route exist and TRANSMIT_OPTION_ACK set. Try direct without retries. In case it
fails, try the last working route. In case the last working route also fails, purge it.

e [If TRANSMIT_OPTION_ACK and TRANSMIT _OPTION_AUTO_ROUTE are set then calculate
up to two routing attempts per entry/repeater node. In case TRANSMIT_OPTION_EXPLORE
set, a maximum number limits number of tries.

e [f TRANSMIT_OPTION_ACK and TRANSMIT _OPTION_AUTO_ROUTE are set, then direct with
retries.

e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_EXPLORE are set then issue an
explore frame as last resort.

The last working route comprises of 232 destinations having up to one route/direct each, which are
stored in non-wlatile memory. Last working route can also contain direct attempts. Updating last working
route happens in the following situations:

Sigma Designs Inc. Z-Wave softw are Architecture Page 12 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

e When receiving a successful explorer frame route.

e When receiving a successful routed/direct request from another node.

e When receiving a successful acknowledge for a transmitted explorer frame.

e When receiving a successful acknowledge for a transmitted routed/direct frame.

The following define must be set when compiling the application: ZW_INSTALLER

The application must be linked with ZW_CONTROLLER_INSTALLER_ZW*S.LIB
(* = 040X for 400 Series Z-Wave modules, etc).

3.94 Z-Wave Bridge Controller Node

The software components of a Z-Wave Bridge Controller node are splitinto a Bridge Controller
application and the Z-Wave Bridge Controller basis software, which includes the Z-Wawve protocol layer.

The Bridge Controller is essential a Z-Wave Static Controller node, which incorporates extra functionality
that can be used to implement controllers, targeted for bridging between the Z-Wave network and others
network (ex. UPnP).

The Bridge application interface is an extended Static Controller application interface, which besides the
Static Controller application interface functionality gives the application the possibility to manage Virtual
Slave nodes. Virtual Slave nodes is a routing slave node without repeater and assign return route
functionality, which physically resides in the Bridge Controller. This makes it possible for other Z-Wave
nodes to address up to 128 Slave nodes that can be bridged to some functionality or to devices, which
resides on a foreign Network type.

The routing algorithm in a bridge controller tries to reach the destination depending on the transmit
options as follows:

e If last working route does not exist and TRANSMIT_OPTION_ACK set. Try direct when
neighbors.

e If last working route exist and TRANSMIT_OPTION_ACK set. Try the last working route. In case
the last working route fails, purge it and try direct if neighbor.

e If TRANSMIT_OPTION_ACK and TRANSMIT OPTION_AUTO_ROUTE are set then calculate
up totwo routing attempts per entry/repeater node. In case TRANSMIT_OPTION_EXPLORE
set, a maximum number limits number of tries.

e If TRANSMIT OPTION_ACK and TRANSMIT OPTION_AUTO_ROUTE are set, then direct with
retries.

e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_EXPLORE are set then issue an
explore frame as last resort.

The last working route comprises of 232 destinations having up to one route/direct each, which are
stored in non-volatile memory. Last working route can also contain direct attempts. Updating last working
route happens in the following situations:

e When receiving a successful explorer frame route.

e When receiving a successful routed/direct request from another node.

e When receiving a successful acknowledge for a transmitted explorer frame.

e When receiving a successful acknowledge for a transmitted routed/direct frame.

When deweloping application software the header file “2W_controller_bridge _api.h” also include the other
Z-Wawve API header files.

The following define is being included compiling the application: ZW_CONTROLLER_BRIDGE.

Sigma Designs Inc. Z-Wave softw are Architecture Page 13 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

The application must be linked with ZW_CONTROLLER_BRIDGE_ZW *S.LIB

(* = 040X for 400 Series Z-Wave modules, etc).

3.9.5 Z-Wave Routing Slave Node

2012-05-25

The software components of a Z-Wave routing slave node are split into a Slave application and the

Z-Wawe-Slave basis software, which includes the Z-Wawe protocol layers.

Slave
Application

Slave API

J/ Basis API
—

Timer API

Memory API

Appl. data

Z-Wave
Slave

W

Z-Wav e data

*

Transport API

e

Data Flash Area

Z-Wave protocol

RF Hardware

L
=

Timer

Fgure 6. Routing slave node architecture

The routing slave is capable of initiating communication. Examples of a routing slave could be a wall
control or temperature sensor. If a user activates the wall control, the routing slave sends an “on”

command to a lamp (slave).

The routing slave does not have a complete routing table. Frames are sent to destinations configured
during association. The association is performed via a controller. If routing is needed for reaching the
destinations, itis also up to the controller to calculate the routes.

Routing slave nodes hawe an area of 64 bytes MTP (Many Times Programmable memory) for storing
data. The Z-Wawe basis software reserves the first part of this area, and application data uses the
remaning part. The header file “ZW_nvm_addr.h” contains a definition of the physical application memory

offset NVM_APPL_OFFSET.

Sigma Designs Inc.

Z-Wave softw are Architecture

CONFIDENTIAL

Page 14 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

The home ID is set to a randomly generated value and node ID is zero. When registering a slave node to
a Z-Wawve network the slave node receive home and node ID from the networks primary controller node.
These ID’s are stored in the Z-Wawe basis data area in the flash.

The routing slave can send unsolicited and non-routed broadcasts, singlecasts, and multicasts.
Singlecasts can also be routed. Further, it can respond with a routed singlecast (response route) in case
another node has requested this by sending a routed singlecast to it. A received multic ast or broadcast
results in a response route without routing.

A temperature sensor based on a routing slave may be battery operated. To improve battery lifetime, the
application may bring the node into sleep mode most of the time. Using the wake-up timer (WUT), the
application may wake up once per second, measure the temperature and go back to sleep. In case the
measurement exceeded some threshold, a command (e.g. “start heating”) may be sent to a heating
device before going back to sleep.

The routing algorithm in a routing slave tries to reach the destination depending on the transmit options
as follows:

e If TRANSMIT_OPTION_ACK is set and destination is available in response routes, try response
route.

e If TRANSMIT_OPTION_ACK and TRANSMIT _OPTION_AUTO_ROUTE are set then try return
routes.

e [f TRANSMIT_OPTION_ACK and TRANSMIT OPTION_AUTO_ROUTE are set then try direct.

e [f TRANSMIT_OPTION_ACK and TRANSMIT OPTION_EXPLORE are set, issue an explore
frame as last resort.

The return route comprises of five destinations having one route each. Return routes can also contain
direct attempts beside a full route.

The response route comprises of a FIFO containing up to two routes. New routes/direct via the response
route or explore mechanism are not inserted into the return route. Updating response routes happens in
the following situations:

e When receiving a successful explorer frame route.

e When receiving a successful routed/direct request from another node.

e When receiving a successful acknowledge for a transmitted explorer frame.

e When receiving a successful acknowledge for a transmitted routed/direct frame.

When deweloping application software the header file “ZW_slave_routing_api.h” also include the other
Z-Wave API header files e.g. ZW_timer_api.h.

The following define will be generated by the headerfile, if it does not already exist when when compiling
the application: ZW_SLAVE.

The application must be linked with ZW_SLAVE_ROUTING_ZW *S.LIB
(* = 040X for 400 Series Z-Wave modules, etc).

Sigma Designs Inc. Z-Wave softw are Architecture Page 15 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

3.9.6 Z-Wave Enhanced Slave Node

2012-05-25

The Z-Wave enhanced slave has the same basic functionality as a Z-Wawe routing slave node, but offers

more memory that is non-volatile.

Slave
Application

|

Slave API

il

Basis API
Timer API

l RTC API

Timer

e Appl. data ~ Z-Wave

RTC

Slave

W

*

External Transport API

EEPROM T
— N Z-wave

Z-Wave protocol

EEPROM
RF Hardware

L]
g// Z-Wave Slave

Hgure 7. Enhanced slave node architecture

Enhanced slave nodes hawe an external EEPROM and a WUT. The external EEPROM is used as non-
wolatile memory instead of MTP. The Z-Wawe basis software resenves the first area of the external

EEPROM: The last area of the EEPROM is reserved for the application data. The header file

“ZW_nvm_addr.h” contains a definition of the physical application memory offset NVM_APPL_OFFSET.

The routing algorithm in an enhanced slawve tries to reach the destination depending on the transmit

options as follows:

e If TRANSMIT_OPTION_ACK is set and destination is available in response routes, try response

route.

e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_AUTO_ROUTE are set then try return

routes.

e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_AUTO_ROUTE are set then try direct.
e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_EXPLORE are set, issue an explore

frame as last resort.

Sigma Designs Inc. Z-Wave softw are Architecture

CONFIDENTIAL

Page 16 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

The return route comprises of five destinations having up to four routes each. Return routes can also
contain direct attempts.

The response route comprises of a FIFO containing up to two routes. New routes/direct are qualified for
return route insertion (destination exist and route/direct does not exist). Insert the new route/direct in
either an empty return route or the one having lowest priority. Updating response routes happens in the
following situations:

When receiving a successful explorer frame route.

When receiving a successful routed/direct request from another node.

When receiving a successful acknowledge for a transmitted explorer frame.
When receiving a successful acknowledge for a transmitted routed/direct frame.

When deweloping application software the header file “ZW_slave_32_api.h” also include the other
Z-Wave API header files e.g. ZW_timer_api.h.

The following define will be generated by the headerfile, if it does not already exist when compiling the
application: ZW_SLAVE and ZW_SLAVE_32.

The application must be linked with ZW_SLAVE_ENHANCED_ ZW *S.LIB
(* = 040X for 400 Series Z-Wave modules, etc).

3.9.7 Z-Wave Enhanced 232 Slave Node

The Z-Wawve enhanced 232 slave has the same basic functionality as a Z-Wawve enhanced slave node,
but offers return route assignment of up to 232 destination nodes instead of 5.

The routing algorithm in an enhanced 232 slawve tries to reach the destination depending on the transmit
options as follows:

e If TRANSMIT_OPTION_ACK is set and destination is available in response routes, try response
route.

e If TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_AUTO_ROUTE are set then try return
routes.

e If TRANSMIT_OPTION_ACK and TRANSMIT OPTION_AUTO_ROUTE are set then try direct.

e |f TRANSMIT_OPTION_ACK and TRANSMIT_OPTION_EXPLORE are set, issue an explore
frame as last resort.

The return route comprises of 232 destinations having up to four routes each. Return routes can also
contain direct attempts.

The response route comprises of a The FIFO contains up to one route. New routes/direct are qualified
for return route insertion (destination exist and route/direct does not exist). Insert the new route/direct in
either an empty return route or the one having lowest priority. Updating response routes happens in the
following situations:

e When receiving a successful explorer frame route.

e When receiving a successful routed/direct request from another node.

e When receiving a successful acknowledge for a transmitted explorer frame.

e When receiving a successful acknowledge for a transmitted routed/direct frame.

When deweloping application software the header file “ZW_slave_32_api.h” also include the other
Z-Wawve API header files e.g. ZW_timer_api.h.

Sigma Designs Inc. Z-Wave softw are Architecture Page 17 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

The following define will be generated by the headerfile, if it does not already exist when compiling the
application: ZW_SLAVE and ZW_SLAVE_32.

The application must be linked with ZW_SLAVE_ENHANCED_232 ZW *S.LIB
(* = 040X for 400 Series Z-Wave modules, etc).

3.9.8 Adding and Removing Nodes to/from the network

Its only controllers that can add new nodes to the Z-Wave network, and reset them again is the primary
or inclusion controller. The home ID of the Primary Z-Wave Controller identifies a Z-Wawve network.

Information about the result of a learn process is passed to the callback function in a variable with the
following structure:

typedef struct LEARN INFO
{

BYTE DbStatus; /* Status of learn mode */
BYTE DbSource; /* Node id of the node that send node info */
BYTE *pCmd; /* Pointer to Application Node information */
BYTE DbLen; /* Node info length */

} LEARN INFO;

When adding nodes to the network the controller have a number of choices of how to add, and what
nodes to add to the network.

3.9.8.1 Adding a node normally.

The normal way to add a node to the network is to use ZW_AddNodeToNetwork () function on the
primary controller, and use the function ZW_SetLearnMode() on the node that should be included into
the network.

3.9.8.2 Adding a new controller and make it the primary controller

A primary controller can add a controller to the network and in the same process give the role as primary
controller to the new controller. This is done by using the ZW_ControllerChange() on the primary
controller, and use the function ZW_SetLearnMode() on the controller that should be included into the
network.. Note that the original primary controller will become a secondary controller when the inclusion
is finished.

3.9.8.3 Create a new primary controller

When there is a Static Update Controller (SUC) in the network then it is possible to create a new primary
controller if the original primary controller is lost or broken. This is done by using the
ZW_CreateNewPrimary() function on the SUC, and use the function ZW_SetLearnMode() on the
controller that should become the new primary controller in the network.

NOTE: A new primary controller will when adding new nodes use the first free node ID starting from 1.

Sigma Designs Inc. Z-Wave softw are Architecture Page 18 of 289

CONFIDENTIAL

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

The table below lists the options valid on the different types of Controller libraries.

Table 3. Controller functionality

2012-05-25

Node management

Library
used ZW_AddNodeToNetwork [ZW_RemoveNodeFomNetwork | ZW_ControllerChange | ZW_CreateNewPrimary
Stati When Secondary
atic .])
Controller Primary Primary Primary and only when
configured as SUC
(Portable) .) _
Controller Primary Primary Primary Not allowed
Installer - . .
Controller Primary Primary Primary Not allowed
Bridge | Possible but should | Possible but should not be Possible but Possible but should
should not be
Controller not be used used not be used

used

Careful considerations should be made as to how the application should implement the process of
adding a new controller. Generally speaking the ZW_CreateNewP rimary() option should never be readily
available to end-users, since it can be devastating to a network because the user might end up having
multiple primary controllers in the network. Another thing to note is that having a Static controller, as a
primary controller is only optimal when no portable Controllers exist in the network. A portable Controller
offers more flexibility in terms of adding and removing nodes to/from the network since it can be mowved
around and will report any changes to a Static Controller configured to be a SUC. With these thoughts in
mind it is recommended that a network always have one portable controller and if that is not possible, the
Primary Static controller should change to secondary when the user wants to include a portable
Controller of some sorts.

The most optimal controller setup for networks with several controllers consists of a Static Controller

acting as SUC, a portable Primary controller for adding and removing nodes to the network. Controllers
besides these two should act as secondary controllers, which from time to time checks with the SUC to
get any network updates.

This way the network can be reconfigured and enhanced by using the portable primary controller and all
controllers in the network will be able to get the changes from the SUC without user intervention.

3.9.8.4

A SUC with enabled node ID sener functionality is called a SUC ID Server

SUC ID Server

(SIS). The SIS becomes the

primary controller in the network because it now has the latest update of the network topology and
capability to include/exclude nodes in the network. When including a controller to the network it becomes
an inclusion controller because it has the capability to include/exclude nodes in the network via the SIS.
The inclusion controllers’ network topology is dated from last time a node was included or it requested a
network update from the SIS.

3.9.9

The Automatic Network Update

A Z-Wawe network consists of slaves, a primary controller and secondary controllers. New nodes can
only be added and removed to/from the network by using the primary controller. It could cause
secondary controllers and routing slaves to misbehawve, if for instance a preferred repeater node is

Sigma Designs Inc.

Z-Wave softw are Architecture

CONFIDENTIAL

Page 19 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

removed. Without automatic network update, a new replication has to be made from the primary
controller to all secondary controllers, and routing slaves should also be manually updated with the
changes. In networks with several controller and routing slave nodes, this process will be cumbersome.

To automate this process, an automatic network update scheme has been introduced to the Z-Wawe
protocol. To use this scheme a static controller must be available in the network. This static controller is
dedicated to hold a copy of the network topology and the latest changes that have occurred to the
network. The static controller used in the Automatic update scheme is called the Static Update Controller
(SUC).

Each time a node is added, deleted or a routing change occurs, the primary controller will send the node
information to the SUC. Secondary controllers can then ask the SUC if any updates are pending. The
SUC will then in turn respond with any changes since last time this controller asked for updates. In the
controller requesting an update, ApplicationControllerUpdate will be called to notify the application that
a new node has been added or removed in the network.

The SUC holds up to 64 changes of the network. If a node requests an update after more than 64
changes occurred, then it will get a complete copy (see ZW_RequestNetWorkUpdate).

Routing slaves have the ability to request updates for its known destination nodes. If any changes hawe
occurred to the network, the SUC will send updated route information for the destination nodes to the
Routing slave that requested the update. The Routing slave application will be notified when the process
is done, but will not get information about any changes toits routes.

If the primary controller sends a new node’s node information and its routes to the SUC while itis
updating a secondary controller, the updating process will be aborted to process the new nodes
information.

Sigma Designs Inc. Z-Wave softw are Architecture Page 20 of 289

CONFIDENTIAL

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

4 DEVELOPMENT ENVIRONMENT

2012-05-25

The 400 Series Z-Wawe Single Chip build environment is different compared to previous 100/200/300
Series because the chip contains 64KB OTP instead of 32KB Flash. Howewer, the chip support a

development mode enabling application development. Figure below show supported modes.

8k

4k

-

Lo

2000
1FFF

1000
OFFF

0000

2000
1FFF

1000

4 /7/ OFFF
0 0000

8k

o 256 bytes IRAM
E 128bytes PD XRAM (aka critical memory)
Mirrored
4k bytes XRAM
[12k bytes Dev RAM
[] ot
Modes
Normal Development Execute Out of SRAM
IRAM IRAM IRAM
256 256 256
FF FF FF
o 01111 6 o O 66 o O 116
XRAM XRAM XRAM
20k 4FFF 20k 4FFF

4k

0 0000

64k

0

CODE SPACE

FFFF

0000

CODE SPACE

64k
FFFF
D000

52k CFFF

0 0000

CODE SPACE

* // OFFF
0 0000

FHgure 8.400 Series Z-Wave Single Chip memory map in the different modes

In normal mode is the entire code space OTP based and this mode is therefore used when producing the

final product.

Dewelopment mode is used during application dewvelopment. The 12kB SRAM is mapped into the upper

part of the OTP code space to allow modification of the code. For details, refer to [34].

Finally, “Execution Out of SRAM” mode provides a reduced code space of 4kB SRAM allowing execution

of small test programs.

Sigma Designs Inc.

Development Environment

CONFIDENTIAL

Page 21 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5 Z-WAVE APPLICATIONINTERFACES

The Z-Wawve basis software consists of a number of different modules. Time critical functions are written
in assembler while the other Z-Wawe modules are written in C. The Z-Wave API consists of a number of
C functions which give the application programmer direct access to the Z-Wawe functionality.

5.1 APl usage guidelines
The following guidelines should be followed when making a Z-Wawve application.

5.1.1 Buffer protection

Some API calls has one parameter that is a pointer to a buffer in the application SRAM area and another
parameter that is a pointer to a callback function. When using these API functions in Z-Wawe, it is
important that the application does not change the contents of the buffer before the last callback from the
API function has been issued. If the content of the buffer is changed before that callback, the Z-Wawe
protocol might perform the function on invalid data.

5.1.2 Overlapping API calls

In general, it should be awided to call an API function before the previously started API function is
finished and has called the callback function for the last time. Due to the limited resources available for
the API not all combinations of API calls will work, some API calls will use the same state machine or the
same buffers so if multiple functions is started one or both of the functions might fail.

Sigma Designs Inc. Z-Wave Application Interfaces Page 22 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.2 Z-Wave Libraries

5.2.1 Library Functionality

Each of the API's provided in the Developer's Kit contains a subset of the full Z-Wave functionality; the
table below shows what kind of functionality the API's support independent of the network configuration:

Table 4. Library functionality
Routing [Enhanced [Portable |[Static Installer |Bridge

Slave Slave Controller |Controller [Controller |Controller

Basic Functionality

Singlecast X X X X X X
Multicast X X X X X X
Broadcast X X X X X X
Power management X X X - X -
SW timer support X X X X X X
Controller replication - - X X X X
Promiscuous mode - - X - X -
Random number generator X X X X X X
Able to act as NWI center - - X X X X
Able to beincluded via the NWI mechanism X X X X X X
Able to issue an explorerframe X X X X X X
Able to forward an explorer frame X X - X - -

Memory Location

Non-volatile RAM in MTP X - - - - -
Non-volatile RAM in FLASH/EEPROM - X X X X X
Network Management

Network router (repeater) X X - X - -
ASSign routes to routing slave - - X X X X
Routing slave functionality X X - - - -
IAccess to routing table - - X - X -
Maintain virtual slave nodes - - - - - X
Able to be a FLIRS node X X - - - -
Able to beam whenrepeater X X - - - -
Able to create route containing beam X3 X X X X -
* Only w hen secondary controller

8 Only w hen return routes are assigned by a controller capable of creating routes containing beam

Sigma Designs Inc. Z-Wave Application Interfaces Page 23 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
5.21.1 Library Functionality without a SUC/SIS

Some of the API's functionality provided on the Developer's Kit depends on the network configuration.
The table below shows what kind of functionality the API's support without a SUC/SIS in the Z-Wawe
network:

Table 5. Library functionality without a SUC/SIS
Routing [Enhanced [Portable ([Static Installer [Bridge

Slave Slave Controller [Controller [Controller [Controller
Network Management
Controllerreplication - - X X X X
Controller shift - - X Xt Xt Xt
Create new primarycontroller - - - - - -
Requestnetwork updates - - - - - -
Requestrediscoveryof a node - - Xt Xt Ve Xt
Remove failing nodes - - Xt Xt Xt Xt
Replace failing nodes - - . . T *
“I'm lost“— cry for help X X - - - -
“I'm lost” — provide help - - - - -
Provide routing table info - - X X X X
™ Only w hen primary controller
Sigma Designs Inc. Z-Wave Application Interfaces Page 24 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.2.1.2 Library Functionality with a SUC

Some of the API's functionality provided on the Developer's Kit depends on the network configuration.
The table below shows what kind of functionality the API's support with a Static Update Controller (SUC)
in the Z-Wawe network:

Table 6. Library functionality with a SUC

Routing |Enhanced [Portable |[Static Installer |Bridge

Slave Slave Controller [Controller |Controller |Controller
Network Management
Controller replication - - X X X X
Controller shift - - Xt X X X°
Create new primary controller - - - xXH - X
Request netw ork updates X X X X X X
Request rediscovery of a nodg - - Xt Xt Xt Xt
Remove failing nodes - - Xt Xt Xt Xt
Replace failing nodes - - Xt Xt Xt Xt
Set static ctrl. to SUC - - Xt Xt X X
\Work as SUC - - - X - X

ork as primary controller X X X X

‘fm lost* — cry for help X X - - - -
“I'm lost” — provide help X X X X X X
Provide routing table info - - X X X X

T Only w hen primary controller and not SUC
Only w hen SUC and not primary controller
88 Only if “alw ays listening”

™ The library w ithout repeater functionality cannot provide help or forward help requests.

Sigma Designs Inc. Z-Wave Application Interfaces Page 25 of 289

CONFIDENTIAL

INS12034-2

5.2.1.3

Library Functionality with a SIS

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

2012-05-25

Some of the API's functionality provided on the Developer’'s Kit depends on the network configuration.
The table below shows what kind of functionality the API's support with a SUC ID Server (SIS) in the

Z-Wawve network:

Table 7. Library functionality with a SIS

Routing |[Enhanced [Portable |[Static Installer |Bridge

Slave Slave Controller [Controller (Controller (Controller
Network Management
Controller replication - - X X X X
Controller shift - - - - - -
Create new primary controller - - - - - -
Request netw ork updates X X X X X X
Request rediscovery of anodg - - X Ve Ve X
Remove failing nodes - - Xt Xt Xt X
Replace Tailing nodes - - Xt Ve e Xt
Set static ctrl. to SIS - - X X X X

ork as SIS - - - X - X

\Work as inclusion controller X X X X
“'m lost* — cry for help X X - - - -
“Im lost” — provide help xX° x° x° X X° X
Provide routing table info - - X X X X

Note that the ability to provide help for “I'm lost” requests is limited to forwarding the request to the SIS.

Only the portable controller configured as SIS can actually do the updating of the device.

5214

Library Memory Usage

Each API library uses some of the 32kB flash and 2kB RAM available in the ZW0201/ZW0301. Refer to
the software release note [20] regarding the minimum amount of flash and RAM that is available for an
application build on the library in question. Using the debug functionality of the API will use up to 4kB of

additional flash and 60 bytes of RAM.

! Only w hen primary/inclusion controller

2 Only w hen primary controller

® Only if “alw ays listening”

* The library w ithout repeater functionality cannot provide help or forward help requests.

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 26 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

In case an application doesn’t have enough flash memory available the following flash usage
optimization tips can be used:

N

o

5.3

Use BOOL instead of BYTE for TRUE/FALSE type variables.

Try to force the compiler to use registers for local BYTE variables in functions.

Awid using floats because the entire floating point library is linked to the application.

Loops are often smallest if they can be done with a do while followed by a decrease of the counter
variable.

The Keil compiler does not always recognize duplicated code that is used in several different places,
so try to move the code to a function and call that instead.

Awid having functions with many parameters, use globals instead.

Changing the order of parameters in a function definition will sometimes save code space because
the compiler optimization depends on the parameter order.

Be aware when using functions from the standard C libraries because the entire library is linked to
the application.

The dead code elimination in the Keil compiler doesn't always work, so remowve all unused code
manually.

Z-Wave Header Files

The C prototypes for the functions in the API's are defined in header files, grouped by functionality:

Protocol releated header Description
files
Z\W_controller_api.h Portable Controller interface. This header should be

used together with the Controller Library.
Macro defines.
Include all necessary header files.

ZW _controller_bridge_api.h Bridge controller interface. This header should be
used together with the Bridge Controller Library.

Macro defines.
Includes all necessary header files.

ZW_controller_installer_api.h | Installer interface. This header file should be used
together with the Installer Controller library.

Macro defines.
Includes all other necessary header files.

ZW _controller_static_api.h Static Controller interface. This header should be used
together with the Static Controller Library.

Macro defines.
Includes all necessary header files.

ZW_sensor_api.h Sensor interface.
Macro defines.
Includes all other necessary header files.

ZW_slave_32_api.h Slave interface for ZMXXXX-RE Z-Wave module.
Macro defines.
Include all header files.

ZW_slave_api.h Slawe interface.

Sigma Designs Inc. Z-Wave Application Interfaces Page 27 of 289

CONFIDENTIAL

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

2012-05-25

Macro defines.
Includes all other necessary header files.

ZW _slave_routing_api.h

Routing and Enhanced slave node interface.
Macro definitions.
Includes all other necessary header files.

ZW _basis_api.h

Z-Wawe < Application general software interface.
Interface to common Z-Wawve functions.

ZW_transport_api.h

Transfer of data via Z-Wawe protocol.

ZW _classcmd.h

Defines for device and command classes used to
obtain interoperability between Z-Wawe enabled
products from different vendors, for a detailed
description refer to [1].

Various header files

Description

ZW _adcdriv.h

ADC functions

Z\W_appltimer_api.h

GPTimer/PWM and the 8051 timers functions and
macros

ZW_mtp_api.h MTP functions

ZW_nvm_addr.h Application start address in non-wolatile memory
ZW _pindefs.h Macros for manipulating the GPIO’s
ZW_rf0402_api.h RF functions

ZW_SerialAPL.h Serial APl interface with function ID defines etc.
ZW _spi_api.h SPI functions

ZW_sysdefs.h CPU and clock defines.

ZW _timer_api.h

Software timer functions

ZW _triac_api.h

TRIAC controller functionality.

ZW _typedefs.h

Common used defines (BYTE, WORD...).

ZW _uart_api.h

UART functions

ZW040x.h

Inventra m8051w SFR and ISR C defines for the
Z-Wawe ZW040x RF transceiver.

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 28 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4 Z-Wave Common API

This section describes interface functions that are implemented within all Z-Wave nodes. The first
subsection defines functions that must be implemented within the application modules, while the second
subsection defines the functions that are implemented within the Z-Wave basis library.

Functions that does not complete the requested action before returning to the application (e.qg.
ZW_SEND_DATA) have a callback function pointer as one of the entry parameters. Unless explicitly
specified this function pointer can be setto NULL (no action to take on completion).

A serial APl implementation provide an interface to the major part of interface functions via a serial port.

The SDK contains a serial API application [34], which enables a host processor to control the interface
functions via a serial port.

5.4.1 Required Application Functions
The Z-Wawe library requires the functions mentioned here implemented within the System layer.
Warning: In order not to disrupt the radio communication and the protocol, no application function must

execute code for more than 5ms without returning. It is not allowed to disable interrupt more than it takes
to received 8 bits, which is around 0.8ms at 9.6kbps.

Sigma Designs Inc. Z-Wave Application Interfaces Page 29 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5411 ApplicationInitHW

BYTE ApplicationlnitHW(BYTE bWakeupReason)

ApplicationlnitHW should initialize application used hardware. The Z-Wawe hardware initialization
function set all application 10 pins to input mode. The ApplicationInitHW function is called by the
Z-Wawve main function during system startup. At this point of time the Z-Wawe timer system is not started
so waiting on hardware to get ready have to be done by CPU busy loops.

Defined in: ZW _basis_api.h
Return value:
BYTE TRUE

FALSE

Parameters:

bWakeupReason IN Wakeup flags:
ZW_WAKEUP_RESET
ZW_WAKEUP_WUT
ZW_WAKEUP_SENSOR
ZW_WAKEUP_WATCHDOG
ZW_WAKEUP_EXT_INT
ZW_WAKEUP_POR

Serial APl (Not supported)

Application hardware initialized
Application hardware initialization failed.

Protocol enters test mode and Calls
ApplicationTestPoll

Woken up by reset or external interrupt
Woken up by the WUT timer

Woken up by a wakeup beam

Reset because of a watchdog timeout
Woken up by external interrupt

Reset by Power on reset circuit

Sigma Designs Inc. Z-Wave Application Interfaces Page 30 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.1.2 ApplicationInitSW

BYTE ApplicationInitSW(void)
ApplicationInitSW should initialize application used memory and driver software. ApplicationlnitSW is
called from the Z-Wave main function during system startup. Notice that watchdog is enabled by default
and must be kicked to awid resetting the system (See ZW_WatchDogKick).

Defined in: ZW _basis_api.h

Return value:

BYTE TRUE Application software initialized
FALSE Application software initialization failed.
(No Z-Wawe basis action implemented
yet)

Serial APl (Not supported)

54.1.3 ApplicationTestPoll

void ApplicationTestPoll(void)

The ApplicationTestPoll function is the entry point from the Z-Wawe basis software to the application
software when the production test mode is enabled in the protocol. This will happen when
ApplicationlnitHW returns FALSE. The ApplicationTestPoll function will be called indefinitely until the
device is reset. The device must be reset and ApplicationlnitHW must return TRUE in order to exit this
mode. When ApplicationTestPoll is called the protocol will acknowledge frames sent to home ID equal
to 0x00000000 and node ID as follows.

Device Node ID
Slave 0x00
Controllers from Dev. Kit v3.40 or later 0x01

The following API calls are only available in production test mode:
1. ZW_Eepromlnit is used to initialize the external EEPROM. Remember to initialize controllers
with a uniqgue home ID that typically can be transferred via the UART on the production line.
2. ZW_SendConst is used to validate RF communication. Remember to enable RF communication
when testing products based on a portable controller, routing slave or enhanced slave.

Defined in: ZW _basis_api.h

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 31 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5414 ApplicationPaoll

void ApplicationPoll(void)

The ApplicationPoll function is the entry point from the Z-Wawe basis software to the application
software modules. The ApplicationPoll function is called from the Z-Wave main loop when no low-level
time critical actions are active. If the application software executes CPU time consuming functions,
without returning to the Z-Wave main loop, the ZW_POLL function must be called frequently (see
ZW_POLL).

To determine the ApplicationPoll frequency (see table below) is a LED Dimmer application modified to be
able to measure how often ApplicationPoll is called via an output pin. The minimum value is measured
when the module is idle, i.e. no RF communication, no push button activation etc. The maximum value is
measured when the ERTT application at the same time sends Basic Set Commands (value equal 0) as
fast as possible tothe LED Dimmer (DUT).

Table 8. ApplicationPoll frequency

ZW0102 LED ZW0201 LED ZW0301 LED 400 Series LED
Dimmer Dimmer Dimmer Dimmer
Minimum 58 us 7.2 us 7.2 us TBD
Maximum 3.8 ms 2.4 ms 2.4 ms TBD
Defined in: ZW _basis_api.h

Serial APl (Not supported)

54.15 ApplicationCommandHandler (Not Bridge Controller library)

In libraries not supporting promiscuous mode (see Table 4):

void ApplicationCommandHandler(BYTE rxStatus,
BYTE sourceNode,
ZW_APPLICATION_TX_BUFFER *pCmd,
BYTE cmdLength)

In libraries supporting promiscuous mode:

void ApplicationCommandHandler(BYTE rxStatus,
BYTE destNode,
BYTE sourceNode,
ZW_APPLICATION_TX_BUFFER *pCmd,
BYTE cmdLength)

The Z-Wawe protocol will call the ApplicationCommandHandler function when an application command
or request has been received from another node. The receive buffer is released when returning from this
function. The type of frame used by the request can be determined (single cast, multicast, or broadcast
frame). This is used to awid flooding the network by responding on a multicast or broadcast.

All controller libraries (except the Bridge Controller library), requires this function implemented within the
System layer.

Sigma Designs Inc. Z-Wave Application Interfaces Page 32 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Defined in: ZW _basis_api.h

Parameters:
rxStatus IN Received frame status flags Refer to ZW_transport_APl.h header file
RECEIVE_STATUS_ROUTED_BUSY A response route is locked by the
XXXXXXX1 application
RECEIVE_STATUS_LOW_POWER Received at low output power level
XXXXXX1X
RECEIVE_STATUS_TYPE_SINGLE Received a single cast frame
XXXX00xX
RECEIVE_STATUS_TYPE_BROAD Received a broadcast frame
XXXX01XX
RECEIVE_STATUS_TYPE_MULTI Received a multicast frame
XXXX10xX
RECEIVE_STATUS_FOREIGN_FRAME The received frame is not addressed to
this node (Only valid in promiscuous
mode)
destNode IN Command destination Node ID Only valid in promiscuous mode and for

singlecast frames.
sourceNode IN Command sender Node ID
pCmd IN Payload from the received frame. The command class is the very first byte.
cmdLength IN Number of Command class bytes.
Serial API:
ZW->HOST: REQ | 0x04 | rxStatus | sourceNode | cmdLength | pCmd[]

When a foreign frame is received in promiscuous mode:
ZW->HOST: REQ | 0xD1 | rxStatus | sourceNode | cmdLength | pCmd[] | destNode

The destNode parameter is only valid for singlecast frames.

Sigma Designs Inc. Z-Wave Application Interfaces Page 33 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.1.6 ApplicationNodelnformation

void ApplicationNodelnformation(BYTE *deviceOptionsMask,
APPL_NODE_TYPE *nodeType,
BYTE **nodeParm,
BYTE *parmLength)

The Z-Wawve System Layer use ApplicationNodelnformation to generate the Node Information frame
and to save information about node capabilities. Initialize all the Z-Wawve application related fields of the
Node Information structure in this function. For a description of the Generic Device Classes, Specific
Device Classes, and Command Classes refer to [1] and [33]. The deviceOptionsMask is a Bit mask
where Listening and Optional functionality flags must be set or cleared accordingly to the nodes
capabilities.

The listening option in the deviceOptionsMask (APPLICATION_NODEINFO_LISTENING) indicates a
continuously powered node ready to receive frames. A listening node assists as repeater in the network.

The non-listening option in the deviceOptionsMask (APPLICATION_NODEINFO_NOT_LISTENING)
indicates a battery-operated node that power off RF reception when idle (prolongs battery lifetime)..

The optional functionality option in the deviceOptionsMask
(APPLICATION_NODEINFO_OPTIONAL_FUNCTIONALITY) indicates that this node supports other
command classes than the mandatory classes for the selected generic and specific device class.

Examples:
To set a device as Listening with Optional Functionality:

*deviceOptionsMask = APPLICATION NODEINFO LISTENING |
APPLICATION NODEINFO OPTIONAL FUNCTIONALITY;

To set a device as not listening and with no Optional functionality support:
*deviceOptionsMask = APPLICATION NODEINFO NOT LISTENING;

Note for Controllers: Because controller libraries store some basic information about themselves from
ApplicationNodelnformation in nonwlatile memory. ApplicationNodelnformation should be set to the
correct values before Application return from ApplicationlnitHW(), for applications where this cannot be
done. The Application must call ZW_SET_DEFAULT() after updating ApplicationNodelnformation in
order to force the Z-Wawe library to store the correct values.

A way to verify if ApplicationNodelnformation is stored by the protocol is to call
ZW_GetNodeProtocolinfo to verify that Generic and specific nodetype are correct. If they differ from
what is expected, the Application should Set the ApplicationNodelnformation to the correct values and
call ZW_SET _DEFAULT() to force the protocol to update its information.

Sigma Designs Inc. Z-Wave Application Interfaces Page 34 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00
Defined in: ZW _basis_api.h
Parameters:

deviceOptionsMask
ouT

APPLICATION_NODEINFO_LISTENING

APPLICATION_NODEINFO_NOT_LISTENING

APPLICATION_NODEINFO_

OPTIONAL_FUNCTIONALITY

APPLICATION_FREQ_LISTENING_MODE_250ms

APPLICATION_FREQ_LISTENING_MODE_1000ms

nodeType OUT Pointer to structure with the Device Class:

(*nodeType).generic

(*nodeType).specific

2012-05-25

Bitmask with options

In case this node is
always listening (typically
AC powered nodes) and
stationary.

In case this node is non-
listening (typically battery
powered nodes).

If the node supports other
command classes than
the ones mandatory for
this nodes Generic and
Specific Device Class

This option bit should be
set if the node should act
as a Frequently Listening
Routing Slave with a
wakeup interval of 250ms.
This option is only
available on Routing
Slaves. This option is not
available on 3-channel
systems (the JP
frequency).

This option bit should be
set if the node should act
as a Frequently Listening
Routing Slave with a
wakeup interval of 250ms.
This option is only
available on Routing
Slaves.

The Generic Device Class
[1]. Do not enter zero in
this field.

The Specific Device Class

1].

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 35 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

nodeParm OUT Command Class buffer pointer. Command Classes [1]
supported by the device
itself and optional
Command Classes the
device can control in
other devices.

parmLength OUT Number of Command Class bytes.
Serial API:

The ApplicationNodelnformation is replaced by SerialAPI_ApplicationNodelnformation. Used to
set information that will be used in subsequent calls to ZW_SendNodelnformation. Replaces the
functionality provided by the ApplicationNodelnformation() callback function.

void SerialAPI_ApplicationNodelnformation(BYTE deviceOptionsMask,
APPL_NODE_TYPE *nodeType,
BYTE *nodeParm,
BYTE parmLength)

The define APPL_NODEPARM_MAX in serialappl.h must be modified accordingly to the number of
command classes to be notified.

HOST->ZW: REQ | 0x03 | deviceOptionsMask | generic | specific | parmLength | nodeParm][]

The figure below lists the Node Information Frame structure on application level. The Z-Wawve Protocol
creates this frame via ApplicationNodelnformation. The Node Information Frame structure when
transmitted by RF does not include the Basic byte descriptor field. The Basic byte descriptor field on
application lewvel is deducted from the Capability and Security byte descriptor fields.

Byte descriptor \ bit number 7 6 5 4 3 2 1 0
Capability h:i;e Z-Wawe Protocol Specific Part
Security Opt. Z-Wawve Protocol Specific Part
Func.
Reserved Z-Wawe Protocol Specific Part
Basic Basic Device Class (Z-Wave Protocol Specific Part)

Generic Generic Device Class
Specific Specific Device Class

Nodelnfo[0] Command Class 1

Nodelnfo[n-1] Command Class n

Fgure 9. Node Information Frame structure on application level

WARNING: Must use deviceOptionsMask parameter and associated defines to initialize Node
Information Frame with respect to listening, non-listening and optional functionality options.

Sigma Designs Inc. Z-Wave Application Interfaces Page 36 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.1.7 ApplicationSlaveUpdate (All slave libraries)

void ApplicationSlaveUpdate (BYTE bStatus,
BYTE bNodelD,
BYTE *pCmd,
BYTE bLen)

The Z-Wawe protocol also calls ApplicationSlaveUpdate when a Node Information Frame has been
received and the protocol is not in a state where it needs the node information.

All slave libraries requires this function implemented within the System layer.

Defined in: ZW_slave_api.h

Parameters:
bStatus IN The status, value could be one of the following:
UPDATE_STATE_NODE_INFO_RECEIVED A node has sent its node info but the
protocol are not in a state where it is
needed

bNodelD IN The updated node’s node ID (1..232).

pCmd IN Pointer of the updated node’s node info.
bLen IN The length of the pCmd parameter.
Serial API:

ZW->HOST: REQ | 0x49 | bStatus | bNodelD | bLen | basic | generic | specific | commandclasses]]

Sigma Designs Inc. Z-Wave Application Interfaces Page 37 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.1.8 ApplicationControllerUpdate (All controller libraries)

void ApplicationControllerUpdate (BYTE bStatus,
BYTE bNodelD,
BYTE *pCmd,
BYTE bLen)

The Z-Wawe protocol in a controller calls ApplicationControllerUpdate when a new node has been
added or deleted from the controller through the network management features. The Z-Wawe protocol
calls ApplicationControllerUpdate as a result of using the API call ZW_RequestNodelnfo. The
application can use this functionality to add/delete the node information from any structures used in the
System layer. The Z-Wawve protocol also calls ApplicationControllerUpdate when a Node Information
Frame has been received and the protocol is not in a state where it needs the node information.

ApplicationControllerUpdate is called on the SUC each time a node is added/deleted by the primary
controller. ApplicationControllerUpdate is called on the SIS each time a node is added/deleted by the
inclusion controller. When a node request ZW_RequestNetWorkUpdate from the SUC/SIS then the
ApplicationControllerUpdate is called for each node change (add/delete) on the requesting node.
ApplicationControllerUpdate is not called on a primary or inclusion controller when a node is
added/deleted.

All controller libraries, requires this function implemented within the System layer.
Defined in: Z\W _controller_api.h
Parameters:

bStatus IN The status of the update process, value could
be one of the following:

UPDATE_STATE_ADD_DONE A new node has been added to the
network

UPDATE_STATE_DELETE_DONE A node has been deleted from the
network

UPDATE_STATE_NODE_INFO_RECEIVED A node has sent its node info either
unsolicited or as a response to a
ZW_RequestNodelnfo call

UPDATE_STATE_SUC_ID The SUC node Id was updated

bNodelD IN The updated node’s node ID (1..232).

pCmd IN Pointer of the updated node’s node info.
bLen IN The length of the pCmd parameter.
Serial API:

ZW->HOST: REQ | 0x49 | bStatus | bNodelD | bLen | basic | generic | specific | commandclasses]]

Sigma Designs Inc. Z-Wave Application Interfaces Page 38 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

ApplicationControllerUpdate via the Serial API also have the possibility for receiving the status
UPDATE_STATE_NODE_INFO_REQ_FAILED, which means that a node did not acknowledge a
ZW_RequestNodelnfo call.

Sigma Designs Inc. Z-Wave Application Interfaces Page 39 of 289

CONFIDENTIAL

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

2012-05-25

54.1.9 ApplicationCommandHandler_Bridge (Bridge Controller library only)

void ApplicationCommandHandler_Bridge(BYTE rxStatus,

BYTE destNode,
BYTE sourceNode,
ZW_MULTI_DEST multi,

ZW_APPLICATION_TX_BUFFER *pCmd,

BYTE cmdLength)

The Z-Wawe protocol will call the ApplicationCommandHandler_Bridge function when an application
command or request has been received from another node to the Bridge Controller or an existing virtual
slave node. The receive buffer is released when returning from this function.

The Z-Wawve Bridge Controller library requires this function implemented within the System layer.

Defined in:
Parameters:

rxStatus IN

destNode IN

sourceNode IN

Multi IN

pCmd IN

cmdLength IN

ZW _controller_bridge_api.h

Frame header info:

RECEIVE_STATUS_ROUTED_BUSY A response route is
XXXXXXX1 locked by the application
RECEIVE_STATUS_LOW_POWER Received at low output
XXXXXX1X power level
RECEIVE_STATUS_TYPE_SINGLE Received a single cast
XXXX00xX frame
RECEIVE_STATUS_TYPE_BROAD Received a broadcast
XXXX01XX frame
RECEIVE_STATUS_TYPE_MULTI Received a multicast
XXXXL10XX frame

Command receiving Node ID. Either Bridge
Controller Node ID or virtual slave Node ID.

If received frame is a MULTIcast frame then
destNode is not valid and multi points to a
multicast structure containing the destination
nodes.

Command sender Node ID.
If received frame is, a multicast frame then multi
points at the multicast Structure containing the

destination Node IDs.

Payload from the received frame. The command
class is the very first byte.

Number of Command class bytes.

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 40 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
Serial API:

ZW->HOST: REQ | OxA8 | rxStatus | destNodelD | srcNodelD | cmdLength | pCmd[] |
multiDestsOffset_NodeMaskLen | multiDestsNodeMask

Sigma Designs Inc. Z-Wave Application Interfaces Page 41 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.1.10 ApplicationSlaveNodelnformation (Bridge Controller library only)

void ApplicationSlaveNodelnformation(BYTE destNode,
BYTE *listening,
APPL_NODE_TYPE *nodeType,
BYTE **nodeParm,
BYTE *parmLength)

Request Application Virtual Slave Node information. The Z-Wawve protocol layer calls
ApplicationSlaveNodelnformation just before transmitting a "Node Information" frame.

The Z-Wawe Bridge Controller library requires this function implemented within the System layer.

Sigma Designs Inc. Z-Wave Application Interfaces Page 42 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Defined in: Z\W _controller_bridge_api.h

Parameters:
destNode IN Which Virtual Node do we want the node
information from.
listening OUT TRUE if this node is always listening and
not moving.
nodeType OUT Pointer to structure with the Device Class:
(*nodeType).generic The Generic Device Class [1].
Do not enter zero in this field.
(*nodeType).specific The Specific Device Class [1].
nodeParm OUT Command Class buffer pointer. Command Classes [1]
supported by the device itself
and optional Command
Classes the device can control
in other devices.
parmLength OUT Number of Command Class bytes.
Serial API:

The ApplicationSlaveNodelnformation is replaced by
SerialAPI_ApplicationSlaveNodelnformation. Used to set node information for the Virtual Slave
Node in the embedded module this node information will then be used in subsequent calls to
ZW_SendSlaveNodelnformation. Replaces the functionality provided by the
ApplicationSlaveNodelnformation() callback function.

void SerialAPI_ApplicationSlaveNodelnformation(BYTE destNode,
BYTE listening,
APPL_NODE_TYPE *nodeType,
BYTE *nodeParm,
BYTE parmLength)

HOST->ZW: REQ | OxAO | destNode | listening | genericType | specific Type | parmLength | nodeParm|[]

Sigma Designs Inc. Z-Wave Application Interfaces Page 43 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.1.11 ApplicationRfNotify

void ApplicationRfNotify (BYTE rfState)

This function is used to inform the application about the current state of the radio enabling control of an
external power amplifier (PA). The Z-Wawe protocol will call the ApplicationRfNotify function when the
radio changes state as follows:

e From Tx to Rx

e From Rx to TX

e From powere down to Rx
e From power down to Tx

e When PA is powered up

e When PA s powered down

This enables the application to control an external PA using the appropriate number of /O pins. For
details, refer to [35].

Defined in: ZW _basis_api.h

Parameters:
rfState IN The current state of the radio. Refer to ZW_transport_APl.h header file
ZW_RF_TX MODE The radio is in Tx state. Previous state is
either Rx or power down
ZW_RF_RX MODE The radio in Rx or power down state.
Previous stateis ether Tx or power down
ZW_RF_PA_ON The radio in Tx moode and the PA is
powered on
ZW_RF_PA_OFF The radio in Tx mode and the PAis
powered off
Serial API:

Not implemented

Sigma Designs Inc. Z-Wave Application Interfaces Page 44 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.2 Z-Wave Basis API

This section defines functions that are implemented in all Z-Wawe nodes.
54.2.1 ZW_ExploreRequestinclusion

BYTE ZW_ExploreRequestinclusion()
This function sends out an explorer frame requesting inclusion into a network. If the inclusion request is
accepted by a controller in network wide inclusion mode then the application on this node will get notified
through the callback from the ZW_SetLearnMode() function. Once a callback is received from
ZW_SetLearnMode() saying that the inclusion process has started the application should not make
further calls to this function.
NOTE: Recommend not to call this function more than once every 4 seconds.

Defined in: ZW _basis_api.h

Return value:

BYTE TRUE Inclusion request queued for transmission

FALSE Node is not in learn mode
Serial API
HOST->ZW: REQ | OX5E

ZW->HOST: RES | Ox5E | retVal

Sigma Designs Inc. Z-Wave Application Interfaces Page 45 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.2.2 ZW_GetProtocolStatus

BYTE 2ZW_GetProtocolStatus(void)

Macro: ZW_GET_PROTOCOL_STATUS()

Report the status of the protocol.

This function returns a mask telling which protocol function is currently running
Defined in: ZW _basis_api.h
Return value:

BYTE Returns the protocol status as one of the
following:

Zero Protocol is idle.
ZW_PROTOCOL_STATUS_ROUTING Protocol is analyzing the routing table.
ZW_PROTOCOL_STATUS_SUC SUC sends pending updates.

Serial API

HOST->ZW: REQ | OXBF

ZW->HOST: RES | OxBF | retVal

54.2.3 ZW_GetRandomWord

BYTE ZW_GetRandomWord(BYTE *randomWord,
BOOL bResetRadio)

Macro: ZW_GET_RANDOM_WORD (randomWord, bResetRadio)

The API call generates a random word using the ZW0201/2ZW0301 built-in random number generator
(RNG). If RF needs to be in Receive then ZW_SetRFReceiveMode should be called afterwards.

NOTE: The ZW0201/2W0301 RNG is based on the RF transceiver, which must be in powerdown state
(see 2ZW_SetRFReceiveMode) to assure proper operation of the RNG. Remember to call
ZW_GetRandomWord with bResetRadio = TRUE when the last random word is to be generated. This is
needed for the RF to be reinitialized, so that it can be used to transmit and receive again.

Defined in: ZW _basis_api.h

Return value:

BOOL TRUE If possible to generate random number.
FALSE If not possible e.g. RF not powered down.
Sigma Designs Inc. Z-Wave Application Interfaces Page 46 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Parameters:

randomWord OUT Pointer to word variable, which
should receive the random word.

bResetRadio IN If TRUE the RF radio is reinitialized
after generating the random word.

Serial API

The Serial API function 0x1C makes use of the ZW_GetRandomWord to generate a specified number
of random bytes and takes care of the handling of the RF:

e Set the RF in powerdown prior to calling the ZW_GetRandomWord the first time, if not
possible then return result to HOST.

e Call 2W_GetRandomWord until enough random bytes generated or ZW_GetRandomWord
returns FALSE.

e Call ZW_GetRandomWord with bResetRadio = TRUE to reinitialize the radio.

e Call ZW_SetRFReceiveMode with TRUE if the serialAPI hardware is a listening device or with
FALSE if it is a non-listening device.

e Return result to HOST.
HOST -> ZW: REQ | 0x1C | [noRandomBytes]
noRandomBytes Number of random bytes needed. Optional if not
present or equal ZERO then 2 random bytes are
returned Range 1...32 random bytes are

supported.

ZW -> HOST: RES | 0x1C | randomGenerationSuccess | noRandomBytesGenerated |
noRandomGenerated[noRandomBytesGenerated]

randomGenerationSuccess TRUE if random bytes could be generated

FALSE if no random bytes could be generated

noRandomBytesGenerated Number of random numbers generated
noRandomBytesGenerated|[] Array of generated random bytes
Sigma Designs Inc. Z-Wave Application Interfaces Page 47 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5424 ZW_Poll

void ZW_Poll(void)
Macro: ZW_POLL

This Z-Wawe low-level poll function handles the transfer of bytes from the transmit buffer to the
RF media and buffering of incoming frames in the receive buffer.

This function must be called while doing a busy loop or other time consuming execution in the
application code to awid loosing incoming frames and corrupting outgoing frames. This
function does not senice the Z-Wawe protocol so no frames will be acknowledged or forwarded
when the application is busy and calling ZW_Poll() so other nodes in the network will
experience that the node is very difficult to communicate with. The use of this call should be
limited to situations where it is impossible for the application to return from the function that it is
currently running in or situations where radio communication is not necessary.

Defined in: ZW _basis_api.h

Serial APl (Not supported)

5.4.25 ZW_Random

BYTE ZW_Random(void)
Macro: ZW_RANDOM()
A pseudo-random number generator that generates a sequence of numbers, the elements of which are
approximately independent of each other. The same sequence of pseudo-random numbers will be
repeated in case the module is power cycled. The Z-Wawe protocol uses also this function in the random
backoff algorithm etc.

Defined in: ZW _basis_api.h

Return value:

BYTE Random number (0 — OXFF)

Serial API

HOST->ZW: REQ | 0x1D

ZW->HOST: RES | 0x1D | rndNo

Sigma Designs Inc. Z-Wave Application Interfaces Page 48 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.2.6 ZW_RFPowerLevelSet

BYTE ZW_RFPowerLevelSet(BYTE powerLevel)

Macro: ZW_RF_POWERLEVEL_SET(POWERLEVEL)

Set the power level used in RF transmitting. The actual RF power is dependent on the settings for
transmit power lewvel in App_RFSetup.a51. If this value is changed from using the default library value the
resulting power lewvels might differ from the intended values. The returned value is however always the

actual one used.

NOTE: This function should only be used in an install/test link situation and the power level
should always be set back to normal Power when the testing is done.

Defined in: ZW_basis_api.h
Parameters:

powerLevel IN Powerlevel to use in RF
transmission, valid values:

normalPower Max power possible
minus1dB Normal power - 1dB (mapped to minus2dB™™)
minus2dB Normal power - 2dB
minus3dB Normal power - 3dB (mapped to minus4dB)
minus4dB Normal power - 4dB
minus5dB Normal power - 5dB (mapped to minus6dB)
minus6dB Normal power - 6dB
minus7dB Normal power - 7dB (mapped to minus8dB)
minus8dB Normal power - 8dB
minus9dB Normal power - 9dB (mapped to minus10dB)
Return value:
BYTE The powerlevel set.

Serial API (Serial API protocol version 4):
HOST->ZW: REQ | 0x17 | powerLewel

ZW->HOST: RES | 0x17 | retVval

11 400 Series support only -2dB pow er level steps

Sigma Designs Inc. Z-Wave Application Interfaces Page 49 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.2.7 ZW_RFPowerLevelGet

BYTE ZW_RFPowerLevelGet(void)

Macro: ZW_RF_POWERLEVEL_GET()

Get the current power level used in RF transmitting.

NOTE: This function should only be used in an install/test link situation.
Defined in: ZW _basis_api.h
Return value:

BYTE The power level currently in effect during
RF transmissions.

Serial API
HOST->ZW: REQ | OXxBA

ZW->HOST: RES | OxBA | powerlevel

Sigma Designs Inc. Z-Wave Application Interfaces Page 50 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.2.8 ZW_RequestNetWorkUpdate

BYTE ZW_RequestNetWorkUpdate (VOID_CALLBACKFUNC (completedFunc)(BYTE txStatus))

Macro: ZW_REQUEST _NETWORK_UPDATE (func)

Used to request network topology updates from the SUC/SIS node. The update is done on protocol lewel
and any changes are notified to the application by calling the ApplicationControllerUpdate).

Secondary controllers can only use this call when a SUC is present in the network. All controllers can
use this call in case a SUC ID Sener (SIS) is available.

Routing Slaves can only use this call, when a SUC is present in the network. In case the Routing Slave
has called ZW_RequestNewRouteDestinations prior to ZW_RequestNetWorkUpdate, then Return
Routes for the destinations specified by the application in ZW_RequestNewRouteDestinations will be
updated along with the SUC Return Route.

NOTE: The SUC can only handle one network update at a time, so care should be taken not to have all
the controllers in the network ask for updates at the same time.

WARNING: This API call will generate a lot of network activity that will use bandwidth and stress the
SUC in the network. Therefore, network updates should be requested as seldom as possible and never
more often that once every hour from a controller.

Defined in: ZW _controller_api.h and ZW_slave_routing_api.h

Return value:

BYTE TRUE If the updating process is started.

FALSE If the requesting controller is the SUC
node or the SUC node is unknown.

Parameters:

completedFunc Transmit complete call back.
IN

Sigma Designs Inc. Z-Wave Application Interfaces Page 51 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Callback function Parameters:

txStatus IN Status of command:
ZW_SUC_UPDATE_DONE The update process succeeded.
ZW_SUC_UPDATE_ABORT The update process aborted because of
an error.
ZW_SUC_UPDATE_WAIT The SUC node is busy.
ZW_SUC_UPDATE_DISABLED The SUC functionality is disabled.
ZW_SUC_UPDATE_OVERFLOW The controller requested an update after
more than 64 changes have occurred in
the network. The update information is
then out of date in respect to that
controller. In this situation the controller
have to make a replication before trying
to request any new network updates.
Serial API:

HOST->ZW: REQ | 0x53 | funcID

Notice: funcID is used to correlate callback with original request. Callback is disabled by setting funcID
equal to zero in original request.

ZW->HOST: RES | Ox53 | retVal

ZW->HOST: REQ | 0x53 | funcID | txStatus

Sigma Designs Inc. Z-Wave Application Interfaces Page 52 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.2.9 ZW_RFPowerlevelRediscoverySet

void ZW_RFPowerlevelRediscoverySet(BYTE bNewPower)
Macro: ZW_RF_POWERLEVEL_REDISCOVERY _SE T(bNewP ower)

Set the power level locally in the node when finding neighbors. The default power level is normal power
minus 6dB. It is only necessary to call ZW_RFPowerlevelRediscoverySet in case a value different from
the default power lewvel is needed. Furthermore is it only necessary to set a new power level once then
the new lewvel will be used every time a neighbor discowery is performed. The API call can be called from
Applicationinit or during runtime from ApplicationPoll or ApplicationCommandHandler.

NOTE: Be aware of that weak RF links can be included in the routing table in case the reduce
power level is set to 0dB (hormalPower). Weak RF links can increase latency in the network due
to retries to get through. Finally, will a large reduction in power level result in a reduced range
between the nodes in the network, which results in an increased latency due to an increase in the
necessary hops to reach the destination.

Defined in: ZW_Dbasis_api.h
Parameters:

bNewPower IN Powerlevel to use when doing
neighbor discovery, valid values:

normalPower Max power possible

minus1dB Normal power - 1dB (mapped to minus2dB*)
minus2dB Normal power - 2dB

minus3dB Normal power - 3dB (mapped to minus4dB)
minus4dB Normal power - 4dB

minus5dB Normal power - 5dB (mapped to minus6dB)
minus6dB Normal power - 6dB

minus7dB Normal power - 7dB (mapped to minus8dB)
minus8dB Normal power - 8dB

minus9dB Normal power - 9dB (mapped to minus10dB)

Serial API:

HOST->ZW: REQ | Ox1E | powerLewel

H* 400 Series support only -2dB pow er level steps

Sigma Designs Inc. Z-Wave Application Interfaces Page 53 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54210 ZW_RFAbove3vSupplyGuaranteed

void ZW_RFAbove3vSupplyGuaranteed(BOOL above_3v_supply)

Use this function to disable\enable the OTP charge pump in RX mode. Switching the charge pump off in
RX lowers the sensitivity variation. Howewer the charge pump can only be switched off if the supply is
guaranteed to be above 3V.

Defined in: ZW _basis_api.h

Parameters:

Above_3v_supply Boolean

IN
TRUE The power supply can guarantee a wltage
abowve 3y, thus disabling the OTP charge pump.
FALSE Power supply can’'t guarantee wltage abowe
3y, thus enabling the OTP charge pump.
Serial API:

Not supported yet

Sigma Designs Inc. Z-Wave Application Interfaces Page 54 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54211 ZW_SendNodelnformation

BYTE ZW_SendNodelnformation(BYTE destNode,
BYTE txOptions,
VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus))

Macro: ZW_SEND_NODE_INFO(node,option, func)

Create and transmit a “Node Information” frame. The Z-Wawe transport layer builds a frame, request
application node information (see ApplicationNodelnformation) and queue the “Node Information”
frame for transmission. The completed call back function (completedFunc) is called when the
transmission is complete.

The Node Information Frame is a protocol frame and will therefore not be directly available to the
application on the receiver. The API call ZW_SetLearnMode() can be used to instruct the protocol to
pass the Node Information Frame to the application.

NOTE: ZW_SendNodelnformation uses the transmit queue in the API, so using other transmit functions
before the complete callback has been called by the API might fail.

Defined in: ZW_Dbasis_api.h

Return value:

BYTE TRUE If frame was put in the transmit queue
FALSE If it was not (callback will not be called)

Parameters:

destNode IN Destination Node ID

(NODE_BROADCAST == all nodes)

txOptions IN Transmit option flags.
(see ZW_SendData)

completedFunc Transmit completed call back function
IN

Callback function Parameters:

txStatus IN (see ZW_SendData)

Serial API:

HOST->ZW: REQ | 0x12 | destNode | txOptions | funclD
ZW->HOST: RES | 0x12 | retVval

ZW->HOST: REQ | 0x12 | funcID | txStatus

Sigma Designs Inc. Z-Wave Application Interfaces Page 55 of 289

CONFIDENTIAL

Defined in: ZW _basis_api.h
Parameters:

nodelD IN Node ID on the node ID (1..232)

the test frame should be

transmitted to.
INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
powerLevel IN Powerlevel to use in RF

transmission, valid values:

normalPower Max power possible

minus1dB Normal power - 1dB (mapped to minus2dB*°®)

minus2dB Normal power - 2dB

minus3dB Normal power - 3dB (mapped to minus4dB)

minus4dB Normal power - 4dB

minus5dB Normal power - 5dB (mapped to minus6dB)

minus6dB Normal power - 6dB

minus7dB Normal power - 7dB (mapped to minus8dB)

minus8dB Normal power - 8dB

minus9dB Normal power - 9dB (mapped to minus10dB)
func IN Call back function called when

done.

Callback function Parameters:

txStatus IN (see ZW_SendData)

Return value:

BYTE FALSE If transmit queue overflow.
Serial API

HOST->ZW: REQ | OXBE | nodelD| powerlewel | funclD

ZW->HOST: REQ | OxBE | retVal

ZW->HOST: REQ | OxBE | funcID | txStatus

855 400 Series support only -2dB pow er level steps

Sigma Designs Inc. Z-Wave Application Interfaces Page 56 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54212 ZW_SendTestFrame

BYTE ZW_SendTestFrame(BYTE nodelD,
BYTE powerlevel,
VOID_CALLBACKFUNC(func)(BYTE txStatus))

Macro: ZW_SEND_TEST_FRAME (nodelD, power, func)

Send a test frame directly to nodelD without any routing, RF transmission power is previously set to
powerlevel by calling ZW_RF_POWERLEVEL_SET. The test frame is acknowledged at the RF
transmission powerlevel indicated by the parameter powerlevel by nodelD (if the test frame got through).
This test will be done using 9600 kbit/s transmission rate.

NOTE: This function should only be used in an install/test link situation.

Sigma Designs Inc. Z-Wave Application Interfaces Page 57 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

54213 ZW_SetExtintLevel

void ZW_SetExtintLevel(BYTE intSrc,
BOOL triggerLevel)

Macro: ZW_SET_EXT_INT_LEVEL(SRC, TRIGGER_LEVEL)

Set the trigger level for external interrupt O or 1. Lewvel or edge triggered is selected as follows:

Level Triggered | Edge Triggered

External interrupt O ITO = 0; ITO = 1,

External interrupt 1 ITL =0; ITL =1,

Defined in: ZW _basis_api.h

Parameters:

intSrc IN The external interrupt valid values:
ZW_INTO External interrupt 0 (Pin P1.0)
ZW_INT1 External interrupt 1 (Pin P1.1)

triggerLevel IN The external interrupt trigger level:

2012-05-25

TRUE Set the interrupt trigger to high level
/Rising edge

FALSE Set the interrupt trigger to low lewel
/Falling edge

Serial API

HOST->ZW: REQ | 0xB9 | intSrc | triggerLevel

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 58 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.214 ZW_SetPromiscuousMode (Not Bridge Controller library)

void ZW_SetPromiscuousMode(BOOL state)

Macro: ZW_SET_PROMISCUOUS_MODE (state)

ZW_SetPromiscuousMode Enable / disable the promiscuous mode.

When promiscuous mode is enabled, all System layer frames will be passed to the System layer
regardless if the frames are addressed to another node. When promiscuous mode is disabled, only the

frames addressed to the node will be passed to the System layer.

Promiscuously received frames are delivered to the application via the ApplicationCommandHandler
callback function (see section 5.4.1.5).

Defined in: ZW _basis_api.h

Parameters:

state IN TRUE to enable the promiscuous mode,
FALSE to disable it.

Serial API:

HOST->ZW: REQ | 0xDO | state

See section 5.4.1.5 for callback syntax when a frame has been promiscuously received.

Sigma Designs Inc. Z-Wave Application Interfaces Page 59 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54215 ZW_SetRFReceiveMode

BYTE ZW_SetRFReceiveMode(BYTE mode)

Macro: ZW_SET_RX MODE(mode)

ZW_SetRFReceiveMode is used to power down the RF when not in use e.g. expects nothing to be
received. ZW_SetRFReceiveMode can also be used to set the RF into receive mode. This functionality
is useful in battery powered Z-Wave nodes e.g. the ZWave Remote Controller. The RF is automatic
powered up when transmitting data.

Defined in: ZW _basis_api.h

Return value:

BYTE TRUE If operation was successful

FALSE If operation was none successful
Parameters:
mode IN TRUE On: Set the RF in receive mode and

starts the receive data sampling

FALSE Off: Set the RF in power down mode (for
battery power sawe).

Serial API
HOST->ZW: REQ | 0x10 | mode

ZW->HOST: RES | 0x10 | retval

Sigma Designs Inc. Z-Wave Application Interfaces Page 60 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54216 ZW_Type_Library

BYTE 2ZW_Type_Library(void)

Macro: ZW_TYPE_LIBRARY()

Get the Z-Wawe library type.
Defined in: ZW _basis_api.h

Return value:

BYTE Returns the library type as one of the
following:
ZW_LIB_CONTROLLER_STATIC Static controller library
ZW_LIB_CONTROLLER_BRIDGE Bridge controller library
ZW_LIB_CONTROLLER Portable controller library
ZW_LIB_SLAVE_ENHANCED Enhanced slawe library
ZW_LIB_SLAVE_ROUTING Routing slave library
ZW_LIB_SLAVE Slawe library
ZW_LIB_INSTALLER Installer library

Serial API

HOST->ZW: REQ | OxBD

ZW->HOST: RES | OxBD | retVal

Sigma Designs Inc. Z-Wave Application Interfaces Page 61 of 289

CONFIDENTIAL

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

54.2.17 ZW_Version

BYTE 2ZW_Version(BYTE *buffer)

Macro: ZW_VERSION(buffer)

Get the Z-Wawe basis API library version.

Defined in:

Parameters:

buffer OUT

Return value:

BYTE

Serial API:

ZW _basis_api.h

Returns the API library version in text
using the format:

Z-Wawe Xx.yy

where x.yy is the library version.

Returns the library type as one of the

following:

ZW_LIB_CONTROLLER_STATIC Static controller library
ZW_LIB_CONTROLLER_BRIDGE Bridge controller library
ZW_LIB_CONTROLLER Portable controller library
ZW_LIB_SLAVE_ENHANCED Enhanced slawe library
ZW_LIB_SLAVE_ROUTING Routing slave library
ZW_LIB_SLAVE Slawe library
ZW_LIB_INSTALLER Installer library

HOST->ZW: REQ | 0x15

ZW->HOST: RES | 0x15 | buffer (12 bytes) | library type

2012-05-25

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 62 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

An additional call is offered capable of returning Serial APl version number, Serial API capabilities, nodes
currently stored in the EEPROM (only controllers) and chip used.

HOST->ZW: REQ | 0x02

(Controller) ZW->HOST: RES | 0x02 | ver | capabilities | 29 | nodes[29] | chip_type | chip_version
(Slave) ZW->HOST: RES | 0x02 | ver | capabilities | O | chip_type | chip_version

Nodes[29] is a node bitmask.

Capabilities flag:

Bit 0: 0 = Controller API; 1 = Slave API

Bit 1: 0 = Timer functions not supported; 1 = Timer functions supported.

Bit 2: 0 = Primary Controller; 1 = Secondary Controller

Bit 3-7: resened

The chip used can be determined as follows:

Z-Wave Chip | Chip_type | Chip_version

ZW0102 0x01 0x02
ZW0201 0x02 0x01
ZW0301 0x03 0x01
ZM0401 0x04 0x07
ZM4102 0x04 0x07
SD3402 0x04 0x07
ZW0403 0x05 0x07

Timer functions are: TimerStart, TimerRestart and TimerCancel.
54.2.18 ZW_VERSION_MAJOR / ZW_VERSION_MINOR / ZW_VERSION_BETA

Macro: ZW_VERSION_MAJOR/ZW_VERSION_MINOR/ ZW_VERSION_BETA

These #defines can be used to get a decimal value of the used Z-Wawe library. ZW_VERSION_MINOR
should be 0 padded when displayed to users EG: ZW_VERSION_MAJOR =1 ZW_VERSION_MINOR
=2 should be shown as: 1.02 to the user where as ZW_VERSION_MAJOR =1 ZW_VERSION_MINOR
=20 should be shown as 1.20.

ZW_VERSION_BETA is only defined for beta releases of the Z-Wawe Library. In which case it is defined
as a single char for instance: 'b'

Defined in: ZW _basis_api.h

Sigma Designs Inc. Z-Wave Application Interfaces Page 63 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Serial API (Not supported)

54219 ZW_WatchDogEnable

void ZW_WatchDogEnable(void)
Macro: ZW_WATCHDOG_ENABLE()

Enables the 400 Series Z-Wawe Single Chip built-in watchdog. By default, the watchdog is disabled.
The watchdog timeout internval is 1 second.

The watchdog must be kicked at least one time per interval. Failing to do so will cause the 400 Series Z-
Wawe Single Chip to be reset.

Some software bugs can be difficult to diagnose when the watchdog is enabled because the application
will reboot when the watchdog resets the 400 Series Z-Wawe Single Chip. Therefore it is recommended
to also test the device with the watchdog disabled.

Defined in: ZW _basis_api.h

Serial API

HOST->ZW: REQ | 0xB6

54220 ZW_WatchDogDisable

void 2ZW_WatchDogDisable(void)

Macro: ZW_WATCHDOG_DISABLE ()

Disable the 400 Series Z-Wawe Single Chip built in watchdog.
Defined in: ZW _basis_api.h

Serial API

HOST->ZW: REQ | 0xB7

Sigma Designs Inc. Z-Wave Application Interfaces Page 64 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.221 ZW_WatchDogKick

void ZW_WatchDogKick(void)
Macro: ZW_WATCHDOG_KICK ()
To keep the watchdog timer from resetting the 400 Series Z-Wawe Single Chip, it has to be kicked
regularly. The ZW_WatchDogKick API call must be called in the function ApplicationPoll to assure
correct detection of any software anomalies etc.

Defined in: ZW _basis_api.h

Serial API

HOST->ZW: REQ | 0xB8

Sigma Designs Inc. Z-Wave Application Interfaces Page 65 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.3 Z-Wave Transport API

The Z-Wawe transport layer controls transfer of data between Z-Wave nodes including retransmission,
frame check and acknowledgement. The Z-Wawve transport interface includes functions for transfer of
data to other Z-Wave nodes. Application data received from other nodes is handed owver to the
application via the ApplicationCommandHandler function. The ZW_MAX NODES define defines the
maximum of nodes possible in a Z-Wawe network.

543.1 ZW_SendData

BYTE ZW_SendData(BYTE nodelD,
BYTE *pData,
BYTE dataLength,
BYTE txOptions,
Void (*completedFunc)(BYTE txStatus))
NOTE: Only librarieswithout manual routing functionality support ZW_SendData.

Macro: ZW_SEND_DATA(node,data,length,options,func)

Transmit the data buffer to a single Z-Wawe Node or all Z-Wave Nodes (broadcast). The data buffer is
queued to the end of the transmit queue (first in; first out) and when ready for transmission the Z-Wawe
protocol layer frames the data with a protocol header in front and a checksum at the end.

When communicating to a Frequently Listening Routing Slave (FLIRS) will the API call automatically
generate a wakeup beam to awake the FLIRS. ZW0102 does not support generation and detection of
wakeup beams.

The transmit option TRANSMIT_OPTION_ACK requests the destination node to return a transfer
acknowledge to ensure proper transmission. The transmitting node will retry the transmission if no
acknowledge received. The Controller nodes can add the TRANSMIT_OPTION_AUTO_ROUTE flag to
the transmit option parameter. The Controller will then try transmitting the frame via repeater nodes if the
direct transmission failed.

The transmit option TRANSMIT _OPTION_NO_ROUTE force the protocol to send the frame without
routing, even if a response route exist.

Sigma Designs Inc. Z-Wave Application Interfaces Page 66 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Table 9. Transmit options behavior for portable and installer libraries
TRANSMIT_OPTION_

Protocol behaviour

ACK | NO_ROUTE | AUTO_ROUTE

Transmit frame as if it was a broadcast frame with

0 0 0 L .
no retransmission nor routing.

0 0 1 Transmit frame as if it was a broadcast frame with
no retransmission nor routing.

0 1 0 Transmit frame as if it was a broadcast frame with
no retransmission nor routing.

0 1 1 Transmit frame as if it was a broadcast frame with

no retransmission nor routing.

In case direct transmission fails, the frame will be
1 0 0 transmitted using last working route if one exists to
the destination in question.

If direct communication fails, then attempt with last
working route.

1 0 1 If last working route also fails or simply does not
exist to the destination, then routes from the routing
table will be used.

Frame will be transmitted with direct
1 1 0 communication i.e. no routing regardless whether a
last working route exist or not.

Frame will be transmitted with direct
1 1 1 communication i.e. no routing regardless whether a
last working route exist or not.

The Routing Slave and Enhanced Slave nodes can add the TRANSMIT_OPTION_AUTO_ROUTE flag to
the transmit option parameter. This flag informs the Enhanced/Routing Slave protocol that the frame
about to be transmitted should use the assigned return routes for the concerned nodelD (if any). The
node will then try to use one of the return routes assigned (if a route is unsuccessful the next route is
used and so on), if no routes are valid then transmission will try direct (no route) to nodelD. If the nodelD
= NODE_BROADCAST then the frame will be transmitted to all assigned return route destinations. If
nodelD = NODE_BROADCAST then the frame will be transmitted to nodelD using the assigned return
routes for nodelD.

To enable on-demand route resolution a new transmit option TRANSMIT_OPTION_EXPLORE must be
appended to the well known send API calls. This instruct the protocol to transmit the frame as an explore
frame to the destination node if source routing fails. An explore frame uses normal RF power level minus
6dB similar to a node finding neighbors. It is also possible to specify the maximum number of source
routing attempts before the explorer frame kicks in using the API call ZW_SetRoutingMAX. Default value
is five with respect to maximum number of source routing attempts. A ZDK 4.5 controller uses the routing
algorithm from 5.02 to address nodes from ZDK’s not supporting explorer frame. The routing algorithm
from 5.02 ignores the transmit option TRANSMIT_OPTION_EXPLORE flag and maximum number of
source routing attempts value. Notice that an explorer frame cannot wake up FLIRS nodes.

Sigma Designs Inc. Z-Wave Application Interfaces Page 67 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

The completedFunc is called when the frame transmission completes, that is when transmitted if ACK is
not requested; when acknowledge received from the destination node, or when routed acknowledge
completed if the frame was transmitted via one or more repeater nodes. The transmit status
TRANSMIT_COMPLETE_NO_ACK indicate that no acknowledge is received from the destination node.
The transmit status TRANSMIT_COMPLETE_FAIL indicate that the Z-Wawe network is busy (jammed).

The TRANSMIT_OPTION_LOW_POWER option should only be used when the two nodes that are
communicating are close to each other (<2 meter). In all other cases, this option should not be used.

In a bridge controller library, sending to a virtual node belonging to the bridge itself is not recommended.

NOTE: Allways use the completeFunc callback to determine when the next frame can be send. Calling
the ZW_SendData or ZW_SendDataMulti in a loop without checking the completeFunc callback will
overflow the transmit queue and eventually fail. The data buffer in the application must not be changed

before completeFunc callback is received because it is only the pointer there is passed to the transmit
gueue.

Defined in: ZW _transport_api.h
Return value:

BYTE FALSE If transmit queue overflow

Sigma Designs Inc. Z-Wave Application Interfaces Page 68 of 289

CONFIDENTIAL

INS12034-2

Parameters:

nodelD IN

pData IN

datalLength IN

txOptions IN

Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Destination node ID
(NODE_BROADCAST == all nodes)

Data buffer pointer

Data buffer length

Transmit option flags:

TRANSMIT_OPTION_LOW_POWER

TRANSMIT_OPTION_NO_ROUTE

TRANSMIT_OPTION_ACK

TRANSMIT_OPTION_AUTO_ROUTE

TRANSMIT_OPTION_EXPLORE

The frame will also be transmitted in case
the source node ID is equal destination
node ID

The maximum size of a frame is 64
bytes. The protocol header and
checksum takes 10 bytes in a single cast
or broadcast frame leaving 54 bytes for
the payload. In case itis a routed
singlecast the source routing info takes
up to 6 bytes depending on the number
of hops leaving minimum 48 bytes for the
payload. In case itis a singlecast, which
piggyback on an explorer frame overhead
is 8 bytes leaving minimum 46 bytes for
the payload. The payload must be
minimum one byte.

Transmit at low output power level (1/3 of
normal RF range).

Only send this frame directly, even if a
response route exist

Request acknowledge from destination
node.

Controllers:

Request retransmission via repeater
nodes (at normal output power level).
Number of max routes can be set using
ZW_SetRoutingMax

Routing and Enhanced Slaves:

Send the frame to nodelD using the
return routes assigned for nodelD to the
routing/enhanced slawe, if no routes are
valid then transmit directly to nodelD (if
nodelD = NODE_BROADCAST then the
frame will be a BROADCAST).

If return routes exists and the nodelD =
NODE_BROADCAST then the frame will
be transmitted to all assigned return route
destinations. If nodelD !=
NODE_BROADCAST then the frame will
be transmitted via the assigned return
routes for nodelD.

Transmit frame as a explore frame if
ewerything else fails

Sigma Designs Inc.

Z-Wave Application Interfaces Page 69 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

completedFunc Transmit completed call back function

Callback function Parameters:

txStatus Transmit completion status:
TRANSMIT_COMPLETE_OK Successfully
TRANSMIT_COMPLETE_NO_ACK No acknowledge is received before timeout
from the destination node. Acknowledge is
discarded in case it is received after the
timeout.
TRANSMIT_COMPLETE_FAIL Not possible to transmit data because the
Z-Wave network is busy (jammed).
Serial API:

HOST->ZW: REQ | 0x13 | nodelD | dataLength | pData[] | txOptions | funcID
ZW->HOST: RES | 0x13 | RetVal

ZW->HOST: REQ | 0x13 | funcID | txStatus

Sigma Designs Inc. Z-Wave Application Interfaces Page 70 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.3.2 ZW_SendData_Bridge

BYTE ZW_SendData_Bridge(BYTE srcNodelD,
BYTE destNodelD,
BYTE *pData,
BYTE datalLength,
BYTE txOptions,
Void (*completedFunc)(BYTE txStatus))

NOTE: Only supported by the Bridge Controller library. For backward compatibility macros for
the Bridge Controller library has been made for ZW_SendData(node,data,length,options,func) and
ZW_SEND_DATA(node,data,length,options,func)

Macro: ZW_SEND_DATA_BRIDGE (srcnodeid, destnodeid, data, length, options, func)

Transmit the data buffer to a single Z-Wawe Node or all Z-Wave Nodes (broadcast). The data buffer is
queued to the end of the transmit queue (first in; first out) and when ready for transmission the Z-Wawe
protocol layer frames the data with a protocol header in front and a checksum at the end.

The transmit option TRANSMIT_OPTION_ACK requests the destination node to return a transfer
acknowledge to ensure proper transmission. The transmitting node will retry the transmission if no
acknowledge received. The Controller nodes can add the TRANSMIT_OPTION_AUTO_ROUTE flag to
the transmit option parameter. The Controller will then try transmitting the frame via repeater nodes if the
direct transmission failed.

The transmit option TRANSMIT_OPTION_NO_ROUTE force the protocol to send the frame without
routing, even if a response route exist.

To enable on-demand route resolution a new transmit option TRANSMIT_OPTION_EXPLORE must be
appended to the well known send API calls. This instruct the protocol to transmit the frame as an explore
frame to the destination node if source routing fails. An explore frame uses normal RF power level minus
6dB similar to a node finding neighbors. It is also possible to specify the maximum number of source
routing attempts before the explorer frame kicks in using the API call ZW_SetRoutingMAX. Default value
is five with respect to maximum number of source routing attempts. A ZDK 4.5 controller uses the routing
algorithm from 5.02 to address nodes from ZDK’s not supporting explorer frame. The routing algorithm
from 5.02 ignores the transmit option TRANSMIT_OPTION_EXPLORE flag and maximum number of
source routing attempts value. Notice that an explorer frame cannot wake up FLIRS nodes.

The completedFunc is called when the frame transmission completes, that is when transmitted if ACK is
not requested; when acknowledge received from the destination node, or when routed acknowledge
completed if the frame was transmitted via one or more repeater nodes. The transmit status
TRANSMIT_COMPLETE_NO_ACK indicate that no acknowledge is received from the destination node.
The transmit status TRANSMIT_COMPLETE _FAIL indicate that the Z-Wawe network is busy (jammed).

The TRANSMIT_OPTION_LOW_POWER option should only be used when the two nodes that are
communicating are close to each other (<2 meter). In all other cases this option should not be used.

NOTE: Always use the completeFunc callback to determine when the transmit is done. The
completeFunc should flag the application state machine that the transmit has been done and next
state/action can be started. A frame transmit should always be started through the application state
machine in order to be sure that the transmit buffer is ready for sending next frame. Calling the
ZW_SendData_Bridge in a loop without using the completeFunc callback will overflow the transmit
queue and eventually fail. The payload data buffer in the application must not be changed before
completeFunc callback is received because it is only the pointer that is passed to the transmit queue.

Sigma Designs Inc. Z-Wave Application Interfaces Page 71 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
Defined in: ZW _transport_api.h
Return value:

BYTE FALSE If transmit queue overflow

Sigma Designs Inc. Z-Wave Application Interfaces Page 72 of 289

CONFIDENTIAL

INS12034-2

Parameters:

srcNodelD IN

destNodelD IN

pData IN

datalLength IN

txOptions IN

completedFunc

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

Source node ID. Valid values:

NODE_BROADCAST = Bridge
Controller NodelD.

Bridge Controller NodelD.

Virtual Slave NodelD (only existing
Virtual Slave NodelDs).

Destination node ID

(NODE_BROADCAST == all nodes)

Data buffer pointer

Data buffer length

Transmit option flags:

TRANSMIT_OPTION_LOW_POWER

TRANSMIT_OPTION_NO_ROUTE

TRANSMIT_OPTION_EXPLORE

TRANSMIT_OPTION_ACK

TRANSMIT_OPTION_AUTO_ROUTE

Transmit completed call back function

2012-05-25

The frame will also be transmitted in case
the source node ID is equal destination
node ID

The maximum size of a frame is 64
bytes. The protocol header and
checksum takes 10 bytes in a single cast
or broadcast frame leaving 54 bytes for
the payload. In case itis a routed single
cast the source routing info takes up to 6
bytes depending on the number of hops
leaving minimum 48 bytes for the
payload. In case itis a singlecast, which
piggyback on an explorer frame overhead
is 8 bytes leaving minimum 46 bytes for
the payload. The payload must be
minimum one byte.

Transmit at low output power level (1/3 of
normal RF range).

Only send this frame directly, even if a
response route exist

Transmit frame as an Explore frame if all
else fails

Request acknowledge from destination
node.

Request retransmission via repeater
nodes (at normal output power level).

Sigma Designs Inc.

Z-Wave Application Interfaces

Page 73 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Callback function Parameters:

txStatus Transmit completion status:
TRANSMIT_COMPLETE_OK Successfully
TRANSMIT_COMPLETE_NO_ACK No acknowledge is received before timeout
from the destination node. Acknowledge is
discarded in case it is received after the
timeout.
TRANSMIT_COMPLETE_FAIL Not possible to transmit data because the

Z-Wawve network is busy (jammed).

TRANSMIT_COMPLETE_HOP_0_FAIL Transmission between Source node and
hop 1 failed.

TRANSMIT_COMPLETE_HOP_1 FAIL Transmission between hop 1 and hop 2
failed. Only detected in case a Routed
Error is returned to source node.

TRANSMIT_COMPLETE_HOP_2 FAIL Transmission between hop 2 and hop 3
failed. Only detected in case a Routed
Error is returned to source node.

TRANSMIT_COMPLETE_HOP_3_FAIL Transmission between hop 3 and hop 4
failed. Only detected in case a Routed
Error is returned to source node.

TRANSMIT_COMPLETE_HOP_4 FAIL Transmission between hop 4 and
destination node failed. Only detected in

case a Routed Error is returned to source
node.

Serial API:

HOST->ZW: REQ | 0xA9 | srcNodelD | destNodelD | dataLength | pData[] | txOptions | pRoute[4] |
funcID

ZW->HOST: RES | 0xA9 | RetVal
ZW->HOST: REQ | OxA9 | funclD | txStatus

WARNING: Use pRoute[4] equal [0,0,0,0].

Sigma Designs Inc. Z-Wave Application Interfaces Page 74 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.3.3 ZW_SendDataMeta_Bridge

BYTE ZW_SendDataMeta_Bridge(BYTE srcNodelD,
BYTE destNodelD,
BYTE *pData,
BYTE datalLength,
BYTE txOptions,
Void (*completedFunc)(BYTE txStatus))

Macro: ZW_SEND_DATA_META_BRIDGE(srcnodeid, nodeid, data, length, options, func)
NOTE: This function is only available in the Bridge Controller library.

Transmit streaming or bulk data in the Z-Wave network. The application must implement a delay of
minimum 35ms after each ZW_SendDataMeta_Bridge call to ensure that streaming data traffic does not
prevent control data from getting through in the network. Both virtual slaves and the bridge controller id
can use the API call ZW_SendDataMeta_Bridge. The call checks that the destination supports 40kbps
and denies transmission if destination is 9.6kbps only. Both 40kbps and 9.6kbps hops are allowed in
case routing is necessary.

NOTE: The completedFunc is called when the frame transmission completes in the case that ACK is
not requested; When TRANSMIT_OPTION_ACK is requested the callback function is called when frame
has been acknowledged or all transmission attempts are exausted.

The transmit status TRANSMIT_COMPLETE_NO_ACK indicate that no acknowledge is received from
the destination node. The transmit status TRANSMIT_COMPLETE_FAIL indicate that the Z-Wave
network is busy (jammed).

NOTE: Allways use the completeFunc callback to determine when the transmit is done. The
completeFunc should flag the application state machine that the transmit has been done and next
state/action can be started. A frame transmit should always be started through the application state
machine in order to be sure that the transmit buffer is ready for sending next frame. Calling the
ZW_SendDataMeta_Bridge in a loop without using the completeFunc callback will overflow the transmit
queue and eventually fail. The payload data buffer in the application must not be changed before
completeFunc callback is received because itis only the pointer that is passed to the transmit queue.

Defined in: ZW _transport_api.h

Return value:

BYTE FALSE If transmit queue overflow or if
destination node is not 40kbit/s
compatible
Sigma Designs Inc. Z-Wave Application Interfaces Page 75 of 289

CONFIDENTIAL

INS12034-2

Parameters:

srcNodelD IN

destNodelD

pData
datalLength

txOptions

completedFunc

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

Source node ID. Valid values:

NODE_BROADCAST = Bridge
Controller NodelD.

Bridge Controller NodelD.

Virtual Slave NodelD (only existing
Virtual Slave NodelDs).

IN Destination node ID

IN Data buffer pointer
IN Data buffer length

IN Transmit option flags:

TRANSMIT_OPTION_LOW_POWER

TRANSMIT_OPTION_EXPLORE

TRANSMIT_OPTION_ACK

TRANSMIT_OPTION_AUTO_ROUTE

Transmit completed call back function

Callback function Parameters:

txStatus IN

(see ZW_SendData)

2012-05-25

Node to send Meta data to. Should be
40kbit/s capable

Pointer to data buffer.
Length of buffer

The maximum size of a frame is 64
bytes. The protocol header and
checksum takes 10 bytes in a single cast
or broadcast frame leaving 54 bytes for
the payload. In case itis a routed single
cast the source routing info takes up to 6
bytes depending on the number of hops
leaving minimum 48 bytes for the
payload. In case itis a singlecast, which
piggyback on an explorer frame
overhead is 8 bytes leaving minimum 46
bytes for the payload. The payload must
be minimum one byte.

Transmit at low output power level (1/3
of normal RF range).

Transmit frame as an Explore frame if all
else fails

Request the destination node to
acknowledge the frame

Request retransmission on single cast
frames via repeater nodes (at normal
output power level)

Sigma Designs Inc.

Z-Wave Application Interfaces

Page 76 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Serial API (Serial API protocol version 4):

HOST->ZW: REQ | OXAA | srcNodelD | destNodelD | dataLength | pData[] | txOptions | pRoute[4] |
funclD

ZW->HOST: RES | OxAA | RetVal
ZW->HOST: REQ | OxAA | funcID | txStatus

WARNING: Use pRoute[4] equal [0,0,0,0].

5434 ZW_SendDataMulti

BYTE ZW_SendDataMulti(BYTE *pNodelDList,
BYTE *pData,
BYTE dataLength,
BYTE txOptions,
Void (*completedFunc)(BYTE txStatus))

Macro: ZW_SEND_DATA_MULTI(nodelist,data,length,options,func)

NOTE: This function is not available in the Bridge Controller library (See
ZW_SendDataMulti_Bridge).

Transmit the data buffer to a list of Z-Wawve Nodes (multicast frame). If the transmit optionflag
TRANSMIT_OPTION_ACK is set the data buffer is also sent as a singlecast frame to each of the
Z-Wave Nodes in the node list.

The completedFunc is called when the frame transmission completes in the case that ACK is not
requested; When TRANSMIT_OPTION_ACK is requested the callback function is called when all single
casts have been transmitted and acknowledged.

The transmit status TRANSMIT_COMPLETE_NO_ACK indicate that no acknowledge is received from
the destination node. The transmit status TRANSMIT_COMPLETE_FAIL indicate that the Z-Wave
network is busy (jammed). The data pointed to by pNodelDList should not be changed before the
callback is called.

NOTE: Allways use the completeFunc callback to determine when the next frame can be send. Calling
the ZW_SendData or ZW_SendDataMulti in a loop without checking the completeFunc callback will
overflow the transmit queue and eventually fail. The data buffer in the application must not be changed
before completeFunc callback is received because it is only the pointer there is passed to the transmit
gueue.

Defined in: ZW _transport_api.h

Return value:

BYTE FALSE If transmit queue overflow

Sigma Designs Inc. Z-Wave Application Interfaces Page 77 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Parameters:

pNodelDList IN List of destination node ID's
Pdata IN Data buffer pointer
DatalLength IN Data buffer length
TxOptions IN Transmit option flags:

TRANSMIT_OPTION_LOW_POWER

TRANSMIT_OPTION_EXPLORE

TRANSMIT_OPTION_ACK

TRANSMIT_OPTION_AUTO_ROUTE
(Controller API only)
completedFunc Transmit completed call back function
Callback function Parameters:
txStatus IN (see 2ZW_SendData)

Serial API:

This is a fixed length bit-mask.

The maximum size of a packet is 64
bytes. The protocol header, multicast
addresses and checksum takes 39 bytes
in a multicast frame leaving 25 bytes for
the payload. In case routed single casts
follow multicast the source routing info
takes up to 6 bytes depending on the
number of hops leaving minimum 19
bytes for the payload. In case itis a
singlecast, which piggyback on an
explorer frame overhead is 8 bytes
leaving minimum 17 bytes for the
payload. The payload must be minimum
one byte.

Transmit at low output power lewvel (1/3
of normal RF range).

If TRANSMIT_OPTION_ACK is set the
will make the node try sending as an
Explore frame if all else fails when doing
the single cast transmits

The multicast frame will be followed by a
number of single cast frames to each of
the destination nodes and request
acknowledge from each destination
node.

Request retransmission on single cast
frames via repeater nodes (at normal
output power level)

HOST->ZW: REQ | 0x14 | numberNodes | pNodelDList[]| dataLength | pData[] | txOptions | funclD

ZW->HOST: RES | 0x14 | RetVal

ZW->HOST: REQ | 0x14 | funcID | txStatus

Sigma Designs Inc. Z-Wave Application Interfaces Page 78 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5435 ZW_SendDataMulti_Bridge

BYTE ZW_SendDataMulti_Bridge(BYTE srcNodelD,
BYTE *pNodelDList,
BYTE *pData,
BYTE datalLength,
BYTE txOptions,
Void (*completedFunc)(BYTE txStatus))

Macro: ZW_SEND_DATA_ MULTI_BRIDGE (srcnodid,nodelist,data,length,options,func)
NOTE: This function is only available in the Bridge Controller library.

Transmit the data buffer to a list of ZWawve Nodes (multicast frame). If the transmit optionflag
TRANSMIT_OPTION_ACK is set the data buffer is also sent as a singlecast frame to each of the
Z-Wave Nodes in the node list.

The completedFunc is called when the frame transmission completes in the case that ACK is not
requested; When TRANSMIT_OPTION_ACK is requested the callback function is called when all single
casts have been transmitted and acknowledged.

The transmit status TRANSMIT_COMPLETE_NO_ACK indicate that no acknowledge is received from
the destination node. The transmit status TRANSMIT_COMPLETE_FAIL indicate that the Z-Wave
network is busy (jammed). The data pointed to by pNodelDList should not be changed before the
callback is called.

NOTE: Allways use the completeFunc callback to determine when the next frame can be send. Calling
the ZW_SendData_Bridge or ZW_SendDataMulti_Bridge in a loop without checking the completeFunc
callback will overflow the transmit queue and eventually fail. The data buffer in the application must not
be changed before completeFunc callback is received because it’s only the pointer there is passed to the
transmit queue.

Defined in: ZW _transport_api.h

Return value:

BYTE FALSE If transmit queue overflow

Sigma Designs Inc. Z-Wave Application Interfaces Page 79 of 289

CONFIDENTIAL

INS12034-2

Parameters:

srcNodelD IN

pNodelDList
Pdata

Datalength

TxOptions

completedFunc

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

Source node ID. Valid values:

NODE_BROADCAST = Bridge
Controller NodelD.

Bridge Controller NodelD.

Virtual Slave NodelD (only existing
Virtual Slave NodelDs).

IN List of destination node ID's
IN Data buffer pointer

IN Data buffer length

IN Transmit option flags:

TRANSMIT_OPTION_LOW_POWER

TRANSMIT_OPTION_EXPLORE

TRANSMIT_OPTION_ACK

TRANSMIT_OPTION_AUTO_ROUTE

Transmit completed call back function

Callback function Parameters:

txStatus IN

(see ZW_SendData)

2012-05-25

This is a fixed length bit-mask.

The maximum size of a packet is 64
bytes. The protocol header for a multicast
depends on the destination node IDs
leaving between 25-53 bytes for the
payload.

The size of the protocol header and
checksum for a multicast frame is:

((MaxNodelD - ((MinNodelD - 1) &
O0xE0)+7) >>3) + 10

where MaxNodelD is the largest node ID
number and MinNodelD is the smallest.

Transmit at low output power level (1/3 of
normal RF range).

If TRANSMIT_OPTION_ACK is set the
will make the node try sending as an
Explore frame if all else fails when doing
the single cast transmits

The multicast frame will be followed by a
number of single cast frames to each of
the destination nodes and request
acknowledge from each destination node.

Request retransmission on single cast
frames via repeater nodes (at normal
output power level)

Sigma Designs Inc.

Z-Wave Application Interfaces

Page 80 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Serial API:

HOST->ZW: REQ | OXAB | srcNodelD | numberNodes | pNodelDList[] | dataLength | pData][] |
txOptions | funcID

ZW->HOST: RES | OXAB | RetVal

ZW->HOST: REQ | OXAB | funcID | txStatus

5.4.3.6 ZW_SendDataAbort

void ZW_SendDataAbort(void)
Macro: ZW_SEND_DATA_ABORT
Abort the ongoing transmit started with ZW_SendData() or ZW_SendDataMulti(). If an ongoing
transmission is aborted, the callback function from the send call will return with the status
TRANSMIT_COMPLETE_NO_ACK.

Defined in: ZW _transport_api.h

Serial API:

HOST->ZW: REQ | 0x16

Sigma Designs Inc. Z-Wave Application Interfaces Page 81 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.3.7 ZW_SendConst

void ZW_SendConst(BYTE bStart, BYTE bChNo, BYTE bSignalType)

This function start/stop generating RF test signal.
The test signal can be on of the following:

e Test signal with only the carrier frequency.
e Test signal with a modulated carrier frequency; the signal will switch between sending logical 1
frequency and logical zero frequency
The function also selects which channel to send the test signal on.

This API call can only be called in production test mode from ApplicationTestPoll.

The API should only be called when starting\stopping a test.

Parameters:
bStart Start/Stop generating RF test TRUE start sending RF test signal.
signal FALSE stop sending RF test signal
bChNot IN The number of channel to 0..1 for 2 channels targets
send the test signal on. 0..2 for 3 channels targets

bSignalType IN type of the RF testsignal to ZW_RF_TEST_SIGNAL_CARRIER
generater ZW_RF_TEST_SIGNAL_CARRIER_MODULATED

Defined in: ZW _transport_api.h

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 82 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.3.8 ZW_SetListenBeforeTalkThreshold

void ZW_SetListenBeforeTalkThreshold(BYTE bChannel, BYTE bThreshold)

This function sets the “Listen Before Talk” threshold used in the Japanese frequency band. The default
threshold value is set to “49(dec)’ and corresponds to a chip input power of -75dBm. The appropriate
value range goes from 34(dec) to 78(dec) and each threshold step corresponds to a 1.5dB input power
step.

For instance, if a SAW filter with an insertion loss of 3dB is inserted between the antenna feed-point and
the chip, the threshold value should be set to 47(dec).

Parameters:
bChannel IN Channel number the Threshold should
be set for. Valid channel numbers are

0,1and 2

bThreshold IN The threshold the RSSI should use.
Valid threshold range is from 34 to 78.

Defined in: ZW_transport_api.h

Serial APl (Not supported)

NOTE: This function is avalible in Japan.

Sigma Designs Inc. Z-Wave Application Interfaces Page 83 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

5.4.4 Z-Wave Node Mask API

2012-05-25

The Node Mask API contains a set of functions to manipulate bit masks. This API is not necessary when
writing a Z-Wawe application, but is provided as an easy way to work with node ID lists as bit masks.

5441 ZW_NodeMaskSetBit

void ZW_NodeMaskSetBit(BYTE_P pMask,
BYTE bNodelD)

Macro: ZW_NODE_MASK_SET_BIT(pMask, bNodelD)
Set the node bit in a node bit mask.

Defined in: ZW_nodemask_api.h

Parameters:
pMask IN Pointer to node mask
bnodelD IN Node id (1..232) to set in node mask

Serial APl (Not supported)

5.4.4.2 ZW_NodeMaskClearBit

void ZW_NodeMaskClearBit(BYTE_P pMask,
BYTE bNodelD)

Macro: ZW_NODE_MASK_CLEAR_BIT(pMask, bNodelD)
Clear the node bit in a node bit mask.

Defined in: ZW_nodemask_api.h

Parameters:
PMask IN Pointer to node mask
bNodelD IN Node ID (1..232) to clear in node

mask

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 84 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

5443 ZW_NodeMaskClear

void ZW_NodeMaskClear(BYTE_P pMask,
BYTE bLength)

Macro: ZW_NODE_MASK_CLEAR (pMask, bLength)
Clear all bits in a node mask.

Defined in: ZW_nodemask_api.h

Parameters:
pMask IN Pointer to node mask
bLength IN Length of node mask

Serial APl (Not supported)

5444 ZW_NodeMaskBitsIn

BYTE ZW_NodeMaskBitsin(BYTE_P pMask,
BYTE bLength)

Macro: ZW_NODE_MASK_BITS_IN (pMask, bLength)
Number of bits set in node mask.
Defined in: ZW_nodemask_api.h

Return value:

BYTE Number of bits set in node mask
Parameters:

pMask IN Pointer to node mask
bLength IN Length of node mask

Serial API (Not supported)

2012-05-25

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 85 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.45 ZW_NodeMaskNodeln

BYTE ZW_NodeMaskNodeln (BYTE_P pMask,
BYTE bNode)

Macro: ZW_NODE_MASK_NODE _IN (pMask, bNode)
Check if a node is in a node mask.
Defined in: ZW_nodemask_api.h

Return value:

BYTE ZERO If not in node mask
NONEZERO If in node mask

Parameters:

pMask IN Pointer to node mask

bNode IN Node to clear in node mask

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 86 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

545 10 API

The 400 Series Z-Wawve Single Chip has four ports: PO, P1, P2, and P3. All IO’s can be set as either
input or output. The 10O cells are push/pull cells. When an 10 is set as input, a pull-up can be enabled
optionally on the input pin of that IO.

Port ZM4101

PO P0.0-P0.7

P1 P1.0-P1.7

P2 P2.0

P3 P3.0,P3.1,P3.4-P3.5

The IO’s can be used either as a general purpose 10 (GPIO) or for some of the 10’s, it can be used by
one or more of the built-in HW peripherals. The 10’s are default set as GPIO’s. This means that they are
directly controlled by the MCU. If a built-in HW peripheral is enabled it can take over control of the IO,
this means the direction of the IO, the pull-up state or the output state. In the case where seweral HW
peripherals that it takes control over can use a particular 10, the control is prioritized as depicted in Table
10.

Table 10. 10 functions (Some of the functions are not yet available)

10 Functions (Listed with lowest priority first)

P0.4 GPIO, Key scanner Column 4 output, LEDO output

PO0.5 GPIO, Key scanner Column 5 output, LED1 output

PO.6 GPIO, Key scanner Column 6 output, LED2 output

PO.7 GPIO, Key scanner Column 7 output, LED3 output

P1.0 GPIO, External Interrupt 0, Key scanner Row 0 input

P1.1 GPIO, External Interrupt 1, Key scanner Row 1 input

P1.2 GPIO, Key scanner Row 2 input

P1.3 GPIO, Key scanner Row 3 input

P1.4 GPIO, Key scanner Row 4 input

P1.5 GPIO, Key scanner Row 5 input

P1.6 GPIO, Key scanner Row 6 input

P1.7 GPIO, Key scanner Row 7 input

P2.0 GPIO, Key scanner Column 15 output, UARTO RXx input

P2.1 GPIO, Key scanner Column 14 output, UARTO Tx output

P2.2 GPIO, SPI1 master output

P2.3 GPIO, SPI1 master Input

P2.4 GPIO, SPI1 serial clock output

P2.5 GPIO

P2.6 GPIO

P3.1 GPIO, Key scanner Column 12 output, IR Rx input

P3.4 GPIO, ADCO input, Key scanner Column 11 output, IR Tx0 output

P3.5 GPIO, ADC1 input, Key scanner Column 10 output, IR Tx1 output

P3.6 GPIO, ADC2 input, Key scanner Column 9 output, IR Tx2 output, Triac output

P3.7 GPIO, ADC3 input, Key scanner Column 8 output, Triac Zero-cross input, PWM output

The state of the I0’s must be fixed before the 400 Series Z-Wawve Single Chip is put into powerdown
mode and must be enabled after the 400 Series Z-Wave Single Chip is powered-up. This is done to
awid unwanted glitches on the IO’s when the 400 Series Z-Wawe Single Chip is powered up.

Sigma Designs Inc. Z-Wave Application Interfaces Page 87 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

545.1 ZW_I0S_set

void ZW_I0S_set(BYTE bPort,
BYTE bDirection,
BYTE bValue)
This function is used to set the state of the GPIO’s In ApplicationInitHW().

Defined in: ZW_basis_api.h

Parameters:
bPort IN 0-3 Port number
0=>P0,1=>P1,2=>P2,3=>P3
bDirection IN bit pattern Direction.
Ob=output, 1b=input.
E.g. OxFO=> upper 4 IO's are inputs and
the lower 4 I0's are outputs
bValue IN bit pattern Output setting / Pull-up state

When an IO is set as output the
corresponding bit in bValue will determine
the output setting:

1b=high

Ob=low

When an IO is set as input the
corresponding bit in bValue will determine
the state of the pull-up resistor in the 10
cell:

1b=pull-up disabled

Ob=pull-up enabled

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 88 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.6 GPIO macros
In order to be able to control the GPIO individually a set of helper macros has been defined. These
macros can set a GPIO as input/output, set the state of the output GPIO or read the value of an input
GPIO.
The GPIO name will be a parameter in all the macros. The format of the pin name is as follow:

P(port number)(I0 number)

thus 10 pin 3 in port 1 name will be P13.

Note: The actual change of the 10 settings first takes place after leaving ApplicationInitHW().
546.1 PIN_OUT

PIN_OUT(pin)

This macro sets a GPIO as an output 10. Notice that this macro first works after ApplicationlnitHW() has
been executed.

Defined in: ZW _pindefs.h

Parameters:
pin IN Pxy Name of a GPIOr
X = port number; y =10 number
Example:

PIN OUT(P12);
5.4.6.2 PIN_IN

PIN_IN(pin, pullup)

This macro sets a GPIO as an input and determines whether the internal pullup is enabled or disabled.
Notice that this macro first works after ApplicationinitHW () has been executed..

Defined in: ZW_pindefs.h

Parameters:
pin IN Pxy Name of a GPIO
X = port number; y =10 number
pullup IN Boolean Pull-up state.
Ob=disabled, 1lb=enabled.
Example:

PIN IN(P30,TRUE) ;

Sigma Designs Inc. Z-Wave Application Interfaces Page 89 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.6.3 PIN_LOW

PIN_LOW(pin)

This macro sets the state of an output GPIO to low. Notice that this macro first works after
ApplicationlnitHW() has been executed.

Defined in: ZW _pindefs.h

Parameters:
pin IN Pxy Name of a GPIOr
X = port number; y =10 number
Example:

PIN LOW(P12);

5.4.6.4 PIN_HIGH

PIN_HIGH(pin)

This macro sets the state of an output GPIO to HIGH. Notice that this macro first works after
ApplicationlnitHW() has been executed.

Defined in: ZW _pindefs.h

Parameters:
pin IN Pxy Name of a GPIOr
X = port number; y =10 number
Example:

PIN HIGH(P12);

5.4.6.5 PIN_TOGGLE

PIN_TOGGLE(pin)

This macro toggle the state of an output GPIO from high to low or low to high. Notice that this macro first
works after ApplicationInitHW() has been executed.

Defined in: ZW_pindefs.h

Parameters:
pin IN Pxy Name of a GPIOr
X = port number; y =10 number
Sigma Designs Inc. Z-Wave Application Interfaces Page 90 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Example:

PIN TOGGLE (P12);

5.4.6.6 PIN_GET

PIN_GET(pin)

This macro gets the state of the pin of a GPIO.

Defined in: ZW_pindefs.h
Parameters:

pin IN Pxy

Return value

BOOL TRUE
FALSE

Example:

a=PIN GET (P12);

Name of a GPIOr
X = port number; y =10 number

The pin is high
The pin is low

Sigma Designs Inc. Z-Wave Application Interfaces Page 91 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.7 Z-Wave Memory API

The memory application interface handles accesses to the application data area in non-wolatile memory.
Routing slave nodes use MTP for storing application data. Enhanced slave and all controller nodes use
an external non-wolatile memory for storing application data. The Z-Wawe protocol uses the first part of
the external non-wolatile memory for home ID, node ID, routing table etc. The external non-volatile
memory is accessed via the SPI1 interface and using P2.5 as chip select. Alternative chip select pins,
refer to [34].

The memory functions are internally offset by EEPROM_APPL_OFFSET because the addresses
between 0x0000 and EEPROM_APPL_OFFSET are used by the protocol. The offset parameter equal to
0x0000 is therefore the first byte of the reserved area for application data.

NOTE: The CPU halts while the API is writing to flash memory, so care should be taken not to write to
flash to often.

5.4.7.1 MemoryGetID

void MemoryGetID(BYTE *pHomelD, BYTE *pNodelD)
Macro: ZW_MEMORY_GET_ID(homelD, nodelD)

The MemoryGetID function copy the Home-ID and Node-ID from the non-volatile memory to the
specified RAM addresses.

NOTE: A NULL pointer can be given as the pHomelD parameter if the application is only interested in
reading the Node ID.

Defined in: ZW_mem_api.h
Parameters:

pHomelD OUT Home-ID pointer
pNodelD OUT Node-ID pointer
Serial API:

HOST->ZW: REQ | 0x20

ZW->HOST: RES | 0x20 | Homeld(4 bytes) | Nodeld

Sigma Designs Inc. Z-Wave Application Interfaces Page 92 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

54.7.2 MemoryGetByte

BYTE MemoryGetByte(WORD offset)
Macro: ZW_MEM_GET_BYTE(offset)

Read one byte from the non-wolatile memory allocated for the application.

If a write is in progress, the write queue will be checked for the actual data.

Defined in: ZW_mem_api.h

Return value:

BYTE Data from the application area of the
EEPROM

Parameters:

offset IN Application area offset from 0x0000.

Serial API:

HOST->ZW: REQ | 0x21 | offset (2 bytes)

ZW->HOST: RES | 0x21 | RetVal

2012-05-25

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 93 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.7.3 MemoryPutByte

BYTE MemoryPutByte(WORD offset, BYTE data)
Macro: ZW_MEM_PUT_BYTE (offset,data)
Write one byte to the application area of the non-wlatile memory.

On controllers and enhanced slaves this function is based on external non-wolatile memory and a long
write time (2-5 msec.) must be taken into consideration when implementing the application.

The data to be written to FLASH are not written immediately to the FLASH. Instead it is saved in a RAM
buffer and then written when the RF is not active and itis more than 200ms ago the buffer was
accessed.

Defined in: ZW_mem_api.h

Return value:

BYTE FALSE If write buffer full.
Parameters:

offset IN Application area offset from 0x0000.

data IN Data to store

Serial API:

HOST->ZW: REQ | 0x22 | offset(2bytes) | data

ZW->HOST: RES | 0x22 | RetVal

Sigma Designs Inc. Z-Wave Application Interfaces Page 94 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

54.7.4 MemoryGetBuffer

void MemoryGetBuffer(WORD offset,
BYTE *buffer,
BYTE length)
Macro: ZW_MEM_GET_BUFFER (offset,buffer,length)

Read a number of bytes from the non-wolatile memory allocated for the application.

If a write operation is in progress, the write queue will be checked for the actual data.

Defined in: ZW_mem_api.h

Parameters:

offset IN Application area offset from 0x0000.
buffer IN Buffer pointer

length IN Number of bytes to read

Serial API:

HOST->ZW: REQ | 0x23 | offset(2 bytes) | length

ZW->HOST: RES | 0x23 | buffer|]

2012-05-25

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 95 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5475 MemoryPutBuffer

BYTE MemoryPutBuffer(WORD offset,
BYTE *buffer,
WORD length,
VOID_CALLBACKFUNC(func)(void))
Macro: ZW_MEM_PUT_BUFFER(offset,buffer,length, func)
Copy a number of bytes from a RAM buffer to the application area of the non-wolatile memory.

The write operation requires some time to complete (2-5msec per byte); therefore the data buffer must
be in "static" memory. The data buffer can be reused when the completion callback function is called.

The data to be written to FLASH are not written immediately to the FLASH. Instead it is saved in a RAM
buffer and then written when the RF is not active and it is more than 200ms ago the buffer was
accessed.

If an area is to be set to zero there is no need to specify a buffer, just specify a NULL pointer.

Defined in: ZW_mem_api.h

Return value:

BYTE FALSE If the buffer put queue is full.
Parameters:

offset IN Application area offset from 0x0000.

buffer IN Buffer pointer If NULL all of the area will be set to 0x00
length IN Number of bytes to read

func IN Buffer write completed function pointer

Serial API:

HOST->ZW: REQ | 0x24 | offset(2bytes) | length(2bytes) | buffer[]| funcID
ZW->HOST: RES | 0x24 | RetVal

ZW->HOST: REQ | 0x24 | funcID

Sigma Designs Inc. Z-Wave Application Interfaces Page 96 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.7.6 ZW_Eeprominit

BOOL 2W_EepromInit(BYTE *homelD)
Macro: ZW_EEPROM_INIT(HOMEID)
NOTE: This function is only implemented in Z-Wave Controller and Enhanced Slave APIs.

Initialize the external EEPROM by writing zeros to the entire EEPROM. The API then writes the content
of homelD if not zero to the home ID address in the external EEPROM.

This API call can only be called in production test mode from ApplicationTestPoll.

NOTE: This API call is only meant for small-scale production where pre-programmed EEPROMSs or a
production EEPROM programmer is not available.

Defined in: ZW_mem_api.h

Return value:

BOOL TRUE If the EEPROM initialized successfully
FALSE Initialization failed

Parameters:

homelD IN The home ID to be written to the external
EEPROM.

Serial APl (Not supported)

5.4.7.7 ZW_MemoryFlush

void ZW_MemoryFlush(void)
Macro: ZW_MEM_FLUSH()
This call writes data immediately to the application area of the non-wolatile memory.
The data to be written to FLASH are not written immediately to the FLASH. Instead it is saved in a SRAM
buffer and then written when the RF is not active and it is more than 200ms ago the buffer was
accessed. This function can be used to write data immediately to FLASH without waiting for the RF to be
idle.
NOTE: This function is only implemented in Routing Slave API libraries because they are the only
libaries that use a temporary SRAM buffer. The other libraries use an external EEPROM as non-wolatile
memory . Data is written directly to the EEPROM.

Defined in: ZW_mem_api.h

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 97 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.8 Z-Wave Timer API

The software timer is based on a “tick-function” every 10 ms. The “tick-function” will handle a global tick
counter and a number of active timers. The global tick counter is incremented and the active timers are
decremented on each “tick”. When an active timer value changes from 1 to 0, the registered timeout
function is called. The timeout function is called from the Z-Wave main loop (non-interrupt environment).
The timer implementation is targeted for shorter timeout functionality. The global tick counter and active
timers are inaccurate because they stops while changing RF transmission direction and during sleep
mode. Therefore, the global tick counter and active timers will continue from their current state.

Global tick counter is stored in the global variable:

WORD tickTime

548.1 TimerStart

BYTE TimerStart(VOID_CALLBACKFUNC(func)(),
BYTE bTimerTicks,
BYTE bRepeats)
Macro: ZW_TIMER_START (func, bTimerTicks, bRepeats)
Register a function that is called when the specified time has elapsed. Remember to check if the timer is
allocated by testing the return value. The call back function is called "bRepeats" times before the timer is
stopped. It’s possible to have up to 5 timers running simultaneously.
Defined in: ZW _timer_api.h
Return value:
BYTE Timer handle (timer table index). OxFF
is returned if the timer start operation
failed.
The timer handle is used when calling

other timer functions such as
TimerRestart, etc.

Parameters:
pFunc IN Timeout function address (not NULL).

bTimerTicks IN Timeout value (value *10 ms).
Predefined values:

TIMER_ONE_SECOND

bRepeats IN Number of function calls. Maximum
value is 253. Predefined values:

TIMER_ONE_TIME

Sigma Designs Inc. Z-Wave Application Interfaces Page 98 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

TIMER_FOREVER

Serial API (Not supported)

548.2 TimerRestart

BYTE TimerRestart(BYTE bTimerHandle)
Macro: ZW_TIMER_RESTART(BYTE bTimerHandle)
Set the specified timer’s tick count to the initial value (extend timeout value).

NOTE: There is no protection in the API against calling this function with a wrong handler, so care should
be taken not to use a handler of a timer that has already expired or been canceled.

Defined in: ZW _timer_api.h

Return value:

BYTE TRUE Timer restarted
Parameters:
bTimerHandle IN Timer to restart

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 99 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.8.3 TimerCancel

BYTE TimerCancel(BYTE bTimerHandle)
Macro: ZW_TIMER_CANCEL(bTimerHandle)
Stop and unregister the specified timer.

NOTE: There is no protection in the API against calling this function with a wrong handler, so care should
be taken not to use a handler of a timer that has already expired.

Defined in: ZW _timer_api.h

Return value:

BYTE TRUE Timer cancelled
Parameters:
bTimerHandle IN Timer number to stop

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 100 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.9 Power Control API

The 400 Series Z-Wave Single Chip has two types of power down mode: WUT (Wake Up Timer) mode
and Stopped mode. Stopped mode is the lowest power mode of the chip where all circuitry is shut down
except for a small basic block that keeps the 10 states and allows for wakeup by external interrupt. It is
also possible to have a small part of the RAM, denoted Critical Memory, powered. WUT mode is identical
to Stopped mode except for enabling of a low power ring oscillator that ticks every second or 1/128
second. The WUT can wake up the chip after a programmable amount of time.

The sample applications are executed out of Development RAM. In this mode the chip will actually not
shut down as it would erase the RAM that stores the program. Instead, it will halt the CPU and disable
the watchdog. The chip is awoken as if it was reset.

5491 ZW_SetSleepMode

BOOL 2W_SetSleepMode(BYTE mode,
BYTE intEnable,
BYTE beamCount)

Macro: ZW_SET_SLEEP_MODE(MODE,MASK_INT)

Set the CPU in a specified power down mode. Battery-operated devices use this function in order to save
power when idle. Notice that ZW_SetSleepMode() doesn’t go into sleep mode immediately, it sets a
sleep state flag and return. Then at a later point when the protocol is idle (stopped RF transmission etc.)
the CPU will power down.

The RF transceiver is turned off so nothing can be received while in WUT or STOP mode. The ADC is
also disabled when in STOP or WUT mode. The Z-Wave main poll loop is stopped until the CPU is
awake again. Refer tothe mode parameter description regarding how the CPU can be wakened up from
sleep mode. In STOP and WUT modes can the interrupt(s) be masked out so they cannot wake up the
chip.

Any external hardware controlled by the application should be turned off before returning from the
application poll function.

The Z-Wave main poll loop is stopped until the CPU is wakened.

Defined in: ZW_power_api.h
Return values

BOOL TRUE The chip will power down when the
protocol is ready

FALSE The protocol can not power down
because a wakeup beam is being
received, try again later.

Sigma Designs Inc. Z-Wave Application Interfaces Page 101 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Parameters:
mode IN Specify the type of power save mode:

ZW_STOP_MODE

ZW_WUT_MODE

ZW_WUT_FAST MODE

ZW_FREQUENTLY_LISTENING_MODE

The whole chip is turned down. The chip
can be wakened up again by Hardware
reset or by the external interrupt INT1.

The chip is powered down, and it can
only be waked by the timer timeout or by
the external interrupt INT1. The time out
value of the WUT can be set by the API
call ZW_SetWutTimeout. The chip wake
up from WUT mode from the reset state.
The timer resolution in this mode is one
second. The maximum timeout value is
256 secs.

This mode has the same functionality as
ZW_WUT_MODE, except that the timer
resolution is 1/128 s. The maximum
timeout value is 2 s. This mode is only
available in Zw0301.

This mode make the module enter a
Frequently Listening mode where the
module will wakeup for a few
milliseconds every 1000 ms or 250 ms
and check for radio transmissions to the
module (See 5.4.1.6 for details about
selecting wakeup speed). The application
will only wakeup if there is incoming RF
traffic or if the intEnable or beamCount
parameters are used.

Sigma Designs Inc. Z-Wave Application Interfaces Page 102 of 289

CONFIDENTIAL

INS12034-2

intEnable IN

beamCount IN

Serial API

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

Interrupt enable bit mask. If a bit mask is
1, the corresponding interrupt is enabled
and this interrupt will wakeup the chip
from power down. Valid bit masks are:

ZW_INT_MASK_EXT1

0x00

Frequently listening WUT wakeups

0x00

0x01-OxFF

HOST->ZW: REQ | 0x11 | mode | intEnable

2012-05-25

External interrupt 1 (PIN P1_1) is
enabled as interrupt source

No external Interrupts will wakeup.

Useful in WUT mode

No WUT wakeups in Frequently listening
mode. Both macro and serial API call use
this value when called.

Number of frequently listening wakeup
interval between the module does a
normal WUT wakeup. This parameter is
only used if mode is set to
ZW_FREQUENTLY_LISTENING_MODE.

Sigma Designs Inc.

Z-Wave Application Interfaces

Page 103 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.10 SPlinterface API

The 400 Series Z-Wawve Single Chip has a SPI controller that operates as a SPI master, SPI1, and in
some versions it also has a SPI controller that can operate as a SPI master or as a SPI slave, SPIO.

The SPI master,SPI1, is reserved by the Z-Wawe protocol, if the 400 Series Z-Wawe Single Chip is

programmed as one of the following Z-Wawe nodes types: : Portable Controller, Static Controller,
Installer Controller, Bridge Controller, or Enhanced Slave.

5.4.10.1 ZW_SPI1_init

void ZW_SPI1 init(BYTE bSpilnit)

Initializes the 400 Series Z-Wawe Single Chip built-in SPI master controller, SPI1. The function sets the
SPI clock speed, the signaling mode and the data order. E.g.:

ZW _SPI1 init (SPI_SPEED 8 MHZ|SPI SIG MODE 1|SPI MSB FIRST)

Sets clock speed to 8MHz, SPI clock idle to low, data sampled at rising edge and clocked at
falling edge, and sends most significant bit first.

Defined in: ZW_spi_api.h
Parameters:
bSpilnit IN bit mask:

Speed of the SPI clock

SP|_SPEED_8 MHZ SPI clock runs at @8MHz
SPI_SPEED_4 MHZ SPI clock runs at @4MHz
SPI_SPEED_2_MHZ SPI clock runs at @2MHz
SPI_SPEED_1_MHZ SPI clock runs at @1MHz

SPI signaling modes

SPI_SIG_MODE_1 SPI clock idle low, data sampled at rising
edge and clocked at falling edge

SPI_SIG_MODE_2 SPI clock idle low, data sampled at falling
edge and clocked at rising edge

SPI_SIG_MODE_3 SPI clock idle high, data sampled at
falling edge and clocked at rising edge

SPI_SIG_MODE_4 SPI clock idle high, data sampled at
rising edge and clocked at falling edge

Data order

SPI_MSB_FIRST send MSB bit first

SPI_LSB_FIRST send LSB bit first

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 104 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

5.4.10.2 ZW_SPI1_rx_get

BYTE ZW_SPI1 _rx_get(void)
This function returns a previously received byte from SPI1.
This function does not wait until data has been received.
Defined in: ZW _spi_api.h
Return value:
BYTE Received data.

Serial API (Not supported)

2012-05-25

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 105 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

54.10.3 ZW_SPI1_active get

BYTE ZW_SPI1_active_get(void)
Read the SPI1 send data status.
Defined in: ZW _spi_api.h
Return value:
BYTE non-zero
zero (0x00)

Serial APl (Not supported)

SPI1 Transmitter is busy

SPI1 Transmitter is idle

2012-05-25

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 106 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.10.4 ZW_SPI1_coll_get

BYTE ZW_SPI1 _coll_get(void)

This function returns the state of the SPI1 collision flag and then clears the collision flag.
Defined in: ZW _spi_api.h
Return value:
BYTE non-zero SPI1 data collided

zero (0x00) SPI1 no collisions

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 107 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
5.4.105 ZW_SPI1_tx_set

void ZW_SPI1 tx_set(BYTE data)

Function starts transmission over the SPI1. The received data can be read with ZW_SPI_active_get()
when the SPI1 controller is done.

This function waits until SPI1 transmitter is idle before it sends the new data. The function does not wait
until the new data has been sent. See also ZW_SPI1_tx_data_set().

Defined in: ZW _spi_api.h
Parameters:
data IN Data to be send.

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 108 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.10.6 ZW_SPI1_enable

void ZW_SPI1 enable(BYTE bState)

Function enables the SPI1 master and allocates the pins MISO1, MOSI1, and SCKL1.
Defined in: ZW _spi_api.h

Parameters:

bState IN TRUE enable the SPI1 controller

FALSE disable the SPI1 controller

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 109 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.10.7 ZW_SPIO_init

void ZW_SPI0_init(BYTE bSpilnit)

Initializes the 400 Series Z-Wawe Single Chip built-in SPI0 master/slave controller. Notice that not all 400
Series Z-Wawe Single Chip/modules has this SPI available on the pin-out.

This function sets the SPI clock speed, the signaling mode and the data order. E.g.:
ZW_SPI1 init (SPI_SPEED 8 MHZ|SPI SIG MODE 1|SPI MSB FIRST)

Sets clock speed to 8MHz, SPI clock idle to low, data sampled at rising edge and clocked at
falling edge, and sends most significant bit first.

Defined in: ZW _spi_api.h

Parameters:
bSpilnit IN bit mask:

Speed of the SPI clock (master mode only)

SPI_SPEED_8 MHZ SPI clock runs at @8MHz

SPI_SPEED_4 MHZ SPI clock runs at @4MHz

SPI_SPEED_2 MHZ SPI clock runs at @2MHz

SPI_SPEED_1 MHZ SPI clock runs at @1MHz

SPI signaling modes

SPI_SIG_MODE_1 SPI clock idle low, data sampled at
rising edge and clocked at falling edge

SPI_SIG_MODE_2 SPI clock idle low, data sampled at
falling edge and clocked at rising edge

SPI_SIG_MODE_3 SPI clock idle high, data sampled at
falling edge and clocked at rising edge

SPI_SIG_MODE_4 SPI clock idle high, data sampled at
rising edge and clocked at falling edge

Data order

SPI_MSB_FIRST send MSB bit first

SPI_LSB_FIRST send LSB bit first

Master/Slave

SPI_MASTER enable SPI master mode

SPI_SLAVE enable SPI slave mdoe

Sigma Designs Inc. Z-Wave Application Interfaces Page 110 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Slave Select (Slave mode only)

SPI_SS N_SS use io SS_N IO as the slave select
when the 400 Series Z-Wawe Single
Chip is in SPI slave mode

SPI_SS N _GPIO slave controller is always enabled
when the 400 Series Z-Wawe Single
Chip isin SPI slave mode. The 10O,
SS_ N, can be used as a GPIO.

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 111 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.10.8 ZW_SPIO_rx_get

BYTE ZW_SPI0_rx_get(void)
Function returns a previously received byte from SPIO.
This function does not wait until data has been received.
Defined in: ZW _spi_api.h
Return value:
BYTE Received data.

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 112 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

54109 ZW_SPIO_active _get

BYTE ZW_SPI0_active_get(void)
Read the SPIO send data status.
Defined in: ZW _spi_api.h
Return value:
BYTE non-zero
zero (0x00)

Serial APl (Not supported)

SPI0 Transmitter is busy

SPI0 Transmitter is idle

2012-05-25

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 113 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.10.10 ZW_SPIO_coll_get

BYTE ZW_SPI0_coll_get(void)

This function returns the state of the SPIO collision flag and then clears the collision flag.
Defined in: ZW _spi_api.h
Return value:
BYTE non-zero SPIO data collided

zero (0x00) SPI0 no collisions

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 114 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.10.11 ZW_SPIO_int_get

BYTE ZW_SPI0_int_get(void)
This function returns the state of the SPIO interrupt/transmission done flag.
Defined in: ZW _spi_api.h
Return value:
BYTE non-zero SPIO interrupt/transmission flag is set

zero (0x00) SPI0 interrupt/transmission flag is cleared

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 115 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
5.4.10.12 ZW_SPIO_tx_set

void ZW_SPI0_tx_set(BYTE data)

Function starts transmission over the SPI0. The received data can be read with ZW_SPI0_active_get()
when the SPIO controller is done.

This function waits until SPI0 transmitter is idle before it sends the new data. The function does not wait
until the new data has been sent. See also ZW_SPI0_tx_data_set().

Defined in: ZW _spi_api.h
Parameters:
data IN Data to be send.

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 116 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.10.13 ZW_SPIO_enable

void ZW_SPI0_enable(BYTE bState)

Function enables the SPI0O master and allocates the pins MISO0, MOSIO, and SCKO. If SPI_SS N_SS
is set in ZW_SPI0_init() then also SS_NO is allocated.

Defined in: ZW _spi_api.h

Parameters:

bState IN TRUE enable the SPIO controller
FALSE disable the SPIO controller

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 117 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

5.4.10.14 ZW_SPIO_int_clear

void ZW_SPI0_int_clear(void)
Function clears the SPIO interrupt/transmission done flag
Defined in: ZW _spi_api.h

Serial APl (Not supported)

2012-05-25

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 118 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
5.4.11 ADC interface API

The ADC is an 8/12-bit ADC with a 4 input multiplexer. The ADC can be used for monitoring battery -
levels, wltages across various sensors etc. The ADC releases an interrupt if the measured wltage is
abowve, below or equal to a threshold depending on the configuration settings. The ADC uses up to 4
GPIO as inputs depending on its configuration. Input pins that are not enabled can be used as GPIO
Three sources can work as wltage-references for the ADC, namely either the power-supply for the chip,
an internal 1.2V woltage-reference or the P3.7 pin. The sample rate when in continuous conversion mode
is 21k sample/s for 8 bit conversions and 9k sample/s for 12 bit conwersions.

The figures below show when the ADC interrupt is released dependent on, how the ADC threshold
gradient is set:

Voltage
A

® -
Threshold :> ADCI‘ZSSI\;:SIOH
L4 [

» Time

ADC I_
interrupt

Fgure 10. Threshold functionality when threshold gradient set to high

Voltage
A

'y °

L] ® X
Threshold ADC conversion
® results

p Time

ADC |_
interrupt

Fgure 11. Threshold functionality when threshold gradient set to low

The figure below shows how the connections to the ADC can be configured:

Sigma Designs Inc. Z-Wave Application Interfaces Page 119 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

2012-05-25

— >
/ SFR

Y

Interrupt

Internal Ref.——
VDD ——
Internal generated (test m.) —— ADC
GND I Vref+
—P3.7 Vref- Out
—P3.6 ——— BG ——
—P3.5 ? ;
-P3.4— t Vin
Internal Ref. E

Figure 12. Configuration of input pins

The below are description of the API available to use the ADC.

Comparator —»—

—

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 120 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54111 ZW_ADC_init

void ZW_ADC _init (BYTE bMode,
BYTE bUpper_ref,
BYTE bLower_ref,
BYTE bPin_en)

Initialize the ADC.
Defined in: ZW _adcdriv_api.h
Parameters:

bMode IN ADC_MULTI_CON_MODE Sets the ADC in multi conversion mode
The ADC will continue conwerting until it is stopped.

ADC_SINGLE_CON_MODE Sets the ADC in single conwersion mode
The ADC will convert one time then stops.

ADC_BATT_MON_MODE Sets the ADC in battery monitoring mode.
When ADC is in this mode the chip supply wltage
(VDD) will be selected as upper reference. The GND
will be selected as lower reference wltage. The ADC
input will be the band gap circuit.

bUpper_ref ADC_REF_U_VDD Select the chip power supply (VDD) as the upper
reference woltage.
Ignored when ADC in battery monitor mode.

ADC_REF_U_EXT Select IO P3.7 as the upper reference woltage.
Ignored when ADC in battery monitor mode.

ADC_REF_U_BGAB Select the band gab circuit as the upper reference
woltage.
Ignored when ADC in battery monitor mode.

bLower_ref ADC_REF_L VSS Select the ground (VSS) as the lower reference
woltage.
Ignored when ADC in battery monitor mode.

ADC_REF_L _EXT Select IO P3.6 as lower reference wltage.
Ignored when ADC in battery monitor mode.

bPin_en Bits mask Select which 10 to enable as ADC inputs.
Selected pins cannot be used as GPIOs

ADC _PIN_1 Select I/O P3.7 as an ADC input
ADC_PIN_2 Select I/O P3.6 as an ADC input
ADC_PIN_3 Select I/O P3.5 as an ADC input
ADC_PIN_4 Select I/O P3.4 as an ADC input

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 121 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54112 ZW_ADC_power_enable

void ZW_ADC_power_enable(BOOL boEnable)
Turn on/off the ADC power

Defined in: ZW _adcdriv_api.h

Parameters:
boEnable IN TRUE Turn the ADC power on
FALSE Turn the ADC power off.
The ADC will cancel any activity
immediately.

Serial APl (Not supported)

54113 ZW_ADC _enable

void ZW_ADC_enable(BOOL boStart)
Start / stop the ADC.
When stopping the ADC while it's running in continuous mode. The ADC will continue running until the
last conversion is finished.
Defined in: ZW _adcdriv_api.h
Parameters:
boStart IN TRUE Start the ADC and begin conwerting
FALSE Stop the ADC.

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 122 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54114 ZW_ADC_pin_select

void ZW_ADC pin_select(BYTE bAdcPin)
Select the 10 to use the current input. The IO should be already enabled as an ADC input.

Defined in: ZW _adcdriv_api.h

Parameters:

bAdcPin IN ADC _PIN_1 Select IO P37 as the current ADC input
ADC _PIN_2 Select IO P36 as the current ADC input
ADC_PIN_3 Select IO P35 as the current ADC input
ADC_PIN_4 Select IO P34 as the current ADC input

Serial APl (Not supported)

54115 ZW_ADC threshold_mode_set

void ZW_ADC_threshold_mode_set(BYTE bThresMode)
Set the ADC threshold mode.

. Defined in: ZW _adcdriv_api.h

Parameters:

bThresMode ADC_THRES_UPPER The ADC fires when input is above/equal
to the threshold value

ADC_THRES_LOWER The ADC fires when input is below/equal
to the threshold value

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 123 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54116 ZW_ADC threshold_set

void ZW_ADC_threshold_set(WORD wThreshold)
Set the ADC threshold value. Depending on the threshold mode (set by
ZW_ADC _threshold_mode_set()) , the threshold value is used to trigger an interrupt when the sampled
value is abowve/equal or below/equal the threshold value.
Defined in: ZW _adcdriv_api.h
Parameters:
wThreshold IN Threshold value ranges from O to 4095 When ADC is running in 8 bit resolution,
the threshold value range is from 0 to
255.
When ADC is running in 12 bit resolution,
the threshold value range is from 0O to
4095.

The APl ZW_ADC resolution_set
should be called before calling this API

Serial API (Not supported)

54117 ZW_ADC .int_enable

void ZW_ADC _int_enable(BOOL boEnable)
Call will enable or disable the ADC interrupt. If enabled an interrupt routine must be defined. Default is
the ADC interrupt disabled.
NOTE: If the ADC interrupt is used, then the ADC interrupt flag should be reset before returning from the
interrupt routine by calling ZW_ADC _int_clear.

Defined in: ZW _adcdriv_api.h

Parameters:

boEnable IN TRUE Enables the ADC interrupt.

FALSE Disable the ADC interrupt.

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 124 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

5.4.11.8 ZW_ADC_int_clear

void ZW_ADC _int_clear(void)
Clear the ADC interrupt flag.
Defined in: ZW _adcdriv_api.h

Serial APl (Not supported)

54119 ZW_ADC_is_fired

BOOL 2W_ADC is_fired(void)
Check if the ADC conwersion crossed ower the threshold value.
Defined in: ZW _adcdriv_api.h

Retrun value:

2012-05-25

BOOL TRUE The current conversion result meet the

threshold condition.

FALSE The ADC is not finished or the current
conversion result doesn’t meet the

threshold condition.

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 125 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.11.10 ZW_ADC result_get

WORD ZW_ADC result_get(void)
Get the value of an ADC conwersion. The return value is an 8-bit or 12-bit integer depending on if the
ADC is in 8-bit or 12-bit resolution mode. The call will return the value ADC_NOT_FINISHED in case
conversion isn’t finished yet
Defined in: ZW _adcdriv_api.h
Retrun value:
WORD Unsigned 16-bit value representing the If ADC resolution is 8 bit, the last 8 bit of
result of the ADC conversion the return value will be ignored (zeros).
If the ADC resolution is 12-bit then the
last 4 bit of the return value will be
ignored (zeros).

Serial APl (Not supported)

54.11.11 2ZW_ADC_buffer_enable

void ZW_ADC _buffer_enable(BOOL boEnable)
Enable / disable an input buffer between the analog input and the ADC converter. Default is the input
buffer disabled. If a high impedance driver is used on the input, this can lower the sample rate. The input
buffer can be enabled to achieve high sample rate when using high impedance driver

Defined in: ZW _adcdriv_api.h

Parameters:

boEnable TRUE Enable the input buffer.
FALSE Disable the input buffer.

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 126 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.11.12 ZW_ADC_auto_zero_set

void ZW_ADC_auto_zero_set(BYTE bAzpl)
Set the length of the ADC sample period. The length of the period depends on the source impedance.
Default value is ADC_AZPL_128.

Defined in: ZW _adcdriv_api.h

Parameters:

bAzpl ADC_AZPL_1024 Set the autozero period to 1024 clocks.
Valid for high impedance input sources.

ADC_AZPL 512 Set the autozero period to 512 clocks.
Valid for medium to high impedance input
sources.

ADC_ZPL_256 Set the autozero period to 256 clocks.
Valid for medium to low impedance input
sources.

ADC_ZPL 128 Set the autozero period to 128 clocks.
Valid for low impedance input sources.

Serial API (Not supported)

5.4.11.13 ZW_ADC resolution_set

void ZW_ADC resolution_set(BYTE bReso)

Set the resolution of the ADC.
NOTE: When changing the ADC resolution, the threshold value should also be changed.

. Defined in: ZW _adcdriv_api.h
Parameters:
bReso ADC 12 BIT Set the ADC resolution to 12 hits
ADC_8 BIT Set the ADC resolution to 8 bits

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 127 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.11.14 ZW_ADC_batt_monitor_enable

void ZW_ADC_batt_monitor_enable(BOOL boEnable)

Enable / disable the battery monitor mode.

When in battery monitor mode, the ADC will automatically be configured to have the VDD as upper
reference wltage, VSS as lower reference wltage and the band gap as the ADC input.

If the ADC is running in 8-bit mode then the supply wiltage (the input) can be calculated as follow:
supply = (Vref * 256)/(ADC conversion result).

If the ADC is running in 12-bit mode then the supply wltage can be calculated as follow:

supply = (Vref * 4096)/(ADC conwersion result)

Defined in: ZW _adcdriv_api.h

Parameters:
bEnable TRUE The ADC is set in battery monitor mode.
FALSE The ADC is setin normal conversion
mode

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 128 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.12 UART interface API

The UART (Universal Asynchronous Receiver Transmitter) interface is for serial communication with
external devices such as PC'’s, host controllers etc. The two UART interfaces transmits data in an
asynchronous way, and is a two-way communication protocol, using 2 pins each as a communications
means: TxD and RxD. The two pins can be enabled and disabled individually. If only using RX mode the
TxD pin can be used as general 10 pins and vice versa. The UART's use dedicated timers and do not
take up any 8051 timer resources.

Since the two UART's are identical the description of each function is collapsed using the notation
UARTX, where x is either 0 or 1.

The UARTX supports full duplex and can operate with the baud rates between 9.6kbaud and 230.4
kbaud. (See under ZW_UARTX _init)

The interface operates with 8 bit words, one start bit (low), one stop bit (high) and no parity. This setup is
hardwired and can not be changed.

The UARTX shifts data in/out in the following order: start bit, data bits (LSB first) and stop bit. The figure
below gives the waveform of a serial byte.

START] STOP
s =TT

Figure 13. Serial Waveform

5.4.12.1 Transmission

An interrupt is released when D7 has been sent on the TxD pin. A new byte can be written to the buffer
when the interrupt has been released.

5.4.12.2 Reception

The reception is activated by a falling edge on RxD. If the falling edge is not verified by the majority
woting on the start bit, then the serial port stops reception and waits for another falling edge on RxD.
When the MSB of the byte has been received a stop bit is expected. The first 2/3 of the stop bit is
sampled and a majority decision is made on these samples. The interrupt will be released if the stop bit
is recognized as high.

When 2/3 of the stop bit has been received the serial port waits for another high-to-low transition (start
bit) on the RxD pin.

5.4.12.3 RS232

Connecting a RS232 lewvel conwerter to the 2 pins of a UART interface makes the 400 Series Z-Wawe
Single Chip able to communicate according to the RS232 standard.

A\ 4

RD- --- ... -RxD» RS232 RxD
:>C~~-TXD— DRIVER |« ™D

Figure 14. RS232 Setup

Sigma Designs Inc. Z-Wave Application Interfaces Page 129 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.12.4 Integration to the Protocol

Before using the UARTx the UART should be initialized and mapped to the IO pins. This initialization
should be performed in the initialization function ApplicationIinitHW. The initialization and 10 mapping is
performed using the ZW_UARTX _init functions and if needed the ZW_UARTO0_zm4102_mode_enablet
function. There are no requirements to the order of calling these functions.

The use of the UART is typically performed in the ApplicationPoll. The UART is then polled and
characters are received / transmitted. Alternatively, the UART can be seniced in an ISR, but this
approach is often to slow for higher baudrates.

A UART application typically writes a character or string to a teminal. This can be performed by
initializing the modem as described abowve in ApplicationlnitHW and then calling
ZW_UARTx_tx_data_wait_set(BYTE data) for a character or ZW_UARTx _tx_send_str(BYTE *str) for
an entire string. Both functions wait until the UART is ready before sending each character. Howewer in
some cases itis not desirable to wait until the UART is ready before continuing code execution. In this
case itis better to poll to see if the UART is ready and then transmit characters when the UART is ready.
In this case a different set of functions are needed as given below.

if (!ZW_UARTO tx active get())
{

ZW UARTO tx data wait set('A');
}

Another possibility is to use the interrupt flags:

if (ZW_UARTO tx int get())
{
ZW UARTO tx int clear();
ZW UARTO tx data wait set('A');

Howewer the latter method has the disadvantage that it requires an initial write to the UART or else the
first interrupt flag will not go high and the writing will never start.

Another typical UART application is to receive a character to the 400-series Z-Wawe Single Chip.
Similarly as for the TX setup, it is possible to call a function that waits until a character is ready,
ZW_UARTO rx_data_wait_get(), or to poll for a new character before reading it. But in the receive case
it is apparent that the wait function should be used with extreme caution as it cause a system freeze if a
character is never received.

An example of the preferred solution to receive characters is given below:

if (ZW_UARTO rx int get())

{
ZW _UARTO rx _int clear(); // Clear flag right after detection
ch = ZW UARTO rx data get(); // Where ch is of the type BYTE

Sigma Designs Inc. Z-Wave Application Interfaces Page 130 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Note: It is important to clear the interrupt flag as fast as possible after detecting the interrupt flag (even
before reading data). Omitting to do this may lead to loss of data as the interrupt flag may trigger again
before the flag is cleared. This is especially a concern at high baudrates.

5.4.12.5 Serial Interface API

The serial interface API handles transfer of data via the serial interfaces using the 400 Series Z-Wave
Single Chip built-in UARTO and UART1. This serial API supports transmissions of either a single byte, or
a data buffer. The received characters are read by the application one-by-one.

5.4.12.6 ZW_UARTO init /ZW_UARTL_init

void ZW_UARTO_init(WORD bBaudRate, BOOL bEnableTx, BOOL bEnableRx)/
void ZW_UARTL1 init(WORD bBaudRate, BOOL bEnableTx, BOOL bEnableRx)

Initializes the 400 Series Z-Wawe Single Chip built-in UARTX to support ZM4101 and SD3402. Using
ZMA4102 requires an additional call ZW_UARTO0_zm4102_mode_enablet to map to correct pin
configuration. The order of calling these functions are optional but the functions should be called in the
ApplicationlnitHW() so the ports are mapped correctly when the chip starts up.

The init functions optionally enable/disable UARTx transmit and/or receive, clears the rx and tx interrupt
flags and sets the specified baud rate.

Defined in: ZW _uart_api.h
Parameters:

bBaudRate IN Baud Rate /100 Valid values: 96 = 9.6kbaud,
144 = 14.4kbaud,
192 = 19.2kbaud,
384 = 38.4kbaud,
576 = 57.6kbaud,
1152 = 115.2kbaud,
2304 = 230.4kbaud

bEnableTx IN TRUE Enable UARTX transmitter and allocate
TxD pin.

(UARTO TxD is allocated on P2.1)
(UART1 TxD is allocated on P3.1)

FALSE Disable UARTx Transmitter and de-
allocate TxD pin

bEnableRx IN TRUE Enable UARTX receiver and allocate RxD
pin

(UARTO RxD is allocated on P2.0)
(UART1 RxD is allocated on P3.0)

Sigma Designs Inc. Z-Wave Application Interfaces Page 131 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
FALSE Disable UARTX receiver and de-allocate
RxD pin

Serial API (Not supported)

54.12.7 ZW_UARTO_zm4102_mode_enable

void ZW_UARTO0_zm4102_mode_enable(BOOL bState)

Map pins of the 400 Series Z-Wave Single Chip built-in UARTO to support ZM4102. Only available on
UARTO. Refer also to ZW_UARTO_init / ZW_UARTL init

Defined in: ZW _uart_api.h

Parameters:

bState IN TRUE Support ZM4102 built-in UARTO by
mapping TxD to 10 P3.5 and RxD to IO
P3.4

FALSE Support ZM4101/SD3402 built-in UARTO

by mapping TxD to IO P2.1 and RxD to
10 P2.0

Serial APl (Not supported)

54128 ZW_UARTO rx_data get/ZW_UART1 rx_data_get

BYTE ZW_UARTO rx_data_get(void) / BYTE ZW_UART1 rx_data_get(void)
This function returns the last received byte from UARTx. The UART should be polled using the
ZW_UARTO rx_int_get /2ZW_UARTL1 rx_int_get to see whether a new byte is ready before calling this
function.
The function does not wait for a byte to be received but returns immediately. The alternative functions
ZW_UARTO rx_data_wait_get / ZW_UART1 rx_data_wait_get waits until a byte is received before
returning.

Defined in: ZW _uart_api.h

Return value:

BYTE Received data.

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 132 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54129 ZW_UARTO rx_data wait_get/ ZW_UART1_rx_data_wait_get

BYTE ZW_UARTO _rx_data_wait_get(void) /BYTE ZW_UART1 rx_data_wait_get(void)
Returns a byte from the UARTX receiver. If no byte is available the function waits until data has been
received. This function should be used with extreme caution as it may freeze the system if no character
is received. In normal cases itis better to use polling, ZW_UARTO_rx_int_get /
ZW_UARTL rx_int_get, to check if a new byte is received and then ZW_UARTO rx_data_get /
ZW_UARTL rx_data_get toget the byte.

Defined in: ZW _uart_api.h

Return value:

BYTE Received data.

Serial APl (Not supported)

5.4.12.10 ZW_UARTO tx_active_get / ZW_UART1 tx_active_get

BYTE ZW_UARTO_tx_active_get(void) /BYTE ZW_UARTL1 tx_active_get(void)

Read the UARTxX send data status. The function returns TRUE if the UART is currently busy transmitting
data. The function is typically used in a polled TX setup to check whether the UART is ready before
sending the next character using ZW_UARTO_tx_data_set /ZW_UART1_tx_data_set.

Alternatively to creating the poll-transmit loop it is simpler to use ZW_UARTO_tx_data_wait_set /
ZW_UART1_tx_data_wait which automatically waits for the transmitter before sending the data.

Defined in: ZW _uart_api.h

Return value:

BYTE non-zero UARTxX Transmitter is busy
zero (0x00) UARTX Transmitter is idle

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 133 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

541211 ZW_UARTO tx_data wait_set /ZW_UART1 tx data wait_set

void ZW_UARTO_tx_data_wait_set(BYTE data)/ void ZW_UART1_tx_data_wait_set(BYTE data)

(Earlier this function was called ZW_UARTX_tx_send_byte(BY TE data). The function name has been
changed for consistency in naming)

The function transmits a byte over the UARTX.

This function waits until UARTX transmitter is idle before it sends the new data. The function does not
wait until the new data has been sent before returning.

An alternative function is the ZW_UARTO_tx_data_set / ZW_UART1_tx_data_set which returns
immediately but requires polling to check for readiness.

Defined in: ZW _uart_api.h
Parameters:
data IN Data to send.

Serial APl (Not supported)

5.4.12.12 ZW_UARTO tx_data_set /ZW_UARTL1 tx_data set

void ZW_UARTO tx_data_set(BYTE data) /void ZW_UART1_tx_data_set(BYTE data)

Function sets the transmit data register

This function does not wait until UARTx transmitter is idle before it sends the new data. The function
should not be called unless the UART is ready. To check if the UART is ready is done using the
ZW_UARTO tx_active_get / ZW_UART1_tx_active_get. Data send to the UART when it is not ready
will be ignored.

The function does not wait until the new data has been sent before returning. An simpler alternative is to
use the ZW_UARTO_tx_data_wait_set /ZW_UARTL tx_data_wait function.

Defined in: ZW _uart_api.h
Parameters:
data IN Data to send.

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 134 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.12.13 ZW_UARTO_tx_send_num/ZW_UART1 tx_send_num

void ZW_UARTO_tx_send_num(BYTE data)/ void ZW_UART1 tx_send_num(BYTE data)
Conwerts a byte to a two-byte hexadecimal ASCII representation, and transmits it over the UART. This
function waits until UARTx transmitter is idle before it sends the new data. The function does not wait
until the last data byte has been sent.

See also: ZW_UARTO_tx_send_str /ZW_UART1 tx_send_str and ZW_UARTO_tx_send_nl /
ZW_UARTL1 tx_send_nl

Defined in: ZW _uart_api.h
Parameters:
data IN Data to convert and send.

Serial APl (Not supported)

5.4.12.14 ZW_UARTO tx_send_str/ZW_UARTL1 tx_send_str

void ZW_UARTO_send_str(BYTE *str) /void ZW_UART1_send_str(BYTE *str)

Transmit a null terminated string over UARTX. The null data is not transmitted. This function waits until
UARTX transmitter is idle before it sends the first data byte data. The function does not wait until the last
data byte has been sent.

See also: ZW_UARTO_tx_send_num /ZW_UART1 tx_send_num and ZW_UARTO_tx_send_nl /
ZW_UART1 tx_send_nl

Defined in: ZW _uart_api.h
Parameters:
str IN String pointer.

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 135 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.12.15 ZW_UARTO_tx_send_nl/ZW_UART1 tx_send_nl

void ZW_UARTO_tx_send_nl(void) /void ZW_UART1 _tx_send_nl(void)
Transmit “new line” sequence (CR + LF) over UARTX .

See also: ZW_UARTO_tx_send_num /ZW_UART1_tx_send_num and ZW_UARTO_tx_send_str /
ZW_UARTL1 tx_send_str

Defined in: ZW _uart_api.h

Serial APl (Not supported)

541216 ZW_UARTO tx_int_clear / ZW_UARTL1_tx_int_clear

void ZW_UARTO _tx_int_clear(void) / void ZW_UART1_tx_int_clear(void)
Clear the UARTx transmit interrupt/done flag.
See also: ZW_UARTO_tx_int_get /ZW_UART1_tx_int_get

Defined in: ZW _uart_api.h

Serial API (Not supported)

5.4.12.17 ZW_UARTO rx_int _clear / ZW_UART1 rx_int_clear

void ZW_UARTO_rx_int_clear(void) /void ZW_UART1 _rx_int_clear(void)
Clear the UARTX receiver interrupt/ready flag.
See also: ZW_UARTO rx_int_get /ZW_UART1 rx_int_get

Defined in: ZW _uart_api.h

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 136 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.12.18 ZW_UARTO tx_int_get / ZW_UART1_tx_int_get

BYTE ZW_UARTO_tx_int_get(void) / BYTE ZW_UART1_tx_int_get(void)
Returns the state of the Transmitter done/interrupt flag. This function has limited used and in practice it is
preferred to check if the UART is ready using the ZW_UARTO_tx_active_get /
ZW_UARTL tx_active_get function in a polled configuration. The ZW_UARTO_tx_active_get /
ZW_UARTL tx_active_get does not require the interrupt flag to be cleared.
See also : ZW_UARTO_tx_int_clear /ZW_UART1_tx_int_clear

Defined in: ZW _uart_api.h

Return value:

BYTE non-zero UARTx Transmitter done/interrupt flag is
set
zero (0x00) UARTx Transmitter done/interrupt flag is
cleared

Serial APl (Not supported)

5.4.12.19 ZW_UARTO rx_int_get /ZW_UARTL1 rx_int_get

BYTE ZW_UARTO_rx_int_get(void) / BYTE ZW_UART1 rx_int_get(void)

Returns the state of the receiver data ready/interrupt flag. The flag goes high when a new byte has been
received. The flag should be cleared as soon as possible after detection in order to minimize risk of data
loss (especially at high baud rates). Clearing the interrupt flag is done using the function

ZW_UARTO rx_int_clear /ZW_UART1 rx_int_clear. When a new byte is detected the byte can be
read using the ZW_UARTO rx_data_get /ZW_UART1 rx_data_get function.

See also: ZW_UARTO rx_int_clear /ZW_UART1 rx_int_clear and ZW_UARTO_rx_data_get /
ZW_UARTL1 rx_data_get

Defined in: ZW _uart_api.h

Return value:

BYTE non-zero UARTX Receiver data ready/interrupt flag
is set
zero (0x00) UARTX receiver data ready/interrupt flag
is cleared

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 137 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.13 Application HW Timers/PWM interface API
The 400 Series Z-Wave Single Chip has two built-in HW timers available for the application:

1. TimerO
2. GPTimer or PWM generator.

Timer bits Clocked by Count up/down
TimerO 8/13/16 32MHz /2 or P1.0 Counts up
GPTimer 16 32MHz / 8 or 32MHz / 1024 Counts down

Timer0 is a standard 8051 timer that can be configured to:

be enabled/disabled

use the system clock divided by 2 (16MHz) or use a pin as clock source
use a pin as clock gate as an option

generate an interrupt at overflow

Refer to figure below for principle diagrams of how the clock control works for TimerO.

ZW_TIMERO_ENABLE

TIMERO
P1.0 O TRUE CE
v FALSE
clk
ZW_TIMERO_ext_gate()

P3.4 [

clksys (32MHz)

ZW_TIMERO_ext_clk()

Figure 15. Principle of Timer0’s clock control

TimerO can operate in three different modes. Refer to the description of ZW_TIMERO _init. The protocol
uses the standard 8051 Timerl.

The GPTimer can optionally be used as a PWM generator instead of a timer.

Sigma Designs Inc. Z-Wave Application Interfaces Page 138 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.13.1 ZW_TIMERO_init

void ZW_TIMERO _init(BYTE bValue)
This function initializes Timer0. Howewer,

Defined in: ZW _appltimer_api.h

Parameters:
bvalue Timer0 Mode:

TIMER_MODE_O 13 bit mode. The 5 lower bits of the low
register acts as a 5 bit prescaler for the
high byte

TIMER_MODE_1 16 bit mode (no reload)

TIMER_MODE_2 8hit - auto reload mode. The 8hit timer

runs in the high byte register. After an
overflow the low byte register value is
loaded into the high byte register

Serial APl (Not supported)

54132 ZW_TIMERO_INT_CLEAR

ZW_ TIMERO_INT_CLEAR
This macro clears the TIMERO receiver interrupt/overflow flag
Defined in: ZW_appltimer_api.h

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 139 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54133 ZW_TIMERO_INT_ENABLE

ZW_TIMERO_INT_ENABLE(BYTE bState)
This macro enables or disables the TimerQ interrupt.
Defined in: ZW _ appltimer _api.h
Parameters:
bState IN TRUE
FALSE

Serial APl (Not supported)

54134 ZW_TIMERO_ENABLE

ZW_TIMERO_ENABLE(BYTE bState)
This macro enables or halts the TimerO.
Defined in: ZW _appltimer_api.h
Parameters:
bState IN TRUE
FALSE

Serial API (Not supported)

5.4.135 ZW_TIMERO ext_clk

ZW_TIMERO_ext_clk(BOOL bState)
This function set the clock source for TimerO

Defined in: ZW _appltimer_api.h

enable TIMERO interrupt

disable TIMERO interrupt

TIMERO runs

TIMERO is halted

Parameters:
bState IN TRUE TimerO runs on the signal on pin P3.4
(synchronized to the system clock)
FALSE TimerO run on the system clock divided by 2
Sigma Designs Inc. Z-Wave Application Interfaces Page 140 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Serial API (Not supported)

54136 ZW_TIMERO_ext _gate

ZW_TIMERO_ext_gate(BOOL bState)

This function enables/disables to use of P1.0 as external clock gate for TimerQ
Defined in: ZW _appltimer_api.h

Parameters:

bState IN TRUE The clock for TimerO can be gated by
P1.0. The clock runs when this function is
called with the parameter set to true,
ZW_TIMERO_ENABLE has be called
with the parameter set to TRUE and
when P1.0 is high

FALSE The clock for TimerO is not gated by
P1.0. The clock is only controlled by the
macro ZW_TIMERO_ENABLE.

Serial APl (Not supported)

54.13.7 ZW_TIMERO_LOWBYTE_SET

ZW_TIMERO_LOWBYTE_SET (BYTE bValue)
This macro sets the timer0 value, see below.
Defined in: ZW_appltimer_api.h
Parameters:
bValue IN The input value depends on the chosen mode:
ModeO: Lower 5 bits sets the prescaler value for the 13 bit

timer
Model: Sets the lower 8 bits of the 16 bit timer
Mode2: N.A.
Mode3: Sets the 8 bit timer of the 8 bit timer0
Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 141 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54138 ZW_TIMERO_HIGHBYTE_SET

ZW_TIMERO_HIGHBYTE_SET (BYTE bValue)
This macro sets the timerO value, see below.
Defined in: ZW _appltimer_api.h
Parameters:
bValue IN The input value depends on the chosen mode:
ModeO: Sets the 8 bit timer value
Model: Sets the upper 8 bits of the 16 bit timer
Mode2: Sets the 8 bit reload value of the 8 bit timer0

Mode3: Sets the 8 bit timer of the 8 bit timerl
Serial APl (Not supported)

54139 ZW_TIMERO_HIGHBYTE_GET

ZW_TIMERO_HIGHBYTE_GET
This macro returns the Timer O timer high register value
Defined in: ZW _appltimer_api.h
Return value:
BYTE The return value depends on the chosen mode:
ModeO: 8 bit timer value
Model: upper 8 bits of the 16 hit timer

Mode2: 8 bit timer value

Mode3: 8 bit timer value (timer 1 interrupt)
Serial APl (Not supported)

5.4.13.10 ZW_TIMERO _LOWBYTE_GET

ZW_TIMERO_LOWBYTE_GET
This function returns the Timer O timer low register value
Defined in: ZW_appltimer_api.h
Return value:
BYTE The return value depends on the chosen mode:

ModeO: 5 bit prescaler value for the 13 bit timer. (lower 5 bits)

Sigma Designs Inc. Z-Wave Application Interfaces Page 142 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

Model: lower 8 bits of the 16 bit timer
Mode2: 8 bit timer value
Mode3: 8 bit timer value

Serial APl (Not supported)

5.4.13.11 ZW_TIMERO word_get

WORD 2ZW ZW_TIMERO_word_get (void)

2012-05-25

This function returns the two 8 bit Timer O register values as one 16 bit value. Used when timer0 is setin

mode 1.
Defined in: ZW_appltimer_api.h
Return value:
WORD 16bit timer value

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 143 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.13.12 ZW_GPTIMER_init

void ZW_GPTIMER_init(BYTE bValue)

This function initializes the GPTimer. Calling ZW_GPTIMER _init() will disable the PWM, since the GP
Timer and the PWM share hardware. The GPTimer counts down.

Defined in: ZW _appltimer_api.h

Parameters:

bvalue IN Bit mask:
Prescaler setting

PRESCALER_BIT When set: Timer counter runs @
32MHz /1024 = 31.25kHz

When nor set: Timer counter runs @
32MHz / 8 = 4MHz
Reload Timer

RELOAD_BIT When set: The GPTimer counter
registers are reloaded with the reload
register value upon underrun.

When not set: The GPTimer stops upon
underrun.

Immediate write

IMWR_BIT When set: The GP Timer counters will be
loaded with the value of the reload
register when it is disabled or
immediately when the reload values are
set.

When not set: The GP Timer counters
will be loaded with the value of the reload
register when it is disabled or when it
times out (underrun).

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 144 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

5.4.13.13 ZW_GPTIMER_int_clear

void ZW_GPTIMER_int_clear (void)
This function clears the GP Timer interrupt flag.
Defined in: ZW _appltimer_api.h

Serial APl (Not supported)

5.4.13.14 ZW_GPTIMER_int_get

BYTE ZW_GPTIMER int_get (void)

This function returns the state of the GP Timer interrupt flag.
Defined in: ZW_appltimer_api.h
Return value:

BYTE 0x00: interrupt flag is not set
mom-0x00: Interrupt is set

Serial API (Not supported)

5.4.13.15 ZW_GPTIMER_int_enable

void ZW_GPTIMER_int_enable(BYTE bState)
This function enables or disables the GPTimer interrupt
Defined in: ZW _appltimer_api.h

Parameters:

bState IN TRUE enable GPTimer interrupt

FALSE disable GPTimer interrupt

Serial API (Not supported)

2012-05-25

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 145 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.13.16 ZW_GPTIMER_enable

void ZW_GPTIMER_enable(BYTE bState)

This function enables or disables the GPTimer and clears the interrupt flag. The GPTimer counters are
reset when the GPTimer is disabled.

Defined in: ZW _appltimer_api.h
Parameters:
bState IN TRUE enable GPTimer.

FALSE disable GPTimer.

Serial APl (Not supported)

5.4.13.17 ZW_GPTIMER_pause

void ZW_GPTIMER_pause(BYTE bState)
This function enters or leaves GPTimer pause state. When entering the pause state, the GPTimer
counters stops counting. When leaving the pause state the counters will start counting from the state
they were in when the pause state was entered.

Defined in: ZW_appltimer_api.h

Parameters:

bState IN TRUE Enter GPTimer pause state.

FALSE Leave GPTimer pause state.

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 146 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.13.18 ZW_GPTIMER reload_set

void ZW_GPTIMER_reload_set(WORD wReloadValue)
This function sets the 16 bit GPTimer reload register. This value sets the time from where the GPTimer is
enabled or it reloaded until the it under-runs (issues an interrupt). E.g. if the GPtimers reload value is set
to 0x0137 and the prescaler is set to 1024, the underrun will happen after 0x137 * 1024 * (32MHz)'l =
9.95ms.
The value 0x0000 equals a timer reload value of 0x10000. E.g. if the GPtimers reload value is set to
0x0000 and the prescaler is set to 8, the underrun will happen after 0x10000 * 8 * (32MHz)'1 = 16.38ms.
Defined in: ZW_appltimer_api.h
Parameters:

wReloadValue IN 16 bit reload value

Serial API (Not supported)

5.4.13.19 ZW_GPTIMER_ reload_get

WORD ZW_GPTIMER reload_get(void)

This function returns the 16 bit GPTimer reload register value.
Defined in: ZW _appltimer_api.h
Return value:
WORD 16 bit reload value

Serial APl (Not supported)

5.4.13.20 ZW_GPTIMER_get

WORD ZW_GPTIMER_get(void)
This function returns the 16 bit GPTimer counter register value. That is it returns a value in the range
[reload_value-1;0]. E.g. if the reload value is setto 0x2A40, ZW_GPTIMER _reload_get() will return a
value in the range [0x2A3F;0].

Defined in: ZW_appltimer_api.h

Return value:

WORD 16 bit counter value

Sigma Designs Inc. Z-Wave Application Interfaces Page 147 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Serial API (Not supported)

5.4.13.21 ZW_PWM_init

void ZW_PWM_init(BYTE bValue)

This function initializes the pulse width modulator. Calling ZW_PWM_init() will disable the GPTimer
function, since the PWM and the GP Timer share hardware.

Defined in: ZW _appltimer_api.h

Parameters:

bvalue IN Bit mask:
Prescaler setting

PRESCALER_BIT When set: PWM counter runs @
32MHz /1024 = 31.25kHz
When nor set: PWM counter runs @
32MHz / 8 = 4AMHz

Invert signal

IMWR_BIT When set: PWM signal is inverted.
When not set: The signal is not inverted

Immediate write

IMWR_BIT When set: The PWM counters will be
loaded with the value of the waveform
registers when it is disabled or
immediately when the waveform values
are set.

When not set: The PWM counters will be
loaded with the value of the waveform
registers when it is disabled or at the
end of a PWM signal period.

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 148 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

5.4.13.22 ZW_PWM_enable

void ZW_PWM_enable(BYTE bState)

2012-05-25

This function enables or disables the PWM and clears the interrupt flag. The PWM counters are reset

when it is disabled.
Defined in: ZW _appltimer_api.h

Parameters:

bState IN TRUE enable PWM.

FALSE disable PWM.

Serial APl (Not supported)

5.4.13.23 ZW_PWM_int_clear

void ZW_PWM_int_clear (void)
Function clears the PWM interrupt flag.
Defined in: ZW_appltimer_api.h

Serial API (Not supported)

5.4.13.24 ZW_PWM_int_get

BYTE ZW_PWM _int_get (void)

Function returns the state of the PWM interrupt flag.
Defined in: ZW _appltimer_api.h
Return value:

BYTE 0x00: interrupt flag is not set
non-0x00: Interrupt is set

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 149 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

5.4.13.25 ZW_PWM_int_enable

void ZW_PWM_int_enable(BYTE bState)

This function enables or disables the PWM interrupt

2012-05-25

The PWM interrupt is triggered on the rising edge of the PWM signals (or at the falling edge of the PWM

signal if PWMINV_BIT is setin ZW_PWM_init()).

Note: The Interrupt should be disabled when either the high or low value in ZW_PWM_waveform_set() is

set to zero.
Defined in: ZW _appltimer_api.h
Parameters:
bState IN TRUE enable PWM interrupt
FALSE disable PWM interrupt

Serial APl (Not supported)

5.4.13.26 ZW_PWM_waveform_set

void ZW_PWM_waveform_set (BYTE bHigh,
BYTE bLow)

This function sets the low and high time of the PWM signal. Refer to figure below.

High time of PWM signal: thewm = (bValueHigh * PRESCALER_BIT)/fsys
Low time of PWM signal tipwm = (bValueLow * PRESCALER_BIT) /fsys
Total period of PWM signal: Tewm = thewm + tiewm

where fsys is 32MHz and
PRESCALER BIT is 1 when set and 0 when not set.

) Trwm R
tIPWM tIPWM
—> —>
|
|
|
4 —> 4 —>
thpwm thpwm

Fgure 16. PWM waveform

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 150 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Defined in: ZW_appltimer_api.h

Parameters:
bHigh IN high time
bLow IN low time

Serial API (Not supported)

5.4.13.27 ZW_PWM_waveform_get

void ZW_waveform_get(BYTE *bValue,
BYTE *bLow)

This function returns the values of the waveform registers.

Defined in: ZW _appltimer_api.h

Parameters:
bHigh OUT high time
bLow OUT low time

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 151 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.14 AES API (Only available in a secure SDK)

The built-in AES-128 hardware engine is a NIST standardized AES 128 block cipher. The cipher engine
is used by the Z-Wawe Protocol to encrypt/decrypt Z Wawe frame payload and to authenticate Z Wawve
frames. In addition this AES-128 encryption engine can also be used to encrypt a 128bit data block
(Using ECB - Electronic CookBook mode) by the application.

The input and output data and key for the AES API's are 16 bytes long char arrays. ZW_AES_ecb_set is
used to set the input data (plaintext and key) and the function ZW_AES_ech_get is used to return the
cipher data from the AES engine. The ECB process is started using the function

ZW_AES _ecb_enable(TRUE) and it lasts about 24us. The process can be canceled by calling
ZW_AES_ecb_enable(FALSE). The AES engine must be polled, using the function
ZW_AES_ecb_active tocheck when a ECB process is done. Figure below gives an example of how the
AES engine functions are called.

/* Example of ECB ciphering. Vectors are from FIPS-197 */

void ApplicationPoll ()
{

switch (mainState)

{

case START AES TEST:

keybuffer[lS] = 0x00;
keybuffer[14] = 0x01;
keybuffer[13] 0x02;
keybuffer[12] = 0x03;
keybuffer[11] = O0x04;
keybuffer[10] = 0x05;
keybuffer[9] = 0x06;
keybuffer[8] = 0x07;
keybuffer[7] = 0x08;
keybuffer[6] = 0x09;
keybuffer[5] = O0x0A;
keybuffer[4] = 0x0B;
keybuffer[3] = 0x0C;
keybuffer([2] = 0x0D;
keybuffer[l] = O0x0E;
keybuffer[0] = O0xOF;
plainbuffer[15] = 0x00;
plainbuffer[14] = 0x11;

plainbuffer[13] = 0x22;

plainbuffer[12] = 0x33;
plainbuffer[11] = 0x44;
plainbuffer[10] = 0x55;
plainbuffer[9] = 0x66;
plainbuffer([8] = 0x77;
plainbuffer[7] = 0x88;
plainbuffer[6] = 0x99;
plainbuffer[5] = 0xAA;
plainbuffer[4] = 0xBB;
plainbuffer[3] = 0xCC;
plainbuffer[2] = 0xDD;
plainbuffer[1l] = OxEE;
plainbuffer[0] = OxFF;
cipherbuffer[15] = 0x69;
cipherbuffer[14] = 0xC4;
cipherbuffer [13] = OxEOQ;
cipherbuffer[12] = 0xD8;
Sigma Designs Inc. Z-Wave Application Interfaces Page 152 of 289

CONFIDENTIAL

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

cipherbuffer[11] = 0x6A;

cipherbuffer[10] = 0x7B;
cipherbuffer [9] = 0x04;
cipherbuffer [8] = 0x30;
cipherbuffer [7] = 0xD8;
cipherbuffer [6] = 0xCD;
cipherbuffer [5] = 0xB7;
cipherbuffer [4] = 0x80;
cipherbuffer [3] = 0x70;
cipherbuffer [2] = 0xB4;
cipherbuffer 1] = 0xC5;
cipherbuffer [0] = 0x5A;

/* Set AES ECB 1nput data pointers */
ZW _AES ecb set(plalnbuffer keybuffer);
/* Start AES ECB function */
ZW_AES enable (TRUE) ;
mainState= WAIT AES ECB;
break;
case WAIT AES ECB:
/* Check to se if AES ECB procedure is done */
if (ZW_AES active get ()==FALSE)
{
ZW_AES ecb get(plalnbuffer),
/* check against proven data */
fail=FALSE;
for (i=0;i<16;1i++)
{
if (plainbuffer[i]'!=chipherbuffer[i])
{
fail=TRUE;
break;
}

}
if (fail) report();

mainState= IDLE;

break;

FHgure 17. Example of ECB ciphering. Vectors are from FIPS-197.

2012-05-25

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 153 of 289

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54141 ZW_AES_echb_set

void ZW_AES_ecb_set (BYTE *bData,
BYTE *bKey)

Call this function to run the AES in ECB mode (Electronic Cookbook mode).

Defined in: ZW_AES_api.h

Parameters:
bData Array of 16 bytes
bKey Array of 16 bytes

Serial APl (Not supported)

54142 ZW_AES_ecb_get

void ZW_AES_ecb_get(BYTE *bData)

Pointer to byte array containing the data
to be encrypted.

Pointer to byte array containing the
encryption key

After calling ZW_AES_ech_set , use ZW_AES_active_get to see if the AES process is done. When this
is the case, call ZW_AES_ecb_set to transfer the result of a AES ECB process to the array bData.

Defined in: ZW_AES_api.h

Parameters:

bData Array of 16 bytes Pointer to byte array buffer to store the
data in.

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 154 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54143 ZW_AES_enable

void ZW_AES_enable(BOOL bState)

Call ZW_AES_enable(TRUE) to enable the AES engine and start the ECB process. The AES engine will
automatically be disabled when a ECB process is done. Call ZW_AES_enable(FALSE) if a ECB process
is to be canceled.

Defined in: ZW_AES_api.h

Parameters:
bState TRUE Enable the AES and start the ECB
mode.
FALSE Disable the AES.

Serial APl (Not supported)

5.4.14.4 ZW_AES_active_get

BYTE ZW_AES_active_get (void)
Returns the active/idle state of the AES engine. Use this function to see when a ECB process is done.
Defined in: ZW_AES_api.h
Return value:
BOOL TRUE The AES is busy.
FALSE The AESiis idle.

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 155 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.15 TRIAC Controller API

The built-in TRIAC Controller is targeted at controlled light / power dimming applications. The Triac
Controller is able to drive both TRIAC's and FETs/IGBT's. The Triac Controller can dim the load with a
precision of 1000 steps in each half-period.

When controlling TRIAC’s the Triac Controller will generate one or more fire pulses in each half period of
the mains to turn on the Triac. The fire angle if set by the specified dim level. The Triac will turn off when
the current is close to zero at the end of the half period. The Triac Controller will generate multiple pulses
if the fire angle is less than 90°. The multiple pulses ensure that at least one pulse is located after the
middle of a half-period, thereby ensuring that the Triac will be fired even with fully inductive loads, and
still limiting the current consumption.

When controlling a FET/IGBT the Triac Controller will turn on the FET/IGBT at a Zero-X of the mains and
turn off the FET/IGBT later in the half-period according to the specified dim lewel.

The Triac Controller can operate in both 50Hz and 60Hz environments.

The application software can use the following TRIAC API calls to control the 400 Series Z-Wawe Single
Chip TRIAC Controller.

Sigma Designs Inc. Z-Wave Application Interfaces Page 156 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54151 ZW_TRIAC init

BYTE ZW_TRIAC_init(BOOL bMode,
WORD wPulseLength,
BYTE bPulseRepLength,
BYTE bZeroXMode,
BYTE blInitMask,
BYTE blinvZerox,
BYTE bMainsFreq,
WORD wCorrection,
BYTE bCorPrescale
BYTE bKeepOff)

ZW_TRIAC init initializes the 400 Series Z-Wave Single Chip's integrated TRIAC controller. Refer to the
section after the function parameter list for a description of the setup of the different zero-cross modes
(page 161). Place this function call in ApplicationInitHW.

Defined in: ZW _triac_api.h

Parameters:
bMode IN Mode of operation:
FALSE: Triac Mode
TRUE: FET/IGBT Mode
wPulseLength IN Triac Fire pulse length Not applicable in FET Mode
Legal values: 1-1023 Set this parameter sothat is equals the
minimum Triac gate high time according
n to the datasheet of the specific Triac in
Each step equals ——— , where n use.
32MHz
is
265 in 60Hz systems
318 in 50Hz systems
i.e. setting this parameter to 40 in a
50Hz system gives a Triac pulse
318
length of 40-———— =397.5us
32MHz
Sigma Designs Inc. Z-Wave Application Interfaces Page 157 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

bPulseRepLength IN Triac fire pulse repetition period Not applicable in FET Mode
Legal values: 18-255 and This parameter sets the period from the
bPulseRepLength must be larger rising edge of one fire pulse to the rising
than wPulseLength/4: edge of the next fire pulse.

4.n The Triac Controller will generate
Each step equals ————, where n multiple fire pulses when the fire angle is
is 32MHz less than 90°
i
265 in 60Hz systems
318 in 50Hz systems

i.e. setting this parameter to 20 in a
50Hz system gives a Triac pulse

4.318
length of 20-————— =795us
Hz
bZeroXMode IN Bridge types:

TRIAC_FULLBRIDGE The TRIAC signal is triggered only on
the rising edges of the ZEROX signal.

TRIAC_HALFBRIDGE_A The TRIAC signal is triggered on the
rising and the falling edge of the ZEROX
signal.

TRIAC_HALFBRIDGE_B The TRIAC signal is triggered on the
rising edge of the ZEROX signal in
ewvery second halfperiod.

binitMask IN Initial zero-cross mask:

TRUE Mask out noise impulse noise on the
mains from the point of a detected zero-
cross tothe start of the Triac fire pulse

FALSE Do not Mask out impulse noise on the
mains from the point of a detected zero-
cross tothe start of the Triac fire pulse

binvZerox IN Inverse zero-cross signal:

TRUE Inverse zero-cross signal

FALSE Do not inverse zero-cross signal

bMainsFreq IN AC mains frequency:

FREQUENCY_50HZ Using 50Hz AC mains supply

FREQUENCY_60HZ Using 60Hz AC mains supply

"™ If binitMask is setto TRUE, the Triac controller will trigger on a falling edge in every second half -period

Sigma Designs Inc. Z-Wave Application Interfaces Page 158 of 289

CONFIDENTIAL

INS12034-2

wCorrection IN

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

ZeroX Duty-Cycle correction
Legal values: 0-1023.

The Triac controller has a timer, that
can compensate for a non-50/50
duty cycle of the ZeroX signal.

The timer can run on a prescalered
clock (see bCorPrescale below)

l.e. setting this parameter to 300 and
bCorPrescale to‘1‘ gives a
correction of

300 3

———=28.1u8.
32MHz e

2012-05-25

Half Bridge Mode A:

The parameter is used to
compensate from a ZeroX signal
duty-cycle that is not exactly
50/50, in half bridge mode A.

Typically, the high time of a ZeroX
signal in half bridge mode is
shorter than the low time. In this
case, setting this parameter to
value greater than 0, can correct
this mismatch. If the high time is N
ns longer than the low time, this
parameter should be set so that it
equals N/2 ns.

Half Bridge Mode B:

60Hz systems: This value should

be setto (26 + 88 % - bKeepOff —l

50Hz systems: This value should
be setto 31+ 106 - bKeepOff

Full Bridge Mode:

N.A.

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 159 of 289

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

bCorPrescale Correction prescaler
Legal values:
0: Prescaler disabled
1: Prescaler enabled
bKeepOff KeepOff distance

Legal values: 0-9

Each step equals

is

, where n

32MHz

265 in 60Hz systems
318 in 50Hz systems

i.e. setting this parameter to 3in a
50Hz system gives a distance of

5. 318 _
32MHz
Return values:
BYTE 0x01
0x02

Serial API (Not supported)

29.815

2012-05-25

When this parameter is setto 1, the
clock signal that is used for the
correction timer (see under wCorrection
abowe) is prescaled by a factor of 3.
That is, the timer clock will run at
32MHz/3~10.67MHz

When this parameter is set to 0, the
correction timer will run using the system
clock (32.00Mz).

Half Bridge Mode A:

Set this parameter to 1 if the
needed correction has to be
longer than 1023*(32MHZ)'l =
31.97 ps

Half Bridge Mode B:
N.A.

Full Bridge Mode:
N.A.

Use this parameter to specify the
minimum distance from the falling edge
of the Triac pulse to the zero cross of
the mains signal (ZeroX).

This parameter will also specify the
distance from where the Triac controller
starts looking for a new ZeroX to the
nominal ZeroX point. That is, use this
parameter in regions where the mains
frequency has large devations.

bPulseRepLength is less than
wPulselLength/4:

bPulseRepLength is less than 18 (legal
values 18-255)

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 160 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Half bridge A:

In this mode, the Triac Controller uses both edges on the zero-cross signal for each period of the mains
signal. That is, the zero-cross signal is expected to go high at the beginning of the mains period and the
go low at the next zero-cross, as depicted in figure below. Since this is not usually the case, because of
input threshold level the duty cycle, the rising edge is delayed, and the falling edge is too early. This
results in a non-50/50 duty cycle, which again will result in a DC wltage ower the Triac load. Use the
parameters wCorrection and bCorPrescale to correct the duty-cycle, and thereby to get rid of the DC
wltage. Setting these parameters will “delay” the falling edge in the Triac controller, as depicted in figure
below.

Mains voltage

ZEROX |\ /'I_l

VA

Both edges are used by Correction
the Triac Controller

Fgure 18. Half-bridge A zero-x signal

Half bridge B:

In this mode, the Triac Controller only uses one edge on the zero-cross signal for each period of the
mains signal. That is, the zero-cross signal is expected to go high at the beginning of the mains period
and the go low before the beginning of the next period, as depicted in figure below.

Mains voltage

ZEROX

Only the rising edge of the pulse
in every second half period is
used by the Triac Controller

Figure 19. Half-bridge B zero-x signal

In the positive halfperiod the triac pulse is generated

Sigma Designs Inc. Z-Wave Application Interfaces Page 161 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Full Bridge:

In this mode, the Triac Controller uses two rising edges on the zero-cross signal for each period of the
mains signal. That is, the zero-cross signal is expected to go high at the beginning of the mains period
and the go low before the beginning of the next half-period, then high again after the following zero-
cross, and finally low again before the end of the period, as depicted in the two figures below.

Mains voltage

ZEROX |\ I/'i

Only the rising edges are used
by the Triac Controller

FHgure 20. Example 1 of a full bridge zero-x signal

Mains voltage

ZEROX 'I_l

Only the rising edges are used
by the Triac Controller

FHgure 21. Example 2 of a full bridge zero-x signal

Once the Triac Controller is started, the Zero-cross signal is masked off the whole half period, except for
a short period just before the next zero-x. This period can be adjusted using the parameter bKeepOff.

See figure below

Mains voltage A l’»
/I
KeepOff _/Keepoff
Zero-x signal is masked Zero-x signal is masked

Fgure 22. Masked Zero-X signal

In Triac Mode the Triac Controller will generate multiple pulses if the fire angle is less than 90°. The
length of each of the pulses is set by the parameter wPulseLength and the repetition length is set by the
parameter wPulseReplength. See figure below.

Sigma Designs Inc. Z-Wave Application Interfaces Page 162 of 289

CONFIDENTIAL

INS12034-2

Mains voltage

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

2012-05-25

PulseLength

PulseRepLength

TRIAC

»

(LTI

Figure 23. PulseLength and PulseRepLength used in Triac Mode

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 163 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
5.4.152 ZW_TRIAC enable

void ZW_TRIAC _enable(BOOL boEnable)
ZW_TRIAC enable enables/disables the Triac Controller. When enabled the Triac controller takes
control over the TRIAC (P3.6) and the ZEROX' T (P3.7) pins. ZW_TRIAC_init must havwe been called
before the Triac Controller is enabled.

Defined in: ZW _triac_api.h

Parameters:

boEnable IN TRUE or FALSE TRUE: enables the Triac Controller

Serial APl (Not supported)

11 If the PWM is enabled, see ZW_PWM enable(), then the PWM wiill control the P3.7 pin

Sigma Designs Inc. Z-Wave Application Interfaces Page 164 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.15.3 ZW_TRIAC dimlevel set

BOOL ZW_TRIAC _dimlevel_set(WORD wLevel)

ZW_TRIAC dimlevel_set turns the Triac controller on and sets the dimming level. ZW_TRIAC init must
have been called before the Triac Controller is started.

Defined in: ZW _triac_api.h
Parameters:
wLevel IN Dimming lewvel (0-1000),
where 0 is shut off and 1000 is full on
Return values:

BOOL TRUE The new dim level has been accepted by
the Triac Controller

FALSE The Triac Controller has not yet read in
the previous dim lewvel. Wait up to one
half period of the mains signal (50Hz:
10ms, 60 Hz 8.33ms) and try again

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 165 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.154 ZW_TRIAC_int_enable

void ZW_TRIAC int_enable(BOOL boEnable)
ZW_TRIAC int_enable enables/disables the zero cross (ZeroX) interrupt. The ZeroX interrupt is issued
when the TRIAC controller detects a zero cross on the ZEROX signal. Hence, the Triac Controller will
take control of the ZEROX pin (P3.7) when ZW_TRIAC_int_enable(TRUE) has been called.
The ZeroX interrupt can be used to implement a SW based TRIAC controller where the TRIAC signal is
controlled by the SW. The Triac Controller will generate the ZeroX interrupt when it detects a zero cross
on the ZEROX signal, even if the Triac Controller has been disabled (by calling
ZW_TRIAC enable(FALSE)) as long as ZW_TRIAC_int_enable(TRUE) has been called.

Defined in: ZW_triac_api.h

Parameters:

boEnable IN TRUE Enable the interrupt. The Triac controller

will issue an interrupt when a zero cross

is detected on the ZEROX signal.

FALSE Disable the Triac interrupt.

Serial APl (Not supported)

The interrupt number is set by the define, INUM_TRIAC, as described in ZW040x.h

Sigma Designs Inc. Z-Wave Application Interfaces Page 166 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.155 ZW_TRIAC int_get

BOOL ZW_TRIAC int_get(void)

ZW_TRIAC int_get returns the state of the Triac Controller interrupt flag. Call
ZW_TRIAC int_enable(TRUE) to enable the interrupt.

Defined in: ZW _triac_api.h

Return values:

BOOL TRUE The Triac Controller interrupt flag is set.
FALSE The Triac Controller interrupt flag is
cleared.

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 167 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54156 ZW_TRIAC_int_clear

void ZW_TRIAC int_clear(void)

ZW_TRIAC int_get clears the Triac Controller interrupt flag. Call ZW_TRIAC_int_enable(TRUE) to
enable the interrupt and use ZW_TRIAC_int_get to see whether the interrupt has been set.

Defined in: ZW _triac_api.h

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 168 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.16 LED Controller API

The built-in LED Controller is targeted at LED light dimming applications. The controller can control up to
four individual channels in 3 different modes of operation. The application software can use the following
LED API calls to control the 400 Series Z-Wawve Single Chip LED Controller.

5.4.16.1 ZW_LED_init

void ZW_LED _init(BYTE bMode,
BYTE bChannelEn)

ZW_LED _init initializes the 400 Series Z-Wawe Single Chip's integrated LED controller by setting the
desired mode of operation and the desired number of active channels. Should be called in
ApplicationHWInit.

Defined in: ZW _led_api.h
Parameters:
bMode IN Mode of operation type:

LED_MODE_NORMAL In this mode, the LED controller will generate
a pulse width modulated signal for each
active channel. The PWM signals has no
phase skew. The frequency of all of the PWM
signals is 32MHz/2"® = 488.28Hz. The duty-
cycle of the PWM signals is set by the
ZW_LED waveforms_set function.

LED_MODE_SKEW The SKEW mode is same as the NORMAL
mode except that phase of the channels are
skewed. That is, the signal of channel 1 is
skewed ¥ of a period compared to the signal
of channel O, the signal of channel 2 is
skewed Y4 of a period compared to the signal
of channel 1, etc.

LED_MODE_PRBS In this mode, the LED controller uses a PRBS
signal generator to generate to LED signals.
The total high time in this mode equals the
total high time in the other modes.

Sigma Designs Inc. Z-Wave Application Interfaces Page 169 of 289

CONFIDENTIAL

INS12034-2

bChannelEn IN

Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Bit mask of one of the 4 channels to

be enabled

LED_CHANNELO

LED_CHANNEL1

LED_CHANNEL2

LED_CHANNELS3

Serial APl (Not supported)

Enable channel 0. The LED Controller takes
control of the P0.4 pin.

Enable channel 1. The LED Controller takes
control of the P0.5 pin.

Enable channel 2. The LED Controller takes
control of the P0.6 pin.

Enable channel 3 The LED Controller takes
control of the P0.7 pin.

Sigma Designs Inc.

Z-Wave Application Interfaces Page 170 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.16.2 ZW_LED_waveforms_set

void ZW_LED waveforms_set(WORD *pwLevel)

ZW_LED waveforms_set sets the high time of signals of each of the 4 LED Controller channels. This
API will set the waveform for all channels even though not all of them are enabled.

ZW_LED waveforms_set waits until the previous waveform setting has been adopted by the LED
controller before setting the new waveform values. This can take up to 2.048ms. Alternatively, first poll
ZW_LED busy to see when the LED controller is ready to adopt new settings and then call

ZW_LED waveforms_set or call ZW_LED_waveform to set one channel at a time.

Defined in: ZW _led_api.h

Parameters:
pwLevel IN A pointer to an array with 4 16-bits
values.
0x0000-0xFFFF Duty cycle times of the LED controller

channels. The first 16 bit element in the
array determines the value for channel 0.
The next 16 bit element determines the
value for channel 1, etc.

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 171 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.16.3 ZW _LED waveform_set

void ZW_LED waveform_set(BYTE bChannel
WORD wLevel)

ZW_LED_ waveform_set: setthe duty cycle time of one of the LED controller 4 channels. The API will not
wait until the LED controller is ready to use the new value. The LED controller can only accept the new
value just after the end of a period. Poll ZW_LED_busy to see when the LED controller is ready to adopt
new settings.
Alternatively, call ZW_LED_waveforms to set all channels in one call.
Defined in: ZW _led_api.h
Parameters:
bChannel IN The channel ID
LED_CHANNELO
LED_CHANNEL1
LED_CHANNEL2
LED_CHANNELS3
wlLewel The duty cycle of the channel

0x0000-0xFFFF

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 172 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.16.4 ZW_LED_busy

BOOL ZW_LED_busy(void)

ZW_LED busy is used to check to see if the LED controller is ready to accept new waveform values.
Defined in: ZW _led_api.h
Return values:

BOOL TRUE The LED controller can accept new
waveform values

FALSE The LED controller cannot accept new
wawveform values, since it has not yet
read in the previous data set. Wait up to
2'°/32MHz = 2.048ms and check again.

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 173 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.17 Infrared Controller API

The built-in Infrared (IR) Controller is targeted at IR remote applications. The IR controller can operate
either as an IR transmitter or as an IR receiver. When operating as a transmitter one or more of the three
outputs (P3.4, P3.5, and P3.6) can be enabled as IR outputs that drive an IR LED, as depicted in figure
below. Each output can drive 12mA. Hence, using three outputs give a drive strength of 36mA. If 36mA
is insufficient you will have to implement an external driver.

ZW0402

Optional driver
i: P3.4/IRTX0

P3.5/IRTX1
P3.6/IRTX2

P3.1/IRRX

™
"FIR LED
W

IR receiver
module

Fgure 24. External IR hardware

An external IR receiver module or an IR transistor must be connected to Pin P3.1 when operating in
Receive mode. An IR receiver module has a built-in photo transistor and preamplifier with automatic gain
control and gives a digital TTL/ICMOS output signal. The IR receivers can be found in two versions, with and
without demodulator. The versions without demodulator (like Vishay TSOP 98200) generates an output
signal with carrier (as depicted in the upper part of figure below), whereas the versions with demodulator
(like Vishay TSOP322xx) generates an output signal without the carrier (as depicted in the lower part of
figure below). Therefore, the one without demodulator is best for code learning applications, where you
want to be able to detect the carrier frequency. The one with modulator has improved immunity against
ambient light such as fluorescent lamps.

Using an photo transistor, where the transistor is connected directly to the 400 Series Z-Wawve Chip

requires that the transmitting IR LED is placed within a short range (2"-4”) of the IR transistor, since the
IR transistor signal is analog and isn’t amplified. This circuit is also sensitive also to ambient light.

||| i
UL JUUUL L

Figure 25. IR signal with and without carrier

In both cases, the IR Receiver detects widths of the marks (high/carrier on) and spaces (low) of a coded
IR message, as seen in figure below. The mark/space width data is stored in SRAM using DMA. While
running, the IR Controller requires very little CPU processing. The IR receiwer is able to detect the
waveform of the carrier™™.

The IR Transmitter generates a carrier and the marks and spaces for an IR message. The widths of the
marks and the spaces are read from SRAM using DMA.

HH Note that the IR receiver module can distort the duty cycle of the carrier.

Sigma Designs Inc. Z-Wave Application Interfaces Page 174 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

| [RN[N NN

-~ . >
Mark Space Mark

FHgure 26. IR Coded message with carrier

Both the IR Receiver and the IR Transmitter can be configured to detect/generate a wide range of IR
coding formats.

5.4.17.1 Carrier Detector/Generator

The carrier detector can detect the carrier waveform (high and low periods) of a carrier modulated IR
signal.

Carrier Low Carrier Low
«—» «—»

—> +—>

Carrier high Carrier high
FHgure 27. Carrier waveform

The following bullets provide a short feature list of the Carrier Detector/generator.

1. IR Carrier Generator frequency range: 7.8kHz - 16MHz (50/50 duty cycle) or 10.4kHz -10.7MHz
(33/66 duty cycle)

2. A built-in Glitch Remover is able to remowve glitches on the incoming IR signal.

3. For each detection process the IR Carrier Detector can calculate an average of the “high”
duration and an average of the “low” duration over 1 (no averaging), 2, 4, or 8 periods.

5.4.17.2 Organization of Mark/Space data in Memory

Both the IR Receiver engine and the IR Transmitter engine use SRAM to store mark/space data
information. The data is stored in the same format for both engines, as depicted in figure below. The
width of a mark is stored in 1 to 3 bytes — likewise the width of a space is stored in 1-3 bytes.

Bit 7 in each byte is used to differentiate the mark and space bytes. That is, bit 7 of all “mark”-bytes are
set to 1 and bit 7 of all “space™bytes are setto 0.

The maximum number of bits used to describe a mark or space width is 16. The means that 3 bytes are
needed to store a 16 bit value (the upper 6 bits of the 3" byte are unused); whereas 2 bytes are needed
to store a 14 bit value, and only one byte is needed to store a 7 bits value.

Refer to the example as depicted in figure below, where:
4. 3 bytes are used for the start mark (PSO0)

5. 3 bytes are used for the start space (PS1)
6. 2 bytes are used for each of the rest of the mark/spaces

Sigma Designs Inc. Z-Wave Application Interfaces Page 175 of 289

CONFIDENTIAL

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

2012-05-25

The maximum size of the mark/space data information is 511 bytes. The data can be stored anywhere in
the lower 4K XRAM in the 400 series Z-Wawve Single Chip.

Baseaddress+08h | 1| PS4[6:0]
Baseaddress+0Ah | 1 PS4[13:7]
Baseaddress+09h | O PS3[6:0]
Baseaddress+08h | O PS3[13:7]
Baseaddress+07h | 1 PS2[6:0]
Baseaddress+06h | 1 PS2[13:7]
Baseaddress+05h | O PS1[6:0]
Baseaddress+04h | O PS1[13:7]
Baseaddress+03h | O PS1[15:14]>
Baseaddress+02h | 1 PS0[6:0]
Baseaddress+01h | 1 PSO0[13:7]
Baseaddress+00h | 1 PSO[15:14]>»
Bit 7 6 0
2 5 383 8 53%E0D b b
a o @aag o aaoagadad 4 &

$ PS6

]

Figure 28. Mark/Space Data Memory Organization

The width is described as a certain count of prescaled clock periods. E.g if the prescaler is set to 1/16
and the width of a mark is 889us, the width will be stored as

That is,

period _ 889us _1708LSB
prescaler 16
foe 32MHz
In(798) _10.81
In(2)

11 bits are needed = 2 bytes.

Since the maximum number of bits used to store each mark or space width is 16. It results in a maximum

mark or space width of:

e 262ms using clock divider of 128 or
e 1.7s using the Carrier Generator @ 36kHz

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 176 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
5.4.17.3 IR Transmitter

Before the IR transmitter can start generating the IR stream the IR Transmitter must have been
initialized, the Mark/Space data must have been built in a buffer in the lower 4kB XRAM, and the IR
interrupt is optionally enabled. The organization of the Mark/Space data is described in section 5.4.17.2.
Additionally, the Carrier Generator must be initialized.

The function ZW_IR_tx_init must be called to initialize all the needed parameters as described below
and in section 5.4.17.5:

7. The prescaler value for generating the carrier signal can be either: 1, 2,3, 4,5, 6, 7, or 8
resulting in a clock speed of either 32MHz, 16MHz, 32/3MHz, 8MHz, 32/5MHz, 16/3MHz,
32/7MHz, or 4MHz

8. The IR transmitter can use a prescaler that use the 32MHz clock divided by 1, 2, 4, 8, 16, 32, 64,
or 128. It can also use the rising edge of the carrier generated by the Carrier Generator.

9. The output(s) can be inverted as an option

10. The Idle state of the IR signal can be either high or low

11. One, two, or three I0’s can be used in parallel for driving an IR LED. Each output buffer can
drive 12mA.

12. The carrier wave form is set by the carrier prescaler and two parameters that sets the low and
high period of the carrier signal.

If only one IR coding style is used in a application the ZW_IR_tx_init function can be placed in
ApplicationlnitHW, otherwise it can be placed in other parts of the code, typically in ApplicationPoll

The function ZW_IR_tx_data must be called when a certain IR stream is to be transmitted. The
parameters for this function sets is described below and in section 5.4.17.6

13. The address of the buffer in lower 4kB XRAM.
14. Size of IR data buffer in XRAM. The maximum size of the XRAM buffer is 511 bytes.

The IR Transmitter takes over control of the enabled 10’s (P3.4, P3.5, and/or P3.6) when the function
ZW_IR_tx_data is called and releases the control of the enabled I0’s when the IR signal has been
transmitted. Therefore, to make sure that I0’s used by the IR transmitter (P3.4, P3.5, and/or P3.6) are
output(s) and at the correct idle state, the GPIO must be set as outputs and the state must be set
accordingly.

An IR interrupt routine is supplied with the ZW_phy_infrared_040x library. Avariable ir tx flag
(BOOL) is set TRUE when an IR message has been transmitted after ZW_IR_tx_data has been called.
The ir tx flag variable is cleared when calling ZW_IR_tx_data.

Once the IR Transmitter is started, use the function ZW_IR_disable to cancel the operation.

An example of how to initialize and run the IR Transmitter is shown in Figure 29.

Sigma Designs Inc. Z-Wave Application Interfaces Page 177 of 289

CONFIDENTIAL

INS12034-2

void ApplicationInitHW ()

{
EA=1;
EIR=1;

/* Carrier freq
ZW IR tx init (FALSE,

3,

FALSE,
FALSE,

0x03,
3,
74,
148);

8MHz/ (74+148)
// Use Mark/Space prescaler

//
//
//
//
//
//
//

void ApplicationPoll ()

{

BYTE bIrBuffer[l6];

switch

{

case SEND PLAY:
// This IR message

(mainState)

bIrBuffer[0]

bIrBuffer[1l

bIrBuffer[2
bIrBuffer[3
bIrBuffer[4
bIrBuffer[5
bIrBuffer[6
bIrBuffer[7
bIrBuffer|[8
bIrBuffer[9
bIrBuffer[1l
bIrBuffer[1l
bIrBuffer[1l
bIrBuffer[1l
bIrBuffer[l

1=
1=
1=
1=
1=
1=
1=
1=
1=
0
1
2
3
4

bIrBuffer[1l

ZwilRistatusiclear();

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

=36kHz, Carrier duty cycle 33/66 */
Prescaler: 32MHz/ (2"3)=4MHz

Output is not inverted

Output state is low

Enable P3.4 and P3.5

Carrier prescaler set to 4 (32MHz/4=8MHz)
Carrier low 74/8MHz = 9.25us

Carrier high 148/8MHz = 18.5us

send a “PLAY” command

=0xA0;

0x20;
0xBF;
0x20;
0xAQ;
0x20;
0xAOQ;
0x20;
0xAQ;
0x20;

=0xA
=0x2
=0xB
=0x2
=0xD
=0x8

0;
0;
F;
0;
F;
0;
// Clear all IR status flags

2012-05-25

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 178 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

/* Use IrBuffer as buffer, size 16 bytes */
ZW IR tx data ((WORD)bIrBuffer, // Address of buffer

16); // Size of buffer
mainState=WAIT IR DONE;
break;
case WAIT IR DONE:
if (ir_ tx flag==TRUE) // Wait until IR TX flag is set

{
mainState=IDLE;

}

break;

Fgure 29. Code example on use of IR transmitter

5.4.17.4 IR Receiver

Before the IR Receiver can be used to learn an incoming IR stream the IR receiver must have been
initialized, the Mark/Space data buffer must have been allocated in the lower 4kB XRAM, and the IR
interrupt must be enabled.

The organization of the Mark/Space data is described in section 5.4.17.2.

The function ZW_IR_learn_init must be called to initialize all the needed parameters as described below
and in section 5.4.17.5:

15. The Rx SRAM buffer sizeis configurable. (1-511 bytes)

16. The Mark/Space detector in the IR Receiver can use either a prescaler that use the 32MHz clock
divided by 1, 2, 4, 8, 16, 32, 64, or 128.

17. If the IR Receiver requires more SRAM space for the incoming IR stream, the CPU is interrupted
and an error flag is set

18. The IR Receiver can be configured to remowve glitches on the incoming IR signal

19. The IR Receiver can be configured to average the detected duration of the low/high periods of
the Carrier

20. The IR input signal can be inverted as an option.

21. The IR Receiver can detect that the trailing space after the last mark of a received IR message is

longer that a specific size. This size must be set and this works at the same time as a timeout if
the message for some reason is shorter than expected.

Call the function ZW_IR_|learn_data to start the learn process. The function is described below and in
section 5.4.17.9:

22. When the learn process starts the IR receiver will start out using the highest possible prescaler
value for the Carrier detector. When it then detects a carrier, it will measure the duration of the
low and high periods of the carrier and, if possible, rescale the prescaler to a lower value and
rerun the carrier measurement. This is done to achieve the highest precision of the carrier
measurement while preventing timer overflow.

23. The learn process will terminate when the IR Receiver has detected at least one Mark and then
a Space larger than a configurable amount of time, as described abowe.

An IR interrupt routine is supplied with the ZW_phy_infrared_040x library. Avariable ir rx flag
(BOOL) is set TRUE when an IR message has been received. The ir rx flag variable is cleared
when calling ZW_IR_learn_data.

Sigma Designs Inc. Z-Wave Application Interfaces Page 179 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Call the function ZW_IR_rx_status_get to get the size of the received mark/space data, the detected
carrier characteristics and error state (status flags). The function ZW_IR_status_clear clears the status
flag.

Once the IR Receiver is started, use the function ZW_IR_disable to cancel the operation.

An example of how to initialize and run the IR Receiver is shown below.

BYTE bIrBuffer([256];

void ApplicationInitHW ()
{

EA=1;
EIR=1;

ZW IR learn init ((WORD)bIrBuffer // Buffer address

256, // Buffer Size

4, // Prescaler: 32MHz/ (274)=2MHz

7, // Trailing space min 2716/2MHz=32.8ms
2, // Run average over 4 periods

1, // Remove glitches below 125ns

FALSE) ; // Do not invert input

void ApplicationPoll ()

{
WORD wRxDatalLen;

BYTE bRxCarrierLow;
BYTE bRxCarrierHigh;
BYTE bRxStatus;

switch (mainState)
{
case START IR LEARN:

ZW IR status clear(); // Clear all IR status flags
ZW IR learn datal(); // Start IR Receiver
mainState=WAIT IR DONE;

break;

case WAIT IR DONE:
if (ir rx flag==TRUE) // Wait until IR RX flag is set
{
ZW_ IR rx status get(&wRxDatalen,

&bCarrierPrescaler,
&bRxCarrierLow,
&bRxCarrierHigh,
&bRxStatus) ;

Sigma Designs Inc. Z-Wave Application Interfaces Page 180 of 289

CONFIDENTIAL

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00
if (bRxStatus == 0x00 || bRxStatus == IRSTAT CDONE)
{
if (bRxStatus == IRSTAT CDONE)
{
/* report that carrier could not be detected */
}
/* decode received data */
}
else
{
/* error handling */
}
mainState=IDLE;
}
else

{

/* Cancel the operation when boCancelIR is set
TRUE by other part of the code */
if (boCancelIR == TRUE) ZW_IR disable();
mainState=IDLE;
}

break;

Fgure 30. Code example on use of IR receiver

2012-05-25

The application software can use the following IR API calls to control the 400 Series Z-Wawve Single Chip
IR Controller.

5.4.17.5

ZW_IR_tx_init

void ZW_IR_tx_init(BOOL boMSTimer,

BYTE bMSPrescaler,
BOOL bolnvertOutput,
BOOL boHighDrive,
BOOL boldleState,
BYTE bOutputEnable,
BYTE bCarrierPrescaler,
BYTE bCarrierLow,
BYTE bCarrierHigh)

ZW_IR_tx_init initializes the 400 Series Z-Wawe Single Chip's integrated IR controller to Transmitter
mode and sets the required TX options.

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 181 of 289

INS12034-2

Defined in:
Parameters:

boMSTimer IN

bMSPrescaler IN

bolnvertOutput IN

boHighDrive

boldleState IN

bOutputEnable IN

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

ZW _infrared_api.h

TX Mark/Space prescaler mode:

TRUE

FALSE

Mark/Space timer prescaler

Valid values: 0-7
Resulting timer clock frequency:
0: 32MHz
16MHz
8MHz
4AMHz
2MHz
1MHz
500kHz
250kHz

Invert IR output
TRUE
FALSE

Invert IR output
TRUE

FALSE

Idle State of IR output
TRUE
FALSE

Outputs enabled

Valid values: 0-7
000: All outputs disabled
xx1: P3.4 enabled
x1x: P3.5 enabled
1xx: P3.6 enabled

2012-05-25

Mark/space generator runs on carrier
period timer. That is, the length of the
Marks/Spaces is calculated as the
carrier period multiplied by the value
read in XRAM

Mark/space generator runs on a
prescaled timer. That is, the length of
the Marks/Spaces is calculated as
the prescaled timer period multiplied
by the value read in XRAM. Prescaler
value is set by bMSPrescaler.

Not applicable when boMSTimer is
true

output is inverted
output is not inverted

use 12mA drive strength of IR Tx IO
output buffers

use 8mA drive strength of IR Tx IO
out buffers

Idle state is high
Idle state is low

Idle state is high

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 182 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

bCarrierPrescaler IN Carrier generator prescaler

Valid values: 0-7

Resulting timer clock frequency:
32MHz

32MHz/2

32MHz/3

32MHz/4

32MHz/5

32MHz/6

32MHz/7

32MHz/8

NoagkhwdhkRoO

bCarrierLow IN Carrier low time
0: 1 prescaled clock period
1: 2 prescaled clock periods
255: 256 prescaled clock periods
bCarrierHigh IN Carrier High time
0: 1 prescaled clock period
1: 2 prescaled clock periods
255: 256 prescaled clock periods

Serial API (Not supported)

2012-05-25

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 183 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.17.6 ZW_IR_tx_data

void ZW_IR_tx_data(WORD pBufferAddress,
WORD wBufferLength)

ZW_IR_tx_data sets the address and the length of the buffer containing the Mark/space data to be sent.
The IR Controller will start to transmit immediately after these values havwe been set.

Defined in: ZW _infrared_api.h
Parameters:

pBufferAddress IN Address of Tx buffer in lower XRAM
memory

wBufferLength IN Number of bytes in TX buffer. Valid
values (1-511)

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 184 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.17.7 ZW_IR_tx_status_get

BYTE ZW_IR tx_status _get(void)

ZW_IR_tx_status_get is used to check to the status of the IR controller after an IR message has been
transmitted.

Defined in: ZW _infrared_api.h
Return values:

IRSTAT_MSOVERFLOW The format of the data in the IR buffer is

invalid. The perceived Mark/Space value
is greater than 2'°

IRSTAT_PSSTARV The IR controllers DMA engine was not
able to read data from XRAM in time
because the access tothe XRAM was
used by (an) other DMA engine(s) with
higher priority. To get rid of this error, try
to disable other DMA engines (USB, RF,
etc.) and run the IR transmitter again.

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 185 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.17.8 ZW_IR_learn_init

void ZW_IR learn_init(WORD pBufferAddress,
WORD wBufferLen,
BYTE bMSPrescaler,
BYTE bTrailSpace,
BYTE bCAverager,
BYTE bCGlitchRemover,
BOOL bolnvertinput)

2ZW_IR_learn_init initializes the 400 Series Z-Wawve Single Chip's integrated IR controller to
receive/learn mode and sets the required RX options.

Sigma Designs Inc. Z-Wave Application Interfaces Page 186 of 289

CONFIDENTIAL

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Defined in: ZW _infrared_api.h

Parameters:
pBufferAddress IN

wBufferLength IN

bMSPrescaler IN

bTrailSpace IN

bCAwerager IN

bCGlitchRemower IN

bolnvertinput IN

Address of Rx buffer in lower XRAM memory
Size of RX buffer.

Valid values (1-511)

Mark/Space timer prescaler

Valid values: 0-7
Resulting timer clock frequency:
0: 32MHz
16MHz
8MHz
4AMHz
2MHz
1MHz
500kHz
250kHz

Trailing space after last Mark. After the incoming
IR signal has been low for this period of time the
IR receiver stops.
Valid values: 0-7
0: 512 prescaled clock periods
1024 prescaled clock periods
2048 prescaled clock periods
4096 prescaled clock periods
8192 prescaled clock periods
: 16384 prescaled clock periods
: 32768 prescaled clock periods
: 65536 prescaled clock periods

NoahowdbRE

Awerage Carrier high/low length measurement
over multiple carrier periods.
Valid values: 0-3

0: 1 carrier period

1: 2 carrier periods

2: 4 carrier periods

3: 8 carrier periods (Recommended value)

Remowe glitches from incoming IR signal.
Valid values: 0-3

0: disabled

1: <125ns

2: <250ns

3: <500ns

TRUE IR input is inverted
FALSE IR input is not inverted

Serial APl (Not supported)

Sigma Designs Inc.

Z-Wave Application Interfaces Page 187 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54179 ZW_IR_learn_data

void ZW_IR_learn_data(void)

ZW_IR_learn_data clears the ir rx flag variable and starts the IR Controller in Rx/learn mode. Use
ZW_IR_disable tocancel on ongoing learn process.

Defined in: ZW _infrared_api.h
Serial API (Not supported)

Refer to section O for a detailed description of the learn function.
5.4.17.10 ZW_IR_rx_status_get

void ZW_IR _rx_status_get(WORD *wDatalLength,
BYTE *bCarrierPrescaler,
BYTE *bCarrierLow,
BYTE *bCarrierHigh,
BYTE *bStatus)

ZW_IR_rx_status_get is used to check to the status of the IR controller, to get the length of the received
data, the detected carrier characteristics, and the error state. Call this function after a learn operation is
done, i.e. after the ir rx flag variable has been set.

Sigma Designs Inc. Z-Wave Application Interfaces Page 188 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Defined in: ZW _infrared_api.h
Parameters:
wDatalLength OUT Length of the received data

bCarrierPrescaler OUT Optimal Carrier prescaler
value

Valid values: 0-7
0: 32MHz

32MHz/2
32MHz/3
32MHz/4
32MHz/5
32MHz/6
32MHz/7
32MHz/8

bCarrierLow OUT Length of the Low period of
the Carrier (in prescaled
system clocks)

bCarrierHigh OUT Length of the High period of
the Carrier (in prescaled
system clocks)

bStatus OUT IRSTAT_PSSTARV

IRSTAT_MSOVERFLOW

IRSTAT_COF

IRSTAT_CDONE

IRSTAT_RXBUFOVERFLOW

Serial API (Not supported)

The IR controllers DMA engine was not
able to write data from XRAM in time
because the access tothe XRAM was used
by (an) other DMA engine(s) with higher
priority. To get rid of this error, try to disable
other DMA engines (USB, RF, etc.) and
run the IR transmitter again.

The duration of a mark/space exceeded 2*°
prescaled clock periods.

The Carrier detector failed because the
perceived carrier low/high period was too
long.

The Carrier detector completed measuring
the carrier without errors

The RX buffer was too small to store the
received IR data

Sigma Designs Inc. Z-Wave Application Interfaces Page 189 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54.17.11 ZW_IR_status_clear

void ZW_IR_status_clear(void)

ZW_IR_status_clear clears the Tx and Rx IR Status flags. Call this function before rerunning the IR
Controller.

Defined in: ZW _infrared_api.h

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 190 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.17.12 ZW_IR_disable

void ZW_IR_disable(void)

This function disables any ongoing IR operation and sets the IR Controller to its idle state. Use
ZW_IR_status_clear to clear any status bit before starting the IR Transmitter or IR Receiver.

Defined in: ZW _infrared_api.h

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 191 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.18 Keypad Scanner Controller API

The built-in hardware keypad scanner is able to scan a matrix of up to 8 rows x 16 columns. When the
Keypad Scanner is activated, the 8 row inputs (P1.0-P1.7) must either be connected to the hardware key
matrix or kept open. The number of columns can be configured to the range 1-16. The actual IO’s being
used as column outputs are “KSCOLQ” (P0.0) when the column count is set to one, “KSCOLO, KSCOL1”
(P0.0, P0.1) when the column count is set to two, “KSCOLO, KSCOL1, KSCOL2” (P0.0, P0.1, P0.2)
when the column count is set to three, etc. A column output can be left open, though.

ZM4101

Keypad
Scanner

L
L
L
L
L
L
L
L

Rows 0-7

L
L L
L L
L L
L L
L L
L L

L
L
L
L
L
L

L
L
L
L
L
L

Columns 0-15
Figure 31. Keypad matix

Once the Keypad Scanner is enabled, it will scan each column for an amount of time (Scan Delay). If it,
at a certain column detects a key press, it will wait for a period (Debounce delay) to get any eventual
debounce noise to disappear. Then it will detect whether the input stays stable for another amount of
time (Stable delay). The Keypad Scanner will issue an interrupt request to the CPU, if the row input is
stable for the defined amount of “Stable delay” time. See figure below.

Keypad No keys : Key press _ No keys
: pressed an Column I2 Row input stable ~ |pressed
Sets Key Press
interrupt flag
Keypad Scans Scans Scans Awaits Verifies Scans
Scanner _ Column0 = Column1 Column & debounce —stable input Idle olumn 3
: T T : ? L : -
—SY€§.4 time
Scan Scan Debounce Stable
delay delay delay delay
Figure 32. Scan flow
Each of these delays can be configured by using the function ZW_KS_init, which must be called in
ApplicationlnitHW as shown in figure below.
Sigma Designs Inc. Z-Wave Application Interfaces Page 192 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

void KeyPadChanges (BYTE P pbKeypadMatrix, BYTE bStatus)
{
/* Call the user defined application function
InterpretKeys with the keypad matrix as parameter */
switch (bStatus)
{
case ZW _KS KEYPRESS VALID:
InterpretKeys (keyPadMatrix) ;
break;
case ZW_KS KEYPRESS INVALID:
beep () ;
break;,
case ZW _KS KEYPRESS RELEASED:
cleanup () ;
break
default:

void ApplicationInitHW (BYTE bWakeupReason)

ZW _KS init (7, /* 8 Columns */

4, /* Column scan delay 10ms */
15, /* Debounce delay 32ms */

5, /* Row Stable delay 12ms */
10, /* Polling period of 100 ms*/

KeyPadChanges /* The callback function used to notify */
/* the application when changes occurs */
/* to the keypad matrix */
)
ZW_KS enable (TRUE) ;

void ApplicationPoll ()

/* Go into power down mode */
ZW _KS pd enable (TRUE) ;
ZW_SetSleepMode (WUT MODE, zZW_INT MASK_EXTI,0);

Fgure 33. Example of the API calls for the KeyPad scanner

The Keypad ISR will detect any changes occurred to the keypad matrix. The changes to the keypad
matrix array will be polled periodically. The polling period is defined by the application through
ZW_KS init.

Apart from setting the size of the key matrix and the delays, a callback function must be defined in
ZW_KS_init. If any changes to the keypad matrix are detected the application will be notified by calling
this user defined callback function. Figure above shows an example of how ZW_KS init is used.

The parameter to the callback function is an array of the type BYTE. The array has 16 elements one for
each column. It has 16 elements regardless of the number of actual configured columns in use. The
element with index n holds the row-status for column number n. That is, bit O of an element hold the

Sigma Designs Inc. Z-Wave Application Interfaces Page 193 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

status of row O, bit 1 of an element hold the status of row 1, etc. The array is defined in the Keypad API
library.

Note: the Keypad Scanner IRQ signal is shared with “EXT1”, external interrupt 1. Therefore, that interrupt
routine must not be included in the application code, when using the Keypad Scanner.

When a key press must wake up the 400 Series Z-Wave Single Chip from powerdown mode,

ZW_KS _pd_enable(TRUE) must be called just before the chip is put into powerdown mode. Doing so,
will activate the external interrupt, if any key is pressed. When the 400 Series Z-Wawe Single Chip is
awake first the function ZW_KS _init and then ZW_KS_enabled must be called toinitialize and enable
the Key Scanner and thereby grab the actual key combination.

Sigma Designs Inc. Z-Wave Application Interfaces Page 194 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.18.1 ZW_KS_init

void ZW_KS _init(BYTE bCols
BYTE bScanDelay
BYTE bDebounceDelay,
BYTE bStableDelay
BYTE bReportWaitTimeout,
VOID_CALLBACKFUNC(KeyPadCallBack)(BYTE_P keyMatrix, BYTE bStatus))

ZW_KS_init initializes the 400 Series Z-Wave Single Chip's integrated Keypad Scanner.
Defined in: ZW_keypad_scanner_api.h
Parameters:

bCols IN Sets the number of enabled columns.
Valid values 0-15.
0: 1 Column
1: 2 Columns

15: 16 Columns
E.g. setting this to 7 will enable KSCOLO-
KSCOL7 (P0.0-P0.7)

bScanDelay IN Sets column “Scan delay”
0: 2ms
1: 4ms

15: 32ms

bDebounceDelay IN Sets “debounce delay”
0: 2ms

1. 4ms
15: 32ms

bStableDelay IN Sets “stable delay”
0: 2ms
1. 4ms

15:. 32ms

bReportWaitTimeout IN Set the timeout delay before the main
loop call the KeyPadCallBack function.
0: not valid
1: 10 ms
2:20 ms

255: 2550 ms

Sigma Designs Inc. Z-Wave Application Interfaces Page 195 of 289

CONFIDENTIAL

INS12034-2

KeyPadCallBack IN

Serial APl (Not supported)

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

The call back function that the main loop
will use to notify the application about the
changes in the keypad matrix.

The function will only be called when
changes to the keypad matrix occurs.

Parameters:
pbKeyMatrix OUT:

Pointer to the keypad matrix BYTE
array.

bStatus OUT:
Returns the status of the contents
of the key matrix as one of the

follwing:

ZW_KS_KEYPRESS_VALID

ZW_KS_KEYPRESS_INVALID

ZW_KS_KEYPRESS_RELEASED

2012-05-25

The contents of the key matrix
array is valid

The contents of the key matrix
array is invalid, i.e. more than 3
keys are pressed in an invalid
manner

All keys have been released

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 196 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54182 ZW_KS_enable

void ZW_KS_enable(BOOL boEnable)

ZW_KS_enable enables or disables the Keypad Scanner. Must be called in ApplicationlnitHW.
Defined in: ZW_keypad_scanner_api.h
Parameters:
boEnable IN TRUE Enables Keypad Scanner

FALSE Disables Keypad Scanner

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 197 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54183 ZW_KS pd_enable

void ZW_KS pd_enable(BOOL boEnable)

ZW_KS_ pd_enable(TRUE) must be called before putting the 400 Series Z-Wave Single Chip into
powerdown mode, if the chip is to be woken by a key press.

Defined in: ZW_keypad_scanner_api.h

Parameters:

boEnable IN TRUE Enables Keypad Scanner Powerdown mode
FALSE Disables Keypad Scanner Powerdown mode

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 198 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.19 USB Controller API

This section describes the 400 Series Z-Wave Single Chip built-in USB controller. The USB controller
has 2 endpoints. Each endpoint have two directions OUT from the host to the device and IN from the
device to the host. Endpoint 1 can sends/receives data up to 63 bytes per packet and endpoint 2 can
sends/receives data up to 15 bytes per packet. The function ZW_USB_epl write /ZW_USB_ep2_write
is used to send data to host. ZW_USB_ep1l read/ZW_UAB_ep2_read is used to read data from the
host.

The USB controller can notify the application about the following events:

Data from the host is available.
Data to the host is sent.

Soft reset

Reset

Suspend

The events can be enabled indewdually by using the ZW_USB_int_src_enable. Then to get them the
function ZW_USB_int_src_get is used, the events should be cleard again by the SW by using the
function ZW_USB_int_src_clear. Either the above events can be read by polling the USB controller or
when an USB interrupt occur. Enable the USB controller by calling ZW_USB_int_enable.

Sigma Designs Inc. Z-Wave Application Interfaces Page 199 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
5.4.19.1 ZW_USB_init

BYTE ZW_USB_init(WORD vendorlD,
WORD productID,
WORD deviceBCD,
BYTE epNum)

This function initializes the USB controller.

Defined in: ZW_USB_api.h

Parameters:

vendoriD IN 16-bit unique value

productID IN 16-bit unique value

deviceBCD IN The device release number in BCD format
epNum IN Number of the endpoints used (max 2)

Serial APl (Not supported)

5.4.192 ZW_USB_disable

void ZW_USB_disable(void)

This function shuts down the internal USB controller and transceiver, to conserve power. The interface
can be restarted with ZW_USB_init.

Defined in: ZW_USB_api.h

Parameters:

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 200 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54193 ZW_USB_epl write

BYTE ZW_USB_ep1_write(BYTE * buffer,
BYTE len)

This function tries to copy data from buffer to the USB FIFO. The function will return the length and the
data that was realy copied to the USB FIFO

Defined in: ZW_USB_api.h
Return value

The length of the data that was copied to the USB fifo

Parameters:
buffer IN Address of the data to be sent to the host
Len IN The length of the data to be sent to the host

Serial APl (Not supported)

54194 ZW_USB_ep2_ write

BYTE ZW_USB_ep2_write(BYTE * buffer,
BYTE len)

This function tries to copy data from buffer to the USB FIFO. The function will return the length and the
data that was realy copied to the USB FIFO.

Defined in: ZW_USB_api.h
Return value

The length of the data that was copied to the USB fifo

Parameters:
buffer IN Address of the data to be sent to the host
Len IN The length of the data to be sent to the host

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 201 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54195 ZW_USB_epl _read

BYTE ZW_USB_ep1l_read(BYTE * buffer,
BYTE len)

This function tries to copy data from the USB FIFO to the buffer. The function will return the length and
the data that was realy copied to the data buffer.

Defined in: ZW_USB_api.h
Return value

The length of the data that was copied to the data buffer

Parameters:
Buffer IN Address of the data buffer to copy data in it.
Len IN The length of the data to be copied from the USB FIFO

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 202 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54196 ZW_USB_ep2_read

BYTE ZW_USB_ep2_read(BYTE * buffer,
BYTE len)

This function tries to copy data from the USB FIFO to the buffer. The function will return the length and
the data that was realy copied to the data buffer

Defined in: ZW_USB_api.h
Return value

The length of the data that was copied to the data buffer

Parameters:
Buffer IN Address of the data buffer to copy data in it.
Len IN The length of the data to be copied from the USB FIFO

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 203 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.4.19.7 ZW_USB int_enable

void ZW_USB_int_enable(BOOL intEable)
This function enable/disable the USB interrupt.
Note: Declare ISR in application when using USB interrupt. The USB interrupt vector is INUM_USB
Defined in: ZW_USB_api.h
Parameters:
intEnbale IN TRUE Enbale the USB interrupt
FALSE Disable the USB interrupt

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 204 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54198 ZW_USB_int_src_enable

void ZW_USB _int_src_enable(BYTE intSrcMask)

This function enable/disable one or more of the available USB events. An USB ewent can be enabled by
setting the corresponding bit mask to 1 and is disaled by setting it to 0.

Note: Declare at least one event when using USB interrupt.

Defined in: ZW_USB_api.h
Parameters:

intSrcMask IN USB_EP1 TX INT
USB_EP2_TX_ INT
USB_EP1_RX INT
USB_EP2_RX INT
USB_SOFTRESET _INT
USB_RESET _INT
USB_SUSPEND_INT

Serial APl (Not supported)

Data is sent from endpoint 1 fFIFO

Data is sent from endpoint 2 FIFO

Data is received in endpoint 1

Data is received in endpoint 2

Soft rest request is sent from host to device
Reset request is sent from host to device.
Dewcie is suspended

Sigma Designs Inc. Z-Wave Application Interfaces Page 205 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

54199 ZW_USB_int_src_get

BYTE void ZW_USB_int_src_get(void)

This function read the source of the USB controller events if any. The function will return a bit mask of
the events sources. A return value of zero indicates that no event occurred.

Defined in: ZW_USB_api.h

Return value:

USB_EP1_TX INT Data is sent from endpoint 1 fFIFO
USB_EP2_TX INT Data is sent from endpoint 2 FIFO
USB_EP1 RX INT Data is received in endpoint 1

USB_EP2 RX INT Data is received in endpoint 2
USB_SOFTRESET _INT Soft rest request is sent from host to device
USB_RESET_INT Reset request is sent from host to device.

USB_SUSPEND_INT Dewcie is suspended

Serial APl (Not supported)

5.4.19.10 ZW_USB_int_src_clear

void ZW_USB_int_src_clear(BYTE intSrcMask)

This function clear USB controller event source if any occurred. The parameter for the function is a
bitmask of the USB controller events to be cleared.

Note: the function should be called if the ZW_USB_int_scr_get return non-zero value.

Defined in: ZW_USB_api.h

Parameters:

intSrcMask IN USB_EP1 TX INT Data is sent from endpoint 1 fFIFO
USB_EP2 TX INT Data is sent from endpoint 2 FIFO
USB_EP1 RX INT Data is received in endpoint 1
USB_EP2 RX INT Data is received in endpoint 2
USB_SOFTRESET INT Soft rest request is sent from host to device
USB_RESET_INT Reset request is sent from host to device.

USB_SUSPEND_INT Dewcie is suspended

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 206 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.5 Z-Wave Controller API

The Z-Wawve Controller API makes it possible for different controllers to control the Z-Wave nodes and
get information about each node’s capabilities and current state. The node control commands can be
sent to a single node, all nodes or to a list of nodes (group, scene...).

55.1 ZW_AddNodeToNetwork

void ZW_AddNodeToNetwork(BYTE mode,
VOID_CALLBACKFUNC(completedFunc)(LEARN_INFO *learnNodelnfo))

Macro: ZW_ADD_NODE_TO_NETWORK (mode, func)
ZW_AddNodeToNetwork is used to add any nodes to the Z-Wave network.

The process of adding a node is started by calling ZW_AddNodeToNetwork() with the mode set to
ADD_NODE_ANY, ADD_NODE_SLAVE or ADD_NODE_CONTROLLER. When the learn process is
started the caller will get a number of status messages through the callback function completedFunc.

ADD_NODE_EXISTING is used when you do not want to learn new nodes but only get node info from
nodes that are already known in the system.

Low power transmission mode is normally used during node inclusion. The option
ADD_NODE_OPTION_HIGH_POWER can be added to the bMode parameter for Normal Power
inclusion to extend inclusion range.

Network Wide Inclusion mode is by default disabled. For enabling of the Network Wide Inclusion feature
the option bit ADD_NODE_OPTION_NETWORK_WIDE must be ORed to the bMode parameter.

The callback function will be called multiple times during the learn process to report the progress of the
learn to the application. The LEARN_INFO will only contain a valid pointer to the Node Information
Frame from the new node when the status of the callback is ADD_NODE_STATUS_ADDING_SLAVE or
ADD_NODE_STATUS_ADDING_CONTROLLER.

WARNING: It is not allowed to call ZW_AddNodeToNetwork() between a
ADD_NODE_STATUS_ADDING_* and a ADD_NODE_STATUS_PROTOCOL_DONE callback status,
doing this can result in malfunction of the protocol.

NOTE: The learn state should ALWAYS be disabled after use to awid adding other nodes than
expected. It is recommended that ZW_AddNodeToNetwork() is called with ADD_NODE_STOP ewery
time a ADD_NODE_STATUS _DONE callback is received, and that the controller also contains a timer
that disables the learn state.

Sigma Designs Inc. Z-Wave Application Interfaces Page 207 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00
Defined in: Z\W _controller_api.h

Parameters:

Mode IN The learn node states are:

completedFunc IN

ADD_NODE_ANY
ADD_NODE_SLAVE
ADD_NODE_CONTROLLER

ADD_NODE_EXISTING

ADD_NODE_STOP
ADD_NODE_STOP_FAILED
ADD_NODE_OPTION_HIGH_POWER
ADD_NODE_OPTION_NETWORK_WIDE
Callback function pointer

Should be NULL when learn state is

turned off (ADD_NODE_STOP and
ADD_NODE_STOP_FAILED)

2012-05-25

Add any type of node to the
network

Only add slave nodes to the
network

Only add controller nodes to the
network

Only get node info from nodes
that are already included in the
network

Stop adding nodes to the
network

Report a failure in the application
part of the learn process

Set this flag also in bMode for
Normal Power inclusion

Set this flag also in bMode for
accepting Network Wide
Inclusion Requests

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 208 of 289

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

Callback function Parameters (completedFunc):

*learnNodelnfo.bStatus
IN

*learnNodelnfo.bSource
IN
*learnNodelnfo.pCmd
IN

*learnNodelnfo.bLen IN

Serial API:

Status of learn mode:
ADD_NODE_STATUS_LEARN_READY

ADD_NODE_STATUS_NODE_FOUND

ADD_NODE_STATUS_ADDING_SLAVE

ADD_NODE_STATUS_ADDING_CONTROLLER

ADD_NODE_STATUS_PROTOCOL_DONE

ADD_NODE_STATUS_DONE

ADD_NODE_STATUS_FAILED
ADD_NODE_STATUS_NOT_PRIMARY

Node id of the new node

Pointer to Application Node information data (see
ApplicationNodelnformation - nodeParm).
NULL if no information present.

The pCmd only contain information when bLen is
not zero, so the information should be stored
when that is the case. Regardless of the bStatus.
Node info length.

HOST->ZW: REQ | Ox4A | mode | funcID

2012-05-25

The controller is now
ready to include a node
into the network.

A node that wants to be
included into the network
has been found

A new slave node has
been added to the
network

A new controller has
been added to the
network

The protocol part of
adding a controller is
complete, the application
can now send data to the
new controller using
2ZW_ReplicationSend()
The new node has now
been included and the
controller is ready to
continue normal
operation again.

The learn process failed
The call is not allowed
because the controller is
not a primary controller.

ZW->HOST: REQ | Ox4A | funclD | bStatus | bSource | bLen | basic | generic | specific | cmdclasses]]

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 209 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

55.2 ZW_AreNodesNeighbours

BYTE ZW_AreNodesNeighbours (BYTE bNodeA,
BYTE bNodeB)

Macro: ZW_ARE_NODES_NEIGHBOURS (nodeA, nodeB)
Used check if two nodes are marked as being within direct range of each other
Defined in: ZW _controller_api.h

Return value:

BYTE FALSE Nodes are not neighbours.
TRUE Nodes are neighbours.

Parameters:

bNodeA IN Node ID A (1...232)

bNodeB IN Node ID B (1...232)

Serial API

HOST->ZW: REQ | 0xBC | nodelD | nodelD

ZW->HOST: RES | OxBC | retVal

Sigma Designs Inc. Z-Wave Application Interfaces Page 210 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

55.3 ZW_AssignReturnRoute

BOOL 2W_AssignReturnRoute(BYTE bSrcNodelD,
BYTE bDstNodelD,
VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus))

Macro: ZW_ASSIGN_RETURN_ROUTE (routingNodelD,destNode|D,func)
Use to assign static return routes (up to 4) to a Routing Slave, Enhanced Slave or Enhanced 232 Slave
node. This allows the Routing Slave node to communicate directly with either controllers or other slave
nodes. The API call calculates the shortest routes from the Routing Slave node (bSrcNodelD) tothe
destination node (bDestNodelD) and transmits the return routes to the Routing Slave node
(bSrcNodelD). The destination node is part of the return routes assigned to the slave. Up to 5 different
destinations can be allocated return routes in a Routing Slave and Enhanced Slawe. Attempts to assign
new return routes when all 5 destinations already are allocated will be ignored. It is possible to allocate
up to 232 different destinations in an Enhanced 232 Slave. Call ZW_AssignReturnRoute repeatedly to
allocate more than 5 destinations in an Enhanced 232 Slave. Use the API call ZW_DeleteReturnRoute
to clear assigned return routes.

Defined in: Z\W _controller_api.h

Return value:

BOOL TRUE If Assign return route operation started

FALSE If an “assign/delete return route” operation
already is active.

Parameters:

bSrcNodelD IN Node ID (1...232) of the routing slave
that should get the return routes.

bDstNodelD IN Destination node ID (1...232)

completedFunc Transmit completed call back function
IN

Callback function Parameters:
txStatus IN Status of return route assignment
(all status codes from ZW_SendData) See ZW_SendData, section 5.4.3.1
TRANSMIT_COMPLETE_NOROUTE No routes assigned because a route
between source and destination node
could not be found.
Serial API:

HOST->ZW: REQ | 0x46 | bSrcNodelD | bDstNodelD | funclD

ZW->HOST: RES | 0x46 | retVal

Sigma Designs Inc. Z-Wave Application Interfaces Page 211 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

ZW->HOST: REQ | 0x46 | funcID | bStatus

55.4 ZW_AssignSUCReturnRoute

BOOL 2ZW_AssighSUCReturnRoute (BYTE bSrcNodelD,
VOID_CALLBACKFUNC (completedFunc)(BYTE bStatus))

Macro: ZW_ASSIGN_SUC_RETURN_ROUTE(srcnode,func)

Notify presence of a SUC/SIS to a Routing Slave or Enhanced Slave. Furthermore is static return routes
(up to 4) assigned to the Routing Slave or Enhanced Slave to enable communication with the SUC/SIS
node. The return routes can be used to get updated return routes from the SUC/SIS node by calling
ZW_RequestNetWorkUpdated in the Routing Slave or Enhanced Slave. The Routing Slave or Enhanced
Slave can call ZW_RediscoveryNeeded in case it detects that none of the return routes are usefull
anymore.

Defined in: ZW_controller_api.h

Return value:

BOOL TRUE If the assign SUC return route
operation is started.

FALSE If an “assign/delete return route
operation already is active.

Parameters:

bSrcNodelD IN The node ID (1...232) of the routing slave that
should get the return route to the SUC node.

completedFunc Transmit complete call back.
IN

Callback function Parameters:

bStatus IN (see 2ZW_SendData)

Serial API:

HOST->ZW: REQ | 0x51 | bSrcNodelD | funcID | funclD

The extra funcID is added to ensures backward compatible. This parameter has been removed starting
from dev. kit 4.1x. and onwards and has therefore no meaning anymore.

ZW->HOST: RES | 0x51 | retVal

ZW->HOST: REQ | 0x51 | funcID | bStatus

Sigma Designs Inc. Z-Wave Application Interfaces Page 212 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

555 ZW_ControllerChange

void ZW_ControllerChange (BYTE mode,
VOID_CALLBACKFUNC(completedFunc)(LEARN_INFO *learnNodelnfo))

Macro: ZW_CONTROLLER_CHANGE (mode, func)

ZW_ControllerChange is used to add a controller to the Z-Wawve network and transfer the role as
primary controller to it.

This function has the same functionality as ZW_AddNodeToNetwork(ADD_NODE_ANY,...) except that
the new controller will be a primary controller and the controller invoking the function will become
secondary.

Defined in: ZW_controller_api.h

Parameters:
mode IN The learn node states are:
CONTROLLER_CHANGE_START Start the process of adding a
controller to the network.
CONTROLLER_CHANGE_STOP Stop the controller change
CONTROLLER_CHANGE_STOP_FAILED Stop the controller change and
report a failure
completedFunc IN Callback function pointer (Should only be
NULL if state is turned off).
Sigma Designs Inc. Z-Wave Application Interfaces Page 213 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

Callback function Parameters (completedFunc):

*learnNodelnfo.bStatus Status of learn mode:

IN ADD_NODE_STATUS_LEARN_READY
ADD_NODE_STATUS_NODE_FOUND

ADD_NODE_STATUS_ADDING_CONTROLLER

ADD_NODE_STATUS_PROTOCOL_DONE

ADD_NODE_STATUS_DONE

ADD_NODE_STATUS_FAILED

*learnNodelnfo.bSource Node id of the new node

IN
*learnNodelnfo.pCmd Pointer to Application Node information data (see
IN ApplicationNodelnformation - nodeParm).

NULL if no information present.

The pCmd only contain information when bLen is
not zero, sothe information should be stored
when that is the case. Regardless of the bStatus.

*learnNodelnfo.bLen IN Node info length.
Serial API:

HOST->ZW: REQ | 0x4D | mode | funciD

2012-05-25

The controller is now
ready to include a node
into the network.

A node that wants to be
included into the network
has been found

A new controller has
been added to the
network

The protocol part of
adding a controller is
complete, the application
can now send data to the
new controller using
ZW_ReplicationSend()

The new node has now
been included and the
controller is ready to
continue normal
operation again.

The learn process failed

ZW->HOST: REQ | 0x4D | funcID | bStatus | bSource | bLen | basic | generic | specific | cmdclasses|]

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 214 of 289

INS12034-2

55.6 ZW_DeleteReturnRoute

BOOL 2W_DeleteReturnRoute(BYTE nodelD,

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

2012-05-25

VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus))

Macro: ZW_DELETE_RETURN_ROUTE(nodelD, func)

Delete all static return routes from a Routing Slave, Enhanced Slave or Enhanced 232 Slave node.

Defined in: ZW _controller_api.h

Return value:

BOOL TRUE
FALSE
Parameters:
nodelD IN Node ID (1...232) of the routing slave

node.

completedFunc
IN

Transmit completed call back function

Callback function Parameters:
txStatus IN (see ZW_SendData)
Serial API:

HOST->ZW: REQ | 0x47 | nodelD | funclD
ZW->HOST: RES | 0x47 | retVal

ZW->HOST: REQ | 0x47 | funcID | bStatus

If Delete return route operation started

If an “assign/delete return route” operation
already is active.

Sigma Designs Inc.

Z-Wave Application Interfaces

Page 215 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.5.7 ZW_DeleteSUCReturnRoute

BOOL 2W_DeleteSUCReturnRoute (BYTE bNodelD,
VOID_CALLBACKFUNC (completedFunc)(BYTE txStatus))

Macro: ZW_DELETE_SUC_RETURN_ROUTE (nodelD, func)

Delete the return routes of the SUC node from a Routing Slave node or Enhanced Slave node.
Defined in: ZW _controller_api.h

Return value:

BOOL TRUE If the delete SUC return route
operation is started.

FALSE If an “assign/delete return route
operation already is active.

Parameters:
bNodelD IN Node ID (1..232) of the routing slave node.

completedFunc Transmit complete call back.
IN

Callback function Parameters:

txStatus IN (see ZW_SendData)
Serial API:

HOST->ZW: REQ | 0x55 | nodelD | funclD
ZW->HOST: RES | 0x55 | retval

ZW->HOST: REQ | 0x55 | funcID | bStatus

The Serial APl implementation do not return the callback function (no parameter in the Serial API frame
refers to the callback), this is done via the ApplicationControllerUpdate callback function:

e If request nodeinfo transmission was unsuccessful (no ACK received) then the
ApplicationControllerUpdate is called with UPDATE_STATE_NODE_INFO_REQ_FAILED
(status only available in the Serial APl implementation).

e If request nodeinfo transmission was successful there is no indication that it went well apart from
the returned Nodeinfo frame which should be received via the ApplicationControllerUpdate
with status UPDATE_STATE_NODE_INFO_RECEIVED.

Sigma Designs Inc. Z-Wave Application Interfaces Page 216 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

5.5.8 ZW_GetControllerCapabilities

BYTE 2ZW_GetControllerCapabilities (void)

Macro: ZW_GET_CONTROLLER_CAPABILITIES()

2012-05-25

ZW_GetControllerCapabilities returns a bitmask containing the capabilities of the controller. It's an old

type of primary controller (node ID = OXEF) in case zero is returned.
NOTE: Not all status bits are available on all controllers’ types
Defined in: ZW _controller_api.h
Return value:

BYTE CONTROLLER_IS_SECONDARY

CONTROLLER_ON_OTHER_NETWORK

CONTROLLER_IS_SUC

CONTROLLER_NODEID_SERVER_PRESENT

CONTROLLER_IS_REAL_PRIMARY

Serial API:
HOST->ZW: REQ | 0x05

ZW->HOST: RES | 0x05 | RetVal

If bit is set then the controller is a
secondary controller

If this bit is set then this controller
is not using its built-in home 1D

If this bit is set then this controller
isa SUC

If this bit is set then there is a
SUC ID sener (SIS) in the
network and this controller can
therefore include/exclude nodes
in the network. This is called an
inclusion controller.

If this bit is set then this controller
was the original primary controller
in the network before the SIS was
added to the network

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 217 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

559 2ZW_GetNeighborCount

BYTE 2ZW_GetNeighborCount(BYTE nodelD)

Macro: ZW_GET_NEIGHBOR_COUNT (nodelD)

Used to get the number of neighbors the specified node has registered.
Defined in: ZW _controller_api.h

Return value:

BYTE 0x00-0xE7 Number of neighbors registered.
NEIGHBORS_ID_INVALID Specified node ID is invalid.
NEIGHBORS_COUNT_FAILED Could not access routing information - try

again later.

Parameters:

nodelD IN Node ID (1...232) on the node to count

neighbors on.
Serial API
HOST->ZW: REQ | 0xBB | nodelD

ZW->HOST: RES | 0xBB | retVal

Sigma Designs Inc. Z-Wave Application Interfaces Page 218 of 289

CONFIDENTIAL

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

5.5.10 ZW_GetNodeProtocolinfo

void ZW_GetNodeProtocolinfo(BYTE bNodelD,

Macro: ZW_GET_NODE_STATE(nhodelD, nodelnfo)

2012-05-25

NODEINFO, *nodelnfo)

Return the Node Information Frame without command classes from the non-wolatile memory for a given

node ID:
Byte descriptor \
Bit number ! 6 9 4 & 2 . v
Capability Lr:?r:g Z-Wawe Protocol Specific Part
Security Opt. Sensor | Sensor : .
Func. 1000ms | 250ms Z-Wawve Protocol Specific Part
Reserved Z-Wawe Protocol Specific Part
Basic Basic Device Class (Z-Wawe Protocol Specific Part)
Generic Generic Device Class (Z-Wawve Appl. Specific Part)
Specific Specific Device Class (Z-Wave Appl. Specific Part)

FHgure 34. Node Information frame structure without command classes

All the Z-Wawve protocol specific fields are initialised by the protocol. The Listening flag, Generic, and
Specific Device Class fields are initialized by the application. Regarding initialization, refer to the function

ApplicationNodelnformation.

Defined in:

Parameters:

bNodelD IN

nodelnfo OUT

Serial API:

ZW _controller_api.h

Node ID

HOST->ZW: REQ | 0x41 | bNodelD

Node info buffer (see figure abowe)

1..232

If (*nodelnfo).nodeType.generic is
0 then the node doesn’t exist.

ZW->HOST: RES | 0x41 | nodelnfo (see figure abowve)

Sigma Designs Inc.

Z-Wave Application Interfaces

Page 219 of 289

CONFIDENTIAL

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

55.11 ZW_GetRoutinginfo

void ZW_GetRoutingInfo(BYTE bNodelD,

BYTE_P pMask,
BYTE bRemove)

Macro: ZW_GET_ROUTING_INFO(bNodelD, pMask, bRemowe)

ZW_GetRoutinglnfo is a function that can be used to read out neighbor information from the protocol.

This information can be used to ensure that all nodes have a sufficient number of neighbors and to
ensure that the network is in fact one network.

The format of the data returned in the buffer pointed to by pMask is as follows:

pMask([i] (0 <i< (ZW_MAX NODES/8)

Bit 0

1 2 3 4 5 6

NodelD | i*8+1

[*8+2 | i*8+3 | i*8+4 | i*8+5 | i*8+6 | i*B+7 | i*B+8

If a bit n in pMask{i] is 1 it indicates that the node bNodelD has node (i*8)+n+1 as a neighbour. If nin
pMask([i] is 0, bNodelD cannot reach node (i*8)+n+1 directly.

Defined in:
Parameters:

bNodelD IN

pMask OUT

bRemowve IN

Serial API:

ZW _controller_api.h

Node ID (1...232) specifies the node whom
routing info is needed from.

Pointer to buffer where routing info should be
put. The buffer should be at least
2ZW_MAX NODES/8 bhytes

GET_ROUTING_INFO_REMOVE_BAD

GET_ROUTING_INFO_REMOVE_NON_REPS

ZW_GET_ROUTING_INFO_9600 or
ZW_GET _ROUTING_INFO_40K or
ZW_GET _ROUTING_INFO_100K or
ZW_GET ROUTING_INFO_ANY

Remowe bad routes from the
routing info.

Remowe non-repeaters from the
routing info.

Return only nodes supporting this
speed.

Only one option may be used at a
time.

HOST->ZW: REQ | 0x80 | bNodelD | bRemoweBad | bRemoveNonReps | funclD

ZW->HOST: RES | 0x80 | NodeMask[29]

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 220 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

55.12 ZW_GetRoutingMAX

BYTE ZW_GetRoutingMAX(void)

Use this function to get the maximum maximum number of source routing attempts before the explorer
frame mechanism kicks-in.

Defined in: ZW _controller_api.h

Return value:

BYTE 1...20 Maximum number of source routing attempts
Serial API:

Not implemented

55.13 ZW_GetSUCNodelD

BYTE ZW_GetSUCNodelD(void)

Macro: ZW_GET_SUC_NODE_ID()

API call used to get the currently registered SUC node ID.
Defined in: Z\W _controller_api.h

Return value:

BYTE The node ID (1..232) on the currently
registered SUC, if ZERO then no SUC
available.

Serial API:

HOST->ZW: REQ | 0x56

ZW->HOST: RES | 0x56 | SUCNodelD

Sigma Designs Inc. Z-Wave Application Interfaces Page 221 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.5.14 ZW _isFailedNode

BYTE ZW_isFailedNode(BYTE nodelD)

Macro: ZW_IS_FAILED_NODE _ID(nodelD)

Used to test if a node ID is stored in the failed node ID list.
Defined in: ZW _controller_api.h

Return value:

BYTE TRUE If node ID (1..232) is in the list of failing
nodes.

Parameters:

nodelD IN The node ID (1...232) to check.

Serial API:

HOST->ZW: REQ | 0x62 | nodelD

ZW->HOST: RES | 0x62 | retVal

5.5.15 ZW_IsPrimaryCtrl

BOOL 2W_IsPrimaryCitrl (void)
Macro: ZW_PRIMARYCTRL()

This function is used to request whether the controller is a primary controller or a secondary controller in
the network.

Defined in: Z\W _controller_api.h
Return value:

BOOL TRUE Returns TRUE when the controller is a
primary controller in the network.

FALSE Return FALSE when the controller is a
secondary controller in the network.

Serial API (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 222 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

55.16 ZW_RemoveFailedNodelD

BYTE ZW_RemoveFailedNodelD(BYTE NodelD,
BOOL bNormalPower,
VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus))
Macro: ZW_REMOVE_FAILED_NODE_ID (node, func)

Used to remove a non-responding node from the routing table in the requesting controller. A non-
responding node is put onto the failed node ID list in the requesting controller. In case the node responds
again at a later stage then itis removed from the failed node ID list. A node must be on the failed node ID
list and as an extra precaution also fail to respond before itis removed. Responding nodes can’t be
removed. The call works on a primary controller and an inclusion controller.

A call back function should be provided otherwise the function will return without removing the node.
Defined in: Z\W_controller_api.h

Return value (If the replacing process started successfully then the function will return):

BYTE ZW_FAILED_NODE_REMOVE_STARTED The remowving process started

Return values (If the replacing process cannot be started then the API function will return one or more
of the following flags):

BYTE ZW_NOT_PRIMARY_CONTROLLER The removing process was aborted
because the controller is not the
primary one.

ZW_NO_CALLBACK_FUNCTION The removing process was aborted
because no call back function is
used.

ZW_FAILED_NODE_NOT_FOUND The requested process failed.
The nodelD was not found in the
controller list of failing nodes.

ZW_FAILED_NODE_REMOVE_PROCESS_BUSY The removing process is busy.

ZW_FAILED_NODE_REMOVE_FAIL The requested process failed.
Reasons include:
e Controller is busy
e The node responded to a NOP;
thus the node is no longer

failing.

Parameters:
nodelD IN The node ID (1..232) of the failed node

to be deleted.
bNormalPower If TRUE then using Normal RF Power.
IN
completedFunc Remowe process completed call back
IN function
Sigma Designs Inc. Z-Wave Application Interfaces Page 223 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Callback function Parameters:

txStatus IN Status of removal of failed node:

ZW_NODE_OK The node is working properly (removed from
the failed nodes list).

ZW_FAILED_NODE_REMOVED The failed node was removed from the failed
nodes list.

ZW_FAILED_NODE_NOT_REMOVED The failed node was not removed because
the removing process cannot be completed.

Serial API:
HOST->ZW: REQ | 0x61 | nodelD | funclD
ZW->HOST: RES | 0x61 | retVal

ZW->HOST: REQ | Ox61 | funcID | txStatus

Sigma Designs Inc. Z-Wave Application Interfaces Page 224 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.5.17 ZW_ReplaceFailedNode

BYTE 2ZW_ReplaceFailedNode(BYTE NodelD,
BOOL bNormalPower,
VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus))

Macro: ZW_REPLACE_FAILED_NODE(node,func)

This function replaces a non-responding node with a new one in the requesting controller. A non-
responding node is put onto the failed node ID list in the requesting controller. In case the node responds
again at a later stage then itis removed from the failed node ID list. A node must be on the failed node ID
listand as an extra precaution also fail to respond before itis removed. Responding nodes can’t be
replace. The call works on a primary controller and an inclusion controller.

A call back function should be provided otherwise the function would return without replacing the node.
Defined in: Z\W _controller_api.h

Return value (If the replacing process started successfully then the function will return):

BYTE ZW_FAILED_NODE_REMOVE_STARTED The replacing process has started.

Return values (If the replacing process cannot be started then the API function will return one or more
of the following flags:):

BYTE ZW_NOT_PRIMARY_CONTROLLER The replacing process was aborted
because the controller is not a
primary/inclusion/SIS controller.

ZW_NO_CALLBACK_FUNCTION The replacing process was aborted
because no call back function is
used.

ZW_FAILED_NODE_NOT_FOUND The requested process failed.

The nodelD was not found in the
controller list of failing nodes.

ZW_FAILED_NODE_REMOVE_PROCESS_BUSY The removing process is busy.

ZW_FAILED_NODE_REMOVE_FAIL The requested process failed.
Reasons include:
e Controller is busy
e The node responded to a NOP;
thus the node is no longer failing.

Sigma Designs Inc. Z-Wave Application Interfaces Page 225 of 289

CONFIDENTIAL

INS12034-2

Parameters:
nodelD IN
bNormalPower
IN

completedFunc
IN

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

The node ID (1...232) of the failed node
to be deleted.

If TRUE then using Normal RF Power.

Replace process completed call back
function

Callback function Parameters:

txStatus IN

Serial API:

Status of replace of failed node:

ZW_NODE_OK

ZW_FAILED_NODE_REPLACE

ZW_FAILED_NODE_REPLACE_DONE

ZW_FAILED_NODE_REPLACE_FAILED

HOST->ZW: REQ | 0x63 | nodelD | funclD

ZW->HOST: RES | 0x63 | retVal

ZW->HOST: REQ | 0x63 | funcID | txStatus

2012-05-25

The node is working properly (removed
from the failed nodes list). Replace
process is stopped.

The failed node is ready to be replaced
and controller is ready to add new node
with the nodelD of the failed node.
Meaning that the new node must now
emit a nodeinformation frame to be
included.

The failed node has been replaced.

The failed node has not been replaced.

Sigma Designs Inc.

Z-Wave Application Interfaces

Page 226 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.5.18 ZW_RemoveNodeFromNetwork

void ZW_RemoveNodeFromNetwork(BYTE mode,
VOID_CALLBACKFUNC(completedFunc)(LEARN_INFO *learnNodelnfo))

Macro: ZW_REMOVE_NODE_FROM_NETWORK(mode, func)
ZW_RemoveNodeFromNetwork is used to remove any node from the Z-Wave network.

The process of removing a node is started by calling ZW_RemoveNodeFromNetwork() with the mode set
to REMOVE_NODE_ANY, REMOVE_NODE_SLAVE or REMOVE_NODE_CONTROLLER. When the
delete process is started the caller will get a number of status messages through the callback function
completedFunc.

The callback function will be called multiple times during the delete process to report the progress to the
application. The LEARN_INFO will only contain a valid pointer to the Node Information Frame from the
node that is deleted when the status of the callback is REMOVE_NODE_STATUS_REMOVING_SLAVE
or REMOVE_NODE_STATUS_REMOVING_CONTROLLER.

The delete process is complete when the callback function is called with the status
REMOVE_NODE_STATUS_DONE.

WARNING: It is not allowed to call ZW_RemoveNodeFromNetwork() between a
REMOVE_NODE_STATUS_REMOVING_* and a REMOVE_NODE_STATUS_DONE callback status,
doing this can result in malfunction of the protocol.

NOTE: The learn state should ALWAYS be disabled after use to awid adding other nodes than
expected. It is recommended that ZW_RemoveNodeFromNetwork() is called with
REMOVE_NODE_STOP ewery timea REMOVE_NODE_STATUS_DONE callback is received, and that
the controller also contains a timer that disables the learn state.

Defined in: ZW _controller_api.h
Parameters:
mode IN The learn node states are:
REMOVE_NODE_ANY Remowe any type of node from the
network
REMOVE_NODE_SLAVE Only remowve slave nodes from the
network
REMOVE_NODE_CONTROLLER Only remove controller nodes from
the network
REMOVE_NODE_STOP Stop the delete process
completedFunc IN Callback function pointer
Should be NULL when learn state is
turned off (REMOVE_NODE_STOP)
Sigma Designs Inc. Z-Wave Application Interfaces Page 227 of 289

CONFIDENTIAL

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

Callback function Parameters (completedFunc):

*learnNodelnfo.bStatus
IN

*learnNodelnfo.bSource
IN

*learnNodelnfo.pCmd
IN

*learnNodelnfo.bLen IN

Serial API:

Status of learn mode:

REMOVE_NODE_STATUS_LEARN_READY

REMOVE_NODE_STATUS_NODE_FOUND

REMOVE_NODE_STATUS_REMOVING_*

REMOVE_NODE_STATUS_DONE

REMOVE_NODE_STATUS_FAILED

Node id of the removed node

Pointer to Application Node information data
(see ApplicationNodelnformation -
nodeParm). NULL if no information present.

The pCmd only contain information when
bLen is not zero, so the information should
be stored when that is the case. Regardless
of the bStatus.

Node info length.

HOST->ZW: REQ | 0x4B | mode | funciD

2012-05-25

The controller is now ready
to remove a node from the
network.

A node that wants to be
deleted from the network has
been found

A slave/controller node has
been removed from the
network. Remove node ID is
returned.

The node has now been
removed and the controller is
ready to continue normal
operation again.

The remove process failed

ZW->HOST: REQ | 0x4B | funclD | bStatus | bSource | bLen | basic | generic | specific | cmdclasses]]

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 228 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.5.19 ZW_ReplicationReceiveComplete

void ZW_ReplicationReceiveComplete(void)
Macro: ZW_REPLICATION_COMMAND_COMPLETE

Sends command completed to sending controller. Called in replication mode when a command from the
sender has been processed and indicates that the controller is ready for next packet.

Defined in: ZW _controller_api.h
Serial API:

HOST->ZW: REQ | 0x44

Sigma Designs Inc. Z-Wave Application Interfaces Page 229 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.5.20 ZW_ReplicationSend

BYTE 2ZW_ReplicationSend(BYTE destNodelD, BYTE *pData, BYTE dataLength,
BYTE txOptions,
VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus))

Macro: ZW_REPLICATION_SEND_DATA (node,data,length,options,func)

Used when the controller is in replication mode. It sends the payload and expects the receiver to respond
with a command complete message (ZW_REPLICATION_COMMAND_COMPLETE).

Messages sent using this command should always be part of the Z-Wave controller replication command
class.

Defined in: ZW_controller_api.h

Return value:

BYTE FALSE If transmit queue overflow.
Parameters:
destNode IN Destination Node ID

(not equal NODE_BROADCAST).
pData IN Data buffer pointer
datalLength IN Data buffer length
txOptions IN Transmit option flags. (see
ZW_SendData, but awid using

routing?)

completedFunc Transmit completed call back function
IN

Callback function Parameters:

txStatus IN (see ZW_SendData)

Serial API:

HOST->ZW: REQ | 0x45 | destNodelD | dataLength | pData[]| txOptions | funclD
ZW->HOST: RES | 0x45 | RetVal

ZW->HOST: REQ | 0x45 | funcID | txStatus

Sigma Designs Inc. Z-Wave Application Interfaces Page 230 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

55.21 ZW_RequestNodeinfo

BOOL 2W_RequestNodelnfo (BYTE nodelD,
VOID (*completedFunc)(BYTE txStatus))

Macro: ZW_REQUEST_NODE_INFO(NODEID)

This function is used to request the Node Information Frame from a controller based node in the network.
The Node info is retrieved using the ApplicationControllerUpdate callback function with the status
UPDATE_STATE_NODE_INFO_RECEIVED. The ZW_RequestNodelnfo API call is also available for
routing slaves.

Defined in: ZW _controller_api.h

Return value:

BOOL TRUE If the request could be put in the transmit
gqueue successfully.
FALSE If the request could not be put in the
transmit queue. Request failed.
Parameters:
nodelD IN The node ID (1...232) of the node to
request the Node Information Frame
from.

completedFunc Transmit complete call back.
IN

Callback function Parameters:
txStatus IN (see ZW_SendData)
Serial API:

HOST->ZW: REQ | 0x60 | NodelD

ZW->HOST: RES | 0x60 | retval

Sigma Designs Inc. Z-Wave Application Interfaces Page 231 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.5.22 ZW_RequestNodeNeighborUpdate

BYTE 2ZW_RequestNodeNeighborUpdate(NODEID,

VOID_CALLBACKFUNC (completedFunc)(BYTE bStatus))

Macro: ZW_REQUEST _NODE_NEIGHBOR_UPDATE (nodeid, func)

Get the neighbors from the specified node. This call can only be called by a primary/inclusion controller.
An inclusion controller should call ZW_RequestNetWorkUpdate in advance because the inclusion

controller may not have the latest network topology.
Defined in: Z\W _controller_api.h

Return value:

BYTE TRUE
FALSE
Parameters:
nodelD IN Node ID (1...232) of the node that the

controller wants to get new neighbors from.

completedFunc Transmit complete call back.
IN

Callback function Parameters:
bStatus IN Status of command:

REQUEST_NEIGHBOR_UPDATE_STARTED

REQUEST NEIGHBOR_UPDATE_DONE
REQUEST_NEIGHBOR_UPDATE_FAIL
Serial API:
HOST->ZW: REQ | 0x48 | nodelD | funcID

ZW->HOST: REQ | 0x48 | funciD | bStatus

The discowery process is started and
the function will be completed by the
callback

The discowvery was not started and
the callback will not be called. The
reason for the failure can be one of

the following:
e This is not a primary/inclusion
controller

e There is only one node in the
network, nothing to update.

e The controller is busy doing
another update.

Requesting neighbor list from the
node is in progress.

New neighbor list received

Getting new neighbor list failed

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 232 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.5.23 ZW_SendSUCID

BYTE ZW_SendSUCID (BYTE node,

BYTE txOption,

VOID_CALLBACKFUNC (completedFunc)(BYTE txStatus))
Macro: ZW_SEND_SUC_ID(nodelD, txOption, func)

Transmit SUC node ID from a primary controller or static controller to the controller node ID specified.
Routing slaves ignore this command, use instead ZW_AssignSUCReturnRoute.

Defined in: ZW _controller_api.h

Return value:

TRUE In progress.
FALSE Not a primary controller or static
controller.
Parameters:
node IN The node ID (1...232) of the node to
receive the current SUC node ID.
txOption IN Transmit option flags. (see

ZW_SendData)

completedFunc Transmit complete call back.
IN

Callback function parameters:

txStatus IN (see ZW_SendData)

Serial API:

HOST->ZW: REQ | 0x57 | node | txOption | funcID
ZW->HOST: RES | 0x57 | RetVal

ZW->HOST: REQ | 0x57 | funcID | txStatus

Sigma Designs Inc. Z-Wave Application Interfaces Page 233 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.5.24 ZW_SetDefault

void ZW_SetDefault(VOID_CALLBACKFUNC(completedFunc)(void))

Macro: ZW_SET_DEFAULT(func)

This function set the Controller back to the factory default state. Erase all Nodes, routing information, and
assigned homelD/nodelD from the EEPROM memory. Finally write a new random home ID to the

EEPROM memory.

NOTE: This function should not be used on a secondary controller, use ZW_SetLearnMode() instead
and use the primary controller to remowe it from the network.

Warning: Use this function with care as it could render a Z-Wave network unusable if the primary
controller in an existing network is set back to default.

Defined in: ZW _controller_api.h

Parameters:

completedFunc IN Command completed call back function
Serial API:

HOST->ZW: REQ | 0x42 | funclD

ZW->HOST: REQ | 0x42 | funcID

Sigma Designs Inc. Z-Wave Application Interfaces Page 234 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
55.25 ZW_SetLearnMode

void ZW_SetLearnMode (BYTE mode,
VOID_CALLBACKFUNC(completedFunc)(LEARN_INFO *learnNodelnfo))

Macro: ZW_SET LEARN_MODE(mode, func)
ZW_SetLearnMode is used to add or remove the controller to a Z-Wave network.
This function is used to instruct the controller to allow it to be added or removed from the network.

When a controller is added to the network the following things will happen:
1. The controller is assigned a valid Home ID and Node ID
1. The controller receives and stores the node table and routing table for the network
2. The application receives and stores application information transmitted as part of the replication

This function will probably change the capabilities of the controller so it is recommended that the
application calls ZW_GetControllerCapabilities() after completion to check the controller status.

NOTE: Learn mode should only be enabled when necessary, and it should always be disabled again as
quickly as possible. However to ensure a successful synchronization of the inclusion process the device
should be able to stay in learn mode in up to 5 seconds.

NOTE: When the controller is already included into a network (secondary or inclusion controller) the
callback status LEARN_MODE_STARTED will not be made but the LEARN_MODE_DONE/FAILED
callback will be made as normal.

WARNING: The learn process should not be stopped with ZW_SetLearnMode(FALSE,..) between the
LEARN_MODE_STARTED and the LEARN_MODE_DONE status callback.

Defined in: Z\W _controller_api.h
Parameters:
mode IN The learn node states are:

ZW_SET _LEARN_MODE_CLASSIC Start the learn mode on the
controller and only accept being
included in direct range.

ZW_SET_LEARN_MODE_NWI Start the learn mode on the
controller and accept routed
inclusion.

ZW_SET_LEARN_MODE_DISABLE Stop learn mode on the
controller

completedFunc IN Callback function pointer (Should only be

NULL if state is turned off).

Sigma Designs Inc. Z-Wave Application Interfaces Page 235 of 289

CONFIDENTIAL

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

Callback function Parameters (completedFunc):

*learnNodelnfo.bStatus
IN

*learnNodelnfo.bSource
IN

*learnNodelnfo.pCmd
IN

*learnNodelnfo.bLen IN

Serial API:

Status of learn mode:

LEARN_MODE_STARTED

LEARN_MODE_DONE

LEARN_MODE_FAILED

Node id of the new node

Pointer to Application Node information data

(see ApplicationNodelnformation -

nodeParm). NULL if no information present.

The pCmd only contain information when bLen is
not zero, sothe information should be stored

when that is the case. Regardless of the
bStatus.

Node info length.

HOST->ZW: REQ | 0x50 | mode | funcID

ZW->HOST: REQ | 0x50 | funcID | bStatus | bSource | bLen | pCmd[]

2012-05-25

The learn process has
been started

The learn process is
complete and the
controller is now included
into the network

The learn process failed.

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 236 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.5.26 ZW_SetRoutinginfo

void ZW_SetRoutingInfo(BYTE bNodelD,
BYTE bLength,
BYTE_P pMask)
Macro: ZW_SET_ROUTING_INFO(bNodelD, bLength, pMask)

NOTE: This function is not available in the Bridge Controller library and Static Controller library
without repeater and manual routing functionality.

ZW_SetRoutingInfo is a function that can be used to overwrite the current neighbor information for a
given node ID in the protocol locally.

The format of the routing info must be organised as follows:

pMask([i] (0 <i < (ZW_MAX NODES/8)

Bit 0 1 2 3 4 5 6 7

NodelD | i*8+1 [i*8+2 | i*8+3 | i*8+4 | i*8+5 | i*B+6 | i*B+7 | i*8+8

If a bit n in pMask[i] is 1 it indicates that the node bNodelD has node (i*8)+n+1 as a neighbour. If nin
pMask([i] is 0, bNodelD cannot reach node (i*8)+n+1 directly.

Defined in: ZW_controller_api.h

Return value:

BOOL TRUE Neighbor information updated
successfully.
FALSE Failed to update neighbor information.
Parameters:
bNodelD IN Node ID (1...232) to be updated with
respect to neighbor information.
bLength IN Routing info buffer length in bytes.
pMask IN Pointer to buffer where routing info

should be taken from. The buffer should
be at least ZW_MAX NODES/8 bytes

Serial API (Only Developer’s Kit v4.5x):
HOST->ZW: REQ | 0x1B | bNodelD | NodeMask[29]

ZW->HOST: RES | 0x1B | retVal

Sigma Designs Inc. Z-Wave Application Interfaces Page 237 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.5.27 ZW_SetRoutingMAX

BOOL 2ZW_SetRoutingMAX(BYTE maxRouteTries)

Use this function to set the maximum number of source routing attempts before the explorer frame
mechanism kicks-in. Default value with respect to maximum number of source routing attempts is five.
Remember to enable the explorer frame mechanism by setting the transmit option flag
TRANSMIT_OPTION_EXPLORE in the send data calls.

A ZDK 4.5 controller uses the routing algorithm from 5.02 to address nodes from ZDK'’s not supporting
explorer frame. The routing algorithm from 5.02 ignores the transmit option
TRANSMIT_OPTION_EXPLORE flag and maximum number of source routing attempts value
(maxRouteTries).

Defined in: ZW _controller_api.h

Parameters:

maxRouteTries IN 1...20 Maximum number of source routing attempts
Serial API:

Not implemented

5.5.28 ZW_SetSUCNodelD

BYTE ZW_SetSUCNodelD (BYTE nodelD,
BYTE SUCState,
BYTE bTxOption,
BYTE capabilities,
VOID_CALLBACKFUNC (completedFunc)(BYTE txStatus))

Macro: ZW_SET_SUC_NODE _ID(nodelD, SUCState, bTxOption, capabilities, func)
Used to configure a static/bridge controller to be a SUC/SIS node or not. The primary controller should
use this function to set a static/bridge controller to be the SUC/SIS node, or it could be used to stop
previously chosen static/bridge controller being a SUC/SIS node.
A controller can set itself to a SUC/SIS by calling ZW_EnableSUC and ZW_SetSUCNodelD with its own
node ID. It's recommended to do this when the Z-Wawe network only comprise of the primary controller
to get the SUC/SIS role distributed when new nodes are included. It is possible to include a virgin
primary controller with SUC/SIS capabilities configured into another Z-Wawe network.

Defined in: ZW _controller_api.h

Return value:

TRUE If the process of configuring the
static/bridge controller is started.

FALSE The process not started because the
calling controller is not the master or the

Sigma Designs Inc. Z-Wave Application Interfaces Page 238 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

destination node is not a static/bridge

controller.
Parameters:
nodelD IN The node ID (1...232) of the static
controller to configure.
SUCState IN TRUE Want the static controller to be a SUC
node.
FALSE If the static/bridge controller should not
be a SUC node.
bTxOption IN TRUE Want to send the frame with low

transmission power

FALSE Want to send the frame at normal
transmission power

capabilities IN SUC capabilities that is enabled:
ZW_SUC_FUNC_BASIC_SuUcC Only enables the basic SUC functionality.

ZW_SUC_FUNC_NODEID_SERVER Enable the node ID sener functionality to
become a SIS.

completedFunc Transmit complete call back.
IN

Callback function Parameters:

txStatus IN Status of command:
ZW_SUC_SET _SUCCEEDED The process ended successfully.
ZW_SUC_SET_FAILED The process failed.

Serial API:

HOST->ZW: REQ | 0x54 | nodelD | SUCState | bTxOption | capabilities | funcID

ZW->HOST: RES | 0x54 | RetVal

ZW->HOST: REQ | 0x54 | funcID | txStatus

In case ZW_SetSUCNodelD is called locally with the controllers own node ID then only the response is

returned. In case true is returned in the response then it can be interpreted as the command is now
executed successfully.

Sigma Designs Inc. Z-Wave Application Interfaces Page 239 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.6 Z-Wave Static Controller API

The Static Controller application interface is an extended Controller application interface with added
functionality specific for the Static Controller.

56.1 ZW _EnableSUC

BYTE ZW_EnableSUC (BYTE state, BYTE capabilities)

Macro: ZW_ENABLE_SUC (state)

Used to enable/disable assignment of the SUC/SIS functionality in the controller. Assignment is default
enabled. Assignment is done by the API call ZW_SetSUCNodelD.

If SUC is enabled then the static controller can store network changes sent from the primary, send
network topology updates requested by controllers.

If SUC is disabled, then the static controller will ignore the frames sent from the primary controller after
calling ZW_SetSUCNodelD. If the primary controller called ZW_RequestNetWorkUpdate, then the call
back function will return with ZW_SUC_UPDATE_DISABLED.

Defined in: ZW_controller_static_api.h

Return value:

BYTE TRUE The SUC functionality was
enabled/disabled.
FALSE Attempting to disable a running SUC, not
allowed.
Parameters:
State IN TRUE SUC functionality is enabled.
FALSE SUC functionality is disabled.

capabilities IN SUC capabilities that is enabled:
ZW_SUC _FUNC BASIC_SuUC Only enables the basic SUC functionality.

ZW_SUC_FUNC_NODEID_SERVER Enable the SUC node ID sener
functionality to become a SIS.

Serial API:
HOST->ZW: REQ | 0x52 | state | capabilities

ZW->HOST: RES | 0x52 | retval

Sigma Designs Inc. Z-Wave Application Interfaces Page 240 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.6.2 ZW_CreateNewPrimaryCtrl

Void ZW_CreateNewPrimaryCtrl(BYTE mode,
VOID_CALLBACKFUNC(completedFunc)(LEARN_INFO *learnNodelnfo))

Macro: ZW_CREATE_NEW_PRIMARY_CTRL

ZW_CreateNewPrimaryCitrl is used to add a controller to the Z-Wave network as a replacement for the
old primary controller.

This function has the same functionality as ZW_AddNodeToNetwork(ADD_NODE_CONTROLLER,...)
except that the new controller will be a primary controller and it can only be called by a SUC. The
function is not available if the SUC is a node ID server (SIS).

WARNING: This function should only be used when itis 100% certain that the original primary controller
is lost or broken and will not return to the network.

Defined in: ZW _controller_static_api.h
Parameters:
mode IN The learn node states are:

CREATE_PRIMARY_START Start the process of adding a a
new primary controller to the
network.

CREATE_PRIMARY_STOP Stop the process.

CREATE_PRIMARY_STOP_FAILED Stop the inclusion and report a
failure to the other controller.

completedFunc IN Callback function pointer (Should only be

NULL if state is turned off).

Callback function Parameters:
*learnNodelnfo.bStatus IN Status of learn mode:

ADD_NODE_STATUS_LEARN_READY The controller is now
ready to include a
controller into the
network.

ADD_NODE_STATUS_NODE_FOUND A controller that wants to
be included into the
network has been found

ADD_NODE_STATUS_ADDING_CONTROLLER A new controller has
been added to the
network

Sigma Designs Inc. Z-Wave Application Interfaces Page 241 of 289

CONFIDENTIAL

INS12034-2

*learnNodelnfo.bSource

*learnNodelnfo.pCmd

*learnNodelnfo.bLen

Serial API:

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

ADD_NODE_STATUS_PROTOCOL_DONE

ADD_NODE_STATUS_DONE

ADD_NODE_STATUS_FAILED

IN Node id of the new node

IN Pointer to Application Node information data
(see ApplicationNodelnformation - nodeParm).
NULL if no information present.

The pCmd only contain information when bLen is
not zero, so the information should be stored

when that is the case. Regardless of the bStatus.

IN Node info length.

HOST->ZW: REQ | 0x4C | mode | funcID

2012-05-25

The protocol part of
adding a controller is
complete, the application
can now send data to the
new controller using
ZW_ReplicationSend()

The new controller has
now been included and
the controller is ready to
continue normal
operation again.

The learn process failed

ZW->HOST: REQ | 0x4C | funclID | bStatus | bSource | bLen | basic | generic | specific | cmdclasses|]

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 242 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.7 Z-Wave Bridge Controller API

The Bridge Controller application interface is an extended Controller application interface with added
functionality specific for the Bridge Controller.

571 ZW_SendSlaveNodelnformation

BYTE ZW_SendSlaveNodelnformation(BYTE srcNode,
BYTE destNode,
BYTE txOptions,
VOID_CALLBACKFUNC(completedFunc)(BYTE txStatus))

Macro: ZW_SEND_SLAVE_NODE _INFO(srcnode, destnode, option, func)

Create and transmit a Virtual Slave node “Node Information” frame from Virtual Slave node srcNode. The
Z-Wawe transport layer builds a frame, request the application slave node information (see
ApplicationSlaveNodelnformation) and queue the “Node Information” frame for transmission. The

completed call back function (completedFunc) is called when the transmission is complete.

NOTE: ZW_SendSlaveNodelnformation uses the transmit queue in the API, so using other transmit
functions before the complete callback has been called by the API might fail.

Defined in: ZW _controller_bridge_api.h

Return value:

BYTE TRUE If frame was put in the transmit queue.
FALSE If transmitter queue overflow or if bridge

controller is primary or srcNode is invalid
then completedFunc will NOT be called.

Parameters:

srcNode IN Source Virtual Slave Node ID

destNode IN Destination Node ID
(NODE_BROADCAST == all nodes)

txOptions IN Transmit option flags:

TRANSMIT_OPTION_LOW_POWER Transmit at low output power level (1/3 of
normal RF range). NOTE: The
TRANSMIT_OPTION_LOW_POWER
option should only be used when the two
nodes that are communicating are close
to each other (<2 meter). In all other
cases this option should not be used.

TRANSMIT_OPTION_ACK Request acknowledge from destination
node.

completedFunc Transmit completed call back function

Sigma Designs Inc. Z-Wave Application Interfaces Page 243 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
IN
Callback function Parameters:
txStatus (see 2ZW_SendData)
Serial API:
HOST->ZW: REQ | OxA2 | srcNode | destNode | txOptions | funcID
ZW->HOST: RES | OxA2 | retVal

ZW->HOST; REQ | OxA2 | funclD | txStatus

Sigma Designs Inc. Z-Wave Application Interfaces Page 244 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

572 ZW_SetSlaveLearnMode

BYTE ZW_SetSlaveLearnMode(BYTE node,
BYTE mode,
VOID_CALLBACKFUNC(learnSlaveFunc)(BYTE state, BYTE orglD,

BYTE newlD))
Macro: ZW_SET _SLAVE_LEARN_MODE (node, mode, func)

ZW_SetSlaveLearnMode enables the possibility for enabling or disabling “Slave Learn Mode”, which
when enabled makes it possible for other controllers (primary or inclusion controllers) to add or remove a
Virtual Slave Node to the Z-Wave network. Also is it possible for the bridge controller (only when primary
or inclusion controller) to add or remowve a Virtual Slave Node without involving other controllers.
Available Slave Learn Modes are:

VIRTUAL_SLAVE_LEARN_MODE_DISABLE - Disables the Slave Learn Mode so that no Virtual
Slave Node can be added or remowved.

VIRTUAL_SLAVE_LEARN_MODE_ENABLE - Enables the possibility for other Primary/Inclusion
controllers to add or remove a Virtual Slave Node. To add a new Virtual Slave node to the Z-Wave
Network the provided “node” ID must be ZERO and to make it possible to remove a specific
Virtual Slave Node the provided “node” ID must be the nodelD for this specific (locally present)
Virtual Slave Node. When the Slave Learn Mode has been enabled the Virtual Slave node must
identify itself to the external Primary/Inclusion Controller node by sending a “Node Information”
frame (see ZW_SendSlaveNodelnformation) to make the add/remove operation commence.

VIRTUAL_SLAVE_LEARN_MODE_ADD - Add Virtual Slave Node to the Z-Wave network
without involving any external controller. This Slave Learn Mode is only possible when bridge
controller is either a Primary controller or an Inclusion controller.

VIRTUAL_SLAVE_LEARN_MODE_REMOVE - Remowve a locally present Virtual Slave Node from
the Z-Wawe network without involving any external controller. This Slave Learn Mode is only
possible when bridge controller is either a Primary controller or an Inclusion controller.

The learnSlaveFunc is called as the "Assign" process progresses. The returned “orgID” is the Virtual
Slave node put into Slave Learn Mode, the “newlID” is the new Node ID. If the Slave Learn Mode is
VIRTUAL_SLAVE_LEARN_MODE_ENABLE and nothing is received from the assigning controller the
callback function will not be called. It is then up to the main application code to switch of Slave Learn
mode by setting the VIRTUAL_SLAVE_LEARN_MODE_DISABLE Slave Learn Mode. Once the
assignment process has been started the Callback function may be called more than once.

NOTE: Slave Learn Mode should only be setto VIRTUAL_SLAVE_LEARN_MODE_ENABLE when
necessary, and it should always be setto VIRTUAL_SLAVE_LEARN_MODE_DISABLE again as quickly
as possible. It is recommended that Slave Learn Mode is never set to
VIRTUAL_SLAVE_LEARN_MODE_ENABLE for more than 1 second.

Sigma Designs Inc. Z-Wave Application Interfaces Page 245 of 289

CONFIDENTIAL

INS12034-2

Defined in:

Return value:

BYTE

Parameters:

node IN

mode IN

learnFunc IN

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

Z\W _controller_bridge_api.h

TRUE

FALSE

Node ID (1...232) on node to setin Slave
Learn Mode, ZERO if new node is to be
learned.

Valid modes:
VIRTUAL_SLAVE_LEARN_MODE_DISABLE
VIRTUAL_SLAVE_LEARN_MODE_ENABLE

VIRTUAL_SLAVE_LEARN_MODE_ADD

VIRTUAL_SLAVE_LEARN_MODE_REMOVE

Slave Learn mode complete call back
function

If learnSlaveMode change was
succesful.

If learnSlaveMode change could not
be done.

Disable Slave Learn Mode
Enable Slave Learn Mode

ADD: Create locally a Virtual Slave
Node and add it to the Z-Wave
network (only possible if
Primary/Inclusion Controller).

Remowe locally present Virtual Slave
Node from the Z-Wawe network (only
possible if Primary/Inclusion
Controller).

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 246 of 289

2012-05-25

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Callback function Parameters:
bStatus Status of the assign process.

ASSIGN_COMPLETE Is returned by the callback function when in
the
VIRTUAL_SLAVE_LEARN_MODE_ENABLE
Slave Learn Mode and assignment is done.
Now the Application can continue normal
operation.

ASSIGN_NODEID_DONE Node ID have been assigned. The “orgID”
contains the node ID on the Virtual Slave
Node who was put into Slave Learn Mode.
The “newlD” contains the new node ID for
“orgID”. If “newlD” is ZERO then the “orgID”
Virtual Slave node has been deleted and the
assign operation is completed. When this
status is received the Slave Learn Mode is
complete for all Slave Learn Modes except
the
VIRTUAL_SLAVE_LEARN_MODE_ENABLE
mode.

ASSIGN_RANGE_INFO_UPDATE Node is doing Neighbour discovery
Application should not attempt to send any
frames during this time, this is only applicable
when in
VIRTUAL_SLAVE_LEARN_MODE_ENABLE.

orglD The original node ID that was put into
Slave Learn Mode.

newlD The new Node ID. Zero if “OrglD” was
deleted from the Z-Wawve network.

Serial API:
HOST->ZW: REQ | OxA4 | node | mode | funciD
ZW->HOST: RES | OxA4 | retVal

ZW->HOST: REQ | 0xA4 | funcID | bStatus | OrgID | newID

Sigma Designs Inc. Z-Wave Application Interfaces Page 247 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

5.7.3 ZW_lIsVirtualNode

BYTE 2ZW_IsVirtualNode(BYTE nodelD)
Macro: ZW_IS_VIRTUAL_NODE (nodeid)
Checks if “nodelD” is a Virtual Slave node.
Defined in: ZW _controller_bridge_api.h

Return value:

2012-05-25

BYTE TRUE If “nodelD” is a Virtual Slave node.
FALSE If “nodelD” is not a Virtual Slave node.

Parameters:

nodelD IN Node ID (1...232) on node to check if itis

a Virtual Slave node.
Serial API:
HOST->ZW: REQ | OXA6 | nodelD

ZW->HOST: RES | OxAG6 | retVal

Sigma Designs Inc. Z-Wave Application Interfaces

CONFIDENTIAL

Page 248 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

574 ZW_GetVirtualNodes

VOID ZW_GetVirtualNodes(BYTE *pnodeMask)

Macro: ZW_GET_VIRTUAL_NODES (pnodemask)
Request a buffer containing available Virtual Slave nodes in the Z-Wawe network.

The format of the data returned in the buffer pointed to by pnodeMask is as follows:

pnodeMask]i] (0 <i < (ZW_MAX NODES/8)

Bit 0 1 2 3 4 5 6 7

NodelD | i*8+1 [i*8+2 | i*8+3 | i*8+4 | i*8+5 | i*8+6 | i*B+7 | i*8+8

If bit n in pnodeMask]i] is 1, it indicates that node (i*8)+n+1 is a Virtual Slave node. If bit n in
pnodeMask(i] is O, it indicates that node (i*8)+n+1 is not a Virtual Slave node.

Defined in: ZW_controller_bridge_api.h

Parameters:

pNodeMask IN Pointer to nodemask (29 byte size)
buffer where the Virtual Slave
nodeMask should be copied.

Serial API:

HOST->ZW: REQ | OxA5

2ZW->HOST: RES | OxA5 | pnodeMask[29]

Sigma Designs Inc. Z-Wave Application Interfaces Page 249 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.8 Z-Wave Installer Controller API

The Installer application interface is basically an extended Controller interface that gives the application
access to functions that can be used to create more advanced installation tools, which provide better

diagnostics and error locating capabilities.
58.1 zwTransmitCount

BYTE zwTransmitCount
Macro: ZW_TX COUNTER
ZW_TX_COUNTER is a variable that returns the number of transmits that the protocol has done since
last reset of the variable. If the number returned is 255 then the number of transmits = 255. The variable
should be reset by the application, when it is to be restarted.

Defined in: ZW _controller_installer_api.h

Serial API:

To read the transmit counter:

HOST->ZW: REQ | 0x81| (FUNC_ID_GET_TX_COUNTER)

ZW->HOST: RES | 0x81 | ZW_TX COUNTER (1 byte)

To reset the transmit counter:

HOST->ZW: REQ | 0x82| (FUNC_ID_RESET_TX COUNTER)

Sigma Designs Inc. Z-Wave Application Interfaces Page 250 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.8.2 ZW_StoreNodelnfo

BOOL z2W_StoreNodelnfo(BYTE bNodelD,
BYTE_P pNodelnfo,
VOID_CALLBACKFUNC(func)())
Macro: ZW_STORE_NODE_ INFO(NodelD,Nodelnfo, function)
ZW_StoreNodelnfo is a function that can be used to restore protocol node information from a backup or
the like. The format of the node info frame should be identical with the format used by
ZW_GET _NODE_STATE.
Defined in: ZW _controller_installer_api.h
Return value:

BOOL TRUE If Nodelnfo was Stored.

FALSE If Nodelnfo was not Stored. (lllegal Nodeld or
MemoryWrite failed)

Parameters:

bNodelD IN Node ID (1...232) to store information at.

pNodelnfo IN Pointer to Node Information Frame.

func IN Callback function. Called when data has
been stored.

Serial API:

HOST->ZW: REQ | 0x83 | bNodelD | nodelnfo (nodelnfo is a NODEINFO field) | funcID
ZW->HOST: RES | 0x83 | retval

ZW->HOST: REQ| 0x83 | funcID

Sigma Designs Inc. Z-Wave Application Interfaces Page 251 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

583 2ZW_StoreHomelD

void ZW_StoreHomelD(BYTE_P pHomelD,
BYTE bNodelD)
Macro: ZW_STORE_HOME_ID(pHomelD, NodelD)

ZW_StoreHomelD is a function that can be used to restore HomelD and NodelD information from a
backup.

Defined in: ZW_controller_installer_api.h
Parameters:

pHomelD IN Pointer to HomelD structure to store
bNodelD IN NodelD to store.

Serial API:

HOST->ZW: REQ | 0x84 | pHomelD[0] | pHomelD[1] | pHomelD[2] | pHomelD[3] | bNodelD

Sigma Designs Inc. Z-Wave Application Interfaces Page 252 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.9 Z-Wave Slave API

The Slave application interface is an extension to the Basis application interface enabling
inclusion/exclusion of Routing Slave, and Enhanced Slave nodes.

59.1 ZW_SetLearnMode

void ZW_SetLearnMode(BYTE mode,
VOID_CALLBACKFUNC(learnFunc)(BYTE bStatus, BYTE nodelD))

Macro: ZW_SET _LEARN_MODE(mode, func)

ZW_SetLearnMode enable or disable home and node ID’s learn mode. Use this function to add a new
Slave node to a Z-Wawe network. Setting the ID’'s to zero will remove the Slave node from the Z-Wave
network, so that it can be mowved to another network.

The Slave node must identify itself to the primary controller node by sending a Node Information Frame
(see ZW_SendNodelnformation).

When learn mode is enabled, received "Assign ID's Command" are handled as follow:
1. |If the current stored ID's are zero, the received ID's will be stored.
2. Ifthe received ID's are zero the stored ID's will be set to zero.

The learnFunc is called as the "Assign" process progresses. The returned nodelD is the nodes new
Node ID. If no "Assign"is received the callback function will not be called. It is then up to the main
application code to switch of Learn mode. Once the assignment process has been started the Callback
function may be called more than once. It is not until the callback function is called with
ASSIGN_COMPLETE the learning process is done.

NOTE: Enable only learn mode when necessary and disabled again as quickly as possible. Recommend
never enabling learn mode more than 1 second.

Defined in: ZW_slave_api.h

Parameters:
mode IN ZW_SET LEARN_MODE_CLASSIC Start the learn mode on the slave and
only accept being included in direct
range.
ZW_SET_LEARN_MODE_NWI Start the learn mode on the slave and
accept routed inclusion.
ZW_SET _LEARN_MODE_DISABLE Stop learn mode on the slave
learnFunc IN Node ID learn mode completed call back
function
Sigma Designs Inc. Z-Wave Application Interfaces Page 253 of 289

CONFIDENTIAL

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Callback function Parameters:

bStatus

nodelD

Serial API:

Status of the assign process

ASSIGN_COMPLETE

ASSIGN_NODEID_DONE

ASSIGN_RANGE_INFO_UPDATE

The new (learned) Node ID (1...232)

HOST->ZW: REQ | 0x50 | mode | funcID

ZW->HOST: REQ | 0x50 | funcID | bstatus | nodelD

Assignment is done and Application can
continue normal operation.

Node ID has been assigned. More
information may follow.

Node is doing Neighbor discovery
Application should not attempt to send
any frames during this time.

Sigma Designs Inc.

Z-Wave Application Interfaces Page 254 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
59.2 2ZW_SetDefault

void ZW_SetDefault(void)
Macros: ZW_SET_DEFAULT
This function set the slave back to the factory default state. Erase routing information and assigned
homelD/nodelD from the EEPROM memory. Finally write a new random home ID to the EEPROM
memory.

Defined in: ZW_slave_api.h

Serial API:

HOST->ZW: REQ | 0x42 | funclD

ZW->HOST: REQ | 0x42 | funcID

Sigma Designs Inc. Z-Wave Application Interfaces Page 255 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.10 Z-Wave Routing and Enhanced Slave API

The Routing and Enhanced Slave application interface is an extension of the Basis and Slave application
interface enabling control of other nodes in the Z-Wawve network.

Sigma Designs Inc. Z-Wave Application Interfaces Page 256 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
5.10.1 ZW_GetSUCNodelD

BYTE ZW_GetSUCNodelD(void)
Macro: ZW_GET_SUC_NODE_ID()

API call used to get the currently registered SUC node ID. A controller must have called
ZW_AssignSUCReturnRoute before a SUC node ID is registered in the routing or enhanced slave.

Defined in: ZW _slave_routing_api.h

Return value:

BYTE The node ID (1..232) on the currently
registered SUC, if ZERO then no SUC
available.

Serial API:

HOST->ZW: REQ | 0x56

ZW->HOST: RES | 0x56 | SUCNodelD

Sigma Designs Inc. Z-Wave Application Interfaces Page 257 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
5.10.2 ZW_IsNodeWithinDirectRange

BYTE 2ZW_IsNodeWithinDirectRange(BYTE bNodelD)
Macro: ZW_IS_NODE_WITHIN_DIRECT_RANGE (bNodelD)
Check if the supplied nodelD is marked as being within direct range in any of the existing return routes.
Defined in: ZW_slave_routing_api.h
Return value:
TRUE If node is within direct range

FALSE If the node is beyond direct range or if
status is unknown to the protocol

Parameters:

bNodelD IN Node id to examine
Serial API:

HOST->ZW: REQ | 0x5D | bNodelD

ZW->HOST: RES | Ox5D | retVal

Sigma Designs Inc. Z-Wave Application Interfaces Page 258 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
5.10.3 ZW_RediscoveryNeeded

BYTE 2ZW_RediscoveryNeeded (BYTE bNodelD,
VOID_CALLBACKFUNC (completedFunc)(BYTE bStatus))

Macro: ZW_REDISCOVERY_NEEDED(nodeid, func)
This function can request a SUC/SIS controller to update the requesting nodes neighbors. The function
will try to request a neighbor rediscovery from a SUC/SIS controller in the network. In order to reach a
SUC/SIS controller it uses other nodes (bNodelD) in the network. The application must implement the
algorithm for scanning the bNodelD’s to find a node which can help.
If bNodelD supports this functionality (routing slave and enhanced slave libraries), bNodelD will try to
contact a SUC/SIS controller on behalf of the node that requests the rediscowery. If the functionality is
unsupported by bNodelD ZW_ROUTE_LOST_FAILED will be returned in the callback function and the
next node can be tried.
The callback function is called when the request have been processed by the protocol.

Defined in: ZW_slave_routing_api.h

Return value:

FALSE The node is busy doing another update.

TRUE The help process is started; status will
come in the callback.

Parameters:
bNodelD IN Node ID (1..232) to request help from
completedFunc Transmit completed call back function
IN
Sigma Designs Inc. Z-Wave Application Interfaces Page 259 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Callback function parameters:

ZW_ROUTE_LOST _ACCEPT

ZW_ROUTE_LOST_FAILED

ZW_ROUTE_UPDATE_ABORT

ZW_ROUTE_UPDATE_DONE

Serial API:

HOST->ZW: REQ | 0x59 | bNodelD | funclD

ZW->HOST: RES | 0x59 | retVal

ZW->HOST: REQ | 0x59 | funcID | bStatus

The node bNodelD accepts to forward
the help request. Wait for the next
callback to determine the outcome of the
rediscovery.

The node bNodelD has responded it is
unable to help and the application can try
next node if it decides so.

No reply was received before the protocol
has timed out. The application can try the
next node if it decides so.

The node bNodelD was able to contact a
controller and the routing information has
been updated.

Sigma Designs Inc. Z-Wave Application Interfaces Page 260 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
5.10.4 ZW_RequestNewRouteDestinations

BYTE ZW_RequestNewRouteDestinations(BYTE *pDestList,
BYTE bDestListLen ,
VOID_CALLBACKFUNC (completedFunc)(BYTE bStatus))
Macro: ZW_REQUEST NEW_ROUTE_DESTINATIONS (pdestList, destListLen, func)

Used to request new return route destinations from the SUC/SIS node.

NOTE: No more than the first ZW_MAX RETURN_ROUTE_DESTINATIONS will be requested
regardless of bDestListLen.

Defined in: ZW_slave_routing_api.h
Return value:
TRUE If the updating process is started.

FALSE If the requesting routing slave is busy
or no SUC node known to the slave.

Parameters:

pDestList IN Pointer to a list of new destinations for
which return routes is needed.

bDestListLen IN Number of destinations contained in

pDestList.

completedFunc IN Transmit completed call back function

Callback function parameters:

ZW_ROUTE_UPDATE_DONE The update process is ended
successfully
ZW_ROUTE_UPDATE_ABORT The update process aborted because
of error
ZW_ROUTE_UPDATE_WAIT The SUC node is busy
ZW_ROUTE_UPDATE _DISABLED The SUC functionality is disabled

Serial API:
HOST->ZW: REQ | 0x5C | destList[5] | funcID
ZW->HOST: RES | Ox5C | retVal

ZW->HOST: REQ | 0x5C | funcID | bStatus

Sigma Designs Inc. Z-Wave Application Interfaces Page 261 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
5.10.5 ZW_RequestNodelnfo

BOOL 2W_RequestNodelnfo (BYTE nodelD,
VOID (*completedFunc)(BYTE txStatus))

Macro: ZW_REQUEST_NODE_INFO(NODEID)

This function is used to request the Node Information Frame from a slave based node in the network.
The Node info is retrieved using the ApplicationSlaveUpdate callback function with the status
UPDATE_STATE_NODE_INFO_RECEIVED. The ZW_RequestNodelnfo API call is also available for
controllers.

Defined in: ZW_slave_routing_api.h

Return value:

BOOL TRUE If the request could be put in the transmit
queue successfully.
FALSE If the request could not be put in the
transmit queue. Request failed.
Parameters:
nodelD IN The node ID (1...232) of the node to
request the Node Information Frame
from.

completedFunc Transmit complete call back.
IN

Callback function Parameters:
txStatus IN (see ZW_SendData)
Serial API:

HOST->ZW: REQ | 0x60 | NodelD

ZW->HOST: RES | 0x60 | retVval

The Serial APl implementation do not return the callback function (ho parameter in the Serial API frame
refers to the callback), this is done via the ApplicationSlaveUpdate callback function:

e If request nodeinfo transmission was unsuccessful, (no ACK received) then the
ApplicationSlaveUpdate is called with UPDATE_STATE_NODE _INFO_REQ_FAILED (status
only available in the Serial API implementation).

e If request nodeinfo transmission was successful, there is no indication that it went well apart from
the returned Nodeinfo frame which should be received via the ApplicationSlaveUpdate with
status UPDATE_STATE_NODE_INFO_RECEIVED.

Sigma Designs Inc. Z-Wave Application Interfaces Page 262 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.11 Serial Command Line Debugger

The debug driver is a simple single line command interpreter, operated via the serial interface (UART —
RS232). The command line debugger is used to dump and edit memory, including the memory mapped
registers.

For a controller/slave_enhanced node the debugger startup by displaying the following help text on the
debug terminal:

Z-Wave Commandline debugger Vx.nn
Keyes (VT100): BS; ",<,> arrows; F1.

H Help
D[X|E|F] <addr> [<length>] Dump memory
E[XI|E] <addr> Edit memory (Key: SP)
W[X|E|F] <addr> Watch memory location
is idata (80-FF is SFR)
X is xdata
E is External EEPROM

F is flash

For a slave node the debugger startup by displaying the following help text on the debug terminal:

Z-Wave Commandline debugger Vx.nn
Keyes (VT100) : BS; *,<,> arrows; F1.

H Help
D[X|I|F] <addr> [<length>] Dump memory
E[X|I] <addr> Edit memory (Key: SP)
W[X|I|F] <addr> Watch memory location
is idata (80-FF is SFR)
X is xdata
I is “Internal EEPROM” flash

F is flash

The command debugger is then ready to receive commands via the serial interface.
Special input keys:

F1 (function key 1) same as the help command line.

BS (backspace) delete the character left to the curser.

< (left arrow) move the cursor one character left.

> (right arrow) mowe the cursor one character right.

AN (up arrow) retrieve last command line.

Sigma Designs Inc. Z-Wave Application Interfaces Page 263 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Commands:
H[elp] Display the help text.
D[ump] <addr> [<length>] Dump idata (0-7F) or SFR memory (80-FF).
DX <addr> [<length>] Dump xdata (SRAM) memory.
DI <addr> [<length>] Dump “internal EEPROM” flash (slave only).
DE <addr> [<length>] Dump external EEPROM (controllers/slave_enhanced only).
DF <addr> [<length>] Dump FLASH memory.
E[dit] <addr> Edit idata (0-7F) or SFR memory (80-FF).
EX <addr> Edit xdata memory.
El <addr> Edit “internal EEPROM” flash (slave only).
EE <addr> Edit external EEPROM (controllers/slave_enhanced only).
Wilatch] <addr> Watch idata (0-7F) or SFR memory (80-FF).
WX <addr> Watch xdata memory.
Wi <addr> Watch “internal EEPROM” flash (slave only).
WE <addr> Watch external EEPROM memory (controllers/slave_enhanced only).
WF <addr> Watch FLASH memory.
The Watch pointer gives the following log (when memory change):
idata SRAM memory Rnn
xdata SRAM memory Xnn
Internal EEPROM flash Inn (slave only)
External EEPROM Enn (controllers/slave_enhanced only)
Examples:
>dx 0 ; Edit offset 0x0000 and 0x0001 of xdata SRAM
0000 00 00 00 0O 0O OO OO OO OO 00 OO 0O OO OO 00 OO
>ex 0 ; Edit offset 0x0000 and 0x0001 of xdata SRAM
0000 00-1 00-2
>dx 0 ; Dump offset 0x0000 to 0x000f of xdata SRAM
0000 01 02 00 0O 0O OO 0O OO OO 0O 00 00 00 00 00 0O
>wx 1X02 ; Watch offset 0x0001 of xdata SRAM
>ex 1
0001 02-1X01
>
Sigma Designs Inc. Z-Wave Application Interfaces Page 264 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

5.11.1 ZW_Debuglnit

void ZW_Debuglnit(WORD baudRate)
Macro: ZW_DEBUG_CMD_INIT(baud)

Command line debugger initialization. The macro can be placed within the application initialization
function (see function ApplicationlnitSW).

Example:

ZW_DEBUG_CMD_INIT(96); /*setup command line speed to 9600 bps. */
Defined in: ZW_debug_api.h
Parameters:

baudRate IN Baud Rate /100 (e.g. 96 = 9600 bps,
384 = 38400 bps, 1152 = 115200 bps)

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 265 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
5.11.2 ZW_DebugPoll

void ZW_DebugPoll(void)
Macro: ZW_DEBUG_CMD_POLL

Command line debugger poll function. Collect characters from the debug terminal and execute the
commands.

Should be called via the main poll loop (see function ApplicationPoll).

By using the debug macros (ZW_DEBUG_CMD_INIT, ZW_DEBUG_CMD_POLL) the command line
debugger can be enabled by defining the compile flag “ZW_DEBUG_CMD” under CDEFINES in the
makefile as follows:

CDEFINES+= EU,\
ZW_DEBUG_CMD,\
SUC_SUPPORT,\
ASSOCIATION,\
LOW_FOR_ON,\
SIMPLELED

Both the debug output (ZW_DEBUG) and the command line debugger (ZW_DEBUG_CMD) can be
enabled at the same time.

Defined in: ZW_debug_api.h

Serial APl (Not supported)

Sigma Designs Inc. Z-Wave Application Interfaces Page 266 of 289

CONFIDENTIAL

INS12034-2

5.12 RF Settings in App_RFSetup.ab1 file

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

2012-05-25

RF normal and low power transmit levels is determined in the file App_RFSetup.a51.

Table 11. App_RFSetup.a51 module definitions for ZW0201/ZW0301

Offset to
table
start

Define name

Default
value

Valid
values

Description

0

FLASH_APPL_MAGIC_VALUE_OFFS OxFF

0x42

If value is 0x42 then the
table contents is valid. If
not valid default values
are used.

FLASH_APPL_NORM_POWER_OFFS | OxFF

If OXFF the default lib
value is used:

US = 0x2A

EU = 0x2A

ANZ = 0x2A

HK = 0x2A

IN = Ox2A

MY = Ox2A

FLASH_APPL_LOW_POWER OFFS | OxFF

If OXFF the default lib
value is used:0x14

TXnormal Power need maybe adjustment to fulfil FCC compliance tests. According to the FCC part 15,
the output-radiated power shall not exceed 94dBuV/m. This radiated power is the result of the module
output power and your product antenna gain. As the antenna gain is different from product to product,
the module output power needs to be adjusted to comply with the FCC regulations.

The RF power transmit levels can be adjusted directly on the module by the Z-Wave Programmer [14].

Sigma Designs Inc.

Z-Wave Application Interfaces

CONFIDENTIAL

Page 267 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

6 APPLICATIONNOTE: SUC/SISIMPLEMENTATION

6.1 Implementing SUC support in all nodes

Having Static Update Controller (SUC) support in Z-Wawve products requires that several API calls must
be used in the right order. This chapter provides details about how SUC support can be implemented in
the different node types in the Z-Wave network.

6.2 Static Controllers

All static controllers has the functionality needed for acting as a SUC in the network, but itis up to the
application to decide if it will allow the SUC functionality to be activated.

A Static Controller will not act as a SUC until the primary controller in the network has requested it to do
so.

6.2.1 Request for becoming SUC

The application in a static controller must enable for an assignment of the SUC capabilities by calling the
ZW_EnableSUC The static controller will now accept to become SUC if/when the primary controller
request it by calling ZW_SetSUCNodelD. In case assignment of the SUC capabilities is not enabled then
the static controller will decline a SUC request from the primary controller.

NOTE: There can only be one SUC in a network, but there can be many static controllers that are enable
for an assignment of the SUC capabilities in a network.

6.2.1.1 Request for becoming a SUC Node ID Server (SIS)

Enabling assignment and requesting the SIS capabilities is done in a similar manner as for the SUC. The
capability parameter in ZW_EnableSUC and ZW_SetSUCNodelD is used to indicate that a SIS is
wanted and thereby accept becoming a SIS in the network.

NOTE: There can only be one SIS in a network, but there can be many static controllers that are enabled
for an assignment of the SIS capabilities in a network. Even if the SIS functionality is enabled for an
assignment in the static controller then the primary controller can still choose only to activate the basic
SUC functionality.

Sigma Designs Inc. Application Note: SUC/SIS Implementation Page 268 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

6.2.2 Updates from the Primary Controller

NOde\D

““ome\D °
I:l psid Slave Node
o9 o
oo
S_S Mo
P = 7N

P=1 ey,
No,
Primary tir

Controller "Cay

Static controller

Figure 35. Inclusion of a node having a SUC in the network

When a new node is added to the network or an existing node is removed from the network the primary
controller will send a network update to the SUC to notify the SUC about the changes in the network. The
application in the SUC will be notified about such a change through the callback function
ApplicationControllerUpdate). All update of node lists and routing tables is handled by the protocol so
the call is just to notify the application in the static controller that a node has been added or remowved.

6.2.3 Assigning SUC Routes to Routing Slaves

When the SUC is present in a Z-Wawve network routing slaves can ask it for updates, but the routing

slave must first be told that there is a SUC in the network and it must be told how to reach the SUC. That
is done from the SUC by assigning a set of return routes to the routing slave so it knows how to reach

the SUC. Assigning the routes to routing slaves is done by calling ZW_AssignSUCReturnRoute with the
nodelD of the routing slave that should be configured.

NOTE: Routing slaves are not notified by the presence of a SUC as a part of the inclusion so it is always
the Applications responsibility to tell a routing slave how it should reach the SUC.

6.2.4 Receiving Requests for Network Updates

When a SUC receives a request for sending network updates to a secondary controller or a routing
slawve, the protocol will handle all the communication needed for sending the update, so the application
doesn't need to do anything and it will not get any notifications about the request.

6.2.5 Receiving Requests for new Node ID (SIS only)

When a SUC is configured to act as SIS in the system then it will receive requests for resening node Ids
for use when other controllers add nodes to the network. The protocol will handle all that communication
without any inwolvement from the application.

6.3 The Primary Controller

The primary controller is responsible for choosing what static controller in the network that should act as
a SUC and it will also send notifications to the SUC about all changes in the network topology. The
application in a primary controller is responsible for choosing the static controller that should be the SUC.
There is no fixed strategy for how to choose the static controller, so it is entirely up to the application to
choose the controller that should become SUC. Once a static controller has been selected the

Sigma Designs Inc. Application Note: SUC/SIS Implementation Page 269 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

application must use the ZW_SetSUCNodelD to request that the static controller becomes SUC. The
capabilities parameter in the ZW_SetSUCNodelD call will determine if the primary controller enables the
ID Sener functionality in the SUC.

Once a SUC has been selected, the protocol in the primary controller will automatically send notifications
to the SUC about all changes in the network topology.

NOTE: A static controller can decline the role as SUC and in that case, the callback function from
ZW_SetSUCNodelD will return with a FAILED status. The static controller can also refuse to become
SIS if that was what the primary controller requested, but accept to become a SUC.

6.4 Secondary Controllers

The secondary controllers in a network containing a SUC can ask the SUC for network topology changes
and receive the updates from the SUC. It is entirely up to the application if and when an update is
needed.

Request update———————)

N
T | d dh
4——Topology update————————
oo pologyup
oo .
o (=] .
oS S
o= 4——Topology update—————
Secondary ¢ Update complet Static update

controller controller

Fgure 36. Requesting network updates from a SUC in the network

6.4.1 Knowing the SUC

The first thing the secondary controller should check is if it knows a SUC at all. Checking if a SUC is
known by the controller is done with the ZW_GetSUCNodelD call and until this call returns a valid node
ID the secondary controller can’t use the SUC. The only time a secondary controller gets information
about the presence of a SUC is during controller replication, soit is only necessary to check after a
successful controller replication.

6.4.2 Asking for and receiving updates

If the secondary controller knows the SUC, it can ask for updates from the SUC. Asking for updates is
done using the ZW_RequestNetWorkUpdate function. If the call was successful the update process will
start and the controller application will be notified about any changes in the network through calls to
ApplicationControllerUpdate). Once the update process is completed, the callback function provided in
ZW_RequestNetWorkUpdate will be called.

If the callback functions returns with the status ZW_SUC_UPDATE_OVERFLOW then it means that
there has been more that 64 changes made to the network since the last update of this secondary
controller and it is therefore necessary to do a controller replication to get this secondary controller
updated.

NOTE: The SUC can refuse to update the secondary controller for several reasons, and if that happens
the callback function will return with a value explaining why the update request was refused.

WARNING: Consider carefully how often the topology of the network changes and how important it is for
the application that the secondary controller is updated with the latest.

Sigma Designs Inc. Application Note: SUC/SIS Implementation Page 270 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

6.5 Inclusion Controllers

When a SIS is present in a Z-Wawve network then all the controllers that knows the SIS will change state
to Inclusion Controllers, and the concept of primary and secondary controllers will no longer apply for the
controllers. The Inclusion controllers has the functionality of a Secondary Controller so the functionality
described in section 6.4 also applies for secondary controllers, but Inclusion Controllers are also able to
include/exclude nodes to the network on behalf of the SIS. The application in a controller can check if a
SIS is present in the network by using the ZW_GetControllerCapabilities function call. This allows the
application to adjust the user interface according to the capabilities. If a SIS is present in the network
then the CONTROLLER_NODEID_SERVER _PRESENT bit will be set and the
CONTROLLER_IS_SECONDARY bit will not be set.

] D
7
p— {——2Topdogy updale ——
4—>5Assin D5 ——— (>
o SCS | —sRqest Nk D —)
oL
o I = | ¢—4Resened Node D
New node -
Irx:Iusnlnre1 ss

Fgure 37.Inclusion of a node having a SIS in the network

6.6 Routing Slaves

The routing slave can request a update of its stored return routes from a SUC by using the
ZW_RequestNetWorkUpdate API call. There is no API call in the routing slave to check if the SUC is
known by the slave so the application must just try ZW_RequestNetWorkUpdate and then determine
from the return value if the SUC is known or not. If the SUC was known and the update was a success
then the routing slave would get a callback with the status SUC_UPDATE_DONE, the slave will not get
any notifications about what was changed in the network.

A static update controller (SUC) can help a battery-operated routing slave to be re-discovered in case it
is moved to a new location. The lost slave initiates the re-discovery process because it will be the first to
recognize that it is unable to reach the configured destinations and therefore can the application call
ZW_RediscoveryNeeded to request help from other nodes in the network.

The lost battery operated routing slave start to send “I'm lost” frames to each node beginning with node
ID = 1. It continues until it find a routing slave which can help it, i.e. the helping routing slave can obtain
contact with a SUC. Scanning through the node ID’s is done on application level. Other strategies to
send the “I'm lost” frame can be implemented on the application level.

Sigma Designs Inc. Application Note: SUC/SIS Implementation Page 271 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Lost Helping .
Routing Routing Maybe hops Static
controller
Slave Slave
I'm lost

This slave is lost: NodelD

Accepted

Controller Contacted

Find Neighbors

NOPs

Cmd Completed

Get Neighbors

Range information

SUC routes

Transfer end

ANV ANRE VAN

Fgure 38. Lost routing slave frame flow

The helping routing slave must maximum use three hops to get to the controller, because it is the fourth
hop when the controller issues the re-discovery to the lost routing slave. All handling in the helping slave
is implemented on protocol lewvel. In case a primary controller is found then it will check if a SUC exists in
the network. In case a SUC is available, it will be asked to execute the re-discovery procedure. When the
controller receive the request “Re-discovery node ID x” it update the routing table with the new neighbor
information. This allows the controller to execute a normal re-discovery procedure.

In case the ZW_RediscoveryNeeded was successful, then the lost routing slave would get a callback
with the status ZW_ROUTE_UPDATE_DONE and afterwards must the application call
ZW_RequestNetWorkUpdate to obtain updated return routes from the SUC. See the
Bin_Sensor_Battery sample code for an example of usage.

Sigma Designs Inc. Application Note: SUC/SIS Implementation Page 272 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

7 APPLICATIONNOTE: INCLUSION/EXLUCSIONIMPLEMENTATION

This note describes the API calls the System layer needs to use when including new nodes to the
network or excluding nodes from the network.

7.1 Including new nodes to the network

The API calls required by the including controller and the devices that is included are described. The
callbacks as well as the steps the protocol takes without any application level involvement is also
described. Finally, it illustrates the frame flow between the two devices during the inclusion process.

The Z-Wawe API calls ZW_AddNodeToNetwork and ZW_SetLearnMode are used to include nodes in a
Z-Wawve network. The primary/inclusion controller use the API call ZW_AddNodeToNetwork when
including a node to the network and ZW_SetLearnMode is used by the controller or slave node that is to
be included.

For the primary/inclusion controller that is including a node the ZW_AddNodeToNetwork is called with
either:

ADD_NODE_ANY Add any type of node to the network
ADD_NODE_SLAVE Only add a node based on slave libraries
ADD_NODE_CONTROLLER Only add a node based on controller libraries
ADD_NODE_EXISTING Node is already in the network

To awid the need to differentiate on the user interface whether it is a controller or slave the
ADD_NODE_ANY can be used. The application can decide which actions to take based on the callback
values.

ADD_NODE_SLAVE and ADD_NODE_CONTROLLER are available to support backward compatibility
in case they are used on devices with separate slave and controller inclusion procedures.

ADD_NODE_EXISTING is useful when the controller application want the Node Information Frame from
a node already included in the network.

The figure below illustrates the inclusion process between a primary/inclusion controller and a node that
the user wishes to include in the network.

Sigma Designs Inc. Application Note: Inclusion/Exlucsion Implementation Page 273 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Controller that Node To Be
includes a node included

Application calls:
ZW_AddNodeToNetwork (
ADD NODE ANY, LearnHandler)

Protocol calls LearnHandler with:
ADD NODE STATUS LEARN READY Application call:
(Signal to user that Ctrl is ZW_SetLearnMode (TRUE, Callback)

ready to receive NodelInfo frame)

Slave based Applications call:
Node Information Frame ZW_SendNodeInformation(..)
Controller based just wait

Protocol calls LearnHandler with
ADD NODE_STATUS_NODE_FOUND

Protocol calls LearnHandler with ; Protcocol call Callback with:
Assign ID to node
ADD NODE STATUS ADDING * LEARN_MODE_STARTED - For
controllers
N ASSIGN_NODEID DONE - For slaves

Protocol calls LearnHandler with |
ADD NODE_STATUS_ PROTOCOL DONE |- -~ - "~—_ "

_ CMD_COMPLETE ZW_ReplicationReceiveComplete

ZW_REPLICATION_ COMMAND COMPLETE

_————e——— — — S]
N
I Application calls: Tﬁfzﬁfggpfﬁagﬁbﬁfs}fﬁ N ONLY VALID FOR CONTROLLERS }
ZW_ReplicationSend(.., Func) == == 7 Protocol calls
—— e e e e —— — L ApplicationCommandHandler with |
Payload from ZW REPL.. SEND
777777777777777777777777777777 A Application should handle data }
Sl] and respond with:
[
[
!

I

} Protocol calls Func with:
I

I

I

Protocol call
Callback with status
LEARN_MODE_DONE - For controllers
ASSIGN_COMPLETE

Application calls:
ZW_AddNodeToNetwork (Transfer end
ADD_NODE_STOP, LearnHandler)

Protocol calls LearnHandler with
ADD NODE STATUS DONE

Application calls:
ZW_AddNodeToNetwork (
ADD NODE_STOP, NULL)

Fgure 39. Node inclusion frame flow

Legend:

1. Bold frames indicate that the Application initiates an action.

2. Dashed frames indicate optional steps and frame flows.

3. ltalic indicates a callback function specified by the application.

To allow the primary/inclusion controller in a Z-Wawve network to include all kind of nodes, it is necessary
to have a frame that describes the capabilities of a node. Some of the capabilities will be protocol related
and some will be application specific. All nodes will automatically send out their Node Information Frame

Sigma Designs Inc. Application Note: Inclusion/Exlucsion Implementation Page 274 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

when the action button on the node is pressed. Once a node is included into the network it can always at
a later stage get the node information from a node by requesting it with the API call
ZW_RequestNodelnfo).

All slave nodes will per default start with Home ID is 0x00000000 and Node ID 0x00. All controllers will
per default start with a unique Home ID and Node ID 0x01. Both have to be changed before the node
can be included into a network. Furthermore the node must enter a learn mode state in order to accept
assignment of new ID’s. That state is communicated from the node by sending out a Node Information
Frame as described. The primary/inclusion controller can now assign a Home and Node ID to the node
to be included in the Z-Wave network. In case the node is already included to a network then the
primary/inclusion controller refuses to include it.

During “Other protocol data” the network topology is discovered and updated. The primary/inclusion
controller request the new node to check which of the current nodes in the network it can communicate
directly. In case a SUC/SIS is present in the network, then the new node is informed about its presence
and SUC return routes are transferred automatically. In case the SUC/SIS is created at a later stage,
then the API call ZW_AssignSUCReturnRoutes can be used to allow the node to communicate with the
SUC/SIS.

In case a controller is included, then it's optional to transfer groups and scenes on application level using
the Controller Replication command class [1]. This option is very handy, as it will save the user a lot of
time reconfiguring the groups and scenes in the new controller. The Controller Replication command
class must only be used in conjunction with a controller shift or when including a new controller to the
network. The API call ZW_ReplicationSend must be used by the sending controller when transferring
the group and scene command classes to another controller. The API call
ZW_ReplicationReceiveComplete must be used by the receiving controller as acknowledge on
application level because the data must first be stored in non-wolatile memory before it can receive the
next group or scene data.

A controller not supporting the Controller Replication Command Class must implement the acknowledge
on application level when receiving Controller Replication commands to awid that the sending controller
is locked due to a missing acknowledge on application level. The receiving controller will then ignore the
content of the Controller Replication commands but acknowledge on application level using the API call
ZW_ReplicationReceiveComplete.

Sigma Designs Inc. Application Note: Inclusion/Exlucsion Implementation Page 275 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

The following code sample shows how add node functionality is implemented on a controller capable of
adding nodes to the network:

/* Call to be performed when user/application wants to include a node to the network
*/
ZW_AddNodeToNetwork (ADD NODE ANY, LearnHandler);

/* === LearnHandler == ====

*x Function description

o Callback function to ZW ADD NODE TO NETWORK

K K e e e e e e o */

void LearnHandler (LEARN INFO *learnNodeInfo)
{

if (learnNodeInfo->bStatus == ADD NODE STATUS LEARN READY)

{
/* Application should now signal to the user that we are ready to add a node.
User may still choose to abort */

}

else if (learnNodeInfo->bStatus == ADD NODE STATUS NODE FOUND)

{
/* Protocol is busy adding node. User interaction should be disabled */

}

else if (learnNodeInfo->bStatus == ADD NODE STATUS ADDING SLAVE)

{
/* Protocol is still busy, this is just an information that it is a slave based
unit that is being added */

}

else if (learnNodeInfo->bStatus == ADD NODE STATUS ADDING CONTROLLER)

{
/* Protocol is still busy, this is just an information that it is a controller
based unit that is being added */

}

else if (learnNodeInfo->bStatus == ADD NODE STATUS PROTOCOL DONE)

{
/* Protocol is done. If it was a controller that was added, the application can
now transfer information with ZW ReplicationSend if any applications specific
data that needs to be transferred to the included controller at inclusion time

*/

/* When application is done it informs the protocol */
ZW_AddNodeToNetwork (ADD NODE STOP, LearnHandler);

}

else if (learnNodeInfo->bStatus == ADD NODE STATUS FAILED)

{
/* Add node failed - Application should indicate this to user */
ZW_ AddNodeToNetwork (ADD NODE STOP FAILED, NULL);

}

else if (learnNodeInfo->bStatus == ADD NODE STATUS DONE)

{
/* It is recommended to stop the process again here */
ZW AddNodeToNetwork (ADD NODE STOP, NULL) ;

/* Add node is done. Application can move on Now is a good time to check if the
added node should be set as SUC or SIS */

Sigma Designs Inc. Application Note: Inclusion/Exlucsion Implementation Page 276 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00

2012-05-25

The following code samples show how an application typically implement the code needed in order to be

able to include itself in an existing network.
Sample code for controller based devices:

/* Call to be performed when a controller wants to be include
ZW_SetLearnMode (TRUE, InclusionHandler);

in the network */

start*/

/*Controller based devices just wait for the learn process to
/* InclusionHandler ===
xx Callback function to ZW SetLearnMode

void InclusionHandler (

LEARN INFO *learnNodeInfo)

{
if ((*learnNodeInfo).bStatus == LEARN MODE STARTED)
{

/* The user should no longer be able to exit learn mode.

ApplicationCommandHandler should be ready to handle ZW REPLICATION SEND DATA

frames if it supports transferring of Application specific data* /

}

else if ((*learnNodelInfo).bStatus == LEARN MODE FAILED)
{
/* Something went wrong - Signal to user */
}
else if ((*learnNodelInfo).bStatus == LEARN MODE DONE)

{

/* All data have been transmitted. Capabilities may have changed. Might be a

good idea to read ZW GET CONTROLLER CAPABILITIES() and to check that

associations still are valid in order to check if the controller have been

included or excluded from network*/

Sigma Designs Inc. Application Note: Inclusion/Exlucsion Implementation

CONFIDENTIAL

Page 277 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

Sample code for slave based devices:

/* Call to be performed when a slave wants to be include in the network */
ZW_SetLearnMode(TRUE, InclusionHandler);
ZW_SendNodeInformation(NODE_BROADCAST, TRANSMIT OPTION LOW POWER,);

/* InclusionHandler === =
xx Callback function to ZW SetLearnMode
KK e */

void InclusionHandler

BYTE bStatus /* IN Current status of Learnmode*/
BYTE nodeID) /* IN resulting nodeID - If 0x00 the node was removed from network*/

if (bStatus == ASSIGN RANGE INFO UPDATE)

{
/* Application should make sure that it does not send out NodeInfo now that we
are updating range */

}

if (bStatus == ASSIGN COMPLETE)

{
/* Assignment was complete. Check if it was inclusion or exclusion and maybe
tell user we are done */
if (nodeID != 0)
{

/* Node was included in a network*/

}

else

{

/* Node was excluded from a network. Reset any associations */

}

}
else if (bStatus == ASSIGN NODEID DONE)
{
/* ID is assigned. Protocol will call with bStatus=ASSIGN COMPLETE when done */
}

7.2 Excluding nodes from the network

The API calls required by the controller that exclude and the device that is to be excluded is described.
The callbacks as well as the steps the protocol takes without any application level involvement is also
described. Finally it illustrates the frame flow between the two devices during the exclusion process.

The Z-Wawe API calls ZW_RemoveNodeFromNetwork and ZW_SetLearnMode are used to exclude
nodes from a Z-Wave network. The primary/inclusion controller use the API call
ZW_RemoveNodeFromNetwork when removing a node from a network and ZW_SetLearnMode is used
by the controller or slave node that is to be remowved.

For the primary/inclusion controller that is including a node the ZW_RemoveNodeFromNetwork is
called with either:

REMOVE_NODE_ANY - Remowe any type of node from the network
REMOVE_NODE_SLAVE - Only remove a node based on slawe libraries

REMOVE_NODE_CONTROLLER - Only remove a node based on controller libraries

Sigma Designs Inc. Application Note: Inclusion/Exlucsion Implementation Page 278 of 289

CONFIDENTIAL

INS12034-2

To awid the need to differentiate on the user interface whether it is a controller or slave the

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

2012-05-25

REMOVE_NODE_ANY can be used. The application can decide which actions to take based on the

callback values.

REMOVE_NODE_SLAVE and REMOVE_NODE_CONTROLLER are available to support backward
compatibility in case they are used on devices with separate slave and controller exclusion procedures.

The figure below illustrates the exclusion process between a primary/inclusion controller and a node that
the user wishes to exclude from the network.

Controller that
remove a node

Node To Be
removed

Application calls:
ZW_RemoveNodeFromNetwork (
REMOVE NODE ANY, LearnHandler)

REMOVE NODE STATUS LEARN READY
(Signal to user that Ctrl is
ready to receive NodeInfo frame)

Protocol calls LearnHandler with:

Protocol calls LearnHandler with
REMOVE_NODE_STATUS NODE_FOUND

Protocol calls LearnHandler with
ADD NODE_STATUS_ REMOVING *

Application call:
ZW_SetLearnMode (TRUE, Callback)

Node Information Frame

Remove ID from node

Protocol calls LearnHandler with
REMOVE_NODE_STATUS_ DONE

Application calls:
ZW_RemoveNodeFromNetwork (
REMOVE_NODE_STOP, LearnHandler)

Slave based Applications call:
ZW_SendNodeInformation(..)
Controller based just wait

Protocol call
Callback with status
LEARN_MODE_STARTED - For
controllers
ASSIGN NODEID DONE - For slaves

Protocol call
Callback with status
LEARN_MODE _DONE - For controllers
ASSIGN COMPLETE - For slaves

Fgure 40. Node exclusion frame flow

Sigma Designs Inc.

Application Note: Inclusion/Exlucsion Implementation

CONFIDENTIAL

Page 279 of 289

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

The following code sample shows how remove node functionality is implemented on a controller capable
of removing nodes from the network:

/* Call to be performed when user/application wants to remove a node from the network
*/
ZW_RemoveNodeFromNetwork (REMOVE NODE ANY, LearnHandler);

/* === LearnHandler ==

*x Function description

xx Callback function to ZW RemoveNodeFromNetwork

K K e e e e e e o */

void LearnHandler (LEARN INFO *learnNodeInfo)

{
if (learnNodeInfo->bStatus == REMOVE NODE STATUS LEARN READY)
{

/* Application should now signal to the user that we are ready to remove a node.
User may still choose to abort */

}

else if (learnNodeInfo->bStatus == REMOVE NODE STATUS NODE FOUND)

{
/* Protocol is busy removing node. User interaction should be disabled */

}

else if (learnNodeInfo->bStatus == REMOVE NODE STATUS REMOVING SLAVE)

{
/* Protocol is still busy, this is just an information that it is a slave based
unit that is being removed*/

}

else if (learnNodeInfo->bStatus == REMOVE NODE STATUS REMOVING CONTROLLER)

{

/* Protocol is still busy, this is just an information that it is a controller
based unit that is being removed */

}
else if (learnNodeInfo->bStatus == REMOVE NODE STATUS DONE)
{

/* Node is no longer part of the network*/

/* When done - stop the process with */
ZW_RemoveNodeFromNetwork (REMOVE NODE STOP, NULL);

}

else if (learnNodeInfo->bStatus == ADD NODE STATUS FAILED)

{
/* Remove node failed - Application should indicate this to user */
ZW_RemoveNodeFromNetwork (REMOVE NODE STOP, NULL);

For the device that is excluded, the process is no different from an inclusion See paragraph 7 for sample
code.

Applications based on Controller libraries should most likely check which capabilities the application
should enable once the learn process is owver. This includes reading ZW_GetControllerCapabilities.

Applications based on slave libraries should check the node ID returned to the callback function during
the learn process if this node ID is zero the device is being excluded from the network and the
application should most likely remove its network specific settings, such as associations.

Sigma Designs Inc. Application Note: Inclusion/Exlucsion Implementation Page 280 of 289

CONFIDENTIAL

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00

8 APPLICATIONNOTE: CONTROLLERSHIFT IMPLEMENTATION

This note describes how a controller is able to include a new controller that after the inclusion will
become the primary controller in the network. The controller that is taking over the primary functionality
should just enter learn mode like when it is to be included in a network. The existing primary controller
makes the controller change by calling ZW_ControllerChange (CONTROLLER_CHANGE_START,..).)

After a successfull change, the controller that called ZW_ControllerChange will be secondary and no

longer able to include devices.

Controller that
initiate the
controller change

is to

Controller that

primary

become

Application calls:
ZW_ControllerChange (
CONTROLLER CHANGE_START,
LearnHandler)

Protocol calls LearnHandler with:

ADD NODE STATUS LEARN READY
(Signal to user that Ctrl is

Application call:
ZW_SetLearnMode (TRUE, Callback)

ready to receive NodeInfo frame)

Protocol calls LearnHandler with
ADD _NODE_STATUS NODE FOUND

Transfer Presentati[i>/

Node Information Frame

Protcocol call Callback with:

LEARN_MODE_STARTED

Protocol calls LearnHandler with
ADD_NODE_STATUS_ADDING_CONTROLLER

Assign ID to node

Protocol calls LearnHandler with
ADD NODE STATUS PROTOCOL DONE

Other Protocol Data

Application calls:
ZW_ReplicationSend(.., Func)

| Protocol calls Func with:
L ZW_REPLICATION_ COMMAND COMPLETE

Application calls:

ZW_ControllerChange (

Change Status

CONTROLLER_CHANGE_STOP, LearnHandl
er)

Protocol calls
ApplicationCommandHandler with
Payload from ZW REPL.. SEND
Application should handle data
and respond with:
ZW_ReplicationReceiveComplete

Transfer end

Protocol calls LearnHandler with
ADD NODE STATUS DONE

Protocol call
Callback with status
LEARN_ MODE DONE

Fgure 41. Controller shift frame flow

Sigma Designs Inc.

Application Note: Controller Shift Implementation

CONFIDENTIAL

Page 281 of 289

2012-05-25

INS12034-2

Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

9 REFERENCES

(1]
(2]
(3]
(4]
(5]
(6]
[7]
(8]
(9]
(10]

(11]
(12]
(13]
(14]
(15]
(16]
(17]
(18]
(19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]
(28]
[29]
(30]
(31]
(32]
(33]
(34]

(35]

SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,

SDS10242, Software Design Specification, Z-Wave Device Class Specification.
DSH10086, Datasheet, ZW0x0x Z-Wawe Interface Module.

DSH10087, Datasheet, ZWO0x0x Z-Wawe Development Module.

DSH10033, Datasheet, ZM1220 Z-Wawe Module.

DSH10034, Datasheet, ZM1206 Z-Wawe Module.

INS10240, Instruction, PC Based Controller User Guide.

INS10241, Instruction, PC Installer Tool Application User Guide.

INS10245, Instruction, Z-Wave Bridge User Guide.

INS10029, Instruction, ZW0102 Single Chip Implementation Guideline.

APL10312, Application Note, Programming the 200 and 300 Series Z-Wawe Single Chip

Flash.

SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,
SD,

INS10336, Instruction, Z-Wave Reliability Test Guideline.

INS10249, Instruction, Z-Wave Zniffer User Guide.

INS10250, Instruction, Z-Wave DLL User's Manual.

INS10679, Instruction, Z-Wave Programmer User Guide.

INS10236, Instruction, Development Controller User Guide.

INS10579, Instruction,Programming the ZW0102 Flash and Lock Bits.

DSH10088, Datasheet ZMxx06 Converter Module.

DSH10230, Datasheet, ZM2106C Z-Wave Module.

INS10326, Instruction, ZW0201 Single Chip Implementation Guidelines.

SRN11332 Z2W0201/2W0301 Deweloper's Kit v4.50 (Betal) Patchl.

APL10512, Application Note, Battery Operated Applications Using the Zw0201/Z2W0301.
DSH10856, Datasheet, ZM3106C Z-Wave Module.

DSH10275, Datasheet, ZM2120C Z-Wave Module.

DSH10857, Datasheet, ZM3120C Z-Wawe Module.

APL10292, Application Note, ZW0102 Triac Controller Guideline.

APL10370, Application Note, ZW0201/2ZW0301 Triac Controller Guideline.
APL10514, Application Note, The ZW0201/2ZwW0301 ADC.

INS10680, Instruction, Z-Wave XML Editor.

INS11018, Instruction, Secure PC Based Controller User Guide (OBSOLETE, see INS10240).
INS10681, Instruction, Secure Development Controller (AVR) User Guide.
DSH10704, Datasheet, ZDP02A Z-Wave Dewelopment Platform.

DSH11243, Datasheet, ZDPO3A Z-Wave Dewelopment Platform.

SDS11060, Software Design Specification, Z-Wave Command Class Specification.
INS11442, Instruction, Z-Wave 400 Series Z-Wawe Single Chip Deweloper's Kit v6.00

Contents.

SD,

APL10742, Application Note, ZM3102N with External PA and Switch

Sigma Designs Inc. References Page 282 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

INDEX

A

Y o I R S 1= U] o =t 1 PPN 267
Application area in NON VOIALIIE MEMOIYc.uiiiiii e e e aeaas 92
ApplicationCommandHandler (Not Bridge Controller library)cooeviiiiiiiii e, 32
ApplicationCommandHandler_Bridge (Bridge Controller library only)coooiiiiiiiiiiieeen, 40
ApplicatioNnControllerUPAALEcvuniiiieiie e e 20, 51, 231, 269, 270
ApplicationControllerUpdate (All controller IBraries) ..o 38
Y o] o] o= o o 1 {13 = L A P 30
Y o] o] o= Lo o 1 {11 5 AT 31
APPHCAtiONNOAEINTOIMALIONui i ettt et et eeaa e ees 34
Y o] o] o> Lo o] = | 32
APPHCAIONRINOLIY ...ttt ettt et e et et e e e enaeee 44
ApplicationSlaveNodelnformation (Bridge Controller library only)coiiiiiiiiiiic e 42
APPHCAIONSTAVEUPUEALEttt et et ettt e eea s 262
ApplicationSlaveUpdate (All Slave lIDraries)iirii e 37
APPHCALIONTESTPOIN ... et e ettt e et et et e e e et e e e eaa e ee 31
D

D7oyY = Kol o aa Ty o1 0T o [PPSR 21
E

]y (@ 1Y A o = IR O Y 92
ENNGNCEA SIAVE ... et 212
Execution Out OF SRAM MOTEttt et e e et e et e et et e et e e e e eaneeanns 21
EXternal EEPROM ... ettt et et e et e e aa e eas 9
F

[O O o] 4 o] 1= Lo SN (= PP 267
FLASH _APPL_LOW_POWER _OFFS ...ttt ettt e e e e et e e e eaneaes 267
FLASH_APPL_MAGIC _VALUE_OFFS ...ttt et e e e e 267
FLASH_APPL_NORM_POWER _OFFS ... it e e 267
L1011 (o3 1 5 PP 52
I

INCIUSION CONLIOIIET ... ettt e et et e et e e et e e et e eaa s 19, 271
11 T o) PP 7
INEEITUPE SEIVICE TOULINES ..ottt et et e e e e e e e e e et e et e et et e et e et e e e ea e et e et e eaeenaeens 7
L

TSy 0= o o 34
M

YT g g o YA o] o110 0T 4] o [27
YT o YL L= 4 S U = P 95
Y L= g aTeT 4V 1= 0= (PP 93
Y L= g aTeT 4V CT=1 4 5 PP TPPRP 92
Y LY o YA U8 = U 1 = 96
B0 Y P UL B Y L ... et e e e e 94
Sigma Designs Inc. Index Page 283 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

N

(oL [N [l 0T g LA oL U1 P 34, 219
NN o .0 F= U0 e T [PP 21
P

|] PP 91
N o (T PP 90
| L PP PTPPT 89
| 0 1 PP 90
|\ © 1 U TP 89
PIN_TOGGLEuiiiiiii et ettt ettt e et ettt et e e e e e et e et e et e e et eea e eans 90
T aF= TV oo 01 o] L= 11, 19, 268
(0T 11 o3 4] o 1 1=] 31
R

- aTe (o] g I oW aqY =T g =T V=T o= o 46
= LU L I (01U | PP 67
RF [OW POWET traNSMIL IEVEISee i e e e e e e e e e e e e e e e e e aneeens 267
RF NOrmal pOWer tranSMIt [EVEIS i e e e et e e e e e e eeens 267
0111 g TS = = 271
0101 g TS] F= L 212
S

LTI 0 131
Serial AP |_ApplicationNOdeINTOrMALIONc..iiii e et 36
Serial AP I_ApplicationSI1aveNodelnformMationooeuiiiiieii e 43
ST 26, 51, 271
Static UPate CONLIOIIET e e e e e e e e e e e ens 18, 20, 25, 268
1o o I 1 1[0 Te =R PP 102
5 L P 25, 51
SUC ID S IV ..ttt ettt e 19, 26
10 [0S 1S Lo To [PP 212
T

L= P 7
L4 = 22 PR SPPN 7
L L= 0 T PP 7
B4 Y=T S 0= Vg o1 =] PPN 100
LTI R (] = o S PP 99
LI L= -V P 98
TRANSMIT_OPTION_EXPLORE ...ttt ettt e e e et e e e et e e eanaeeanaaee 67, 71
B0 a0 3 11 1 o 1T~ PSRN 267
U

L 1 PP P PRSPPI 131
1 o I R PP P T UPTUPPRPIN 131
w

LAV =10 o TN o1 o P 66
LAV e o oo 64
LAY AU = 1S3 4T Lo [102
LAY U1 o o[102
Sigma Designs Inc. Index Page 284 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

z

A 0 PP 131
A 0 2 PP 131
p A LY Y B O - U | (o T =] (o T = SRR 127
ZW_ADC_batt_ monitor_ENablecouniiiii e 128
ZW _ADC _BUFEr _BNADIE ... e 126
AT AN B O Y4 T- o] PP 122
ZW _ADC NI ettt et h et ettt e e e e e e eaes 121
YA A T @ 1o A - T 125
ZW _ADC _NE_BNADIE ...eeii e 124
AL AN L @ T (1= 125
AT N L @ o1 T 1= [T o 123
AT N B O o o 1LY =T -1 o = 122
AT N O (==Y (114] o == A 127
ZW _ADC _TSUI QBT ettt et 126
ZW_ADC _threshold _MOOE _SELcc.uuiiiiiiiie ettt eeens 123
ZW_ADC _threSNOIA Scciiiiii ettt 124
ZW_ADD_NODE_TO_NETWORK (IMACIO) ..eeuueteinietineeiiaeeeteeeeaeeaaeeetneeeanaeeanaeeateeennaeenaeeanaeennaeeens 207
A VA A AN Lo 1 oo = e 11N = Ao T 207, 273
p AT N A - Tox 1 Y. o[P 155
p AV N =t T = Tod o T o = PP 154
AT N =S T o o T = PP 154
DWW _AES BNADIE ..o e aans 155
ZW_ARE_NODES _NEIGHBOURS(MACIO) ...tetutitniatiteeiiaeeei e et ae e e et e et e e e s e et e e e e et e eanaeeenaeeens 210
ZW_AreNOdESNEIGNDOUIS ... et e e 210
ZW_ASSIGN_RETURN_ROUTE (M@CF0) ...uteuutitnatiteeiiaeeet e e e e et e e et e e et e et e e e e e et e eanaeenaeeens 211
ZW_ASSIGN_SUC_RETURN_ROUTE (MBCIO) ...uutiuuetinatitaeet et et e et e e e et e e e e et e e eenaeeeens 212
W ASSIGNREIUINROULE ... ittt e e e e e e e e e e e et e et e et e e et e e e et e aneeaneeanns 211
ZW _ASSIGNS UCREIUIMROULE ... ittt et e e e e e et et e e et e et e et e e eanes 212
ZW_CONTROLLER_CHANGE (IMACIO) ...ttt ettt et e et e et e et e eeaaeeans 213
pA T ©e] a1 (o] 1 =T H 01 o= g Vo T PP 213, 281
ZW_CREATE_NEW_PRIMARY_CTRL (MBCIO) ...tutiiteiiiaiit et e e e e e eeens 241
AT O == L= NN LYY T o = 1A 4 241
ZW_DEBUG_CMD_INIT (MBCI0) .ttt ettt et et ettt et e e et et e e e e e e ean e eens 265
ZW_DEBUG_CMD_POLL (MACI0) ituitiiiieiiee et ettt et e e e e e et e e e et et e e e e et e e e e e aaeenaeanns 266
7L 7= o 11 o | g 265
AL 7= o 11 o | = o 266
ZW_DELETE_RETURN_ROUTE (MBCIO) ...utttuiituetiieeea ettt ettt e et e et e e eeens 215
ZW_DELETE_SUC_RETURN_ROUTE (MACT0)uiitiiiiieiiieeeie ettt et e e et e e eeieeeens 216
AT 1= K= =T L= 0T] o 10 = 215
ZW_DeleteSUCREIUINROULEt e e e e e et et et r e e e e e e e e ee e eeanns 216
A VAV A =1 =t = = @ 1 L B (Y =]) 97
FA VAV ==Y o] fo] o 0 [o | S PSP 97
A VAV = NN = I S O L @A (/- Tod o) 240
A AV = g = o] 1] L 238, 240
ZW_EXPIOreReQUESTINCIUSIONiiei e et e 45
ZW_GET_CONTROLLER_CAPABILITIES (MACIO) .euueetuaeitaeeuaeeieee e e e e e e e e e e eea e e enaeeenns 217
ZW_GET_NEIGHBOR_COUNT (IMACIO) . etutiueeeti et eeeee e et e e e e e e et e e e e e e e e et e e e aeen e eeeaaaennaeeens 218
ZW_GET _NODE_STATE (MBCI0) ceeuuetitititn et eeeit ettt e e et e e e et e e et e e e e e e e e et e e ean e ean e eaeanaeeanaaeens 219
ZW_GET PROTOCOL_STATUS (IMACKI0) ... tttutetuatiteeetaaaet et e et e e et e e et e e ean e e e st e e e e ean e eetaaeanaaeannns 46
ZW_GET_RANDOM_WORD (IMBCIO) ...tutitueetaaett et e ettt e et e e e et e e e et e e e e e et e ean e eanas 46
ZW_GET_ROUTING_INFO (IMBCIO) - .etuuetitnaeeteeei et e et et e e et e et e e e e e et e et e e e e e e et e eeaaeeanaaeens 220
ZW_GET_SUC_NODE _ID (IMBCI0) .« tttuettuattt et e et e e et e et e et e ettt e e et e e et e e et s e eaaeaan e aetnaaeanaees 221, 257
ZW_GET_VIRTUAL_NODES (IMBCI0) ... ittt ettt e e e et et e e e e e e e et e e et e e et e eeaaaeens 249
ZW_GetControllerCapabiliti®s.........cuuii e e 217
AT 1= K=o | o] oTo T (o UL o | PP 218
Sigma Designs Inc. Index Page 285 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

ZW _GetNOAEPIOtOCOIINTO ..veecii e e e e e e e e e e e e e e e e aae e 219
p ATV C 1= 8 o (0] FoTod] 1S3 = L U1 46
AT\ € T= 42 = Ta Yo (o] 12170V o] o PP 46
ZW _GEtROULINGINTO ... et et e e e e e e e e et e et e et a e 220
bV R CT= 42 Lo U] 0|1 P 221
ZW _GEESUCNOUEID ... ettt ettt et e e et et et e e et e e et e e e e eanaeeees 221, 257
AT € T= AV AT 0T -1 Ko T [P 249
AT €1 = 1AV = =T 0 = 1= 146
ZW _GP TIME R QB ..ottt ittt ettt ettt ettt e et e et e e e e e e e e eans 147
ZW _GP TIME R NI .ottt et ettt e et et et e et e e et e e et e et e e et e e e et e eeaaeeans 144
AT I €1 = Y = = T g o 1Y 1 145
ZW_GPTIMER_INE_ENADIEot e et et e e e e eanas 145
ZW _GP TIME R _INE Q. ettt ettt ettt e et et et e et e et e e e eeans 145
W _GP TIMER_PAUSE ...ttt ettt ettt ettt et et et e et e e e et e e enens 146
ZW_GPTIMER_TEIOAA_GOLttt ettt e e eeens 147
ZW_GPTIMER_TEIOAA_SELiiiieeiieee et ettt e e e eeens 147
AV @ 2 T -1 88
AL | o (1S =Y o) [P 191
AT | o= o > > P 188
AL | o= 1o o T T PP 186
WAV | o 1 = L0 S o [PP P PP 188
AT | =3 = B S o 1=V TP 190
A AV N oG - - PP 184
A AV S oG | | PP 181
WAV | v 1 = 11U o = S PP PP PP 185
ZW _IS_FAILED _NODE_ID (MCI0) .. uttuetitneeet et e et e e e et e e e e et e e et et e e e tn e e et e e e e e een e aaeanaaeanaaeens 222
ZW_IS_NODE_WITHIN_DIRECT_RANGE (MaCI0)uuetuuiiiiiaiii et e e eens 258
ZW _IS_VIRTUAL_NODE (MACI0O) . c.uuttuatetneetn ettt et et e et e e e et e e e et e e et e e e e e e an e aeanaaeanaaenns 248
A YA N 1= = T =T o Yo [PP 222
2ZW _ISNOEWIthINDITECIRANGE .. .euiiiiii i e e e e e e et e e e e e eanes 258
A YA (Y = 1=V Y/ 5 4 PP 222
YA N Y AT (8 =1 [T [P 248
YA S T = = Lo 1= 2 197
FA AT NCS T T 0| ST UPTTTPI 195
YA S T o = 2 = o] = 198
AL T T oL Y 173
ZW _LED Nt ..ottt et et et e e e e e e eaes 169
AT By V- Y= o4 o Y= 172
AT T BT - Y= o o LT = 171
ZW_MEM_FLUSH (MBCI0) ..t ettt ettt ettt et ettt e et et et e et et e e e e ean s 97
ZW_MEM_GET BUFFER (MACI0) t.uuetttititieit ettt et eeae sttt eaet e eea e eetn s eeanaeaaaeetnaeeaneeenaeetnaennneeen s 95
A VA Y =Y I e B = 0 1 S (1= Tod o) 93
A VAV Y =Y B e A = T (I Vo o) 96
A VAV Y =Y B = I = I (1, Tod o) P 94
ZW_MEMORY _GET_ID (IMBCT0) -1 teuueeetetetn et ete e et e e e e e e et e e e e et e e e e e e e et e e e e e e e e et e eean e ennnes 92
ZW_MEMOTYFIUSH .. ettt et e s 97
ZW_NODE_MASK _BITS_IN (MACT0) .. ceuuetetnieeteeett et e et ettt e e et e et e e e e e e e et e e e e e e e et e eean e eanes 85
ZW_NODE_MASK_CLEAR (IMBCI0) - .ttuuetiteeiteeei e e et ettt e e e e et e e e et e e e e e e e e ean e aean e eannns 85
ZW_NODE_MASK_CLEAR BIT (MACIO) .. .tuitituieet et ee e e e e e e e e e et e e e e eeannas 84
ZW_NODE_MASK_NODE_IN (IMBCI0) ... tttueetaeett et et e et e et e et e e e et e e e e e e e e e e e et aeanaaeannns 86
ZW_NODE_MASK_SET_BIT (IMBCI0) ..uutitueetiaeeti ettt et e e e et e e e et e e e e e et e ean e eanas 84
ZW NOAEM ASKBILSIN ...eu it e e e e e e e et e et et e e et et e e e e eaeeaeans 85
A VA (o Yo [V -1 @1 LT ¥ PP 85
A VA (o Yo LY 1o T @1 =T Uy = P 84
A YA N [o Yo L1V 1= T 41N Lo Lo 1Y [PP 86
A YA N [o Yo LY 1o TS Y= 1 =] | 84
2N _POIL e et et ea s 48
Sigma Designs Inc. Index Page 286 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25
AT O T I I 1 F=Tod (o) R PP 48
ZW_PRIMARY CTRL (IMBCTO) .. tttitii ettt et e ettt ettt e e et et et e e et e e et e e e e e e et e e et eeenaeenns 222
ZW _PWIM BNADIE ... e 149
F A AV VAT Y T o PP UPPRPI 148
A YA R = VAV A 0 A o] =T U P 149
YA I = VAV A 0 A =Y £ - o) = 150
YA R = VAV A1 0 A =3 PP 149
AV I e VAV A Y V=AY = (o] o o = PP 151
AT I e VAV A Y V7oA = (o 0 = G 150
A = U T o 1o P 48
A YA = VAN NN 11 1Y (1Y = Vo o) 48
ZW_REDISCOVERY _NEEDED (IMACIO)tuiiiiitiiietii ettt ettt et e e et e e e eees 259
AT = (=T Lo N = V] A=Y= =T 212, 259, 271
ZW_REMOVE_FAILED_NODE_ID (MACTO) . .euuuttttuetutettnaeaiaeetaeeanaesstaesenaessneesteesnneesnaarnnaeennaeenns 223
ZW_REMOVE_NODE_FROM_NETWORK (MACI0)uuettueiitieeiieeiiniesiieeeieeaiaesaiseeannesseaeennaesnneenens 227
ZW_RemOVEFAIl@ANOGEID ... oo et 223
ZW_RemoVeNOdEFTOMNEIWOIKiiriiiie et e e e e 227, 278
ZW_REPLACE_FAILED_NODE (MACF0) ... uutiuuetetnetiteeaneeeteeinaeeanaeeataeeanaeeanaeesseeenaaesnarenaeennaeenns 225
ZW_ReplaceFaill@dNOTE ... e 225
ZW_REPLICATION_COMMAND_COMPLETE (MACIO) .uutteuetiuaeeiieeeinaeeiaeeiaeeeinaeeenneeenaeeennaeennaeenns 229
ZW_REPLICATION_SEND_DATA (MACI0) . .teuutitnatiteee et e et ae e e e et e e et e e et e e et e eeneeen e eaaeeenaeeens 230
ZW_ReplicatioNnRECEIVE COMPIEBLEeiiiiiie ettt e e e eens 229
ZW_REPIHCAIIONSENGeeieiiiieii ettt ettt e e et e e et e 230
ZW_REQUEST_NETWORK_UPDATE (MACT0O) - ..ctuettueeiuatetaaet e et a e et e e e e et e e e e e et een e aeaneaeannas 51
ZW_REQUEST_NEW_ROUTE_DESTINATIONS (MACIO) .euuuiiiueeiieiiiieeieeeii e e e e e e e e e eeens 261
ZW_REQUEST_NODE_INFO (MBCIO) ... ttuetitatetaaei et e et et e e et et e e et e e et e e ea e ean e aetnaaeanaees 231, 262
ZW_REQUEST_NODE_NEIGHBOR_UPDATE (MACI0) ... ttuuatiuaaeiaeetiaeeeae et aei e e e e e e e eanaaenns 232
ZW_RequesStNetWOrkUpPdateoouuiiiiiice e 38, 51, 212, 240, 270, 271
ZW_RequeStNEWROULEDESTINALIONSiitiiiiii et e e e e e e et e e eanns 261
A VA R (=T [01=5] 40N oo =11 o o P 231, 262, 275
ZW_RequestNodeNeighbOrURPAALEcovniiiie e e e e e e e e e e e anns 232
ZW_RF_POWERLEVEL_GET (M@CI0) ... tetuettueeit ettt ettt et e e et e et e e et eean e eae s 50
ZW_RF_POWERLEVEL_REDISCOVERY_SET (MACIO) ...ctuuiiitiiiiiaeii et 53
ZW_RF_POWERLEVEL_SET (IMBCI0) ... tttuettietti ettt ettt ettt e a e et e e e e e et eea e ean s 49
ZW _RFADOVE3VSUPPIYGUAIANTEEAevuiiieit e i ettt e e e e e e et e e e e et e e e e e e e eaneeaeens 54
YL R L o 1Y =T = Y T 50
ZW _RFPOWEHEVEIREUISCOVEIYSEE ..ot e e e e e e e e e e e e e e aeans 53
AL R L oo 1= =Y = 49
A VAV ST = NN I 7N AN (1=] () 66
ZW_SEND_DATA_ABORT (MACI0O) ... tttetitiettiee ettt ettt ettt ettt e e et et e e et e e e e eae s 81
ZW_SEND_DATA BRIDGE (IMACT0) .. iuuuttetuieteutetintetateeataestntesatneeaeeaetnaeeaneeenaesnaeraneeenarenaarnaeennns 71
ZW_SEND_DATA _META BRIDGE (MACI0O) ieuuiitniititieeeiaeteteeeieeaaesatasestnseeanaesaeneeeanseenaeeannaeennaeennns 75
pA VA ST = N1 I 7N AN /1O R (1 Tod o o) 77
ZW_SEND_DATA_MULTI_BRIDGE (MACI0)utetuietiieeeiaetee e et e eea e e e e et e e e e et e e e e e e e eeaneeeanes 79
ZW_SEND_NODE _INFO (MACI0) . .uutteuutetneee ettt eeet e e e e et e e et e e e e et e e e e e e e e s e e e een e aetnaeeanaeennnes 55
ZW_SEND_SLAVE_NODE_INFO (MACI0) ... teuutitnetii e eeee e e e e e e e et e e et e e e s e et e e e e eean e eeaneeeenaeeens 243
p A AT S] = N IS U O | I (- Tod o) 233
ZW_SEND_TEST _FRAME (M@ACI0) .. .ttuuetitn et eeei et e et e e et et e e e e et e e e e e et e e et e eean e ean e 57
ATV Y= T [0 1 82
ATV Y= T 7 - P 66
pA T ST YaTo 1 7= U= Y = T4 o [o PP 71
WAV S 1= Ya T 1 7 L= VAN Lo ¢ PP 81
ZW_SendDataMeta BriOgeu.iieiii ittt e e e e aa 75
A VA RS 1= YT 1 7= L= 11 U S 77
ZW_SendDataMUIl_Bridge ...cou i e e e e e e 79
ZW_SendNOdeINTOrMALION ... o e e e e e 55
ZW_SendSIaveNoOdelNfOrMatioNciuii e e e e e e e 243
Sigma Designs Inc. Index Page 287 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

A AT 1= 2 o K5 6L | 5 PP 233
ATV S =T 1o W =TT A =T 2 1= 57
ZW_SET _DEFAULT (IMBECF0) ..t ttutetietite ettt ettt et e e e et e e e et e et e e et e e at e e ean e eean e ees 234, 255
ZW_SET _EXT_INT_LEVEL (MACF0) .. etuetitiieiiee ettt ettt e et e et e e e e et a et e ean e 58
ZW_SET _LEARN_MODE (IMBCIO) . c.uittttitaeit et e et e e et et e et e et e et e e e e e et e e et e e et e eanaees 235, 253
ZW_SET_PROMISCUOUS_MODE (MACTO) ...cuuietueiiieeiiaee it e ettt e et e et e e e eanes 59
ZW_SET _ROUTING_INFO (MBCIO) ... etuetttaeeteeet ettt e e et e e e et e et e et eean e e et e eeanaaenes 237
p AT S = B 2 3 G 1Y/ (@ 1 = (1, = o] o) 60
ZW_SET_SLAVE_LEARN_MODE (MACI0) .. .ceuuiitnietiieeiie ettt ettt e e e e e eens 245
ZW_SET_SLEEP_MODE (MBCI0) . euutttititi ettt ettt et ettt e e e et e et e et e e et e et aeenns 101
AT ST =i S 18 Lo (@ 1 i | I (1= Tox o) I 238
W _SEtDETAUIL ... oo e 234, 255
YA S 1= £ g IS 58
F AT ST == 1 011, oo L= 235, 253, 273, 278
ZW_SetListenBefore TalKTRIrEeSNOId i e 83
ZW_SetPromiscuousMode (Not Bridge Controller lIDrary)coeu e 59
ZW_SEtRFRECEIVEMOUE ..ot ettt e e 60
ZW _SEEROULINGINTO ... et ettt et e et e e e 237
ZW _SEEROULINGIMA X ...ttt ettt ettt e e et e et e et et e e enas 238
W _SetSIaVELEAINIMOTE ... c.uieeiiei ettt et e e e e e e et e e e e ean s 245
ZW _SESIEEPIMOTE ...ttt 101
A AV 1= 51 U@ N oo L= 1 0 N 238, 240
p AT] o (O Tod (A = o = PP 113
ZW _SPIO_ENADIE ...oeie e 117
AV S T = [0 T T P 110
AV ST (T o o 1= TP 118
AT ST (O T T o Ao =] ST PTPP 115
ATV S Y o O T o = PP 112
ATV S Y o O o Q= S PP 116
AT ST - Uod £ = o =Y PP 106
AL S R oo o =] S PP 107, 114
YA S = =0 = o= P 109
FA AT o I R 1 o PP UPPTPPPN 104
AT VS Y o R oG o 1= PSPPSR 105
p A S Y o I o =T) PSPPSR 108
ZW_STORE_HOME_ID (IMBCF0) ... ttuettiietet ettt ettt ettt et et e e et e et e e eeens 252
ZW_STORE_NODE_INFO (MBCI0O) ..uttuitttnetietti ettt et et e e et e e e e et e e ea e e e enes 251
ZW _STOTEHOMEID ..o e ettt ettt e et e e et e et e e ans 252
YA S (01 1= N[0 T [[(o 251
ZW_TIMER_CANGCEL (IMACIO) .tuettuettietete ettt et ettt ettt et e e et e et e e e e et e e e eeaeeeens 100
ZW_TIMER _RESTART (IMACI0) ..uettuuitiiiiititeti ettt eeanseeaaesttsesetneeean s eetnseeenseeenaeetnaeeaneeeneeetnaeeanneenns 99
A AT Y 1 S T AN B I, = Vo (o) 98
ZW_TIMERO _ENABLE ..ottt e e e e e e e e et e e e e et e e aan e e e e e e e e e e aneeenns 140
A AV 1\ 1 =8 0 =Y < S o] | 140
y A I 1 =8 SO = o = L PP PP PPP 141
ZW_TIMERO _HIGHBY TE _GE T ... ittt et ettt e e e e e e e e e e e e e e e et e e eaneeenns 142
ZW_TIMERO _HIGHBY TE _SET .iiiiiiiiiii ittt e e e e e e e e e e e et e e e e e e an e e e et e eeaneeenns 142
A AV I\ 1= 0 T o 1 PP 139
ZW_TIMERO _INT _CLEAR L.ttt ettt e e et e et e e e e et e e e e e e eeeens 139
ZW_TIMERO _INT _ENABLE ...ttt et e e et e e e e e e e et e e et e eaneeenns 140
ZW_TIMERO_LOWBY TE_GE T ..uitiiiiii it ee ettt ettt e et et e e e e et e e ean e e eaneeeens 142
ZW_TIMERO_LOWBY TE S E T .. ei ittt it e ettt e e e e e e e et e et e e e e et e e et e aeaaeenns 141
AT A N 1= 2 (0T (o o = P 143
AT N I 4 TN O o [4] L= = = P 165
AL N I 4T O = o = o = PP 164
F A AT N N O 1 11 PP UPTRUPP 157
YA N I =4 7N O [| S o 1= - P 168
Sigma Designs Inc. Index Page 288 of 289

CONFIDENTIAL

INS12034-2 Z-Wave 400 Series Appl. Prg. Guide v6.02.00 2012-05-25

ZW_TRIAC Nt BNADIE ..ot et e e e e e e 166
p A AT N O 1 o = TP 167
AT D G O @ L 1\ 1 = = B (1= Tod o) PP 250
AL N 14 o LT T o - oY/ P 61
ZW_TYPE_LIBRARY (IMBCI0) ..eetuitiietiii ettt ettt ettt ettt e et ettt et e et e e et e e et e e et e e et e e e eeanaas 61
FA AT U = g L0 I T 1 PP RUPTRUPP 131
AT O VAN = O o o = L= o [A PTP 132, 133, 137
ZW_UARTO_IX_data Walt_ QB ...ivuiiiiii it e e e e e e e e et e et e e e e eanes 132, 133
AT O 7 o 0 T o G | S o 1= 136
ZW _UARTO X Nt QB ittt et e e e e e e e e et e aa e ans 132, 133, 136, 137
AT O 7N o I o - (e 1= o = A 133, 134, 137
pA T O VN o O I o Qo - L - = = P 133, 134
ZW_UARTO _IX_dat@ WAt SBL...uiieiiiiii et e e e e e e e et e e et e et e e e ean e e eeanas 133, 134
ZW_UARTO X _INE_CIBAT ...t et e e eens 136
ZW _UARTO X _INE QB eeneiti ettt ettt ettt e et et e e e e et e e eenns 137
ZW_UARTO X _SENU_NI .ottt e e e eeens 136
ZW_UARTO X _SENO_NUIM ettt ettt et et et et ettt e e e et e eees 135, 136
AT O 7N o 0 I o == Lo =1 135
ZW_UARTO_zZm4102_mMode _€NabIe 132
AV 7Y = ¢ 1 T 131
p AT O o I A o Qo = L= T o [APPSR 132
p AT O LN o I A o o = L= T V1 o T P 133
p AT O o I R o [S o (= PSP 136
ATV O AN o I ot | | S = R 137
p AT O o I R o Qo L S = PSP 134
ZW _UARTL IX_data Wal SBL ...ttt e e e e et et e e et e et e et et eanns 134
AT O VN = I R o [L S o1 1= Y TP 136
AT O 7N = I o [L S o =Y S PP 137
AT O 7Y = I R o =T =Y Lo PP 136
AT O 7Y = 1 R o =T =Y Lo N 10 o PP 135
AT O 7Y = I R o =T =Y Lo 1= 1 PP 135
ZW _USB _diSADIEoeiieei e 200
YA O 1] 2 T =Y o A 1= Vo 202
YA O 1] 2 T =Y o AT 1= 201
YA O 1] 2 T =Y o Y22 1= - To [203
AT O 1] 2 T =Y o Y22 11 = 201
F A AT U o] = o1 S PP UPT PP 200
AT O] = T T =1 = o = 204
AT O 1] = T T = (oS o] = Y 206
ZW _USB _iNt_SIC_BNADIE ...iiiic e 205
AT O 1] = T T L = oS o = 206
ALY 4= =1 (o) o 62
A VAT A =1 = T 10 NV (1= U] () T 62
p A A VA =1 = ST [0\ =1 1N (1, - Vo o) PP 63
ZW_VERSION_MAJOR (IMBCTO) ... eeuneeeieteteeee e ettt e e e e e e e e e e e e e e e e e en e e e e e et e e e e ean e aetn e eeanaeennnes 63
ZW_VERSION_MAJOR / ZW_VERSION_MINOR / ZW_VERSION_BETA ..ottt 63
ZW_VERSION_MINOR (IMACI0O) ... teuetiieiet ettt e et e et e e e e et e e et e e e e e e e et e eean e ennees 63
ZW_WATCHDOG_DISABLE (MACI0O) - .euutetnieetiaaeit et ee e et e et e e e et e e e e et et e e e e e e e e et e aeanaaeannns 64
ZW_WATCHDOG_ENABLE (IMBCTO) ..ceuutitnieit ettt e ee et e e e e e e e et e e e e et e et e e e e e e e e et e aeanaaeannns 64
ZW_WATCHDOG_KICK (M@CI0) .. eeueeetetet ettt et ettt ettt e e e et e e e e e e et e e e e e e et e e et e eean e enanas 65
ZW _WatChdOogDiSADIE e 64
ZW WatChAOGE NADIE ... it e et e e e e et e e et e et e e e eneens 64
AT YT (] o [Yo] PP 65
P AT A I = 10 S 0011 (01U o | PP RUPTRPP 250
Sigma Designs Inc. Index Page 289 of 289

CONFIDENTIAL

