
Rev. 0.1 12/04 Copyright © 2004 by Silicon Laboratories AN202

AN202

LOW PIN-COUNT LCD INTERFACE

1. Introduction
This application note provides an example interface for a C8051F330 device with an example LCD. First, this appli-
cation note describes how an LCD works and then describes the two types of LCDs: direct drive and multiplexed
drive. Next, the software interface and structure are explained. Finally, this note describes how to modify the soft-
ware example to work with other LCDs.

2. Key Points
The software provided translates ASCII characters into 7-segment digits, compatible with the printf() standard
library function.
The LCD used in this example has 19 pins (4 Common and 15 Segment). Seven pins are used on the
microcontroller: four for the Common pins and three that serve as a serial interface to a pair of 74HC595 8-bit,
latched shift registers which are the segment drivers.
The refresh rate of the LCD is chosen to minimize power consumption as well as minimize flickering.

Figure 1. LCD Interface Block Diagram

Relevant Devices
This application note applies to the following devices:
C8051F330, C8051F330D, C8051F331

LCDC8051F330

74HC595 74HC595
8 7

COM
Pins

Seg Pin Out
74HC595 Control

2

COM PINS
SEGMENT PINS

AN202

2 Rev. 0.1

3. LCD
The following sections describe how an LCD works.

3.1. Components of an LCD
An LCD consists of a collection of segments that are individually controlled. When there is no voltage across a seg-
ment, it is turned OFF and assumes the color of the background of the LCD. Applying an ac voltage across a seg-
ment causes it to turn ON and it will look darker than the background of the LCD. The root mean square (rms)
value of the voltage across the segment must be greater than a certain threshold for the segment to turn on. This
threshold is determined by the LCD manufacturer.
Figure 2 shows a diagram of a single segment. Each segment in an LCD has two terminals: a Backplane terminal
and a Segment terminal. Electrically the segment looks like a capacitor. Multiple segments can connect to the
same backplane. The collection of Segment Drivers is called the Frontplane.

Figure 2. Single Segment in an LCD

Segment
Driver

Backplane

SegmentCapacitor

Frontplane Connection

Backplane Connection

AN202

Rev. 0.1 3

3.2. Direct Drive LCD
In a direct drive LCD, each segment on the LCD is mapped to its own Segment pin. Another pin called the Com-
mon pin (COM) provides the voltage to the backplane. A direct drive LCD with N segments requires a total of N + 1
pins. Figure 3 below shows a diagram of an direct-drive LCD with seven segments.

Figure 3. Connections for a 7-Digit Segment

Figure 4 shows a sample timing diagram that illustrates how a single segment is turned on and off. The microcon-
troller drives all the inputs of a direct drive LCD to either VDD or GND. To turn a segment on, a voltage difference is
applied between the backplane and the segment pin for that specific segment.

S0

S1

S6

S2S3

S4

S5

COM

AN202

4 Rev. 0.1

Figure 4. Sample Timing Diagram for a Single Segment

To achieve the best contrast and lowest power consumption, the COM pin should be driven with a 50% duty-cycle
square wave.
In the first half of the timing diagram, the segment pin S1 is driven to a value opposite the value driven on the COM
pin. This leads to a voltage difference across the segment, the magnitude of which is shown by ∆S, and the seg-
ment is turned ON for this length of time. In the second half of the timing diagram, the segment pin S1 is driven to
the same value as the output on the COM pin. This leads to no potential difference across the segment and thus
the segment is turned OFF for this period of time.
In summary, to turn a segment ON in a direct drive LCD, drive the corresponding segment pin to the value opposite
the value of the COM pin. To turn a segment OFF, drive the segment pin to the same value as the COM pin.
Note: An ac excitation waveform is required to turn the segment ON, and the rms value of the voltage across the segment

must be above a certain threshold for the segment to change color.

0
VDD

0
VDD

0
VDD

ON OFF

t

t

t

COM

S1

S

First Half Second Half

S = magnitude (COM – S1)∆ ∆

AN202

Rev. 0.1 5

3.3. Multiplexed LCD
A multiplexed LCD has more than one backplane, and a corresponding COM pin for each of those backplanes. In
a M-way multiplexed LCD, there are M separate backplanes and M COM pins.
The segments share Segment pins as well as COM pins. The segments are divided equally between the Segment
pins, with each segment possessing a unique combination of Segment and COM pins. If an LCD has M COM pins
and N segment pins, it can support up to M x N segments. For example, and LCD with 4 COM pins and 15 Seg-
ment pins can have up to 60 segments.

Figure 5. Connections for 8 Segments in a 4-way Multiplexed LCD

The LCD discussed in this application note can support up to 60 segments and is 4-way multiplexed. This means it
has 15 groups of 4 pins each. Each group shares a single segment pin. This means that 19 pins are needed to
interface with this LCD (15 for each segment group + 4 COM pins).
If the same LCD was designed as a direct drive LCD, it would require 61 pins (60 pins for each segment and 1
COM pin).
The diagram in Figure 5 shows the connections for a sample 4-way multiplexed LCD.
The COM pins in a multiplexed LCD are driven to one of three voltage levels: VDD, VDD/2, or GND. At any one
moment, only one of the COM pins is driven to either VDD or GND. All other COM pins are driven to VDD/2. The
segment pins are still only driven only to VDD or to GND.

In a 4-way multiplexed LCD, each refresh cycle or period is separated into 8 phases. During the first four phases of
the period, each COM pin is alternately driven to VDD, while the other COM pins are held at VDD/2. In the last 4
phases, each COM pin is alternately driven to GND, while the other COM pins are held at VDD/2. The value of the
COM pins during the last 4 phases is an inverse of the values in the first four phases. This is known as “1/4 duty
cycle.”
Determining the segment pin value to turn a segment ON is similar to the method used for a direct drive LCD. Each
segment is connected to one Segment pin and one of the COM pins. When the respective COM driver is high (in
one of the first four phases of the period), the segment pin must be driven low to turn ON the segment and driven

S1 S2

COM1 COM2 COM3 COM4

AN202

6 Rev. 0.1

high to turn OFF the segment. The value of the segment pin is not relevant to a segment if its COM pin is not driven
to VDD or GND.

Driving the pin low when the respective COM pin is high creates a voltage difference across the segment whose
rms value is greater than the threshold necessary to turn on the segment. Whenever a COM pin is set to VDD/2,
and the segment pin is set to VDD or GND, the rms voltage is below the threshold to turn on the segment. As long
as the rms value of the voltage across the segment over the four phases is above a certain threshold, the segment
will remain ON for those four phases. If the rms value is below the threshold, the segment will remain OFF for
those four phases.
The Segment pin value over the last four phases of the period must be the inverse of the value over the first four
phases. This will cause the segments to remain in the same state (ON/OFF) that they were in the first four phases.

Figure 6. RMS thresholds for LCD segments

Figure 6 is a graph of the voltage difference over time between a specific Segment pin and four COM pins. When-
ever the magnitude of the voltage difference is less than V_RMS, the segment that is between the Segment pin
and the active COM pin is OFF. Whenever the magnitude of the voltage difference is greater than V_RMS, the seg-
ment that is between the Segment pin and the active COM pin is ON.
In Figure 6, the voltage difference is greater than V_RMS only during phase 3 (and the corresponding phase 7)
and thus only segment 3 is ON. The other segments will remain off during this refresh cycle.
To create a rms value greater than the threshold for a certain segment, set the segment pin low whenever the cor-
responding COM pin is high, and set the segment pin high whenever the corresponding COM pin is low.
Figure 7 shows the waveforms for the COM signals, a single Segment pin, and the delta values for the four seg-
ments that the Segment pin is connected to. The delta values are the voltages across the segments. Figure 7 also
shows which segments are ON and OFF during each period.

VDD

-VDD

VDD/2

-VDD/2

0

V_RMS

V_RMS

Se
g1

 –
 O

FF

Se
g2

 –
 O

FF

S
eg

3
–

O
n

Se
g4

 –
 O

FF

Se
g1

 –
 O

FF

S
eg

2
–

O
FF

Se
g3

 –
 O

n

S
eg

4
–

O
FF

AN202

Rev. 0.1 7

Figure 7. Timing Diagram for a Sample 4-Way Multiplexed LCD

0

VDD

t

0

VDD

0

VDD

t

t

0

VDD

t

0

VDD

t

0

VDD
t

Period 1 Period 2

COM 1

COM 2

COM 3

COM 4

S

S1

S2

S3

S4

seg 1

seg 2

seg 3

seg 4

seg 1

seg 3

seg 2

seg 4

COM 1

COM 2

COM 3

COM 4

COM 1

COM 2

COM 3

COM 4

COM 1

COM 2

COM 3

COM 4

S

S

S

Segment Connections

During Period 1

During Period 2

-VDD

0

VDD
t

-VDD

0

VDD
t

-VDD

0

VDD
t

-VDD

ON OFF

ON OFF

OFF ON

OFF ON

S1 = COM 1 – S
S2 = COM 2 – S
S3 = COM 3 – S
S4 = COM 4 – S

S
eg

1
–

A
ct

iv
e

S
eg

2
–

N
ot

 A
ct

iv
e

S
eg

3
–

A
ct

iv
e

S
eg

4
–

N
ot

 A
ct

iv
e

S
eg

1
–

N
ot

 A
ct

iv
e

S
eg

2
–

A
ct

iv
e

S
eg

3
–

N
ot

 A
ct

iv
e

S
eg

4
–

A
ct

iv
e

S
eg

1
–

A
ct

iv
e

S
eg

2
–

N
ot

 A
ct

iv
e

S
eg

3
–

A
ct

iv
e

S
eg

4
–

N
ot

 A
ct

iv
e

S
eg

1
–

N
ot

 A
ct

iv
e

S
eg

2
–

A
ct

iv
e

S
eg

3
–

N
ot

 A
ct

iv
e

S
eg

4
–

A
ct

iv
e

∆
∆
∆
∆

∆

∆

∆

∆

AN202

8 Rev. 0.1

4. How to Generate Segment Values for a Particular Digit
Figure 8 shows a single, 7-segment digit from a 4-way multiplexed LCD. Part A of Figure 8 shows the connections
between the segment and the Segment pins S1 and S2. Part B of Figure 8 shows the connections between the
segment and backplane COM pins COM1, COM2, COM3, and COM4.
This example shows how to generate the digit “5”. From Figure 8, segments 0, 2, 3, 5, and 6 need to be turned ON.
Segments 1 and 4 need to be turned OFF. Figure 9 shows the timing diagram for one refresh cycle necessary to
generate the digit “5”.
The ∆Sn show whether a segment is ON or OFF. The delta values for segments 0, 2, 3, 5, and 6 all have an rms value
greater than VDD/2. This means that the segments are on for as long as this S pattern is presented to the LCD.

Figure 8. Sample Connections for a 7-Segment, 4-way Multiplexed LCD

S2

S1

COM1

COM2

COM4

COM3

0

1

2

3

4

5

6

0

1

2

3

4

5

6

Part A Part B

AN202

Rev. 0.1 9

Figure 9. Timing Diagram Showing How to Display the Digit “5”

0

VDD

0

VDD

0

VDD

0

VDD

0

VDD

0

VDD

S1

S2

VDD

-VDD

0

VDD

-VDD

0

VDD

-VDD

0

VDD

-VDD

0

VDD

-VDD

0

VDD

-VDD

0

VDD

-VDD

0

COM1

COM2

COM3

COM4

S0

S1

S2

S3

S4

S5

S6

ON

ON

ON

ON

ON

OFF

OFF

S0 = COM1 – S2
S1 = COM2 – S1
S2 = COM3 – S1
S3 = COM4 – S1
S4 = COM4 – S2
S5 = COM2 – S2
S6 = COM3 – S2

∆

∆

∆

∆

∆

∆

∆

∆

∆∆
∆
∆
∆
∆

AN202

10 Rev. 0.1

5. Software Example
This section describes how the user can interface to the LCD using the putchar() function.

5.1. Software Interface
The software provided in "10. Software Example Source Code" on page 16 provides an interface for a C8051F330
to the LCD. This LCD has six 7-segment digits. The four backplanes and 15 segment pins allow for 60 segments,
but this LCD only makes 42 segments visible.
The example LCD library overloads the standard library putchar() function. The flow chart for the putchar() function
is shown below in Figure 10.

Figure 10. Flowchart for putchar()

Is the input
== ‘/n’?

No

Yes

Clear all LCD
digits Does the input

need to be
translated?

Yes

No
Do translation
table lookup

Shift all digits to
the left

Insert the input to
the rightmost digit

Disable Interrupts

Enable Interrupts

Return printed
character to calling

function

START

AN202

Rev. 0.1 11

The software overloads the standard putchar() function to print its output to the LCD. The function putchar() will
insert the character in the rightmost digit on the LCD. Multiple calls to putchar() will shift the text to the left and
insert the newest character in the rightmost digit's place. Interrupts are disabled when the display is updated to
avoid flickering.
The most significant bit (MSB) of the 8-bit character passed to putchar() determines if putchar() uses a translation
table or directly displays the value. If an 8-bit character whose ASCII value is between 0 and 127 (MSB is 0) is
passed to putchar(), a translation will be made using the translation table. If a value from 128 to 255 (MSB is 1) is
passed to putchar(), the digit will be directly displayed on the LCD.
If the bit is directly displayed, the 7 lower bits are translated as follows: if the bit is “0”, the corresponding segment
is ON; if the bit is “1”, the corresponding segment is OFF. Figure 11 shows which segments are mapped to which
bits. This allows the user to easily create every combination possible with seven segments. The function putchar()
also clears the six LCD digits when it is passed the newline character, “\n”, whose ASCII value is 10. The transla-
tion table is described in detail in "7. LCD driver" on page 13.

Figure 11. Bit Mapping Between Segments in a Digit and the putchar() Input Value

AN202

12 Rev. 0.1

6. Interpreting the LCD Data Sheet
The LCD data sheet provides the mapping between the segment pins and Segment pins and the COM pins.
Table 1 shows the mapping for the example LCD.
Pins 1, 17, 18, and 19 are the COM pins. Pins 2–16 are the Segment pins. The intersection between the segment
pin number and the COM pin is the segment connected between those pins. The blank spaces in columns 2-16
indicate that there is no segment between that Segment pin and COM pin. There are blank spaces in columns 1,
17, 18, and 19 because are the COM pins.
Table 1 indicates which bits should be shifted out to the shift register in each state of the LCDrefresh_ISR(). For
example, when COM2 is active, the segment status bits for segments F1 through B6 (row 1) need to be shifted to
the shift register. Any value can be shifted to 2, 3, and 4 on the LCD while COM2 is high because there is no seg-
ment that can be activated on those pins during the COM2 phase.

The specification relevant to the firmware design is the drive frequency. The drive frequency determines how many
times the LCDrefresh_ISR() should be triggered.

Table 1. Pin Map for the Example LCD

Pin# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

COM1 A1 A2 A3 A4 A5 A6 COM1

COM2 F1 B1 F2 B2 F2 B3 F4 B4 F5 B5 F6 B6 COM2

COM3 G1 C1 G2 C2 G3 C3 G4 C4 G5 C5 G6 C6 COM3

COM4 COM4 E1 D1 E2 D2 E3 D3 E4 D4 E5 D5 E6 D6

Table 2. Example LCD Specifications

Electrical / Optical
Characteristics

Value Units

Operating Temperature Range –10°–60° °C

Operational Voltage, RMS 2.5–3.5 V-RMS

Drive Frequency 60–300 Hz

Current Consumption 15 nA/mm2

Turn On Time 80 ms

Turn Off Time 80 ms

AN202

Rev. 0.1 13

7. LCD driver
There are two main components to the LCD driver: the LCD refresh state machine and the ASCII translation table.
The LCD refresh state machine is located in LCDrefresh_ISR(). This function is responsible for driving the 4 COM
signals and the 15 segment pins. This function is executed every time Timer2 overflows which is scheduled to hap-
pen 2000 times a second. This leads to a refresh rate of 250 Hz, which is in the ideal range for the LCD.
Each state in the 8-state state machine represents which COM driver is active at the time. Because there are eight
phases in each period, this function is called eight times each refresh cycle. Each of the 42 segments has a bit in
memory that holds its state. These bits are stored in the variable LCD_digits. During each run of the function, the
ISR shifts the 15 bits that hold the state for the segments that are active this phase to the shift registers. These val-
ues are then passed in parallel to the LCD Segment pins. After four such phases, four more phases follow with all
the output values inverted to match the associated polarity reversal of the COM signals. The flowchart for the ISR
is shown in Figure 12.

Figure 12. Flowchart for the LCDrefresh_ISR

The ASCII translation table is used whenever putchar() is called with an ASCII character as its parameter. The
ASCII table is used to translate the ASCII character to a 7-segment digit. The table indicates which segments
should be OFF and ON to best represent that character. If the character cannot be translated properly, the transla-
tion table displays a space, which is represented by 0xFF in the table. Figure 13 shows the digit mapping for each
ASCII character. The first 32 characters generate spaces, so they are not part of the table. The top left number in
each box is the value stored in the translation table. The bottom left number is the ASCII value. Both of these num-
bers are shown in hexadecimal notation. The bottom right character is the character being translated. If the box is
empty, there is no translation available for that ASCII character and the LCD will display a space instead.

Select the next
active COM signal

and tri-state all other
COM signals

Shift next segment
pin value to shift

register

Yes

Shifted all
segment pins?

Latch shift
registers

Set current COM pin
to push-pull and

drive

No

START

AN202

14 Rev. 0.1

Figure 13. Mapping for the Basic Set of ASCII Characters (0–127)

AN202

Rev. 0.1 15

8. Implementation Notes
To generate the VDD/2 necessary for the backplane, a voltage divider is created using two equal sized resistors.
Whenever the COM output pin on the microcontroller is set to “analog in” (high impedance), the voltage divider will
provide the necessary VDD/2 voltage to the LCD. Whenever the COM output pin is set to digital output, 1 (VDD) or
0 (GND) will be sent to the LCD. See "11. Schematic" on page 27 for further details.
It is also important to note that increasing the refresh rate of the LCD to remove flickering also increases the power
consumption. The refresh rate should be set to the minimum amount necessary to prevent flickering. This ideal
refresh rate will vary for each manufacturer's LCD.
The shift registers (74HC595) are used to reduce the number of pins required on the microcontroller. It is important
to choose shift registers that also provide a latching capability. In each phase, all the segment pin values should be
shifted to the shift registers before latching those values to the LCD. This will prevent flickering on the LCD.

9. How to Customize the Software Example for a Different Multiplexing LCD
There are two parts of the code that need to change to accommodate different LCDs.
The Port I/O configuration has to change if the number of backplanes changes. For each backplane, a COM port
pin must be allocated. If the number of Segment pins changes, more pins need not be allocated because the bits
are shifted out serially. However, the number of shift registers depends directly on how many Segments pins are on
the LCD.
The LCDrefresh_ISR() must be changed to accommodate the number of backplanes as well as the number of seg-
ment pins. This involves changing the number of states if the number of backplanes is different. The structures that
store the segment state information must be modified to match the segments on the new LCD. The mapping
between which segments are connected to which backplanes will determine which bits are sent to the LCD during
each phase.

AN202

16 Rev. 0.1

10. Software Example Source Code
This section contains the source code for the software example.
//---

// LCDInterface.c

//---

// Copyright 2004 Silicon Laboratories, Inc.

//

// AUTH: GP

// DATE: 19 NOV 04

//

// This program interfaces a C8051F330 device with an example LCD.

//

// Target: C8051F33x

// Tool Chain : Keil

//

//---

// Includes

//---

#include <c8051F330.h>

#include <stdio.h>

//---

// 16-bit SFR Definitions for 'F3xx

//---

sfr16 TMR2RL = 0xca; // Timer2 reload value

sfr16 TMR2 = 0xcc; // Timer2 counter

sfr16 TMR3RL = 0x92; // Timer3 reload value

sfr16 TMR3 = 0x94; // Timer3 counter

//---

// Structures, Unions, Enumerations, and Type Definitions

//---

// The translation table provides the mapping between ASCII characters

// and the segment pin values

// The first 32 characters (except 10) just produce a space;

// Character 10 (newline) clears the LCD digits

// Characters that can't be translated produce a space

// The MSB in the byte is meaningless because there are only 7 segments

// If the bit is low, the corresponding bar in the digit is active

// The 'diagram' below shows which bit corresponds to which bar in the LCD digit

// 0

// _

// 5 | | 1 the middle inner bar is bit 6

// -

// 4 | | 2

AN202

Rev. 0.1 17

// -

// 3

unsigned char code translation_table[128] = {

0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 0 - 7

0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 8 - 15

0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 16 - 23

0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, // 24 - 31

0xFF, 0xCF, 0xDD, 0xFF, 0x92, 0x9B, 0xFF, 0xDF, // 32 - 39

0xC6, 0xF0, 0xFF, 0xFF, 0xDF, 0xBF, 0xEF, 0xFF, // 40 - 47

0x40, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x02, 0xF8, // 48 - 55

0x00, 0x10, 0xF9, 0xF9, 0x9E, 0xB7, 0xBC, 0x18, // 56 - 63

0xFF, 0x08, 0x00, 0xC6, 0x21, 0x06, 0x0E, 0x02, // 64 - 71

0x09, 0xF9, 0xE1, 0x07, 0xC7, 0xFF, 0x48, 0x40, // 72 - 79

0x0C, 0x18, 0xAF, 0x92, 0xF8, 0x41, 0xE3, 0xFF, // 80 - 87

0x09, 0x11, 0xA4, 0x06, 0xFF, 0xF0, 0xDC, 0xF7, // 88 - 95

0xDF, 0x20, 0x03, 0xA7, 0x21, 0x04, 0x0E, 0x10, // 96 - 103

0x0B, 0xFB, 0x61, 0x07, 0xF9, 0xFF, 0xAB, 0x23, // 104 - 111

0x0C, 0x18, 0xAF, 0x92, 0x07, 0xE3, 0xE3, 0xFF, // 112 - 119

0x09, 0x11, 0xA4, 0xC6, 0xF9, 0xF0, 0xBF, 0xFF, // 120 - 127

};

//---

// Global Constants

//---

#define SYSCLK 24500000 // SYSCLK frequency in Hz

#define TIMER2_RATE 1000 // Timer 2 overflow rate in Hz

#define TIMER3_RATE 2000 // Timer 3 overflow rate in Hz

#define PULSE_LENGTH 25

//---

// Port names

//---

sbit SRCLK = P1^1; // shift register clock

sbit RCLK = P1^2; // shift register latch

sbit SER = P1^3; // shift register serial in

sbit COM1 = P1^4; // COM1 pin on LCD

sbit COM2 = P1^5; // COM2 pin on LCD

sbit COM3 = P1^6; // COM3 pin on LCD

sbit COM4 = P1^7; // COM4 pin on LCD

//---

// Global LCD Variables

//---

AN202

18 Rev. 0.1

unsigned char com_cycle = 1; // start at COM 1

unsigned char com_invert = 0; // start with positive cycle

// Below are the bit maps for each of the bars on the LCD; If the bit is low

// then the bar is opaque (ON). If the bit is high, the bar is transparent (OFF).

// one char per digit on the LCD; initialized to OFF

unsigned char bdata LCD_digits[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};

// The naming scheme: D1A means the A segment of digit 1

// Digit 1 (D1) is the leftmost digit on the LCD

sbit D1A = LCD_digits[0] ^ 0;

sbit D1B = LCD_digits[0] ^ 1; // D1 is controlled by S1 and S2

sbit D1C = LCD_digits[0] ^ 2;

sbit D1D = LCD_digits[0] ^ 3;

sbit D1E = LCD_digits[0] ^ 4;

sbit D1F = LCD_digits[0] ^ 5;

sbit D1G = LCD_digits[0] ^ 6;

sbit D2A = LCD_digits[1] ^ 0; // D2 is controlled by S3 and S4

sbit D2B = LCD_digits[1] ^ 1;

sbit D2C = LCD_digits[1] ^ 2;

sbit D2D = LCD_digits[1] ^ 3;

sbit D2E = LCD_digits[1] ^ 4;

sbit D2F = LCD_digits[1] ^ 5;

sbit D2G = LCD_digits[1] ^ 6;

sbit D3A = LCD_digits[2] ^ 0; // D3 is controlled by S5 and S6

sbit D3B = LCD_digits[2] ^ 1;

sbit D3C = LCD_digits[2] ^ 2;

sbit D3D = LCD_digits[2] ^ 3;

sbit D3E = LCD_digits[2] ^ 4;

sbit D3F = LCD_digits[2] ^ 5;

sbit D3G = LCD_digits[2] ^ 6;

sbit D4A = LCD_digits[3] ^ 0; // D4 is controlled by S7 and S8

sbit D4B = LCD_digits[3] ^ 1;

sbit D4C = LCD_digits[3] ^ 2;

sbit D4D = LCD_digits[3] ^ 3;

sbit D4E = LCD_digits[3] ^ 4;

sbit D4F = LCD_digits[3] ^ 5;

sbit D4G = LCD_digits[3] ^ 6;

sbit D5A = LCD_digits[4] ^ 0; // D5 is controlled by S9 and S10

sbit D5B = LCD_digits[4] ^ 1;

sbit D5C = LCD_digits[4] ^ 2;

sbit D5D = LCD_digits[4] ^ 3;

sbit D5E = LCD_digits[4] ^ 4;

sbit D5F = LCD_digits[4] ^ 5;

sbit D5G = LCD_digits[4] ^ 6;

sbit D6A = LCD_digits[5] ^ 0; // D6 is controlled by S11 and S12

sbit D6B = LCD_digits[5] ^ 1;

AN202

Rev. 0.1 19

sbit D6C = LCD_digits[5] ^ 2;

sbit D6D = LCD_digits[5] ^ 3;

sbit D6E = LCD_digits[5] ^ 4;

sbit D6F = LCD_digits[5] ^ 5;

sbit D6G = LCD_digits[5] ^ 6;

//---

// Function Prototypes

//---

void SYSCLK_Init (void);

void Port_IO_Init();

void Timer2_Init (int);

void Timer3_Init (int);

char putchar(char);

void Strobe();

void wait_one_ms(unsigned int);

//---

// MAIN Routine

//---

void main(void)

{

 PCA0MD &= ~0x40; // WDTE = 0 (clear watchdog timer enable)

 SYSCLK_Init(); // initialize the oscillator

 Port_IO_Init(); // initialize the ports

 Timer2_Init (SYSCLK / TIMER2_RATE); // enable timer to interrupt at some Hz

 Timer3_Init (SYSCLK / TIMER3_RATE); // enable timer to overflow at some Hz

 // We first configure the COM ports to analog inputs. This allows us

 // to set them to high impedance if we write a 1 to the COM port. Along with

 // some external resistors, we can then create a VDD/2 voltage. When it is

 // time for the corresponding COM cycle, we can set the pin to push-pull and

 // drive the output to VDD or GND. These 3 levels (VDD, VDD/2, GND) are

 // necessary only for the backplane (Common) pins on the LCD

 COM1 = 1; // high impedance

 COM2 = 1; // high impedance

 COM3 = 1; // high impedance

 COM4 = 1; // high impedance

 RCLK = 0; // don't output anything to LCD

 SRCLK = 0; // don't shift anything to registers yet

 EA = 1; // enable global interrupts

 while (1)

 {

 printf ("Hello");

 wait_one_ms (1000);

 printf ("\n");

AN202

20 Rev. 0.1

 wait_one_ms (1000);

 }

}

//---

// Init Functions

//---

//---

// SYSCLK_Init

//---

//

// This routine initializes the system clock to use the internal 24.5MHz

// oscillator as its clock source. Also enables missing clock detector reset.

//

void SYSCLK_Init (void)

{

 OSCICN |= 0x03; // Configure internal osc to max freq

 RSTSRC = 0x04; // Enable missing clock detector

}

//---

// Port_IO_init

//---

//

// This routine initializes the ports and enables the crossbar

//

void Port_IO_Init(void)

{

 // P0.0 - Unassigned, Open-Drain, Digital

 // P0.1 - Unassigned, Open-Drain, Digital

 // P0.2 - Unassigned, Open-Drain, Digital

 // P0.3 - Unassigned, Open-Drain, Digital

 // P0.4 - Unassigned, Open-Drain, Digital

 // P0.5 - Unassigned, Open-Drain, Digital

 // P0.6 - Unassigned, Open-Drain, Digital

 // P0.7 - Unassigned, Open-Drain, Digital

 // P1.0 - Unassigned, Open-Drain, Digital

 // P1.1 - Skipped, Push-Pull, Digital SRCLK for 74HC595

 // P1.2 - Skipped, Push-Pull, Digital RCLK for 74HC595

 // P1.3 - Skipped, Push-Pull, Digital SER for 74HC595

 // P1.4 - Skipped, Open-Drain, Digital COM1 for LCD

 // P1.5 - Skipped, Open-Drain, Digital COM2 for LCD

 // P1.6 - Skipped, Open-Drain, Digital COM3 for LCD

 // P1.7 - Skipped, Open-Drain, Digital COM4 for LCD

 P0MDOUT = 0x80;

 P1MDOUT = 0x0E; // configure above pins to Push-Pull

 P1MDIN = 0x0F; // configure Pins 1.4 - 1.7 to analog in

 P1SKIP = 0xFE; // skip pins 1.1 to 1.7

AN202

Rev. 0.1 21

 XBR1 = 0x40; // enable crossbar

}

//---

// Timer2_Init

//---

//

// The timer overflows at a rate of TIMER2_RATE times a second

// The interrupt generated in handled by the LCD_refresh ISR

//

void Timer2_Init (int counts)

{

 TMR2CN = 0x00; // STOP Timer2; Clear TF2H and TF2L;

 // disable low-byte interrupt; disable

 // split mode; select internal timebase

 CKCON |= 0x10; // Timer2 uses SYSCLK as its timebase

 TMR2RL = -counts; // Init reload values

 TMR2 = TMR2RL; // Init Timer2 with reload value

 ET2 = 1; // enable Timer2 interrupts

 TR2 = 1; // start Timer2

}

//--

// Timer3_Init

//--

//

// Configure the Timer to overflow without interrupts

// The overflow will be used in the wait function

//

void Timer3_Init (int count)

{

 TMR3CN = 0x00; // STOP Timer3; Clear TF3H and TF3L;

 // disable low-byte interrupt; disable

 // split mode; select internal timebase

 CKCON |= 0x40; // Timer3 uses SYSCLK as its timebase

 TMR3RL = -count; // Init reload values

 TMR3 = TMR3RL; // Init Timer3 with reload value

 EIE1 &= 0x7F; // disable Timer3 interrupts

 TMR3CN |= 0x01; // start Timer3

}

//---

// Interrupt Service Routines

//---

// LCDrefresh is triggered on a Timer2 Overflow

// Takes what is in the LCD bar bits and shift them into the two 74HC595

// shift registers depending on the COM cycle; The most signficant

AN202

22 Rev. 0.1

// LCD pin (pin 16) gets shifted out first; Only 15 bits get shifted each

// COM cycle;

void LCDrefresh_ISR (void) interrupt 5

{

 int i = 0;

 if (com_cycle == 1)

 {

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 SER = D6A ^ com_invert; Strobe();

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 SER = D5A ^ com_invert; Strobe();

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 SER = D4A ^ com_invert; Strobe();

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 SER = D3A ^ com_invert; Strobe();

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 SER = D2A ^ com_invert; Strobe();

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 SER = D1A ^ com_invert; Strobe();

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 RCLK = 1; // put shifted data to LCD - rising edge

 for (i=0; i<PULSE_LENGTH; i++); // keep clock high for a while

 RCLK = 0; // turn off clock

 P1MDIN &= ~0x80; // configure COM4 to ANALOG_IN;

 P1MDIN |= 0x10; // and COM1 to digital

 P1MDOUT &= ~0x80; // make COM4 an open-drain

 P1MDOUT |= 0x10; // make COM1 a push-pull

 COM4 = 1; // set COM4 to high impedance

 COM1 = 1 ^ com_invert; // start the COM1 cycle

 com_cycle = 2; // next state

 }

 else if (com_cycle == 2)

 {

 SER = D6B ^ com_invert; Strobe();

 SER = D6F ^ com_invert; Strobe();

 SER = D5B ^ com_invert; Strobe();

 SER = D5F ^ com_invert; Strobe();

 SER = D4B ^ com_invert; Strobe();

 SER = D4F ^ com_invert; Strobe();

 SER = D3B ^ com_invert; Strobe();

 SER = D3F ^ com_invert; Strobe();

 SER = D2B ^ com_invert; Strobe();

 SER = D2F ^ com_invert; Strobe();

 SER = D1B ^ com_invert; Strobe();

 SER = D1F ^ com_invert; Strobe();

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

AN202

Rev. 0.1 23

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 RCLK = 1; // put shifted data to LCD - rising edge

 for (i=0; i<PULSE_LENGTH; i++); // keep clock high for a while

 RCLK = 0; // turn off clock

 P1MDIN &= ~0x10; // configure COM1 to ANALOG_IN;

 P1MDIN |= 0x20; // and COM2 to digital

 P1MDOUT &= ~0x10; // make COM1 an open-drain

 P1MDOUT |= 0x20; // make COM2 a push-pull

 COM1 = 1; // set COM1 to high impedance

 COM2 = 1 ^ com_invert; // start the COM2 cycle

 com_cycle = 3; // next state

 }

 else if (com_cycle == 3)

 {

 SER = D6C ^ com_invert; Strobe();

 SER = D6G ^ com_invert; Strobe();

 SER = D5C ^ com_invert; Strobe();

 SER = D5G ^ com_invert; Strobe();

 SER = D4C ^ com_invert; Strobe();

 SER = D4G ^ com_invert; Strobe();

 SER = D3C ^ com_invert; Strobe();

 SER = D3G ^ com_invert; Strobe();

 SER = D2C ^ com_invert; Strobe();

 SER = D2G ^ com_invert; Strobe();

 SER = D1C ^ com_invert; Strobe();

 SER = D1G ^ com_invert; Strobe();

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 RCLK = 1; // put shifted data to LCD - rising edge

 for (i=0; i<PULSE_LENGTH; i++); // keep clock high for a while

 RCLK = 0; // turn off clock

 P1MDIN &= ~0x20; // configure COM2 to ANALOG_IN;

 P1MDIN |= 0x40; // and COM3 to digital

 P1MDOUT &= ~0x20; // make COM2 an open-drain

 P1MDOUT |= 0x40; // make COM3 a push-pull

 COM2 = 1; // set COM2 to high impedance

 COM3 = 1 ^ com_invert; // start the COM3 cycle

 com_cycle = 4; // next state

 }

 else if (com_cycle == 4)

 {

 SER = D6D ^ com_invert; Strobe();

 SER = D6E ^ com_invert; Strobe();

 SER = D5D ^ com_invert; Strobe();

AN202

24 Rev. 0.1

 SER = D5E ^ com_invert; Strobe();

 SER = D4D ^ com_invert; Strobe();

 SER = D4E ^ com_invert; Strobe();

 SER = D3D ^ com_invert; Strobe();

 SER = D3E ^ com_invert; Strobe();

 SER = D2D ^ com_invert; Strobe();

 SER = D2E ^ com_invert; Strobe();

 SER = D1D ^ com_invert; Strobe();

 SER = D1E ^ com_invert; Strobe();

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 SER = 1 ^ com_invert; Strobe(); // non-existent segment

 RCLK = 1; // put shifted data to LCD - rising edge

 for (i=0; i<PULSE_LENGTH; i++); // keep clock high for a while

 RCLK = 0; // turn off clock

 P1MDIN &= ~0x40; // configure COM3 to ANALOG_IN;

 P1MDIN |= 0x80; // and COM4 to digital

 P1MDOUT &= ~0x40; // make COM3 an open-drain

 P1MDOUT |= 0x80; // make COM4 a push-pull

 COM3 = 1; // set COM3 to high impedance

 COM4 = 1 ^ com_invert; // start the COM4 cycle

 com_cycle = 1; // next state

 com_invert = com_invert ^ 1; // toggle com_invert

 }

 TF2H = 0; // clear TF2

} // end LCDrefresh_ISR

//---

// Strobe

//---

//

// Strobe is used to clock the data into the 74HC595 shift registers

//

void Strobe()

{

 int i = 0;

 SRCLK = 1;

 for (i = 0; i < PULSE_LENGTH; i++); // wait a few cycles

 SRCLK = 0;

 for (i = 0; i < PULSE_LENGTH; i++); // wait a few cycles

}

//---

// wait_one_msec

//---

//

AN202

Rev. 0.1 25

// Assumes Timer3 overflows once every 500 usec

//

void wait_one_ms(unsigned int count)

{

 count = count * 2; // overflows once every 500 usec

 // so double that is 1 ms

 TMR3CN &= ~0x80; // Clear Timer3 overflow flag

 TMR3 = TMR3RL;

 TMR3CN = 0x04; // Start Timer3

 while (count--)

 {

 while (!(TMR3CN & 0x80)) {} // wait for overflow

 TMR3CN &= ~0x80; // clear overflow indicator

 }

 TMR3CN &= ~0x04; // Stop Timer3

}

//---

// LCD functions

//---

//---

// putchar

//---

//

// putchar only handles the digit components on the LCD screen.

// This functions shifts the digit values to the left, shifting out the

// left-most digit. This function has 3 potential actions based on the input:

//

// 1. Any input whose ASCII code is between 0 and 127 gets translated

// according to the translation table above

//

// 2. Any input whose ASCII code is between 128 and 255 is directly sent to

// the LCD. The lower 7 bits indicate which of the seven segments are lit.

//

// 3. Passing a newline char '\n' to this function clears all 6 digits

//

// This function, unlike standard putchar, does not have any error return msgs.

//

// This function will not cause an interrupt to force output. The input char

// will be displayed on the screen on the next refresh cycle

char putchar(char charIN)

{

 unsigned char iter = 0;

 if (charIN != '\n') // not a new line

 {

 if ((charIN & 0x80) == 0) { // translation necesssary

 charIN = translation_table [charIN]; } // quick lookup

AN202

26 Rev. 0.1

 EA = 0; // prevent partial display

 for (iter = 0; iter < 5; iter++) { // shift the digits left

 LCD_digits[iter] = LCD_digits[iter+1]; }

 LCD_digits[5] = charIN; // new digit is rightmost

 EA = 1; // enable interrupts again

 }

 else // input is a newline

 {

 EA = 0; // disable interrupts

 for (iter = 0; iter < 6; iter++) {

 LCD_digits[iter] = 0xFF; } // clear all digits

 EA = 1; // enable interrupts

 }

 if (charIN == 0xFF) { // couldn't interpret OR space

 charIN = ' '; } // return space

 return charIN; // just like putchar

}

AN202

Rev. 0.1 27

11. Schematic

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16

19 18 17 1

K
TD

52
2

LC
D

C
80

51
F3

30

Q
A

Q
B

Q
C

Q
D

Q
E

Q
F

Q
G

Q
H

Q
H

’
S

ER

SR
C

LK

R
C

LK

S
ER

S
R

C
LK

R
C

LK

Q
A

Q
B

Q
C

Q
D

Q
E

Q
F

Q
G

Q
H

Q
H

’

O
E

b
S

R
C

LR
b

O
E

b
S

R
C

LR
b

74
H

C
59

5
74

H
C

59
5

P
1.

4

P
1.

5

P
1.

6

P
1.

3

P
1.

1

P
1.

2

P
1.

7

V
D

D

VD
D

A
ll

re
si

st
or

s
ar

e
50

0K

VD
D

G
N

D

AN202

28 Rev. 0.1

CONTACT INFORMATION
Silicon Laboratories Inc.
4635 Boston Lane
Austin, TX 78735
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: MCUinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

	1. Introduction
	2. Key Points
	Figure 1. LCD Interface Block Diagram

	3. LCD
	3.1. Components of an LCD
	Figure 2. Single Segment in an LCD

	3.2. Direct Drive LCD
	Figure 3. Connections for a 7-Digit Segment
	Figure 4. Sample Timing Diagram for a Single Segment

	3.3. Multiplexed LCD
	Figure 5. Connections for 8 Segments in a 4-way Multiplexed LCD
	Figure 6. RMS thresholds for LCD segments
	Figure 7. Timing Diagram for a Sample 4-Way Multiplexed LCD

	4. How to Generate Segment Values for a Particular Digit
	Figure 8. Sample Connections for a 7-Segment, 4-way Multiplexed LCD
	Figure 9. Timing Diagram Showing How to Display the Digit “5”

	5. Software Example
	5.1. Software Interface
	Figure 10. Flowchart for putchar()
	Figure 11. Bit Mapping Between Segments in a Digit and the putchar() Input Value
	Table 1. Pin Map for the Example LCD

	6. Interpreting the LCD Data Sheet
	Table 2. Example LCD Specifications

	7. LCD driver
	Figure 12. Flowchart for the LCDrefresh_ISR
	Figure 13. Mapping for the Basic Set of ASCII Characters (0-127)

	8. Implementation Notes
	9. How to Customize the Software Example for a Different Multiplexing LCD
	10. Software Example Source Code
	11. Schematic
	Contact Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

