Instruction

Working in 400 Series Environment User Guide v6.02.00

Document No.: INS11709

Version: 4

Description: Describes the 400 Series software development environment with respect to normal
and dewelopment mode.

Written By: JFR;CHL;EFH;MVO
Date: 2012-05-25
Reviewed By: SSE;TRO;PSH;CHL;MAM;JAD;EFH

Restrictions: Partners Only

Approved by:

Date CET Initials Name Justification
2012-05-25 11:28:33 NTJ Niels Thybo Johansen

This documentis the property of Sigma Designs Inc. The data contained herein, in whole
or in part, may not be duplicated, used or disclosed outside the recipient for any purpose.
This restriction does notlimitthe recipient's rightto use information contained in the data if
itis obtained from another source without restriction.

SIGMA

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

REVISION RECORD

Doc. Ver. Date By Pages affected Brief description of changes
1 20110209 MVO ALL Initial draft

JFR

EFH
2 20110405 JFR 4.2.2 Clarified development process

423&4.24 Added boundary cases

3 20120113 JFR 6.3 uVision Project file generation
3 20120117 EFH 6.2 The directory structure generated by the build process corrected
4 20120524 JFR 6.4 Debugging in the uVision environment
Sigma Designs Inc. Revision Record and Tables of Contents Page ii of iii

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

Table of Contents

R AN = = = L 7 I N 1
P22 |2 (0 15 16 L I [PSRN 1
2 O U [0T L= PP 1
2.2 AUdIENCE AN PrerEGUISITESvuiieieeet ettt ettt et e ettt et e et e e et e r e e eens 1
3 BUILDING APPLICATION CODE... ittt ettt et e e e e et e e e e et e e eaaaeens 2
3.1 Specifying which subset of "everything”, you wan't to build: ... 2
4 MODES OF OPERATION ...ttt et ettt e e et e et e e et e e e e e et e e e e e ean e eeaneeeneeenns 4
ot R o o 4 T= 1Y o o = PP 5
4.2 DeVelOPMENT MO ...ttt ettt et et et e e et e et e et e ea e 5
42.1 a1 oo [0 o3 £ o] o KU PRSP 5
4.2.2 Getting StAMEA ... oo 6
4.2.3 Hitting 12KB SRAM mapped into OTP bouUNdarycovvviiiiiiii e 7
424 Hitting 52KB OTP DOUNTAIY . .vniiiiii i e e e e e e e ens 7
4.2.5 QI LI o= (o] o I 4= Tod o 7
4.2.6 Limitations in Development MOcouiiiiii e e 8
4.2.7 Patch and non-patch (RF parameters)c..ivieiiiiii e e e e 9
5 THE PATCH SYSTEM L ettt e 10
5.1 PatChable COOE EXaMIPIE ... i e e e e e e e 11
6 DEVELOPMENT TOOL SETUP AND EXECUTIONciuuiiiiiiii et 14
o A 1Y oo T g =T o ST =1 (] 14
6.2 Compiling from the Command LiNE...........coouiiiiiie e e e e e e e eanees 16
6.2.1 MBKETIIE .. e 17
6.3 UVision project file geNEratioNniciiiiiii e 18
6.3.1 (NN o] g g F= V1Y, o o L= o 0] = o] A 19
6.3.2 DevelopmeENt MOUE PIrOJECT. ittt ettt 19
6.4 Debugging With UVISION IDE e e 20
g g N 24
LN 25

Table of Figures

Figure 1, 400 Series Z-Wave Single Chip memory map in the different modes...............c..ccooviiiiiininnnnn. 4
Figure 2, An example of the patch SyStem eXeCULION PrOCESSuvieuuiierieiiiieeiiie et 10
Figure 3, Configuring environment Variables ... 14
Figure 4, Building sample appliCALIONSuiiriiiiiaii et e e e e 15
Figure 5, Possible sample appliCation targetscouuiiieiiiiiii e 16
Figure 6, Building sample applications and uVision project filescccooviiiiiiiiiiiiin e, 18
Figure 7, Generating uVision Multi-project fileo 18
Sigma Designs Inc. Revision Record and Tables of Contents Page iii of iii

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

1 ABBREVIATIONS

OTP One Time Programmable
SDK Z-Wave Software Deweloper's Kit

2 INTRODUCTION

2.1 Purpose

The purpose of this document is to guide the Z-Wawe application programmer through the very first
Z-Wawe software system build. This programming guide describes how to build a complete program and
load it on a 400 Series Z-Wave module for the different code memory modes. Refer to [1] regarding Z-
Wawe sample applications hosted on the 400 Series Z-Wave module.

2.2 Audience and prerequisites

The audience is R&D software application programmers. The programmer should be familiar with the
PK51 Keil Development Tool Kit for 8051 micro controllers and the GNU make utility.

Sigma Designs Inc. Abbreviations Page 1 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

3 BUILDING APPLICATIONCODE

All the sample applications for the 400 Series Z-Wave Single Chip contains source code and makefiles
that allows the dewveloper to modify and compile the applications without modifying makefiles, etc. All
sample applications are built by calling the MK.BAT script file that is located in the sample application
directory. Alternatively use the integrated development environment uVision from Kaeil.

Every sample application has a main Makefile describing what can be built. It also gives the developer an
opportunity to limit what is built to a subset of this.

Targets can be built in lots of variants with 5 varying parameters:
¢ FREQUENCY
e CODE_MEMORY_MODE
e LIBRARY
e HOST_INTERFACE

e SENSOR_TYPE

Not all of these parameters are relevant for all applications, but the irrelevant ones are setto a default
value in the applications Makefile.

For every one of these parameters, there are 3 different ways to set which one you want. This is
described in the Makefile for the application. You can leave parameters unspecified. Then make will build
targets for all combinations of these parameters.

The applications main Makefile defines a list of modules, which are specific for the application, and which
shall be included in the build.

The applications main Makefile also defines CDEFINES, which are specific for the application.

3.1 Specifying which subset of "everything", you wan'tto build:

If you do not specify anything after the “mk” command, everything will be built.
The command “mk help” will give you a hint on what you can ask for:

...\Product\dev_ctrI>mk help

SYNOPSIS:

> MK ["FREQUENCY=EU"] ["CODE_MEMORY_MODE=normal"]

List of frequencies: US EU ANZ HK MY IN JP JP_DK

List of code memory modes: normal devnode devmode_patch starter_devmode starter_devmode_patch

For every parameter, you can specify a single variant to build for in 3 different ways:

e 1. By specifying the code memory mode in your command line, like:
> mk “CODE_MEMORY_MODE=devmode_patch”

Sigma Designs Inc. Building Application Code Page 2 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

e 2. By setting the parameter in the Makefile (it is prepared):
CODE_MEMORY_MODE:=normal

e 3. Alternatily you can do the same by setting your environment from the command line with:
> SET CODE_MEMORY_MODE=normal

Remember to UNSET this when you jump to work on other things.

You can combine these methods in any way for the different parameters.

Sigma Designs Inc. Building Application Code Page 3 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25
4 MODES OF OPERATION

The 400 Series Z-Wawe Single Chip build environment is different compared to previous 100/200/300
Series Z-Wawe Single Chips since the ASIC has OTP memory instead of Flash memory in the code
space. However, the 400 Series Z-Wawve Single Chip supports a Development Mode (from now on called
Dewelopment Mode) enabling application development in SRAM. The supported modes are shown on
the figure below.

Hd 256 bytes IRAM
E 128bytes PD XRAM (aka critical memory)
Mirrored
4k bytes XRAM
[12k bytes Dev RAM
[] ot
Modes
Normal Development
IRAM IRAM
256 256
EEEEEP EEEEI
0 00 0 00
XRAM XRAM
20k 4FFF 20k 4FFF
g%%g% 2000 2000
8k 1FFF 8k 1FFF
"""" 1000 1000
w W OFFF K ,4// OFFF
0] o000 0 / 0000
CODE SPACE CODE SPACE
64k 64k
FFFF FFFF
D000
52k CFFF
0 0000 0 0000

Hgure 1,400 Series Z-Wave Single Chip memory map in the different modes
In Normal Mode the code in located in OTP memory only.

Dewelopment Mode is used during application development. A 12kB SRAM is mapped into the upper part
of the code space to allow modification of the code.

SDK sample applications supports both Normal and Development Mode enabling dewelopers to easily
start on new applications. Howewer, read the following sections carefully because especially
Dewelopment Mode contains a number of limitations and pitfalls.

Sigma Designs Inc. Modes of Operation Page 4 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

4.1 Normal Mode

In Normal Mode all firmware code is located in OTP memory and is therefore targeted for final product
runs typically. Since there is no way to erase the OTP code memory the dewveloper must pick a new 400
Series Z-Wave Single Chip when running Normal Mode and a code change is required.

To ease the development process and re-use 400 Series Z-Wave Single Chip during several
dewelopment coding/testing loops you can use Dewelopment Mode during development of the Z-Wawve
application.

4.2 Development Mode

Use Dewelopment Mode when creating a new and/or modifying an existing Z-Wawe application. The
same 400 Series Z-Wawe Single Chip can be re-used as long as the Z-Wave application development
can be constrained to the 12kB SRAM and OTP content can be kept unchanged. This shortens the
dewelopment cycle considerably and reduces cost by awiding replacement of chip.

4.2.1 Introduction

All sample applications in the SDK are prepared for application development in two different
Dewelopment Modes supporting a SRAM based patch of all application functions in OTP.

e devmode
e starter_devmode

The devmode is best, when you are nearly finished with your application, or if you are making an
application very similar to one of the sample applications in the SDK.

When you start your project from scratch, it is best starting with the starter_devmode. In this mode the
patchable OTP target contains the entire Z-Wawe library and an empty application with patchable
versions of all the mandatory application functions shown below:

e ApplicationlnitHW

e ApplicationInitSW

e ApplicationTestPoll

e ApplicationPoll

e ApplicationCommandHandler

e ApplicationNodelnformation

e ApplicationSlaveUpdate eller ApplicationControllerUpdate
e ApplicationSlaveCommandHandler (Bridge only)

e ApplicationSlaveNodelnformation (Bridge only)

You can still use any of the sample applications as a starting point. Start with the one with the library,
which fits your applications needs.

Build the starter_devmode (OTP) target first. This can be programmed into the OTP of your first chip. If
you can dewelop all of your application in 12K code memory, then you can use this first chip for the rest
of your development work. All the sample applications in the SDK can be held in the 12K memory for
dewvelopment work.

Sigma Designs Inc. Modes of Operation Page 5 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

When you have written your application, build the starter_devmode_patch target. This can be
programmed into the SRAM of your starter_devmode dewvelopment chip, and be run in development
mode. All the sample applications in the dewkit are prepared for this.

As your development work progresses, you can put more and more of your application into the OTP.
Near the end of your project, you will see an advantage of using the devmode targets (without “starter ”).
There is no way in between the two devmodes, devmode and starter_devmode. It will always be a little
puzzle to bring you from your first attempts with the empty application, to the finished project in OTP.

As the last thing in your project, you build your project for normal mode, where all code is unpatchable in
OTP. This is the code, which you should release for your final product.

If you use the patch macros declared in $(ZWLIBROOT)\include\patch.h like they are used in the Z-

Wawve sample applications, it will be possible to make source code compatible for working in all code
memory modes.

4.2.2 Getting started...
We recommend using starter_devmode hex files because this option provides the greatest flexibility
during development of a new application. The whole application can be changed because it is situated in
the SRAM part mapped into OTP. The steps are as follows when selecting the LED Dimmer application
as a starting point:
1. Devweloper's migrating from SDK'’s prior to 6.0x must change the code according to the steps in
[2]. SDK 6.01.00 must also incorporate the standard patch system macro defines introduced in
6.01.01.
2. Make a new file called LEDdim_patch.c and copy entire content of LEDdim.c into it.
3. Build application in Dewvelopment Mode and relevant frequency.
4. Program chip:
leddimmer_ZWO040x_ANZ_starter_devmode.hex to OTP
leddimmer_2ZW040x_ANZ_starter_devmode_patch_RAM.hex to SRAM mapped into OTP
5. Check that application runs as expected.
6. Make the necessary changes in LEDdim_patch.c

7. Build application in Development Mode and relevant frequency.

8. Program chip in Development Mode:
leddimmer_2ZW040x_ANZ_starter_devmode_patch_RAM.hex to SRAM mapped into OTP

9. Check application and in case additional changes are needed jump back to point 6.
10. Copy entire content of LEDdim_patch.c into LEDdim.c.

11. Build application in Normal Mode and relevant frequency.

12. Insert a new chip because OTP part have changed.

13. Program chip in Normal Mode:
leddimmer_ZW040x_ANZ.hex to OTP

14. Check that application runs as expected.

Sigma Designs Inc. Modes of Operation Page 6 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

423 Hitting 12KB SRAM mapped into OTP boundary

When LEDdim_patch.c exceeds the 12KB SRAM mapped into OTP boundary then it is necessary to
reduce its size and use only devmode hex files going forward. The steps are now as follows:

1. Copy entire content of LEDdim_patch.c into LEDdim.c.

2. Remowe some of the functions completely from LEDdim_patch.c that can stay unchanged in the
following application development. Goal is to get under the 12KB boundary again.

3. Build application in Dewvelopment Mode and relevant frequency.

4. If not under the 12KB boundary jump back to point 2.

5. Insert a new chip because OTP part have changed.

6. Program chip:
leddimmer_ZW040x_ANZ_devmode.hex to OTP
leddimmer_ZW040x_ANZ_devmode_patch RAM.hex to SRAM mapped into OTP
Notice: Do not use starter_devmode anymore!

7. Check that application runs as expected.

8. Make the necessary changes in LEDdim_patch.c

9. Build application in Dewvelopment Mode and relevant frequency.

10. Program chip in Development Mode:
leddimmer_ZW040x_ANZ_devmode_patch RAM.hex to SRAM mapped into OTP
Notice: Do not use starter_devmode anymore!

11. Check application and in case additional changes are needed jump back to point 8.

12. Copy content of LEDdim_patch.c into LEDdim.c but remember to preserne the functions that only
exist in LEDdim.c.

13. Build application in Normal Mode and relevant frequency.
14. Insert a new chip because OTP part havwe changed.

15. Program chip in Normal Mode:
leddimmer_ZW040x_ANZ.hex to OTP

16. Check that application runs as expected.

4.2.4 Hitting 52KB OTP boundary
When LEDdim.c and library exceeds the 52KB OTP boundary then it is necessary to introduce empty

functions in LEDdim.c to reduce its size. The empty functions must then exist in LEDdim_patch.c
including all the code to get it executed. Again it is necessary to use devmode hex files.

4.2.5 The patch macros

In the include file $(ZWLIBROOT)\include\patch.h are declared some very central macros for the patch
system. Using these macros makes it possible to have identical source files for all the 5 different code

Sigma Designs Inc. Modes of Operation Page 7 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

memory modes. This makes it easier to synchronize the source codes with respect to equality of function
headers between non-patch (OTP) and patch (SRAM).

4.2.6

PATCH_FUNCTION_NAME
This macro is used for adjusting a function name to be used as both patchable and as a patch.

PATCH_FUNCTION_NAME_STARTER
This macro is a variant of the above only to be used for the mandatory application functions
referenced by the library.

PATCH_FUNCTION_NAME_WRAPPER
This macro is a variant of the above only to be used in the wrapper module ...\util_func\starter.c
used for starter_devmode targets.

PATCH_TABLE_ENTRY

This macro is used for generating a patch table entry for a function. It shall be put in every
patchable function, and the patch for it. It shall be inserted before any code generating
statements in the function, and after any declarations of variables. Observe that you can’t
initialize a local variable in the same statement as the declaration here.

PATCH_TABLE_ENTRY_STARTER
This macro is a variant of the above only to be used for the mandatory application functions
referenced by the library.

PATCH _TABLE_ENTRY_WRAPPER
This macro is a variant of the above only to be used in the wrapper module ...\util_func\starter.c
used for starter_devmode targets.

PATCH_VARIABLE
This macro is used for declaration of global variables referenced by both non-patch (OTP) code
and patch (SRAM) code.

PATCH_VARIABLE_STARTER
This macro is a variant of the above only to be used for variables nodelnfo and txBuf

Limitations in Development Mode

Remember the following important limitations when working with patchable functions in Development

Mode:

A patchable function, and the patch function for it, must have exactly the same declaration. This
constraint goes for both the functions parameters and the functions local variables. You can hawe
all the functions you like in the devmode_patch target. They do not need to be existent as a
patchable function in OTP (but of course they can’t be called from OTP code directly. They are
not known). If you are working in starter_devmode this will be obvious, because the whole
application resides in the starter_devmode_patch. Also, you can have all the functions you like in
the patchable (OTP) part of your program. They do not need to have a corresponding patch
function. But it is a good idea to synchronize the source files towards the end of your project.
Then they can be copied back and forth between source.c and source_patch.c

The functions must be declared reentrant to make the parameters and local variables allocated
on the "Reentrant Stack". Also because of this, static variables are not allowed in these
functions.

Check carefully the variable data memory layout in the map files. They must not overlap.

Sigma Designs Inc. Modes of Operation Page 8 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25
e The patchable function and corresponding patch function must NOT be empty.

e If you make a time critical function patchable, you can experience problems, if you havwe too
many other patch functions. l.e. if the patch-table grows too large, it can be too time consuming
to search the table. So be careful with patching time critical functions.

e Interrupt vectors must be located in the OTP part of the program. If you are working in
starter_devmode, and your application in the patch part of the program references a part of the
Z-Wawe library, which contains interrupt functions, which are not used by the empty application in
OTP, Then you can experience problems. You then need to force load these Z-Wawe library
modules during linking of the OTP part of the program. This is done by assigning the module
names in question to a variable called FORCE_LOADED_LIBRARY_MODULES in your
Makefile, when building for starter_devmode. An example can be found in the Makefile for the
application ...\Product\Simple_AV_Remote:

Force loading of used library modules, which contains interrupt functions
FORCE_LOADED_LIBRARY_MODULES:=2ZW_PHY_KEYPAD_SCANNER_040X.
This can be a comma delimited list of modules.

4.2.7 Patch and non-patch (RF parameters)

One more reason to work in Development Mode is when you need to adjust RF parameters in an
existent program with the ZWaveProgrammer. In a pure normal mode OTP program you can’t change
anything, but in Development Mode you can change the RF parameters located near the top of the
memory map in SRAM.

The patchable devmode targeted OTP program can be executed in normal mode. Just as the normal
mode targeted OTP program. In both cases the RF parameters are located near the top of the memory
map, and can’t be changed.

If you need to change the RF parameters with the ZWaveProgrammer, and you don’'t have a patch for
your program, then you need to program (write) a small file, only containing these RF parameter, to the
dewelopment SRAM, and execute the program in Development Mode. This .hex file,
<appl>_2ZW040x_y_devmode_RAM.hex, is part of the build result, and is located as described in
paragraph 6.2.

Sigma Designs Inc. Modes of Operation Page 9 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

5 THEPATCHSYSTEM

The patch system consists of a patchcheck routine in the Z-Wawe library, and macros inserted in the
beginning of the patchable code (OTP code) and patch code (SRAM code). The inserted macros in the
code will build a ‘patch-table’ for the ‘patch-check’ routine. Figure 2 shows an example of a patch system
for a 400 Series Z-Wawe Single Chip in Development Mode.

-

Iy

Patch Table

o o

12KB SRAM < Function #4

Function #2
7 iz?‘ Patched

A

Function #3

52KB OTP
» Function #2
Patchable
Function #1 %}

»| Patchable

Z-Wave
Library

\

Fgure 2, An example of the patch system execution process

The figure shows an example comprising of a Z-Wawe library and three application functions residing in
OTP. Modifying functions #1 and #2 as patchable allow patched functions in SRAM as an alternative.
Function #3 is not enabled as patchable in the example. To make function #3 patchable will require a
change in the source code, build, and download of the hex file into a new 400 Series ASIC. Function #4
is an application specific function that is only located in SRAM and that is only called from function #2.
Note that functions, that are only located SRAM, can only be called from other functions in SRAM.

Sigma Designs Inc. The Patch System Page 10 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

The code in the example is executed as described in the following:

1.

The system starts to execute the main loop, which is located in the Z-Wawe library. When various
Z-Wawe protocol tasks are completed, the application calls functions #1, #2 and #3 successively
from the main loop. When the processor is executing function #1 it will discover that this function
is patchable. The processor will then jump to the patch table in the SRAM to search for an
alternative function in the SRAM.

As the patch table does not contain an entry for function #1, the processor will return to the start
address of the OTP based function #1. The processor will then executes the function #1 in OTP
memory and then return to the main loop.

When the processor is executing function #2 it will again discover that this function is patchable.
As a result it will again jump to the patch table in the SRAM to search for an alternative function
in the SRAM.

As the processor finds an alternative function in the patch table it will jump to the start address of
function #2 in SRAM memory

The processor now executes function #2 in the SRAM memory where function #4 will be called
The processor returns to function #2
Then the processor returns to the main loop skipping function #2 in OTP memory. Finally, the

program executes the non-patchable function #3 in OTP without any additional search overhead
in the patch table.

The sample applications support both Normal Mode and Dewelopment Mode. A flag in the make files
determine the mode to select, which is the only change the customer have to make. In Normal Mode the
patch system is ignored and in Development Mode the patch system is enabled.

51

Patchable code example

For example, to make the application function, ApplicationlnitSW, patchable it only requires minor
changes in the source code as described in the following. First, you must insert some definitions for the
patch system as the very first in your C-file:

Sigma Designs Inc. The Patch System Page 11 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

#ifdef PATCH ENABLE
/~k*~k~k*~k~k*~k~k*~k~k*~k***********************/

/* Include assembly MACRO definitions for patch insertions. */
/* */
/* Define SSET (MAKE PATCHABLE CODE) for making patchable code destined */
/* for OTP or ROM memory. */
/* Undefine S$RESET (MAKE PATCHABLE CODE) for making code containing patch */
/* code destined for RAM or FLASH memory. */
/***/
#if defined (WORK_PATCH) || defined(STARTER_PATCH)

/* Making code containing patch code destined for development RAM memory. */

#pragma asm
SRESET (MAKE PATCHABLE CODE)

SINCLUDE (ZW_patch.inc)
#pragma endasm

/* Rename CODE class to CODE PATCH */

#pragma userclass (code = PATCH)

/* Rename CONST class to CONST PATCH */

#pragma userclass (const = PATCH)

/* Rename XDATA class to XDATA PATCH */

#pragma userclass (xdata = PATCH)

#else

/* Making patchable code destined for OTP or ROM memory. */

#pragma asm

SSET (MAKE PATCHABLE CODE)

SINCLUDE (ZW_patch.inc)

#pragma endasm

#endif /* elsif defined (WORK_PATCH) || defined(STARTER PATCH) */
#endif /* PATCH ENABLE */

Sigma Designs Inc. The Patch System Page 12 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

Second, modify the function ApplicationInitSW in the <application>.c file and in the
<app|ication>_patch.c1 file before compiling and downloading them to respectively OTP and
development SRAM::.

/¥ =========================== ApplicationInitSW

xx Initialization of the Application Software

* %

*x This is an application function example
e .
BYTE /*RET TRUE */

PATCH FUNCTION NAME (ApplicationInitSW) (void) /* IN Nothing */
#ifdef PATCH ENABLE

reentrant

#endif

{

#ifdef PATCH ENABLE

fpragma asm

PATCHiTABLEiENTRY(ApplicationlnitSW)

#pragma endasm

#endif

/* Do the things which you thought was right in the first place */

return (TRUE) ;

Initialized global variables in the application module must be declared in the following way:

PATCH VARIABLE BYTE receivedReport
#ifndef WORK_ PATCH

= TRUE

#endif

’

! <application>.c file and <application>_patch.c file can be identical

Sigma Designs Inc. The Patch System Page 13 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

6 DEVELOPMENT TOOL SETUP AND EXECUTION

The deweloper can choose from two methods to compile and download firmware to the 400 Series
Z-Wawe single Chip:

e Use the make command line tool and the Z-Wawe Programmer GUI tool

e Use Keil uVision development GUI

6.1 Environment Setup

A couple of environment variables must be defined before the sample applications can be build on the Z-
Wawve Deweloper's Kit:

e KEILPATH
e TOOLSDIR

The procedure on a PC using Windows XP is performed as follows:

1. Select Start, Control Panel and System
2. Select Advanced tab and activate the Environment Variables button

Environment Variables

Iser variables For JFR

YWariable Yalue

IMNCLIJDE Z:1Program FilesiMicrosoft Yisual Studio. ..

LIE :\Program Files\Microsoft Visual Studio. .

path s Program Files\ ST binpo-wminds

TEMP C:\Documents and Settings)JFRYLocal 5. ..

TMP C:Documents and Settings) JFR Local 5. ..
| mew || Edt || Delete

Swstem variables

Wariable Yalue ~

FEILPATH RkeilliCs1

LIE CProgram FilestMicrosaft visual Studio, .,

MUMBER_OF P... 1

05 Windows_MT

Fath CATchbin W INDOW S syskem3z; Ci,., %
new || Edt || Delete |

[Ok H Cancel]

Fgure 3, Configuring environment variables

3. Under System variables activate the New button

Sigma Designs Inc. Development Tool Setup and Execution Page 14 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

In the Variable name textbox enter KEILPATH (use capital letters because Windows XP is case
sensitive)

In the Variable value textbox enter C:\KEIL\C51 and activate the OK button

Under System variables activate the New button

In the Variable name textbox enter TOOLSDIR (use capital letters because Windows XP is case
sensitive)

In the Variable value textbox enter C:\Devkit_ 5 00\TOOLS and activate the OK button

Afterwards open a command prompt (DOS box) in the relevant sample application directory to build the
application.

e C:AWINDOWS\system 3 2\cmd.exe

C:sDevKit _5_80\Product“LED_Dimmer>HK_

FHgure 4, Building sample applications

Remember to use upper casein KEILPATH, KEIL_LOCAL_PATH and TOOLSDIR when using
Windows XP, because this operating system is case sensitive. If the environment variables are not
defined then MK.BAT will prompt the user to define them.

Opening a command prompt to a particular directory from Explorer is enabled in the following way:

NookwnhrE

Start regedit

Go to HKEY_CLASSES_ROOT \ Directory \ shell

Create a new key called Command

Giwe it the value of the name you want to appear in the Explorer. Something like Open DOS Box
Under this create a new key called command

Give it a value of cmd.exe /k "cd %L"

Now when you are in the Explorer, right click on a folder, select Open DOS Box, and a command
prompt will open to the selected directory.

Sigma Designs Inc. Development Tool Setup and Execution Page 15 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

6.2 Compiling from the Command Line

The command line batch file, MK.BAT, can build all versions with respect to device types (Portable
controller, Static Controller, Routing Slave, etc.) and RF frequencies (ANZ/EU/HK/IN/JP/MY/US) at once,
or the wanted target can also be entered as a parameter on the command line. The figure below displays
the possible targets for a given product.

et c:\WINDOWS\system32\cmd.exe

Microsoft Windows P [Uersion 5.1.26881
CC» Copuyright 1985-2881 Microsoft Corp.

C:sDevKit_6_61_815Product“LED_Dimmer>mk help
SYMOPSIS:
> HK [“FREQUENCY=EU'1 ["CODE_MEMORY_MODE=normal'l

Lizt of freguencies: Ug EU AHZ HK MY IWH JP JP_DK
Lizt of code memory modez: normal devmode devmode_patch starter_devmode startep
devmode_patch

C:sDevKit_6_01_815Product-LED_Dimmer>_

Figure 5, Possible sample application targets

Remember to enter the targets as shown when using Windows XP, because this operating system is
case sensitive.

When MK.BAT is executed the following directory structure is created within the source code directory as
depicted below:

- <appl>
- build

- <appl> ZW040x <frequency>
- list B - contains listfiles
- rels - contains objectfiles and map files
extern eep.hex - EEPROM
<appl> ZW040x <frequency>.hex - OTP (Normal Mode)

- <appl> ZW0 40x <fiequency> devmode
- list B B - contains listfiles
- rels - contains objectfiles and map files
extern eep.hex - EEPROM
<appl> ZW040x <frequency> devmode.hex - OTP (DevelopmentMode)
<appl> ZW040x <frequency> devmode patch RAM.hex - SRAM (DevelopmentMode)

- <appl> ZW0 40x <E£equency> starter devmode
- list B B B - contains listfiles
- rels - contains objectfiles and map files
extern eep.hex - EEPROM
<appl> ZW040x <frequency> starter devmode.hex -OTP (DevelopmentMode)
<appl>:ZWO40x:<frequency>:starter:devmode_patch_RAM.hex

- SRAM (DevelopmentMode)
Sigma Designs Inc. Development Tool Setup and Execution Page 16 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

Actually, the makefile generates four hex-files, when working in Development Mode for the ZW040x

target. The purpose of the hex-files is as follows:

<appl>_2ZW040x_y_devmode.hex

<appl>_2ZW040x_y_devmode_patch.hex

<appl>_2ZW040x_y_devmode_patch RAM.hex

<appl>_2ZW040x_y_devmode_RAM.hex

6.2.1 Makefile

Program this file into OTP memory in Development
Mode.

This file is the result of the first linking. It is the
program, which is prepared as patchable for further
improvement and changes.

This file is the result of the second linking. It is the
patches to the original program abowe. This file is
located in the directory ...\build\Rels\

Program this file into SRAM memory in
Development Mode.

This file is the same as the previous. But it has been
filtered so that it only contains contents destined for the
SRAM memory (in Development Mode). Howeer, if
there were any RAM targeted program contents from
the first linking, then it is also merged into this file.

This file contains the frequency setup for the patchable
program from the first linking. It will be needed for
running the program in Development Mode without
loading a patch.

This file is programmed into SRAM with the
programmer, when you do not want to use a patch.
This file is located in the directory ...\build\Rels\

The file Makefile is initially read by the make tools that is called from mk.bat. It creates the directory
structure and defines the build-targets and then calls the other makefiles in the build depending on the

target.

Sigma Designs Inc. Development Tool Setup and Execution Page 17 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

6.3 uVision project file generation

The Deweloper's Kit contains tools for generation of Keil uVision4 project files for the embedded sample
application based on a 400 Series Z-Wawve Single Chip. The uVision4 project files are generated by
opening a command prompt (DOS box) in the relevant sample application directory and adding
“UVISION=1" to command MK.

c:\WINDOWS\system 3 2\cmd. exe

Microzoft Windows XP [Uerzion 5.1.26881
(C> Copyright 1785-2801 Microzoft Corp.

C:sDevKit_4_53_815Products~DoorBell>MK "FREQUENCY=US"'" "UUISION=1""

FHgure 6, Building sample applications and uVision project files
It is also possible to generate the uVision multi-project file (*.uvmpw) by calling

%TOOLSDIR%\uVisionProjectGenerator\uVisionP rojectGenerator.exe
CREATE_WORKSPACE=<workspace_name>

For example generate DoorBell uVision multi-project file as follows

AWINDOWS\system32\cmd. exe

Microzoft Windows XP [Verzion 5.1.26001
(C> Copyright 1785-2801 Microzoft Corp.

C:wDevKit_6_81_@A3“ProductDoorBell>«TOOLEDIRx~ulizionProjectGenerator~ulisionPro
jectGenerator.exe CREATE_WORKSPACE=DoorBell

C:sDevKit_6_B81_A3sProduct~DoorBellXdir *.uvmpuw
Uolume in drive C has no lahel.
Uolume Serial NHumber iz 9856—15ER

Directory of C:wDevHKit_6_@1_@A3“Product“DoorBell

17-81-2812 11:32 881 DoorBell.uvmpuw
1 File<s)> 881 hytes
A Divds>» 32,45%8,.4087_.936 buytes free

C:sDevKit_6_B81_A3~Product~DoorBell>_

Figure 7, Generating uVision multi-project file

Sigma Designs Inc. Development Tool Setup and Execution Page 18 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

6.3.1 Normal Mode project

<appl>_2ZW040x_US.uvproj: this project is the same as for old chip series. This project generates the
HEX file to be written to the OTP of the ZW040x and to be run in the Normal Mode. No patch system is
being used.

6.3.2 Development Mode project

<appl>_ZwW040x_US_devmode.uvproj: this project generates the basic, patchable hex file, which is
loaded to the OTP memory of the ZW040x in Development Mode.

<appl>_ZwW040x_US_devmode_patch.uvproj: this project generates the patch hex file, which is loaded
to the SRAM of the ZW040x in Development Mode.

To work with Development Mode, you must:

1) Open <appl>.uvmpw.

2) Activate the <appl>_ZW040x_US_devmode project

3) Build the project.

4) Press the “Download to Flash Memory” button (Flash->Download), and
<appl>_2W040x_US_devmode.hex will be written to the OTP.

5) Then activate the <appl>_ZW040x_US_devmode_patch project.

6) Build <appl>_ZW040x_US_devmode_patch project.

7) Atfter this, you must press “Download to Flash Memory” button (Flash->Download), and
<appl>_2ZW040x_US_devmode_patch_RAM.hex will be written to the SRAM, and
Dewelopment Mode will be activated.

8) Make changes in the <appl>_patch.c

9) Go tostep (6).

Before using this scheme, you must fulfill these requirements:

1) At Project -> Options for target Release -> Utilities tab: set the COM port number to the port
where Z-Wawve Programmer ZDPO3A board is connected.

2) If Keil uVision is not installed in default folder (C:\Keil): in Project -> Manage -> Components,
Environments, Books -> Project Components tab: remove C51FPL.lib and add it from user's Keil
installation (keil folder\C51\LIB\ C51FPL.lib). Mowe the library using up and down buttons, so that
it is placed between zw_controller_portable.... and init_vars.obj

Sigma Designs Inc. Development Tool Setup and Execution Page 19 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

6.4 Debugging with uVision IDE

The uVision4 IDE support debugging of embedded applications including utilization of breakpoints
supported by the 400 Series chip. The steps to enable debugging are as follows:

1. Make an .uwproj file for your application:

...\Product\LED_Dimmer>make FREQUENCY=EU CODE_MEMORY_MODE=normal BOARD=ZDP03A
MAKESCHEME=NO_SCHEME UVISION=1

2. Open this uVision project in uVision4.

3. Add inclusion of ISD51.h into your applications main file like this:

(¥ leddimmer_ZW040x_EU - pVision4
File Edit Miew Project Flash Debug Perpherals Tools SWCS window Help

S & G2 o} - " E = E g &
& E v &

74 LEpdim.c 3| £E] LED_CONTROL.C | Z¥] ONE_BUTTON.C

Qe

(ORG | oedrnttttttttttiiniiidnd ittt ittt btttk d kAt Attt Atk d Ak d g Akt]
ppl Source Code 0or0 | A INCLUDE FILES *f
#1 LEDdirn.c Q071 | frr sttt A A A A A AR A A A AR A A A A A A A A A AR A A AR AR A A AR A A AR A A A ARt A ARt
0072 | #include <config app.h>

0073 | #include <EZIW_patch.hr

0074 | #ifdef ZIW_CONTROLLER

0075 | #include <ZV_controller api.h:

0076 | #else

0077 | #include <ZIV slave api.h>

0078 | #endif

0079 | #include <ZIV_pindefs.h>

0080 | #include <LEDdim.h>

0041 | #include <eeprom.h>

0082 | #include <slave_learn.hx

0083 | #include <one button. h>

0084 | #include <led control.h:

0085 | #include <ZW_uart_api.h>

0086 | #include <EZW timer api.h>

#

Lol o«

0091 | #include <ZIVW_TransportLayer.hs>

1 L LT T T e Y4 -
3

Keil 15051 In-System Debug L0 cii

Sigma Designs Inc. Development Tool Setup and Execution Page 20 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

4. Add a polling statement into the main loop (in the beginning of ApplicationPoll() function) like this:

leddimmer_ZW040x_EU - p¥
File Edit Miew Project Flash Debug Peripherals Tools SYCS Window Help

e e =] vERe d e S @ %
& [# R v iR
LEDdim.c [FF 1] LED_CONTROL.C 23] OMNE_BUTTON.C -
PATCH FUNCTION MNAME STARTER (ApplicationPoll) (weid) /< IN Nothing = z'
#ifdef PATCH ENAELE
LEDdimn,c reentrant
one_buttan.c #endif
led_control.c {
slave_learn.c EYTE lastiction:
App_RF3etup.as1
= #ifdef PLTCH ENAELE
v _rf_040x_EU.obj #pragma asm
W _slave_routing_Z PATCH TABELE_ENTRY STARTER(ApplicationPoll) o

C51FPL.LIB
init_wars.obj

#pragwa endasm
#endif

ZW_RFO40RH
7W_PATCH.H
ZW_SLAVE_APLH
ZW_BASIS_APLH
COMFIG_LIB.H
ZW_TYPEDEFS.H
ZW_SYSDEFS.H
ZWO40%.H
ZW_TRANSPORT_AF v
s

lastliction = OneButtonlastlictioni):
if [(bNWIStartup)
StartLearnlfodeMNow (ZW_SET LEARN MODE_NWI) ;

BNWIStartup = FALLSE:
poll3tate = POLLLEARNMODE:

Keil ISDS1 In-System Debugl L1926 Ci1

5. Add an initialization statement for UARTL in the ApplicationinitHW() function like this:

%] leddimmer_ZW040x_EU - p¥isiond

File Edt “ew Project Flash Debug Peripherals Tools SYCS5 Window Help
| S ¥ = 9 - ™ 5] %
= OEU v K &
iH] Lepdime EJ I LED conTROLC | IX] ONE BUTTON.C he
1871 | PATCH_FUNCTION_NAME_STARTER |[ApplicationInitHu) | z‘
pl Source Code 1872 EYTE hitatus S#% IN HNothing Y
LEDdim.c 1873 1)
one_button.c 1874 | #ifdef PATCH ENAELE
led_contral.c 1875 | reentrant
slave_learn.c 1876 | #endif
App_RFSetup.a51 1877 | {
-5 Z-wave Lib 1878 /% This variakble is the reason why we need a wrapper Ffunction Ffor */
W _rf_040x%_EU.obj = 1873 % ApplicationTnitHW(), to meke it's frame match the Fframe Ffor 74
W _slave_routing_Z 1880 J# MyProduct.ApplicationTni tHE () L7
C51FPL.LIE 1a81 BYTE i:
init_wars.obj 1882
=25 Z-Wave Inc 1883 | #ifdef PATCH ENAELE
Zwd_RFO40%.H 1884 | #praomwa asm
ZW_PATCH.H 1885 PATCH TABLE ENTRY STARTER(ApplicationInicHI)
IW_SLAVE_APIH — 1886 | #pragma endasm
ZW_BASIS_APLH 1887 | #Hendif
COMFIE_LIE H 1888
ZW _TYPEDEFS.H 1889 | #ifdef ZM4102Z
2 _S¥3DEFS.H 1830 IW_UARTO_=zwm4102 mode_enable (TRUE) ; P
ZW/040% . H 1891 | #endif
ZW_TRAMSPORT_AF 1092 | pAEdelss
7w _TIMER _APT.H 1893
Xl 1894 g
% 1895 S% havdware initislization */ -
4 »
Keil ISDS1 In-System Debugi L:1895 Ci1
Sigma Designs Inc. Development Tool Setup and Execution Page 21 of 25

CONFIDENTIAL

INS11709-4

6. Add the options necessary for debugging like this:

Working in 400 Series Environment User Guide v6.02.00

2012-05-25

(The original is to the left and the new to the right)

Options for Target x' -> C51 -> Preprocessor Symbols -> Define: add "ZW_ISD51_DEBUG"

Device | Taget| Output | Listng | User C51 | 4581 | 151 Locate | L1 Mise | Debug | Utiiiss |

- Preprocessar Symbols

Options for Target

Device | Target| Output| Lising| Ussr C51 | 451 | LB Locate | LXB1 Misc | Debug | Utiitss |

- Preprocs

Defire: ;zw,msw,nsaus I

Llndafwr"—g—l

Define: |
Ungefine: |
- Code Optirmization
i _j “Warnings: |Warninglevel 1 hd
Lewvel: | 11: Reuse Common Exit Code >
Bits to round for float compare: |3 -
Emph: i - Global Register Col
efoss | avor sizs L S Heaslol IV Interrupt vectors at address: |0+0000
¥ Linker Code Packing (max. AJMP / ACALL) I ket vaables o
T Don't use absoluts register accesses I Enibie ANS| nos: promaion ties
|”‘S|ut:e I N AZNAVESINCLUDE : A\ 2w AWEMO_DEFINES: \BUILD_PRJ:A\BUILD_PRJNLEDDIMMER_Z __]
aths
Mise: IDB OEMOCD SBLCCD
Controls
Compiler |LARGE OBJECTADVANCED WARNINGLEVEL (1) OPTIMIZE (11.51ZE) BROWSE &
control [NOINTPROMOTE -
shiing

~ Code Optimization

Wamings: |'Wamninglevel 1 >
Bits to round for float compare: |3 -
W Interrupt veclors al address. | 0x0000

I™ Keep variables in order

Lewek [11: Reuse Comman Exit Code E
Emphasis: [Favorsize w| [Global Register Coloring

¥ Linker Code Packing (max. aJMP £ ACALL)

Don't use sbeslute register accasses
L ? I Enable ANS! integer promeion rules

‘”ﬁ"-:ﬁe 3 b AZAWAVENNCLUDE .\ A2\ AVENO_DEFINES, \BUILD_PRJ: ABUILD_PRJALEDDIMMER_Z B
aths
Hise ;DE DENOCOSBLCCD
Contiols
Compiler [LARGE OBJECTADVANCED WaRNINGLEVEL (1) OPTIMIZE (11,51ZE) BROWSE
contiol (NOINTPROMOTE
shing

0k | Camcel | Deas

Help

Cancel Diefaults

[Erees] Help

Options for Target 'x' -> Debug:

Devlcel Targeli Uulpull L\stmgl User l cs1 lAXET 3 LxB1 Lucatei 51 Mise Debug IUtlhtlesi

Options for Target 'EU’

Dewcei Talgetl Uutputi Llsl\ngi User 3 C51 ;AX51

& Use Simulator Settings i " Use i ~| Settings Use Simulatar Settings
I Limit Speed to Real-Time ™ Limit Speed to ReakTime
¥ Load Application at Startup W Aun to main) ¥ Load Application at Startup T~ Run to main) ¥ Load Application at Startup ¥ Run to main]) ¥ Laad Application at Starup T Run to main)
Initialization File: Initislization File: Initialization File: Initialization File:
I e | | |
~Restore Debug Session Settingg———— F Restore Debug Session Settings - Restore Debug Session Settings — I -Restore Debug Session Seftings ———————

¥ Bieakpaints ¥ Toolbos i ¥ Bieakpaints ™ Tookbox | ¥ EBreakpoints W Toolbos | Breakpoints W Taulbos

¥ W/atch Windows & Performance Analpzer | IV Watch Windows ¥ Walch Windows % Performance Analyzer | T Watch Windows

¥ Memory Display | ¥ Memom Display ¥ Memory Display | W Memary Display

1 |
CPU DLL: Parameter. Diriwer DLL: Parameter CPU DLL: Parameter: Driver DLL: Parameter.
[soosioL |
Dialog DLL: Parameter Dialog DLL: Parameter: Dialog DLL: Parametsr: Dislog DLL: Parameter:
| | | | | | [resioll [es2
ok | Coneel | Defais | Help Ok | Camcel | Detais | Help

Device | Taget| Ouput| Listng| User | C51 | 451 | L4581 Locale | 51 Mise Debug | Ui |

ISD51 Driver Settings

Device | Taon | | Arssiecing

¢l
& Use Simulator Settings || Use: ~] Setlings © Use Simulate [+ Sefiings
I Linit Speed to Real Time I Limit Speed Pot [COMB | ATS: [Always high [ctive) =1
IV Load Application at Statup ¥ Fiun to main) W Load pplication at Statup [Funto mainf) ¥ Load Applica) Baudiate 115200 v| DTR: [Abways high (active] =] | b tomaini
Initislization File Initialization File: Initialization File: | _ 2
| __j Edi | __I [- Cache Options———————— Cade Breakpoint Options—— _i Edt:
. Restore Debug Session Setiings | Restore Debug Session Seitings . RestorsDsbugl |~ W Cache DATA [SFR) | % Dnly use Software Breakpoirts
¥ Breakpaints ¥ Toolbox i ¥ Breakpoints ¥ Toolbox ¥ Breakpoi ¥ Cache IDATA " Prefer Hardware Breakpoints
¥ Watch Windows & Performance Analyzer | W Watch Windows ¥ Watch P | Only use Hardware Breskpoints
W Memory Display ¥ Memory Display v Memony O e | £ Ornly use Flash Breakpoints
i
: - Misc Option:
CPU DL b e CPUDLL: T Weify if Application in FIOM Is identical to cunent Projsct
| - 15051 Idenification
15051 nat connected!
Dialog DLL: Patameter: Dialog DLL: Parameter: Dialog DLL:
ok | Concel | Defauts | Help Hep |

Notice: uVision configured to use software breakpoints to obtain a simple interface to 400 Series chip.

Sigma Designs Inc.

Development Tool Setup and Execution

Page 22 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

The screen dump below shows the debugger in action. The IDE has hit the configured breakpoint and it
is possible to inspect the parameters. For details about the debugger facilities refer to the Keil uVision4
IDE documentation

| leddimmer_ZW040x_EU - pVision4
File Edit View Project Flash Debug
DS H@ % @ :
s EBo nron @ ([ogslald-

SVCS Window Help

Peripherals Tools

Project %] Disassembly

BT 1413 : case POLLLEARNMODE: IX7 r
: | 4 1414: F% Just wait... #F
=& Appl Sou.rce Code 1415: if ({ lastiction == BUTTOM UAS PRESSED) A | Tvpe l
' £ LEDdim.c Mc:0x14CD 900725 MOV DFTR, #0x0725
one_button.c C:0x14D0 EO MOV 4, BDPTR
9 led_control.c (C:leQDl B40109 CJNE L, #0x01, C:14DD Applica..
associaton.c —
slave_learn.c LEDdim.c n} Module
*
ADD—R;SGU"D‘am 1408 toggleDone = LIGHTIDLE; mDSU:B
- oacule
Z-Wave L 1409 pollstate = POLLIDLE;
#173 Z-wave Inc ! Module
1410 Module
1411 break;
1412
1413 case POLLLEARNMODE:
1414 S Just wait... ¥/
!51415 if { lastAction == BUTTON WAS PRESSED)
1416 { —
1417 S Stop learn mode */
1418 StartLearnModelNow{ FRLSE) ;
1419 pollstate = POLLIDLE;
1420 }
1421 break:;
1422 }
1423 | }
1424 -
Project ERegisters | | 1 | +
gga?]ﬂ;g]:)}:{iniggzcts\\DEVKit_G_DZ_DD\\Produc:t,\\LED_Dimmer\\build_p Mame Value
WS 1, °"lastiction i lastAction 0x00
- <double-click or F2 1o add>
4 | S
> L
ASH ASSIGN BreskDisshle BreakEnshle BreakKill BresklList BreakSet | §acall stack | fglLocals JgElwateh 1 |Memor~,-1
Keil ISD51 In-System Debug t1: 0.00000000 sec CAP| NUM!

NOTICE: It is recommended to only use one breakpoint at a time to enable it as a hardware breakpoint.
Configuring multiple breakpoints result all interpreted as software breakpoints slowing execution down
considerably.

Sigma Designs Inc. Development Tool Setup and Execution Page 23 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25
REFERENCES

[1] Sigma Designs, INS12035, Instruction, Z-Wawe 400 Series Deweloper's Kit v6.01.03 Contents.
[2] Sigma Designs, APL10979, Instruction, Porting Z-Wawve Appl. SW from ZW0301 to 400 Series.

Sigma Designs Inc. References Page 24 of 25

CONFIDENTIAL

INS11709-4 Working in 400 Series Environment User Guide v6.02.00 2012-05-25

INDEX

B

2T 1= =10 Lo 1o 23
C

(@00 0100 =T Lo N o] 0] 1 1]) S PP 15, 18
D

=Y o 10T o [o P 20
(=AY =T Ko o4 =Y o 1 1T o 1= 4
D@ ST o) G PSPPI 15, 18
K

[I N I PSPPI 15
M

Y L][PP TPTPPT 2
Y] S =7 N PP PRSPPI 2
N

N Lo g0 F= 1o To =TT PP TPPT PP 4
P

7= Lo (o] aT=Tod S (0T | 1 3T 10
2= Lo 1 2= o] = P 10
T

TOOLSDIR ettt ettt et ettt et e h et et et ha e e e e et aees 15
U

EAY] o] oV TP PP 18
Sigma Designs Inc. Index Page 25 of 25

CONFIDENTIAL

