
 CONFIDENTIAL

Application Note
Porting Z-Wave Appl. SW from ZW0301 to 400 Series

Document No.: APL10979

Version: 3

Description: The purpose of this document is to give guidelines for the Z Wave application
developer, when porting software applications from ZW0301 to 400 Series

Written By: JFR;SSE;EFH;MVO;TJC;TRO

Date: 2011-02-25

Reviewed By: SSE;TRO

Restrictions: Partners Only

Approved by:

Date CET Initials Name Justification
2011-02-25 11:23:19 JFR Jørgen Franck on behalf of NTJ

This document is the property of Sigma Designs Inc. The data contained herein, in whole
or in part, may not be duplicated, used or disclosed outside the recipient for any purpose.
This restriction does not limit the recipient's right to use information contained in the data if
it is obtained from another source without restriction.

APL10979-3 Porting Z-Wave Appl. SW from ZW0301 to 400 Series 2011-02-25

Sigma Designs Inc. Revision Record and Tables of Contents Page ii of iii

 CONFIDENTIAL

REVISION RECORD

Doc.
Rev

Date By Pages
affected

Brief description of changes

1 20100821 JFR
EFH
MVO
SSE

ALL Initial draft

2 20110127 EFH
JFR

Section 1.1.1 Additional porting details regarding Makefile.Common and Makefile.

3 20110225 JFR Section 1.2.6 Added limitations with respect to the standard 8051 timers Timer0 and Timer1.

APL10979-3 Porting Z-Wave Appl. SW from ZW0301 to 400 Series 2011-02-25

Sigma Designs Inc. Revision Record and Tables of Contents Page iii of iii

 CONFIDENTIAL

Table of Contents
1 ABBREVIATIONS...1
2 INTRODUCTION...1
2.1 Purpose ..1
2.2 Audience and prerequisites..1
1 400 SERIES PORTING ISSUES...2
1.1 SDK 4.51 based LED Dimmer..2

1.1.1 Porting the sample application from SDK 4.5x to SDK 6.0x ..2
1.1.2 Renaming sample application ..3
1.1.3 Changing library ...3
1.1.4 Incorporating patch system ..3

1.2 Mapping of SDK 4.51 API calls to SDK 6.0x..4
1.2.1 Required Application Functions..4
1.2.2 Z-Wave Basis API ..5
1.2.3 Z-Wave Transport API..5
1.2.4 Z-Wave TRIAC API ..6
1.2.5 Z-Wave Timer API ..6
1.2.6 Z-Wave PWM API (GP Timer)..7

1.2.6.1 GP Timer operation...7
1.2.6.2 PWM operation..7

1.2.7 Z-Wave Memory API ..7
1.2.8 Z-Wave ADC API..8
1.2.9 Z-Wave Power API ...8
1.2.10 Z-Wave UART interface API...9
1.2.11 Z-Wave Node Mask API ...9
1.2.12 Z-Wave Controller API..9
1.2.13 Z-Wave Static Controller API..10
1.2.14 Z-Wave Bridge Controller API ..10
1.2.15 Z-Wave Installer Controller API ..10
1.2.16 Z-Wave Slave API ..10
1.2.17 Z-Wave Routing and Enhanced Slave API ..10
1.2.18 Serial Command Line Debugger ..10
1.2.19 Hardware Pin Definitions ..10

REFERENCES ...11
INDEX...12

APL10979-3 Porting Z-Wave Appl. SW from ZW0301 to 400 Series 2011-02-25

Sigma Designs Inc. Abbreviations Page 1 of 12

 CONFIDENTIAL

1 ABBREVIATIONS

Abbreviation Explanation
AES The Advanced Encryption Standard is a symmetric block cipher algorithm. The

AES is a NIST-standard cryptographic cipher that uses a block length of 128 bits
and key lengths of 128, 192 or 256 bits. Officially replacing the Triple DES method
in 2001, AES uses the Rijndael algorithm developed by Joan Daemen and Vincent
Rijmen of Belgium.

API Application Programming Interface
PWM Pulse Width Modulator
RF Radio Frequency
WUT Wake Up Timer

2 INTRODUCTION

2.1 Purpose

The purpose of this document is to give guidelines for the Z-Wave application developer, when porting
SDK 4.51 based software applications from ZW0301 to 400 Series based hardware platforms.

2.2 Audience and prerequisites

The audience of this document is Z-Wave partners and Sigma Designs.

APL10979-3 Porting Z-Wave Appl. SW from ZW0301 to 400 Series 2011-02-25

Sigma Designs Inc. 400 Series Porting Issues Page 2 of 12

 CONFIDENTIAL

1 400 SERIES PORTING ISSUES

The software porting process contains a number of logical steps to achieve a ported product on the 400
Series based hardware platform:

• Select an appropriate embedded sample application distributed on the Developer’s Kit. Use
typically a sample application using the wanted library.

• Rename sample application to the application in question.

• Move source code into application taking development mode (patch system) into account.

• Update API calls to 400 Series, especially API calls related to peripherals have changed
significantly. Secure applications can also use the new AES API and thereby avoid royalty
payment to SIC’s AES implementation.

• Build application.

1.1 SDK 4.51 based LED Dimmer

This example shows how to port a SDK 4.51 based LED Dimmer to SDK 6.0x based on a 400 Series
single chip.

1.1.1 Porting the sample application from SDK 4.5x to SDK 6.0x

Create a new application source directory LED_Dimmer_Port in the installed SDK 6.01.01 directory
C:\DevKit_6_01_01\Product. Copy LED_Dimmer application from SDK 4.51 to LED_Dimmer_Port
directory.

Adapt Makefile to SDK 6.0x common makefiles. Add definitions for $(APP) and $(LIB) on every real
target MAKELINE. Change all ZW020x targets to ZW040x targets. Rename the application common
makefile to “Makefile.common”.

Adapt project source files to SDK 6.0x API calls (see section 1.2). Remove all “#ifdef ZW020x” and
“#ifdef ZW030x” directives in the source code files.

Now the LED_Dimmer is ready to be compiled and executable in the ZW040x in normal mode.

The porting process is illustrated in the file LED_Dimmer_Porting_SDK4_5x_to_SDK6_0x.zip situated in
the same directory as this document. Use a tool to see the changes made in each step:

• Make a copy of the old application directory to a new application directory:
C:\Product\LED_Dimmer_Port_r18848

• Makefile rename:
C:\Product\LED_Dimmer_Port_r18849

o Makefile.Testdefines change to Makefile.TestDefines to comply with a case-sensitive
makefile system.

• Adapt Makefiles to SDK 6.0x common Makefiles:
C:\Product\LED_Dimmer_Port_r18850

APL10979-3 Porting Z-Wave Appl. SW from ZW0301 to 400 Series 2011-02-25

Sigma Designs Inc. 400 Series Porting Issues Page 3 of 12

 CONFIDENTIAL

o Makefile.leddimmer_common change to Makefile.common

• Adapt Source files to SDK 6.0x API for normal mode OTP code:
C:\Product\LED_Dimmer_Port_r18852

o Changes in LEDdim.c

• Change makefile method of specifying what to build:
C:\Product\LED_Dimmer_Port_r19889

o Changes in Makefile.common now situated in directory Z-Wave\Common.

• Change MyProduct name to starter in Makefile:
C:\Product\LED_Dimmer_Port_r19897

o MyProduct_devmode -> starter_devmod,
MyProduct.obj -> starter.obj &
MyProduct_patch.obj -> starter_patch.obj

1.1.2 Renaming sample application

Renaming the sample application to the product in question can be done by renaming the base directory
of the application. The application name is also defined by definition and injection of the $(APP) variable
for the targets in the projects main Makefile.

1.1.3 Changing library

Changing the library used for the application is now controlled by the definition and the injection of the
$(LIB) variable for the targets in the projects main Makefile.

1.1.4 Incorporating patch system

Add development mode targets to the applications Makefiles.

Insert standard patch system macro defines and includes in the beginning of every C-source file in your
application.

Change all the global variables in every C-source file in your application. If the variable shall be shared
between the patchable OTP code and the patch RAM code, then use the PATCH_VARIABLE macro.
Else you can make the variable static (not public, and thus local to the module).

Change all public functions in every C-source file in your application. Use the
PATCH_FUNCTION_NAME macro for handling the function name. Make the function reentrant to locate
the functions frame on the reentrant pseudo stack. Insert the PATCH_TABLE_ENTRY macro with the
function name as the very first code in every function. Local variables for the function shall be declared
before the PATCH_TABLE_ENTRY, and initialization of local variables shall be done in code after the
PATCH_TABLE_ENTRY. A special variant of the two macros, PATCH_FUNCTION_NAME_STARTER
and PATCH_TABLE_ENTRY_STARTER exists for use where we need a wrapper function for handling
differences in the functions frame format (different parameters and/or different local variables). This is the
case for the starter targets, where the patchable empty application and the real patch application
contains standard wrappers for all required application functions.

Function definition:

Static void ApplicationPoll(void)

APL10979-3 Porting Z-Wave Appl. SW from ZW0301 to 400 Series 2011-02-25

Sigma Designs Inc. 400 Series Porting Issues Page 4 of 12

 CONFIDENTIAL

{
 BYTE lastAction = OneButtonLastAction();
….

New patch function definition:

Void PATCH_FUNCTION_NAME_STARTER(ApplicationPoll)(void)
#ifdef PATCH_ENABLE
reentrant
#endif
{
 BYTE lastAction;
#ifdef PATCH_ENABLE
#pragma asm
PATCH_TABLE_ENTRY_STARTER(ApplicationPoll)
#pragma endasm
#endif
 lastAction = OneButtonLastAction();
….

Function declaration:

Extern void ApplicationPoll(void) ;

New patch function declaration:

Extern void ApplicationPoll(void)
#ifdef PATCH_ENABLE
reentrant
#endif
;

Change all your IDATA and DATA variables to XDATA variables.

The porting process is illustrated in the file LED_Dimmer_Porting_SDK4_5x_to_SDK6_0x.zip situated in
the same directory as this document. Use a tool to see the changes made in each step:

Adding development targets to the Makefiles:
C:\Product\LED_Dimmer_Port_r18853

Incorporation of patch-macros into application source files to be able to build both patchable OTP code
and patch code for development RAM:
C:\Product\LED_Dimmer_Port_r18855

1.2 Mapping of SDK 4.51 API calls to SDK 6.0x

This section describes changes in API calls when moving from SDK 5.51 to SDK 6.0x. The SDK 6.0x
contains also additional API calls, for details refer to [1].

1.2.1 Required Application Functions

SDK 4.51 SDK 6.0x Note

ApplicationRFNotify Discontinued -

APL10979-3 Porting Z-Wave Appl. SW from ZW0301 to 400 Series 2011-02-25

Sigma Designs Inc. 400 Series Porting Issues Page 5 of 12

 CONFIDENTIAL

1.2.2 Z-Wave Basis API

SDK 4.51 SDK 6.0x Note

 ZW_RF_above_3v_supply_guaranteed

ZW_SetSleepMode ZW_SetSleepMode Moved to Z-Wave Power API

1.2.3 Z-Wave Transport API

SDK 4.51 SDK 6.0x Note

ZW_SendData_Generic Obsolete

ZW_SendDataMeta_Generic Obsolete

ZW_SendConst ZW_SendConst Parameters changed see [1] for
more details

 ZW_SetListenBeforeTalkThreshold

APL10979-3 Porting Z-Wave Appl. SW from ZW0301 to 400 Series 2011-02-25

Sigma Designs Inc. 400 Series Porting Issues Page 6 of 12

 CONFIDENTIAL

1.2.4 Z-Wave TRIAC API

SDK 4.51 SDK 6.0x Note

TRIAC_Init ZW_TRIAC_init SDK 4.51 supports 2 Zero-x
modes, whereas SDK 6.0x
supports 3 modes

The SDK 6.0x supports a
prescaler for the correction timer

The SDK 6.0x supports a specific
mode for FET’s/IGBT’s

 ZW_TRIAC_enable(TRUE) -

TRIAC_SetDimLevel ZW_TRIAC_dimlevel_set SDK 4.51 supports 100 dimming
steps , whereas SDK 6.0x
supports 1000 steps

 ZW_TRIAC_int_enable SDK 4.51 does not support Triac
interrupts.

 ZW_TRIAC_int_get SDK 4.51 does not support Triac
interrupts.

 ZW_TRIAC_int_clear SDK 4.51 does not support Triac
interrupts.

TRIAC_Off ZW_TRIAC_enable(FALSE) -

1.2.5 Z-Wave Timer API

API calls are the same.

APL10979-3 Porting Z-Wave Appl. SW from ZW0301 to 400 Series 2011-02-25

Sigma Designs Inc. 400 Series Porting Issues Page 7 of 12

 CONFIDENTIAL

1.2.6 Z-Wave PWM API (GP Timer)

Moved to Application HW Timers/PWM interface API in SDK 6.0x, where the API calls are divided into
two sets, one for the GP Timer and one for the PWM.

API calls are also added for the standard 8051 Timer0. However,

1.2.6.1 GP Timer operation

SDK 4.51 SDK 6.0x Note

ZW_PWMSetup ZW_GPTIMER_init/
ZW_GPTIMER_enable

Bit 1 in the function parameter
set to 0 in SDK 4.51.

ZW_PWMPrescale ZW_GPTIMER_reload_set

ZW_PWMClearInterrupt ZW_GPTIMER_int_clear

ZW_PWMEnable ZW_GPTIMER_int_enable

N.A. ZW_GPTIMER_int_get

N.A. ZW_GPTIMER_pause

N.A. ZW_GPTIMER_reload_get

N.A. ZW_GPTIMER_get

1.2.6.2 PWM operation

SDK 4.51 SDK 6.0x Note

ZW_PWMSetup ZW_PWM_init/
ZW_PWM_enable

Bit 1 in the function parameter
set to 1 in SDK 4.51.

ZW_PWMPrescale ZW_PWM_waveform_set

ZW_PWMClearInterrupt ZW_PWM_int_clear

ZW_PWMEnable ZW_PWM_int_enable

N.A. ZW_PWM_int_get

N.A. ZW_PWM_waveform_get

1.2.7 Z-Wave Memory API

API calls are the same.

APL10979-3 Porting Z-Wave Appl. SW from ZW0301 to 400 Series 2011-02-25

Sigma Designs Inc. 400 Series Porting Issues Page 8 of 12

 CONFIDENTIAL

1.2.8 Z-Wave ADC API

SDK 4.51 SDK 6.0x Note

ADC_Off ZW_ADC_power_enable(FALSE)

ADC_Start ZW_ADC_enable(TRUE)

ADC_Stop ZW_ADC_enable(FALSE)

ADC_Init ZW_ADC_init/
ZW_ADC_batt_monitor_enable

ADC_SelectPin ZW_ADC_pin_select

ADC_Buf ZW_ADC_buffer_enable

ADC_SetAZPL ZW_ADC_auto_zero_set

ADC_SetResolution ZW_ADC_resolution_set

ADC_SetThresMode ZW_ADC_threshold_mode_set

ADC_SetThres ZW_ADC_threshold_set

ADC_Int ZW_ADC_int_enable

ADC_IntFlagClr ZW_ADC_int_clear

ADC_GetRes ZW_ADC_result_get

1.2.9 Z-Wave Power API

SDK 4.51 SDK 6.0x Note

ZW_SetWutTimeout ZW_SetWutTimeout

APL10979-3 Porting Z-Wave Appl. SW from ZW0301 to 400 Series 2011-02-25

Sigma Designs Inc. 400 Series Porting Issues Page 9 of 12

 CONFIDENTIAL

1.2.10 Z-Wave UART interface API

SDK 4.51 SDK 6.0x Note

UART_Init ZW_UARTx_init

UART_RecStatus -

UART_RecByte ZW_UARTx_rx_data_wait_get

UART_SendStatus ZW_UARTx_tx_active_get

UART_SendByte ZW_UARTx_tx_data_wait_set

UART_SendNum ZW_UARTx_tx_send_num

UART_SendStr ZW_UARTx_ tx_send_str

UART_SendNL ZW_UARTx_ tx_send_nl

UART_Enable ZW_UARTx_init Parameter bEnableTx in
ZW_UARTx_init

UART_Disable ZW_UARTx_init Parameter bEnableTx in
ZW_UARTx_init

UART_ClearTx ZW_UARTx_tx_int_clear

UART_ClearRx ZW_UARTx_rx_int_clear

UART_Write ZW_UARTx_tx_data_set

UART_Read ZW_UARTx_rx_data_get

N.A. ZW_UARTx_tx_int_get

N.A. ZW_UARTx_rx_int_get

N.A. ZW_UARTx_rx_active_get

UART0 pin positions are different on ZM4102 compared to SD3402 and ZM4101. Libraries support
default SD3402 and ZM4101 with respect to UART0. Use API call ZW_UART0_zm4102_mode_enable
to map UART0 pins when using ZM4102.

1.2.11 Z-Wave Node Mask API

API calls are the same.

1.2.12 Z-Wave Controller API

API calls are the same.

APL10979-3 Porting Z-Wave Appl. SW from ZW0301 to 400 Series 2011-02-25

Sigma Designs Inc. 400 Series Porting Issues Page 10 of 12

 CONFIDENTIAL

1.2.13 Z-Wave Static Controller API

API calls are the same.

1.2.14 Z-Wave Bridge Controller API

API calls are the same.

1.2.15 Z-Wave Installer Controller API

API calls are the same.

1.2.16 Z-Wave Slave API

SDK 4.51 SDK 6.0x Note

ZW_Support9600Only Discontinued

1.2.17 Z-Wave Routing and Enhanced Slave API

API calls are the same.

1.2.18 Serial Command Line Debugger

API calls are the same.

1.2.19 Hardware Pin Definitions

Moved to GPIO helper macros in SDK 6.0x.

SDK 4.51 SDK 6.0x Note

PIN_ON PIN_HIGH

PIN_OFF PIN_LOW

N.A. ZW_io_set Used in ApplicationInitHW
instead of PIN_HIGH/PIN_LOW

APL10979-3 Porting Z-Wave Appl. SW from ZW0301 to 400 Series 2011-02-25

Sigma Designs Inc. References Page 11 of 12

 CONFIDENTIAL

REFERENCES

[1] Sigma Designs, INS10682, Instruction, Z-Wave 400 Series Application Programming Guide.

APL10979-3 Porting Z-Wave Appl. SW from ZW0301 to 400 Series 2011-02-25

Sigma Designs Inc. Index Page 12 of 12

 CONFIDENTIAL

INDEX

A

AES API... 2

D

Development mode.. 3

P

Patch system ... 3

