
 CONFIDENTIAL

Instruction
Z-Wave Programmer Communication Protocol

Document No.: INS11072

Version: 5

Description: Description of the Z-Wave Programmer communication interface.

Written By: JFR;SSE;VVI;MVO;DDA

Date: 2011-01-26

Reviewed By: JSI;JFR

Restrictions: Partners Only

Approved by:

Date CET Initials Name Justification
2011-01-26 10:24:08 JFR Jørgen Franck on behalf of NTJ

This document is the property of Sigma Designs Inc. The data contained herein, in whole
or in part, may not be duplicated, used or disclosed outside the recipient for any purpose.
This restriction does not limit the recipient's right to use information contained in the data
if it is obtained from another source without restriction.

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Revision Record and Tables of Contents Page ii of iv

 CONFIDENTIAL

REVISION RECORD

Doc.
Rev

Date By Pages
affected

Brief description of changes

1 20080118 VVI
JFR
SSE

ALL Initial draft

2 20091103 VVI Section 3.8.1 Added description of FUNC_ID_BUTTON_PRESSED
2 20091126 VVI Section 3.7 Added description of MTP Interface and updated description of the SRAM

interface.
3 20100218 VVI All Added description of FUNC_ID_ZW0x0x_WRITE_OTP_STATS_READ.

Added new description of FUNC_ID_TOGGLE_EEPROM_IF with support of
detection an external NVM chip type.
Added description of the lock bits support for ZW010x, ZW020x, ZW030x.
Updated descriptions of all commands with additional information like on what
ZW0x0x chip it is supported, etc.
Removed not implemented commands.

4 20101021 DDA Section 3.6 Added “Programming calibrated devices”.
5 20101102 DDA Section 3.7.44 Added FUNC_ID_CALIBRATION_START

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Revision Record and Tables of Contents Page iii of iv

 CONFIDENTIAL

Table of Contents
1 ABBREVIATIONS...1
2 INTRODUCTION...2
1.1 Purpose ...2
1.2 Audience and prerequisites...2
3 COMMUNICATION INTERFACE ...3
3.1 Introduction..3
3.2 Implementation..3
3.3 Frame Layout ..3
3.4 Frame Flow..6
3.5 Error handling ..7
3.6 Programming calibrated devices ...7
3.7 Z-Wave programmer command Calls ...8

3.7.1 FUNC_ID_ZW_GET_VERSION...8
3.7.2 FUNC_ID_CONNECT_PROGRAMMER ...8
3.7.3 FUNC_ID_PROGRAMMER_SET_LED ...8
3.7.4 FUNC_ID_ZW0x0x_PROG_ENABLE..9
3.7.5 FUNC_ID_ZW0x0x_PROG_RELEASE ...9
3.7.6 FUNC_ID_ZW0x0x_READ_SIG_BYTE ...9
3.7.7 FUNC_ID_ZW0x0x_SET_WRITE_CYCLE..10
3.7.8 FUNC_ID_ZW0x0x_CHIP_ERASE..10
3.7.9 FUNC_ID_ZW0x0x_ERASE_PAGE ..11
3.7.10 FUNC_ID_ZW0x0x_WRITE_PAGE ...11
3.7.11 FUNC_ID_ZW0x0x_READ_PAGE...12
3.7.12 FUNC_ID_ZW0x0x_SRAM_WRITE_PAGE...12
3.7.13 FUNC_ID_ZW0x0x_SRAM_READ_PAGE ..12
3.7.14 FUNC_ID_ZW0x0x_CRC_CHECK ..13
3.7.15 FUNC_ID_ZW0x0x_SRAM_EXECUTE ...13
3.7.16 FUNC_ID_ZW0x0x_DEV_MODE_ENABLE ..14
3.7.17 FUNC_ID_ZW0x0x_STATUS_READ ..14
3.7.18 FUNC_ID_ZW0x0x_WRITE_OTP_STATS_READ..15
3.7.19 FUNC_ID_ZW0x0x_READ_LOCKBITS...16
3.7.20 FUNC_ID_ZW0x0x_WRITE_LOCKBITS ...17
3.7.21 FUNC_ID_ZW0x0x_MODEM_BIT_WRITE..17
3.7.22 FUNC_ID_TOGGLE_MTP_IF ..17
3.7.23 FUNC_ID_MTP_FILL ...18
3.7.24 FUNC_ID_MTP_READ_PAGE ..18
3.7.25 FUNC_ID_MTP_WRITE_PAGE...19
3.7.26 FUNC_ID_TOGGLE_EEPROM_IF ..19
3.7.27 FUNC_ID_MEMORY_GET_BYTE...20
3.7.28 FUNC_ID_MEMORY_PUT_BYTE ...20
3.7.29 FUNC_ID_MEMORY_GET_BUFFER..20
3.7.30 FUNC_ID_MEMORY_PUT_BUFFER ..21
3.7.31 FUNC_ID_BLOCK_SET_EEP..21
3.7.32 FUNC_ID_MEMORY_GET_ID...22
3.7.33 FUNC_ID_STORE_HOMEID ...22
3.7.34 FUNC_ID_M128_ENTER_PROG_MODE ...22
3.7.35 FUNC_ID_EXIT_PROG_MODE...22
3.7.36 FUNC_ID_M128_GET_SW_VER ..23
3.7.37 FUNC_ID_M128_CHIP_ERASE ..23
3.7.38 FUNC_ID_M128_BLOCK_WRITE ...23
3.7.39 FUNC_ID_M128_BLOCK_READ...24
3.7.40 FUNC_ID_M128_GET_LOCKBITS..24

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Revision Record and Tables of Contents Page iv of iv

 CONFIDENTIAL

3.7.41 FUNC_ID_M128_GET_FUSEBITS_LOW..24
3.7.42 FUNC_ID_M128_GET_FUSEBITS_HIGH...24
3.7.43 FUNC_ID_M128_GET_FUSEBITS_EXT...25
3.7.44 FUNC_ID_CALIBRATION_START ..25

3.8 Z-Wave programmer unsolicited commands ..26
3.8.1 FUNC_ID_BUTTON_PRESSED..26

REFERENCES ...27
INDEX...28

Table of Figures
Figure 1. Overview of Z-Wave Programmer and PC including interfaces... 3

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Abbreviations Page 1 of 28

 CONFIDENTIAL

1 ABBREVIATIONS

Abbreviation Explanation
COM Serial port interface on IBM PC-compatible computers
GUI Graphical User Interface
LSB Least significant bit is the bit position in a binary number giving the units value, that

is, determining whether the number is even or odd
MSB Most significant bit is the bit position in a binary number having the greatest value
NAK Negative-acknowledge character that is used to indicate that an error was detected

in the previously received frame and that the receiver is ready to accept
retransmission of that frame

OTP One Time Programmable, a type of programmable read-only memory
NVM Non-Volatile Memory
MTP Multiple Time Programmable
PC Personal computer
SOF Start Of Frame
SPI Serial Peripheral Interface Bus
SW Software
UART Universal Asynchronous Receiver/Transmitter is a piece of computer hardware that

translates data between parallel and serial forms, is usually an individual (or part of
an) integrated circuit used for serial communications over a computer or peripheral
device serial port

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Introduction Page 2 of 28

 CONFIDENTIAL

2 INTRODUCTION

1.1 Purpose

The purpose of this document is to describe the Z-Wave Programmer communication interface.

1.2 Audience and prerequisites

The audience is Z-Wave partners.

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 3 of 28

 CONFIDENTIAL

3 COMMUNICATION INTERFACE

3.1 Introduction

The Z-Wave programmer includes two parts:
1. The firmware, which runs on Atmel ATMEGA128 processor.
2. The host Windows application, which runs on a PC.

These two components communicate using UART port. The UART runs with the following parameters:
the transfer rate 115200 kbps, 1 start bit, 8 data bits, one stop bit and no parity bit.
The purpose of this document is to describe the communication protocol between the Z-Wave
programmer’s GUI and the firmware.

Figure 1. Overview of Z-Wave Programmer and PC including interfaces

3.2 Implementation

The Z-Wave programmers’ firmware source code is provided on the Z-Wave Developer’s Kit. Be aware
that altering the function ID’s and frame formats in the source code can result in interoperability problems
with the Z-Wave Programmer’s PC SW supplied on the Developer’s Kit as well as commercially available
GUI applications. Regarding how to determine the current version of the Z-Wave programmers’ firmware,
refer to the function ID FUNC_ID_ZW_GET_VERSION.

The Atmel ATMega128 firmware consists of the boot loader and Z-Wave programmer application. The
boot loader updates the ATMega with a new version of the firmware when needed. The Z-Wave
programmer application is responsible of programming the ZW0x0x single chips. After reset the ATMega
always starts by executing the Z-Wave programmer application. The only way to execute the boot loader
is by a command from the host SW. The boot loader is located on the upper 4k of the ATMega code
space.

The following sections describe the communication protocol implementation and how a host can
communicate with the firmware.

3.3 Frame Layout

The protocol between the PC (host) and the ATMega (ZW) consists of three frame types: ACK frame,
NAK frame and Data frame. Each Data frame is prefixed with SOF byte and Length word and suffixed
with a Checksum byte.

ZW0x0x Atmega

SPI
PC

Serial

Z-Wave Programmer

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 4 of 28

 CONFIDENTIAL

ACK frame:

The ACK frame is used to acknowledge a successful transmission of a data frame. The format is as
follows:

7 6 5 4 3 2 1 0

ACK (0x06)

NAK frame:

The NAK frame is used to de-acknowledge an unsuccessful transmission of a data frame. The format is
as follows:

7 6 5 4 3 2 1 0

NAK (0x15)

Only a frame with a LRC checksum error is de-acknowledged with a NAK frame.

Data frame:

The Data frame contains the Z-Wave programmer’s command including parameters for the command in
question. The format is as follows:

7 6 5 4 3 2 1 0

SOF

Length MSB

Length LSB

Type

Z-Wave programmer’s Command ID

Command Specific Data

…

SeqNo

Checksum

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 5 of 28

 CONFIDENTIAL

Field Description

SOF Start Of Frame. Used for synchronization and is equal to 0x01

Length Number of bytes in the frame, exclusive SOF and Checksum. The
host application is responsible for entering the correct length field.
The current firmware does no validation of the length field.

Type Used to distinguish between unsolicited calls and immediate
responses. The request (REQ) is equal to 0x00 and response
(RES) is equal to 0x01. The current Z-Wave programmer firmware
doesn’t make use of unsolicited calls.

Command ID Unique command ID for the function to be carried out. Any data
frames returned by this function will contain the same command ID

Command Specific Data One or more bytes of command specific data. Possible callback
handling is also defined here.

Checksum LRC checksum used to check for frame integrity. Checksum
calculation includes the Length, Type, Command IS Data and
Command Specific Data fields. The Checksum is a XOR
checksum with an initial checksum value of 0xFF. For a checksum
implementation refer to the function ConTxFrame in the
conhandle.c module

SeqNo A byte which is incremented for every transmitted frame. If two the
host receive 2 frames with the same sequence number the last one
will be dropped out.

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 6 of 28

 CONFIDENTIAL

3.4 Frame Flow

The frame flow between a host and a ATMega (ZW) running the Z-Wave programmer’s code depends on
the API call. There are two different ways to conduct communication between the host and ZW.

Data frame from host, which is acknowledged by ATMega when successfully received. An example could
be the commandI call FUNC_ID_PROGRAMMER_SET_LED.

Data frame from host, which is acknowledged by ATMega when successfully received. A data frame
(RES) is returned by ATMega with the result at command completion. The host acknowledges the data
frame when successfully received. An example could be the commandI call
FUNC_ID_ZW0x0x_READ_PAGE.

Data Frame (REQ)

ACK

Prog Host

Data Frame (REQ)

ACK

Prog Host

Data Frame (RES)

ACK

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 7 of 28

 CONFIDENTIAL

3.5 Error handling

A number of scenarios exist, which can impede the normal frame flow between the host and the ATMega
CPU running the Z-Wave programmer’s firmware.

A LRC checksum failure is the only case there is de-acknowledged by a NAK frame. When a host
receives a NAK frame can it either retry transmission of the frame or abandon the task. A task is defined
as the whole frame flow associated with the execution of a specific Z-Wave programmer’s command call.
If a NAK frame is received by the ATMega in response to a just transmitted frame, then the frame in
question is retransmitted (max 2 retries).

Frames with an illegal length are ignored without any notification. Frames with an illegal type (only REQ
and RES exists) are ignored without any notification

The Z-Wave programmer’s firmware can only perform one host-initiated task at a time. A data frame will
be dropped without any notification (no ACK/NAK frame transmitted) by the ZW if it is not ready to
execute a new host-initiated task.

3.6 Programming calibrated devices

ZM4101 and ZM4012 modules are per default preprogrammed with a calibration value in the OTP. This
means that the OTP by default is not empty. The calibration value is stored in OTP address 0x06. The
programming and verification process when handling calibrated devices should thus be as described
below:

Blank testing: Waive for OTP content in addr. 0x06

Programming: Ensure that data value 0x00 is written to OTP addr. 0x06 (this leaves the calibration value
in the OTP untouched)

Verifying: Waive for difference between OTP content and hex-file content for addr. 0x06.

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 8 of 28

 CONFIDENTIAL

3.7 Z-Wave programmer command Calls

3.7.1 FUNC_ID_ZW_GET_VERSION

The Z-Wave programmer host SW calls this command to get the firmware’s version number

Defined in: commands.h

Frames Flow:

HOST>PROG: REQ | 0x06

PROG->HOST: RES| 0x06 | 0x00 | VERSION | REVISION

 VERSION: the left part of firmware version number x.xx

 REVISION: the right part of firmware version number x.xx

3.7.2 FUNC_ID_CONNECT_PROGRAMMER

Enter the programmer mode. When this command is executed, programmer could be used only to detect
the presence of the hardware.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x25

PROG->HOST: RES | 0x25 | Signature (MSB) | Signature (LSB)

Signature – Signature for device recognition (0xF002).

3.7.3 FUNC_ID_PROGRAMMER_SET_LED

Turn on / off the programmer status LEDs

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x53 | LedType | LedONOFF

 LedType – type of LED (PASS_LED, BUSY_LED, ERR_LED)
 LedONOFF – 1 to turn led ON, 0 – to turn LED OFF (ignored for PASS_LED and ERR_LED –
this led always turns ON)

PROG->HOST: nothing

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 9 of 28

 CONFIDENTIAL

3.7.4 FUNC_ID_ZW0x0x_PROG_ENABLE

Enable the programming mode in the targeted ZW0x0x single chip. In this mode all memories of the
target can be programmed: Program Memory (Flash in ZW030x, OTP in ZW040x), external NVM, MTP
memory, etc. For more details about the Flash programming process, refer to [2]. For more details about
the OTP programming process, refer to [3].

This function enables the Program Memory interface on the development board and performs a
synchronization. The number of syncs performed is returned as a byte.

This function should be called first, before execution of any command, which working with the target
ZW0x0x chip, external Non-Volatile Memory, MTP, etc. At the end of programming process the
FUNC_ID_ZW0x0x_PROG_RELEASE function should be called to release the Reset signal of the target
ZW0x0x chip and run its firmware.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x40

PROG->HOST: RES | 0x40 | SYNC

 SYNC: number of synchronizations trials. If SYNC is 0xFF, then synchronization has failed.

3.7.5 FUNC_ID_ZW0x0x_PROG_RELEASE

Release the ZW0x0x Flash programming interface.

This function release the Reset signal of the target ZW0x0x chip and run its firmware.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x48 | ChipType

 ChipType: Type of the targeted ZW0x0x single chip.

PROG->HOST: RES | 0x48 | DONE

 DONE: DONE constant = 0x0d – operation done.

3.7.6 FUNC_ID_ZW0x0x_READ_SIG_BYTE

The command reads the ZW0x0x single chip seven signature bytes.

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 10 of 28

 CONFIDENTIAL

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x47 | ChipType

 ChipType: Type of the targeted ZW0x0x single chip.

PROG->HOST: RES | 0x47 | Sig Bytes[7]

 Sig Bytes: unique 7 bytes string

3.7.7 FUNC_ID_ZW0x0x_SET_WRITE_CYCLE

Set the ZW010x, ZW020x, ZW030x single chip FLASH write cycle time.

This function must not be called for ZW040x single chip targets.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x46 | CTime

 CTime: The ZW010x, ZW020x, ZW030x single chip FLASH’s write cycle time. On how the cycle
time is calculated, refer to [2]

PROG->HOST: RES | 0x46 | DONE

 DONE: Constant value indicates (0x0D)

3.7.8 FUNC_ID_ZW0x0x_CHIP_ERASE

Erase the ZW010x, ZW020x, ZW030x single chip FLASH.

This function is ignored if called for ZW040x single chip targets. It returns FAIL.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x46 | ChipType | CTime

 ChipType: Type of the targeted ZW0x0x single chip.
 CTime: The ZW0x0x single chip FLASH’s write cycle time. On how the cycle time is calculated,
refer to [2]

PROG->HOST: RES | 0x46 | Status

 Status: result of operation – SUCCESS constant (0x31) if operation was done successful or FAIL
constant (0x30) if operation was failed.

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 11 of 28

 CONFIDENTIAL

3.7.9 FUNC_ID_ZW0x0x_ERASE_PAGE

Erase a ZW020x, ZW030x single chip’s FLASH page.

This function is ignored if called for ZW010x or ZW040x single chip targets. It returns FAIL.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x52 | ChipType | PageNo

 ChipType: Type of the targeted ZW0x0x single chip.
 PageNo: The FLASH page number to erase.

PROG->HOST: RES | 0x52 | Status

 Status: result of operation – SUCCESS constant (0x31) if operation was done successful or FAIL
constant (0x30) if operation was failed.

Note: the Command FUNC_ID_ZW0x0x_SET_WRITE_CYCLE should be called before once
FUNC_ID_ZW0x0x_ERASE_PAGE.

3.7.10 FUNC_ID_ZW0x0x_WRITE_PAGE

The command writes data to a page in the FLASH of ZW010x, ZW020x, ZW030x single chips.

The programmer sends the status of the operation after the end of the writing process.

For ZW040x: command writes data to the ZW040x OTP, by logical pages of 256 bytes.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x43 | ChipType | PageNo | Verfiy | flash data[]

 ChipType: Type of the targeted ZW0x0x single chip.
 PageNo: the FLASH / OTP page number to write data in.
 Verify: A Boolean. If true compare the data written to the FLASH page to the original data. If
false no comparison is done.
 Flash data: the content of the FLASH page to be written to it. For ZW040x: contents of the 256
bytes page to be written to OTP.

PROG->HOST: RES | 0x43 | Status

 Status: the status of the write operation.

 FAIL constant (0x30) - write operation failed.

 SUCCESS constant (0x31) - write operation succeeded

Note for the ZW010x, ZW020x, ZW030x: the Command FUNC_ID_ZW0x0x_SET_WRITE_CYCLE
should be called once before FUNC_ID_ZW0x0x_WRITE_PAGE.

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 12 of 28

 CONFIDENTIAL

3.7.11 FUNC_ID_ZW0x0x_READ_PAGE

The command read the content of a ZW010x, ZW020x, ZW030x single chips FLASH page. For ZW040x
– it reads the OTP logical page of 256 bytes.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x42 | ChipType | PageNo |

 ChipType: Type of the targeted ZW0x0x single chip.
 PageNo: the FLASH / OTP page number to read data from.

PROG->HOST: RES | 0x43 | flash data[]

 Status: the status of the write operation.
 Flash data: the content of the FLASH / OTP page.

3.7.12 FUNC_ID_ZW0x0x_SRAM_WRITE_PAGE

The command writes data to the SRAM area of ZW040x, by logical pages of 256 bytes.

This function is ignored if called for ZW010x, ZW020x or ZW030x single chip targets. It returns FAIL.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x61 | ChipType | PageNo | IsVerify | SRAM data[]

 ChipType: Type of the targeted ZW0x0x single chip.
 PageNo: the SRAM page number to write data in.
IsVerify: A Boolean. If true (0x01) - compare the data written to the SRAM page to the original data. If
false (0x00) - no comparison is done.
 SRAM data: the content of the SRAM page to be written to it.

PROG->HOST: RES | 0x61 | Status

 Status: result of operation:
SUCCESS constant - if operation was done successful: all data are written to the SRAM

page, and, if IsVerify = true, same data read back from SRAM Page.
FAIL constant - if write operation was failed, or, if IsVerify = true, read back data is not

the same.

3.7.13 FUNC_ID_ZW0x0x_SRAM_READ_PAGE

The command read data from the SRAM area of ZW040x, by logical pages of 256 bytes.

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 13 of 28

 CONFIDENTIAL

This function is ignored if called for ZW010x, ZW020x or ZW030x single chip targets. It returns FAIL.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x60 | ChipType | PageNo

 ChipType: Type of the targeted ZW0x0x single chip.
 PageNo: the SRAM page number to read data from.

PROG->HOST: RES | 0x60 | SRAM data[]

 SRAM data: the content of the readed SRAM page.

3.7.14 FUNC_ID_ZW0x0x_CRC_CHECK

Run CRC Check of OTP memory of ZW040x single chip.

This function is ignored if called for ZW010x, ZW020x or ZW030x single chip targets. It returns FAIL.

Executing the ‘Run CRC Check’ will start a built-in CRC-32 generator in the chip that will read the whole
OTP and calculate the CRC-32 checksum.

To be able to utilize the built-in CRC-32 check the upper four bytes of the OTP memory must be
programmed with a pre-calculated CRC-32 checksum. That is, after generating the OTP code a CRC-32
checksum must be calculated of the resulting OTP memory (locations that isn’t programmed is 00h) OTP
code and the result must be placed at the last 4 byte positions in the code space.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x66 | ChipType

 ChipType: Type of the targeted ZW0x0x single chip.

PROG->HOST: RES | 0x66 | Status

 Status: result of operation – SUCCESS constant (0x31) if operation was done successful or FAIL
constant (0x30) if operation was failed.

3.7.15 FUNC_ID_ZW0x0x_SRAM_EXECUTE

The command initiates an “Execute Out Of SRAM” mode of the ZW040x single chip targets.

This function is ignored if called for ZW010x, ZW020x or ZW030x single chip targets. It returns FAIL.

4k of SRAM from base address 0x0000 is used for execution.

Defined in: commands.h

Frames flow:

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 14 of 28

 CONFIDENTIAL

HOST->PROG: REQ | 0x62 | ChipType

 ChipType: Type of the targeted ZW0x0x single chip.

PROG->HOST: RES | 0x62 | Status

 Status: result of operation – SUCCESS constant if operation was done successful or FAIL
constant if operation was failed.

3.7.16 FUNC_ID_ZW0x0x_DEV_MODE_ENABLE

The command initiates the “Development Mode” of ZW040x single chip targets.

This function is ignored if called for ZW010x, ZW020x or ZW030x single chip targets. It returns FAIL.

In this mode the contents of upper 12k (from 52k to 64k) of OTP memory is replaced by contents of of
upper 12k (from 4k to 16k) of SRAM.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x65 | ChipType

 ChipType: Type of the targeted ZW0x0x single chip.

PROG->HOST: RES | 0x65 | Status

 Status: result of operation – SUCCESS constant if operation was done successful or FAIL
constant if operation was failed.

3.7.17 FUNC_ID_ZW0x0x_STATUS_READ

The command reads and returns the OTP status byte of ZW040x single chip targets.

This function is ignored if called for ZW010x, ZW020x or ZW030x single chip targets. It returns 0 (zero).

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x64 | ChipType

 ChipType: Type of the targeted ZW0x0x single chip.

PROG->HOST: RES | 0x64 | StatusByte

 StatusByte: byte with combination of bits from table below:

Bit Constant Description

0 STATE_CRC_BUSY
This bit will go high when a ‘Run CRC Check’
command has been sent to the Single Chip. It will
return to low when the CRC check procedure is done

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 15 of 28

 CONFIDENTIAL

Bit Constant Description

1 STATE_CRC_DONE
This bit is cleared when a ‘Run CRC Check’
command is issued and it will be set if the CRC check
procedure passes.

2 STATE_CRC_FAILED
This bit is cleared when a ‘Run CRC Check’
command is issued and it will be set if the CRC check
procedure fails.

3 STATE_WRITE_BUSY This bit is high if the OTP programming logic is busy
programming the OTP

4 STATE_WRITE_FAILED
This bit is cleared when a ‘Write OTP’ command is
issued and it will be set if the OTP write operation
fails.

5 STATE_CONTINUE_FEFUSED

This bit will be set if either a ‘Continue Write
Operation’ or a Continue Read Operation’ are
refused. These operations will be refused if:
A ‘Continue Write Operation’ is not succeeding a
‘Write SRAM’ or a ‘Continue Write Operation’
command
A ‘Continue Read Operation’ is not succeeding a
‘Read OTP’, a ‘Read SRAM’ or a ‘Continue Read
Operation’ command

6 STATE_DEV_MODE_ENABLED This bit is set if the ‘Development Mode’ has been
enabled

7 STATE_EXEC_SRAM_MODE_ENABLED This bit is set if the ‘Execute out of SRAM’ Mode has
been enabled

3.7.18 FUNC_ID_ZW0x0x_WRITE_OTP_STATS_READ

The command reads and returns the OTP Write Statistics of ZW040x single chip targets.

This function is ignored if called for ZW010x, ZW020x or ZW030x single chip targets. It returns 0 (zero).

After all code data has been programmed into the OTP it is possible to read the programming statistics.
The statistics can be read as a number that tells to how many locations the OTP state machine were
forced to use excessive writes. A write operation to a certain OTP memory location is noted as an
“Excessive write” when byte write operation first fails 3 times then is following by more than 9 times of bit
write operations before the data byte finally is verified.

This number can be used to check the quality of the OTP memory cells. It tells you how often the
programming process was close to fail and thereby to determine if the wafer production somehow is
degraded.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x6C | ChipType

 ChipType: Type of the targeted ZW0x0x single chip.

PROG->HOST: RES | 0x6C | WriteOTPStats(MSB) | WriteOTPStats(LSB)

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 16 of 28

 CONFIDENTIAL

 WriteOTPStats: count of excessive writes.

3.7.19 FUNC_ID_ZW0x0x_READ_LOCKBITS

The command reads the Flash / OTP lock bits of the ZW0x0x single chip targets.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x44 | ChipType

 ChipType: Type of the targeted ZW0x0x single chip.

PROG->HOST: RES | 0x44 | LockBits

 LockBits: for ZW010x, ZW020x andZW030x this command is returns state of 5 lock bits;

 for ZW040x it returns the state of two lock bits.

The table below displays the meaning of lock bits for ZW010x, ZW020x, ZW030x:

Bit Name Description
7:5 - Reserved, write as ‘0’

4 BOBLOCK Boot Block Lock
0: Page 0 is write protected
1: Page 0 is writeable, unless BSIZE = 000

3:1 BSIZE Boot Sector Size
000: 32768 bytes (all)
001: 16384 bytes
010: 8192 bytes
011: 4096 bytes
100: 2048 bytes
101: 1024 bytes
110: 512 bytes
111: 0 bytes

0 SPIRE SPI Read Flash Enable
0: SPI interface is not allowed to read flash data
1: SPI interface is allowed to read flash data

The table below displays the meaning of lock bits for ZW040x:

Bit Description
0 Read back disabled. The contents of the OTP cannot be read back through the SPI interface,

if this bit is set.

1 Development Mode disabled. The option to use SRAM as code memory in the so called
“Development Mode” is permanently disabled if this bit is set.

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 17 of 28

 CONFIDENTIAL

3.7.20 FUNC_ID_ZW0x0x_WRITE_LOCKBITS

Write the ZW0x0x Flash / OTP lock bits settings.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x45 | ChipType | LockBits

 ChipType: Type of the targeted ZW0x0x single chip.
 LockBits: Lock bits - see table in FUNC_ID_ZW0x0x_READ_LOCKBITS command for values.

PROG->HOST: RES | 0x45 | Status

 Status: result of operation – SUCCESS constant if operation was done successful or FAIL
constant if operation was failed.

3.7.21 FUNC_ID_ZW0x0x_MODEM_BIT_WRITE

The command writes the modem bit to the OTP of the ZW040x single chip targets.

This function is ignored if called for ZW010x, ZW020x or ZW030x single chip targets. It returns FAIL.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x63 | ChipType

 ChipType: Type of the targeted ZW0x0x single chip.

PROG->HOST: RES | 0x63 | Status

 Status: result of operation – SUCCESS constant if operation was done successful or FAIL
constant if operation was failed.

3.7.22 FUNC_ID_TOGGLE_MTP_IF

Enable / Disable the interface used to write / read the MTP memory of the ZW040x single chip targets.

This function is ignored if called for ZW010x, ZW020x or ZW030x single chip targets. It returns FAIL.

Before executing this or any other functions, the FUNC_ID_ZW0x0x_PROG_ENABLE function should be
called to enter the programming mode.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x68 | IsEnable | ChipType

 IsEnable = 1 to enable MTP memory programming; 0 – to exit MTP memory programming.

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 18 of 28

 CONFIDENTIAL

 ChipType: Type of the targeted ZW0x0x single chip.

PROG->HOST: RES | 0x68 | Status

 Status: result of operation:
SUCCESS constant - if operation was done successful.
FAIL constant - if operation was failed: Normal working mode of the ZW040x chip can’t

be set – power cycling needed!

3.7.23 FUNC_ID_MTP_FILL

Fill the MTP memory of the ZW040x single chip targets with specified value (erase).

This function is ignored if called for ZW010x, ZW020x or ZW030x single chip targets. It returns FAIL.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x69 | ChipType | FillValue

 ChipType: Type of the targeted ZW0x0x single chip.
 FillValue: Each byte of the ZW040x single chip MTP memory will be set to this value.

PROG->HOST: RES | 0x69 | Status

Status: result of operation:
SUCCESS constant - if operation was done successful: each byte of MTP memory is set

to FillValue and also readed back as FillValue.
FAIL constant - if operation was failed.

3.7.24 FUNC_ID_MTP_READ_PAGE

The command read data from the all 64 bytes of the MTP memory area of ZW040x.

This function is ignored if called for ZW010x, ZW020x or ZW030x single chip targets. It returns zero
length MTP data[].

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x6A | ChipType | PageNo

 ChipType: Type of the targeted ZW0x0x single chip.
 PageNo: Currently not used by Z-Wave Programmer firmware but must be sent as 0 (zero).

PROG->HOST: RES | 0x6A | MTP data[]

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 19 of 28

 CONFIDENTIAL

 MTP data: the content of the MTP memory (all 64 bytes).

3.7.25 FUNC_ID_MTP_WRITE_PAGE

The command writes data to the all 64 bytes of the MTP memory area of ZW040x.

This function is ignored if called for ZW010x, ZW020x or ZW030x single chip targets. It returns FAIL.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x6B | ChipType | PageNo | IsVerify | MTP data[]

 ChipType: Type of the targeted ZW0x0x single chip.
 PageNo: Currently not used by Z-Wave Programmer firmware but must be sent as 0 (zero).

IsVerify: A Boolean. If true (0x01) - compare the data written to the MTP memory to the original
data. If false (0x00) - no comparison is done.
 MTP data: the content of the MTP memory (all 64 bytes) to be written to it.

PROG->HOST: RES | 0x6B | Status

 Status: result of operation:
SUCCESS constant - if operation was done successful: all data are written to the MTP,

and, if IsVerify = true, same data readed back from MTP Memory.
FAIL constant - if write operation was failed, or, if IsVerify = true, readed back data is not

the same.

3.7.26 FUNC_ID_TOGGLE_EEPROM_IF

Enable / Disable the interface used to write / read the external NVM.

Before executing this or any other functions, the FUNC_ID_ZW0x0x_PROG_ENABLE function should be
called to enter the programming mode.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x51 | IsEnable | ChipType

 IsEnable = 1 to enable external NVM programming mode; 0 – to exit external NVM programming
mode.
 ChipType: Type of the targeted ZW0x0x single chip.

PROG->HOST: RES | 0x51 | BusType | ManufacturerID | DeviceID | SizeID

 BusType, ManufacturerID, DeviceID, SizeID – detected external NVM chip type.
 BusType: Bus and protocol type:
 0x00 – invalid;
 0x01 - Serial EEPROM chip with SPI bus protocol;
 0x02 - Serial Flash chip on SPI bus;
 ManufacturerID: external NVM chip Manufacturer ID. 0x00 - unknown manufacturer id.

DeviceID: external NVM chip Device ID. 0x00 - unknown device id.

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 20 of 28

 CONFIDENTIAL

 SizeID: external NVM chip Memory size mask. Memory size = SizeID * 8 KBytes. 0x00 -
unknown size.
 Values of the external NVM chip types (BusType is high byte and so on):
 0x00000000 - in case of error (can’t detect external NVM chip type, external NVM is not
connected, etc.);
 0x00010000 - No errors, but chip type is unknown at this stage;
 0x01000000 - Serial EEPROM chip with SPI bus protocol like in Atmel AT25128 serial
EEPROM and compatible (ST95128, etc.);
 0x02000000 - Serial Flash chip on SPI bus;
 0x02208010 - Numonyx M25PE10;
 0x02208020 - Numonyx M25PE20;
 0x02208040 - Numonyx M25PE40;

3.7.27 FUNC_ID_MEMORY_GET_BYTE

Read a byte from the external NVM.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x08 | offset(MSB) | offset (LSB)

 offset: address in external NVM to read byte from.

PROG->HOST: RES | 0x08 | data byte

 data byte: readed external NVM byte.

3.7.28 FUNC_ID_MEMORY_PUT_BYTE

Write a byte to the external NVM.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x09 | old eeprom | offset(MSB) | offset (LSB) | data

 old eeprom: value of this byte is not used by Z-Wave programmer;
 offset: address in external NVM to write byte to;
 data: byte to write;

PROG->HOST: RES | 0x09 | data byte

 data byte: byte read back from external NVM after write (must be same as data byte in request; if
not – then write failed).

3.7.29 FUNC_ID_MEMORY_GET_BUFFER

Read data bytes from the external NVM.

Defined in: commands.h

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 21 of 28

 CONFIDENTIAL

Frames flow:

HOST->PROG: REQ | 0x10 | old EEPROM | offset(MSB) | offset (LSB) | length

 old EEPROM: value not used;
 offset: address of start of block to read from external NVM;
 length: length of block of external NVM to read.

PROG->HOST: RES | 0x10 | offset(MSB) | offset (LSB) | data[]

 offset: address of start of block in external NVM;
 data: data bytes of external NVM block to read.

3.7.30 FUNC_ID_MEMORY_PUT_BUFFER

Writes data bytes to the external NVM.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x11 | old EEPROM | offset (MSB) | offrest (LSB) | length | buffer[]

 old EEPROM: value not used;
 offset: address of start of block to write;
 length: length of block to write;
 buffer[]: data to write;
 funcID: value not used.

PROG->HOST: RES | 0x11 | DONE

 DONE: DONE constant = 0x0d – operation done.

3.7.31 FUNC_ID_BLOCK_SET_EEP

Write a specific value to block of external NVM address.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x05 | old EEPROM | startAdr(MSB) | startAdr(LSB) | endAdr(MSB) |
endAdr(LSB) | value to set

 old eeprom: value is ignored
 startAdr: Start address of the block.
 endAdr: End address of the block.
 value to set: value.

PROG->HOST: RES | cmd | DONE

 DONE: DONE constant = 0x0d – operation done.

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 22 of 28

 CONFIDENTIAL

3.7.32 FUNC_ID_MEMORY_GET_ID

Read home ID from the external NVM.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x07

PROG->HOST: RES | 0x07 | Home ID 1st byte (highest) | Home ID 2nd byte | Home ID 3rd byte | Home ID
4th byte

 Home ID: home ID from external NVM.

3.7.33 FUNC_ID_STORE_HOMEID

Write home ID to the external NVM.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x13 | old eeprom | Home ID 1st byte (highest) | Home ID 2nd byte | Home ID 3rd
byte | Home ID 4th byte

 Home ID: new Home ID to write to the external NVM.

PROG->HOST: RES | 0x13 | DONE

 DONE: DONE constant = 0x0d – operation done.

3.7.34 FUNC_ID_M128_ENTER_PROG_MODE

Enter the boot loader mode for programming the ATMEL ATMEGA128 FLASH.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x27 | btSig 1 | btSig 2 | btSig 3 | btSig 4 | btSig 5

 btSig – Boot Signature, array that hold 4 bytes random value and a checksum that should be
verified before programming the ATMEL

PROG->HOST: RES | 0x27 | DONE

 DONE: DONE constant = 0x0d – operation done.

3.7.35 FUNC_ID_EXIT_PROG_MODE

The command exits the boot loader mode.

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 23 of 28

 CONFIDENTIAL

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x24

PROG->HOST: RES | 0x24 | DONE

3.7.36 FUNC_ID_M128_GET_SW_VER

Get the boot loader version.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x26

PROG->HOST: RES | 0x26 | VERSION | REVISION

 VERSION: the left part of firmware version number x.xx
 REVISION: the right part of firmware version number x.xx

3.7.37 FUNC_ID_M128_CHIP_ERASE

Erase the ATMEL ATMEGA128 FLASH (from 0x00000 to 0x1EFFF)

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x16

PROG->HOST: RES | 0x16 | erase status | btSig 1 | btSig 2 | btSig 3 | btSig 4 | btSig 5

 erase status = DONE, when erase done successfully; = 0xF0, when the boot loader signature
(btSig) is not correct;
 btSig – current boot loader signature, see FUNC_ID_M128_ENTER_PROG_MODE command
for more info.

3.7.38 FUNC_ID_M128_BLOCK_WRITE

Write block of data bytes to the ATMEL ATMEGA128 FLASH.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x18 | Page Number (MSB) | Page Number (LSB) | verify | data[]

 Page Number: number of ATMEL ATMEGA128 FLASH page to write to;
 verify: value should be 1 if written page should be verified;
 data[]: data bytes to be written for the ATMEL ATMEGA128 FLASH.

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 24 of 28

 CONFIDENTIAL

PROG->HOST: RES | 0x18 | Status

 Status: result of operation – SUCCESS constant if operation was done successful or FAIL
constant if operation was failed.

3.7.39 FUNC_ID_M128_BLOCK_READ

Read block of data bytes from the ATMEL ATMEGA128 FLASH.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x19 | Page Number (MSB) | Page Number (LSB)

 Page Number: number of ATMEL ATMEGA128 FLASH page to read from;

PROG->HOST: RES | 0x19 | data readed[]

 data readed[]: data bytes, readed from the ATMEL ATMEGA128 FLASH.

3.7.40 FUNC_ID_M128_GET_LOCKBITS

(Not implemented)

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x20

PROG->HOST: RES | 0x20 | lock bits byte

3.7.41 FUNC_ID_M128_GET_FUSEBITS_LOW

(Not implemented)

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x21

PROG->HOST: RES | 0x21 | fuse bits low byte

3.7.42 FUNC_ID_M128_GET_FUSEBITS_HIGH

(Not implemented)

Defined in: commands.h

Frames flow:

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 25 of 28

 CONFIDENTIAL

HOST->PROG: REQ | 0x22

PROG->HOST: RES | 0x22 | fuse bits high byte

3.7.43 FUNC_ID_M128_GET_FUSEBITS_EXT

(Not implemented)

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x23

PROG->HOST: RES | 0x23 | fuse bits ext byte

3.7.44 FUNC_ID_CALIBRATION_START

The command initiates “Calibration” mode of the ZW040x single chip targets.

This function is ignored if called for ZW010x, ZW020x or ZW030x single chip targets. It returns FAIL.

4k of SRAM from base address 0x0000 is used for execution of the calibration application pre-loaded
into SRAM.

Defined in: commands.h

Frames flow:

HOST->PROG: REQ | 0x71 | ChipType

 ChipType: Type of the targeted ZW0x0x single chip.

PROG->HOST: RES | 0x71 | Status

 Status: result of operation – SUCCESS constant if operation was done successful or FAIL
constant if operation was failed.

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Communication Interface Page 26 of 28

 CONFIDENTIAL

3.8 Z-Wave programmer unsolicited commands

This commands Z-Wave programmer send to the host (PC) as unsolicited frames with type REQUEST.

3.8.1 FUNC_ID_BUTTON_PRESSED

This unsolicited command notifies the host, that S1 button of Z-Wave Programmer PCB was pressed.

Defined in: commands.h

Frames flow:

PROG->HOST: REQ | 0x67 | ButtonsState

ButtonsState: State of the buttons: bit 0 = 1 if S1 pushbutton of Z-Wave Programmer PCB is
pressed.

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. References Page 27 of 28

 CONFIDENTIAL

REFERENCES

[1] Zensys, INS10034, Instruction, Z-Wave Development
[2] Zensys, APL10312-7, Application Note Programming the 200 and 300 Series Z-Wave Single Chip

Flash
[3] Zensys, INS10795, 400 Series Z-Wave Single Chip Programming Mode
[4] Zensys, INS10679, Z-Wave Programmer User Guide

INS11072-5 Z-Wave Programmer Communication Protocol 2011-01-26

Sigma Designs Inc. Index Page 28 of 28

 CONFIDENTIAL

INDEX

F

FUNC_ID_BLOCK_SET_EEP... 21
FUNC_ID_BUTTON_PRESSED ... 26
FUNC_ID_CONNECT_PROGRAMMER... 8
FUNC_ID_EXIT_PROG_MODE.. 22
FUNC_ID_M128_BLOCK_READ.. 24
FUNC_ID_M128_BLOCK_WRITE .. 23
FUNC_ID_M128_CHIP_ERASE ... 23
FUNC_ID_M128_ENTER_PROG_MODE .. 22
FUNC_ID_M128_GET_FUSEBITS_EXT.. 25
FUNC_ID_M128_GET_FUSEBITS_HIGH.. 24
FUNC_ID_M128_GET_FUSEBITS_LOW... 24
FUNC_ID_M128_GET_LOCKBITS... 24
FUNC_ID_M128_GET_SW_VER ... 23
FUNC_ID_MEMORY_GET_BUFFER... 20
FUNC_ID_MEMORY_GET_BYTE.. 20
FUNC_ID_MEMORY_GET_ID.. 22
FUNC_ID_MEMORY_PUT_BUFFER ... 21
FUNC_ID_MEMORY_PUT_BYTE .. 20
FUNC_ID_MTP_FILL .. 18
FUNC_ID_MTP_READ_PAGE ... 18
FUNC_ID_MTP_WRITE_PAGE.. 19
FUNC_ID_PROGRAMMER_SET_LED .. 8
FUNC_ID_STORE_HOMEID .. 22
FUNC_ID_TOGGLE_EEPROM_IF ... 17, 19
FUNC_ID_ZW_GET_VERSION.. 8
FUNC_ID_ZW0x0x_CHIP_ERASE... 10
FUNC_ID_ZW0x0x_CRC_CHECK ... 13
FUNC_ID_ZW0x0x_DEV_MODE_ENABLE ... 14
FUNC_ID_ZW0x0x_ERASE_PAGE.. 11
FUNC_ID_ZW0x0x_MODEM_BIT_WRITE... 17
FUNC_ID_ZW0x0x_PROG_ENABLE... 9
FUNC_ID_ZW0x0x_PROG_RELEASE... 9
FUNC_ID_ZW0x0x_READ_LOCKBITS.. 16
FUNC_ID_ZW0x0x_READ_PAGE.. 12
FUNC_ID_ZW0x0x_READ_SIG_BYTE .. 9
FUNC_ID_ZW0x0x_SET_WRITE_CYCLE ... 10
FUNC_ID_ZW0x0x_SRAM_EXECUTE .. 13
FUNC_ID_ZW0x0x_SRAM_READ_PAGE ... 12
FUNC_ID_ZW0x0x_SRAM_WRITE_PAGE.. 12
FUNC_ID_ZW0x0x_STATUS_READ.. 14, 15
FUNC_ID_ZW0x0x_WRITE_LOCKBITS .. 17
FUNC_ID_ZW0x0x_WRITE_PAGE .. 11

