SILICON LABODORATORIES

AN189

MMC DATA LOGGER EXAMPLE

Relevant Devices

This application note applies to the following devices:
C8051F320

1. Introduction

This application note describes a data logging system
using the C8051F320, that stores temperature samples
in a Multimedia Card (MMC). The software system is
presented in two pieces:

m At the bottom level is the interface to the MMC
which provides transparent Flash access for a user
application such as the data logger.

m At the top level is the data logger which handles
sampling, log table maintenance, and the user
interface.

The main focus of this document is the interface
between the Silicon Laboratories device and the MMC;
the data logging portion is simply an application of this
interface.

1.1. MMC Overview

The Multimedia Card provides a large amount of Flash
memory that is accessed through a serial interface.
There is a complicated command structure that must
be followed when communicating with the card. The
MMC interface section of this system encapsulates the
complex command structure and provides access to
the Flash as a large linear address space using simple
read, write, and erase commands.

1.2. Data Logger Overview

The Data Logger section of the system contains a
temperature sampling engine which generates a
temperature log entry once every second. It uses the
simple memory access functions provided by the MMC
interface software to maintain a table of temperature
log entries on the MMC. This section also provides a
PC user interface through the UART, which allows the
user to control several system options as well as to
display and manipulate the log.

2. MMC Details

Multimedia cards are accessed serially using a low
level command protocol that is defined in the MMC
specification (http://mmca.org). The goal of the MMC
interface provided in this system is to make the MMC
command protocol transparent to the user. This is
accomplished by providing simple access functions
that handle the necessary MMC communication. This
section of the application note describes the MMC SPI
communication protocol as well as the MMC interface
functions. However, before covering these topics, a
short discussion of the MMC memory structure is
necessary. Note that in order to fully understand the
MMC operation, the reader must become familiar with
the MMC specification.

2.1. MMC Memory Structure

MMC memory is divided into 512-byte sectors, much
like a hard drive. These sectors are in turn organized
into erase groups of 16 sectors each. The following list
briefly describes SPI data operations in terms of the
MMC structure:

m Block Read operations can be performed at any
length ranging from 1 byte to the card specific
maximum block size. The default block size is 512
bytes.

m Block Write operations have a minimum size
requirement of one sector or 512 bytes and must be
sector aligned.

m Erase operations can be performed at the sector
level, the erase group level, or nearly any
combination of the two. Erases are performed by
tagging a start sector or group, tagging a stop
sector or group, and then issuing the erase
command. Note that any number of start tag/stop
tag pairs may be selected before issuing the erase.

2.2. MMC Commands

There are two modes of communication that can be
used with an MMC: “MMC mode” uses a unique serial
protocol that has been defined specifically for MMC's,

Rev. 0.1 7/04

Copyright © 2004 by Silicon Laboratories

AN189

http://mmca.org
http://mmca.org

AN189

and “SPI mode” uses generic SPI transfers. The SPI
protocol is ideal for this system because of the
hardware SPI interface available on most Silicon
Laboratories devices (See Figure 1 for the necessary
SPI connections).

MMC C8051F320

SCLK —[le—§¢— SCK

Data Out —p¢—[J— MISO

DataIn —(¢———¢— MOSI

cs —je— 4 NSS

Figure 1. SPI Hardware Connection

2.2.1. Communication Format

SPI communication with the MMC takes the form of a

command followed by a card response and any

necessary data. This is shown in Figure 2. MMC

Commands in SPI mode all have the same format. Each

command has a total length of six bytes and contains

three fields:

1. The first field is an 8-bit opcode that signals to the MMC
what command is being issued.

2. The second field is the argument. It is a 32-bit field that
contains a parameter such as an address, data length, or
register value. If a command does not require an
argument, this field contains all logic 1’s.

3. The last field is the CRC byte for the previous data fields.
In SPI mode, CRC checking may be turned off, so for this
system, the CRC field will consist of all 1’s.

After receiving a command, the MMC must send a
response. This response has four possible formats
depending on the command that was issued:

1. The “R1” response is a single byte consisting of basic error

flags and a card state flag.

2. The “R1b” response is identical to the “R1” response, with
the addition of a busy signal. The busy signal takes the
form of one-byte tokens. These tokens have a zero value
as long as the card is busy. When a non-zero value is
returned, the card is ready to accept new commands.

3. The “R2” response is a two-byte value that contains the
“R1” response plus some additional operational flags.

4. The “R3” response is a five-byte response that consists of
the “R1” response plus the value of a four byte register

(OCR) that describes the current operating conditions of
the MMC.

Any necessary data transfer will occur after the card
response. Data transfers consist of a Start token
followed by a block of data. If the operation is a write,
the MMC will send a data response after the data block.
The data response indicates whether the write was
successful or not. Read operations do not have a data
response, however, if a read is unsuccessful an error
token is returned in place of the data.

2.2.2. MMC Commands

The entire command set for the MMC is described in the
MMC specification. This spec is available through the
MMC Association web site (www.mmca.org) or from
MMC manufacturers such as Sandisk or Hitachi.

A list of the commands used in this system as well as a
brief description of each is shown in Table 1 .

2.3. MMC Interface Low Level Operation

There are two levels of abstraction applied in the MMC
interface of this system. At the high level are simple
memory access functions such as read, write, and
erase that provide transparent MMC access. These
functions break the memory accesses into a series of
MMC command calls. The low level takes these
command calls and generates the necessary SPI traffic
to execute them on the MMC. The low level
implementation consists of a single command execution
function that accepts a MMC command and argument
as parameters. This function uses a command
description table to determine specific behavior for each
command. Each entry in the command description table
contains a command and information such as what the

Data In % MMC Command } } Write Data %
Data Out } MMCResponse }—{ Read Data %
Figure 2. Communication Format
2 Rev. 0.1

SILICON LABORATORIES

http://www.mmca.org

AN189

command type is (read, write, control), which card
response is generated by the command, and whether
the command requires an argument. The command
execution state diagram is show in Figure 3.

The following steps describe the command execution
function flow:
1. The command description table is accessed to retrieve
specific operation data. 6
2. The one-byte command OpCode is transmitted over SPI.
The OpCode value is found in the command table.
3. The next four transmitted bytes hold the command
argument, or logic 1’s if no argument is required. The
command table specifies whether an argument is
necessary.

4. The next byte carries the CRC data. CRC checking is

disabled in SPI mode, so usually this byte can be logic 1’s.
However, after a reset, CMDO is used to force the MMC
into SPI mode, and therefore requires a valid CRC byte
which is always equal to 0x95 for CMDO.

The MMC must generate a response for each command.
The response format will depend on the command. The
command table indicates which response is generated by
each command.

. At this point, any necessary data transfers must be

performed. In a read operation, the MMC will send either a
Start token followed by a data block or an Error token. In a
write operation the MMC receives a Start token and a data
block, followed by a data response byte. Some commands
are control commands and do not require reading or
writing. These commands are complete after the initial
command / response phase.

Table 1. Command List

CMD Abbreviation Arg Resp Command Description
INDEX
CMDO |GO_IDLE_STATE None R1 |Reset MMC
CMD1 |SEND_OP_COND None R1 Activate MMC initialization process
CMD9 |SEND_CSD None R1 Get card-specific data
CMD10 |SEND_CID None R1 Get card identification data
CMD13 |SEND_STATUS None R2 |Get card status register
CMD16 |SET_BLOCKLEN Block Length R1 Set block length for data operations
CMD17 |READ_SINGLE_BLOCK Address R1 Read a single data block
CMD24 |WRITE_BLOCK Address R1 Write a single data block
CMD32 |TAG_SECTOR_START Address R1 Set first sector for erase
CMD33 |TAG_SECTOR_END Address R1 Set last sector for erase
CMD35 |TAG_ERASE_GROUP_START Address R1 Set first group for erase
CMD36 |TAG_ERASE_GROUP_END Address R1 Set last group for erase
CMD38 |ERASE None R1b |Erase all selected groups and sectors

®
@ Rev. 0.1

SILICON LABORATORIES

AN189

Transmit
OpCode

Transmit
Placeholder

No

Transmit
Argument

. Transmit
Transmit
CRC CRC
Placeholder
Response
R1 R1b R2 R3
\ \ \ \
Recv 1 byte Recv 2 Recv 4
Recv 1 byte + busy bytes bytes
Read Write
Recv Start / Send Start
Error Token Token
Control +
Send Data
Recv Data Recv Data
Response

Figure 3. Command Execution Flowchart

®
4 Rev. 0.1 @

SILICON LABORATORIES

AN189

See the comments of the command execution function
MMC_Command_Exec() in the code for specific
implementation details.

This lower level of the MMC interface provides a contact
point between software and hardware. It presents a way
for the high level MMC interface functions to issue
commands to the MMC without concern over command
format or SPI communication. The high level functions
use a series of MMC command issues to perform
memory accesses such as reads, writes, and erases.

2.4. MMC Interface High Level Operation

The high level of the MMC interface provides the user
with simple memory functions to access the MMC.
These functions take the user’s memory request and
break it into a series of MMC commands. These
commands are then executed through the low level
command execution function. Following is a list of
memory operations along with a description of their
implementation in this system. Note that read and write
data lengths are limited to a 512 byte maximum in this
implementation. Also note that operations on data
spanning more than one data block require additional
overhead. Specifically, data blocks must be operated on
one at a time, so operations that span two blocks of
data must be broken into two separate, sequential
operations. Figure 4 shows desired data contained in
one block vs. data that spans two blocks; this figure
supplements the text and flow charts that describe the
high level Flash routines that follow.

2.4.1. Flash Initialization

Before the MMC can be used, it must be properly
powered on and initialized. It must also be configured to
SPI mode. Figure 5 and the following steps show the
initialization sequence:

1. Atfter receiving power, transmit at least 74 SPI clock cycles
so that all internal start up operations can complete.

Drive the CS pin low.

Transmit a CMDO to switch the card into SPI mode.
Transmit 8 SPI clock cycles.

Transmit a CMD1.

If the response to CMD1 indicates that the card is busy, go
back to step 4. Otherwise, the card initialization is

successful and the card can now receive and respond to
commands.

o0 s wDN

7. Once the card is initialized, the size must be determined.
This is done by retrieving the card specific data register
(CSD) using CMD9 (SEND_CSD). The card size fields are
located within this register. See the comments of the Flash
initialization function on MMC_FLASH_ Init() for specific
implementation details.

Data Contained
in Single Block

Block 1 Start

Data Start

Data Segment 1

Data End

Block 1 End

Data Spans Two
Blocks

Block 1 Start

Data Start
Data Segment 1
Block 1 End

Block 2 Start

Data Segment 2
Data End

Block 2 End

Figure 4. Data Alignment

®
@ Rev. 0.1

SILICON LABORATORIES

AN189

Power On

Transmit 74
SPI Clocks

'

Drive CS
low

Transmit
CMDO

'

Transmit 8
SPI Clocks

'

Transmit
CMD1

Yes

Card Busy?

Figure 5. Flash Initialization

2.4.2. Flash Read

Reading data on the MMC is a simple operation. If the
data to be read is contained within a single MMC block,
then the only necessary actions are to set the MMC
read block length and perform the read. If the data
spans two MMC blocks, the read must be broken into
two parts. The following steps and Figure 6 show how
reads are implemented in this system.

1. Test the requested read length to see if it is greater than
512 bytes.

2. If data is contained within one MMC block, issue a set
block length command followed by a read block command.
If data spans two blocks, set the block length to the length
of data segment 1 (see Figure 4), and then issue a read.
Next, set the block length to the length of data segment 2,
and then issue a second read.

See the comments of the Flash Read function
MMC_FLASH Read() for specific implementation
details.

Done

Yes

Spans
Two Flash
Blocks?

Length =
Block1End - Length =
Address Data Length

' '

Read Data

Length =

End Address
- Block2End

'

Read Data

Read Data

Done

Figure 6. Flash Read Operation

6 Rev. 0.1

SILICON LABORATORIES

AN189

2.4.3. Flash Clear

The smallest unit that can be erased by the MMC is a

single 512 byte sector. As a result, erasing smaller

arbitrary lengths of data requires some software

manipulation. Figure 7 and the following steps illustrate

the process:

1. Test the required clear length to see if it is less than 512
bytes.

2. If datais all contained in one block, read that block into
local memory. If data spans two blocks, skip to step 6.

3. Clear the desired data in the local copy of the data block.

4. Tag and erase the block on the MMC.

5. Write the local copy of the block back to the MMC. The
clear operation is complete at this point.

6. If data spans two blocks, the above steps 3 through 5 must
be performed for each block. The only difference in
execution will be step 3. For the first block, data must be
cleared from the starting clear address to the end of the
block. For the second block, data must be cleared from the
start of the block to the end of the data (start address +
length) to be cleared.

See the comments of the Flash Clear function
MMC_FLASH Clear() for specific implementation
details.

Yes

Data Spans
Two Blocks?

Read First
Block

No

\

Read Block
to Local
Memory

Erase Block
in Flash

v

\

Erase Block
in FLASH

Clear Data
Segment 1

v

v

Write Local
Copy to
FLASH

Clear
Desired
Length in
Local Copy

v

v

Read
Second
Block

Write Local
Copy to
FLASH

\

Erase Block
in Flash

\

Clear Data
Segment 2

v

Write Local
Copy to
FLASH

Figure 7. Flash Clear Operation

®
@ Rev. 0.1

SILICON LABORATORIES

AN189

2.4.4. Flash Write

Like erases, MMC write operations have a minimum

block size of 512 bytes. As a result, writes of an

arbitrary length require some software overhead.

Figure 8 and the following steps illustrate the write

process:

1. Test the required write length to see if it is less than 512
bytes.

2. Clear the memory to be written using the Flash Clear
operation.

3. Ifdatais all contained within one block, read that block into
local memory. If data spans two blocks, skip to step 6.

4. Perform the desired write on the local copy of the data
block.

5. Write the local block back to the MMC. The write operation
is complete at this point.

6. If the data spans two blocks, then steps 3, 4, and 5 must

be modified slightly and executed for each block. For the
first block, data should be written from the starting address

Yes

No

FlashClear

Yes

Data Spans
Two Blocks?

v

No

to the end of the block. For the second block, data should Read Block
be written from the beginning of the block to the ending 1 Read Block
address (start address + length). + +
See the comments of the Flash Write function _
MMC_FLASH Write() for specific implementation Write to Write to
details. Segment 1 Local Copy
in Local
Copy +
+ Write Block
to FLASH
Write Block
to Flash
Read Block
2
Write to
Segment 2
in Local
Copy
Write Block
to Flash
Figure 8. Flash Write Operation
®
8 Rev. 0.1 @

SILICON LABORATORIES

AN189

2.4.5. Flash Mass Erase

It is often desirable to erase large portions of memory.
This is best accomplished by using the erase group
structure available in the MMC. Erase groups consist of
16 sectors each. An erase operation occurs by tagging
sectors and groups for erase and then issuing an erase
command (ERASE). The tagging process consists of a
tag start sector (or group) command
(TAG_SECTOR_START) and a tag stop sector
command. All sectors between and including the Start
and Stop tags will be erased on an Erase command. ltis
important to note that Start and Stop sector tags may
not cross a group boundary. If sectors spanning two
groups need be erased, the operation must be
performed in two parts. Figure 9 and the steps below
should illustrate the mass erase process:

1. Determine the starting and ending sector and group.

2. If the starting and ending group are the same, the erase

operation will be wholly sector-based. Tag the Start and
End sectors.

3. If the erase will span multiple groups and is not group
aligned, the partial groups must be erased using sector
tags. Tag the first sector to be erased and the last sector of
the partial group.

4. Tag all whole groups to be erased.

5. Tag the first sector of the last partial group and the last
sector to be erased.

6. Issue the Erase command.
See the comments of the Flash Mass Erase function

FLASH Mass Erase() for specific implementation
details.

Data Group
Aligned?
Tag Start Tag Start
and Stop and Stop
Sectors for Groups
Misaligned
Data +
+ Issue Erase
Command
Tag Start
and Stop
Groups
Issue Erase
Command

Figure 9. Flash Mass Erase Operation

3. Data Logger Details

The data logger portion of this system handles
temperature sampling, log creation and maintenance,
and the PC user interface. This section of the
application note gives a brief introduction to the high-
level data logger operation before describing the
individual components in more detail.

3.1. Data Logger Operation

The data logger takes temperature samples and creates
a record that holds the temperature and the time (days,
hours, minutes, seconds) that the sample was taken.
This record is stored in a table in Flash using the MMC
interface routines. The PC interface allows the user to
start and stop storing samples, display the log, erase
the log, and initialize the clock.

SILICON LABORATORIES

Rev. 0.1 9

AN189

3.2. Temperature Sampling

Temperature is measured using the on-chip
temperature sensor. While temperature samples are
only necessary once every second, the 10-bit ADC
actually accumulates samples at 4096 Hz. Given that
an oversampling by 4x vyields an additional 1-bit of
resolution, oversampling by 4096x will yield 6 additional
bits. Therefore, when 4096 temperature samples have
been taken, the accumulator is averaged to a value with
16-bits of effective resolution. This provides a
temperature resolution to hundredths of a degree
Celsius. The temperature sampling process builds a 7
byte structure that stores the temperature as well as the
time stamp. These structures are stored in a table in
Flash during log updates.

3.3. Logging Routines

There are several software routines used to maintain
the Flash data log. The processes necessary for logging
include initialization, size checking, erasing, printing,
and updating. In this system, each of these processes is
executed in a separate software routine. These routines
are described below. Specific implementation details are
described more thoroughly in the comments of the
software.

3.3.1. Log Initialization

Each time a temperature sample is taken, it is stored in
a structure with a timestamp. This structure is built in
RAM before being buffered and stored in Flash. The log
initialization routine simply clears out the locations in
RAM that will be used for this structure. See the
comments of the log initialization function Logilnit() for
specific implementation details.

3.3.2. Log Size Checking

Before any logging can occur, the current size of the log
must be determined. The log size checking routine
returns the number of table entries in Flash by reading
them one by one and maintaining a count until the end
of the table is reached. The current size is stored in a
globally available variable for use by the other logging
functions. See the comments of the log count finding
function LogFindCount() for specific implementation
details.

3.3.3. Log Erase
The log erase routine clears the entire Flash log table
using the Flash mass erase routine. See the comments

of the log erase function LogErase() for specific
implementation details.

3.3.4. Log Print
The log print routine prints the entire log to the PC

display through UART. The Flash read routine is used to
read individual table entries from the log table until the
number of entries read matches the globally available
PHYSICAL_SIZE variable (returned by the log size
checking routine.) See the comments of the log print
function LogPrint() for specific implementation details.

3.3.5. Log Update

The LogUpdate() routine builds the table of temperature
entries in Flash. Due to the complexities of writing to
Flash memory, this is the most complicated of the
logging routines. Although the Flash write routine
available in the MMC interface is capable of handling
single byte writes, it is much more efficient to write data
in larger blocks. For this reason, the log update routine
buffers 32 log entries (224 bytes) in XRAM memory
before actually calling the Flash write function. While
writing larger data blocks is more efficient, the buffering
scheme introduces some issues that must be
addressed.

Buffered data must be stored to Flash either when the
buffer is full, or when the user stops the logging
process. The process is slightly different for each
situation. During normal operation, the log update
routine converts a 16-bit ADC value to a temperature,
adds the temperature entry to the buffer, prints the
current sample data through UART, and writes the
buffer to Flash if it is full. If the user has stopped the
logging operation, only the buffer write takes place. A
global state machine determines if the log update
routine will follow normal operation or if the user has
stopped operation and only a buffer write should occur.
See the comments of the log update function
LogUpdate() for specific implementation details.

4. Reduced RAM Implementation

Some applications may benefit from an MMC interface
that requires less RAM. A reduced RAM implementation
is available and included at the end of this document.
This implementation maintains the temperature buffer
as well as MMC page swap space in an off-chip
EEPROM instead of on-chip RAM. The modifications to
the software are described in the following paragraphs.

4.1. Temperature Buffer

As temperature entries are created, they are stored in
an EEPROM buffer. When this buffer is full, it is written
to the MMC.

4.2. MMC Data Operations

All MMC data operations access EEPROM space rather
than the on-chip memory. MMC reads retrieve data from
the MMC and store it in the EEPROM. The

10 Rev. 0.1

SILICON LABORATORIES

AN189

microcontroller can then read any necessary data from
the EEPROM. MMC writes store data from an EEPROM
buffer in the MMC. MMC writes are required to be at
least 512 bytes (MMC physical page size) in length, so
512 bytes of the EEPROM are used as scratch space to
read the targeted page from the MMC, modify it with the
EEPROM temperature buffer data, and write it back to
the MMC.

At the command interpreter level, data is shuttled in
small pieces between the MMC and the EEPROM. In an
MMC read, a page is retrieved from the MMC, shuttled
in small pieces through the microcontroller, and
reconstructed in the EEPROM. The same process is
used for a write, except data travels in the opposite
direction.

4.3. EEPROM Communication

EEPROM communication is performed through SMBus.
Data can be transferred either in single bytes or in
arrays up to the length of one physical EEPROM page.
The SMBus is configured for data transfers by the
following functions:

e EEPROM_WriteByte()
e EEPROM_WriteArray()
e EEPROM_ReadByte()
e EEPROM_ReadArray()

The software comments for these functions and the
SMBus interrupt service routine explain the operational
details for EEPROM communications. Figure 10 shows
the necessary hardware connections for the MMC and
EEPROM.

241.C256 Serial
EEPROM

scL —f

(0

SCL —Xt——»P—

MMC
SCLK

—ple—————— 1

Data Out — }———m[<—

Data In —Pla————— 57—

CSs

—Dle—D3F—

C8051F320

SCL

SCL

SCK

MISO

MOSI

NSS

Figure 10. SPI and EEPROM Hardware

Connection

SILICON LABORATORIES

Rev. 0.1

11

AN189

APPENDIX—SOFTWARE

There are two MMC interface implementations included in this section. MMC_DatalLogger.c uses on-chip ram for
all buffers and scratch space while MMC_DataLogger EEPROM.c uses an external EEPROM. Note that these
software routines do not calculate the exact card capacity in bytes. For information on determining exact card
capacity, see the CSD Register description in the MMC Specification. These software routines have been tested
with SanDisk, Memorex, and Lexar MultiMedia Cards.

4.4. MMC_Datalogger.c

// MMC Datalogger.c

/=
// Copyright 2004 Silicon Laboratories

//

// AUTH: BW / JS / GV

// DATE: 08 MAR 04

//

// This program shows an example of a data logging application that maintains
// the log on an MMC card.

//

// Control Function:

//

// The system is controlled via the hardware UART, operating at a baud rate
// determined by the constant <BAUDRATE>, using Timerl overflows as the baud
// rate source. The commands are as follows (not case sensitive):

// ‘c' - Clear Log

// ‘d’ - Display Log

// ‘i’ - Init RTC

// ‘p’ - Stop Logging
// ‘s’ - Start Logging
// ‘2’ - List Commands
//

// Sampling Function:
//

// The ADC is configured to sample the on-chip temperature sensor at 4.096kHz,
// using Timer0O (in 8-bit auto-reload mode) as the start-of-conversion source.
// The ADC result is accumulated and decimated by a factor of 4096, yielding
// a 16-bit resolution quantitity from the original 10-bit sample at an

// effective output word rate of about 1Hz. This decimated value is

// stored in the global variable <result>.

//

// A note about oversampling and averaging as it applies to this temp

// sensor example: The transfer characteristic of the temp sensor on the

// ‘F320 family of devices is 2.86mV/C. The LSB size of the ADC using the

// internal VREF (2.43V) as its voltage reference is 2.3mV/code.

// This means that adjacent ADC codes are about ~1 degrees C apart.

//

// If we desire a higher temperature resolution, we can achieve it by

// oversampling and averaging (See AN118 on the Silicon Labs website). For
// each additional bit of resolution required, we must oversample by a power
// of 4. For example, increasing the resolution by 4 bits requires

// oversampling by a factor of 474, or 256.

//

// By what factor must we oversample to achieve a temperature resolution to

12 Rev. 0.1

SILICON LABORATORIES

AN189

//
//
//
//
1/
//
1/
//
//
//
!/
!/
//
//
//
//
!/
!/
!/
//
//
//
!/
!/
1/
//
//
//
!/
!/
!/
//
//
//
!/
!/
1/
//
//
//
!/
!/
1/
//
//
//
!/

//
//

#i
#1i
#i

the nearest hundredth of a degree C? 1In other words, “How may bits of
resolution do we need to add?” The difference between 1 degrees C and
0.01 degrees C is a factor of 100 (100 is between 276 and 2”7, so we need
somewhere between 6 and 7 more bits of resolution). Choosing ‘6 bits’,
we calculate our oversampling ratio to be 476, or 4096.

A note about accuracy: oversampling and averaging provides a method to
increase the ‘resolution’ of a measurement. The technique does nothing
to improve a measurement’s ‘accuracy’. Just because we can measure a
0.01 degree change in temperature does not mean that the measurements
are accurate to 0.01 degrees. Some possible sources of inaccuracies in
this system are:

1. manufacturing tolerances in the temperature sensor itself (transfer

characteristic variation)

2. VDD or VREF tolerance
ADC offset, gain, and linearity variations
4. Device self-heating

w

Temperature Clock Function:

The temperature clock maintains a record of days, hours, minutes, and
seconds. The current time record is stored with the temperature value

in each log entry. Clock updates are performed in the ADC end-of-conversion
ISR at approximately once every second.

Storage Function:

MMC FLASH is used for storing the log entries. Each entry contains

the temperature in hundredths of a degree C, the day, hour, minute, and
second that the reading was taken. The LogUpdate function stores log
entries in an external memory buffer and then writes that buffer out to the
MMC when it is full. Communication with the MMC is performed through the
MMC access functions. These functions provide transparent MMC access to

the higher level functions (logging functions). The MMC interface is broken
into two pieces. The high level piece consists of the user callable MMC
access functions (MMC FLASH Read, MMC FLASH Write, MMC FLASH Clear,

MMC FLASH MassErase). These functions are called by the user to execute
data operations on the MMC. They break down the data operations into MMC
commands. The low level piece consists of a single command execution
function (MMC Command Exec) which is called by the MMC data manipulation
functions. This function is called every time a command must be sent to the
MMC. It handles all of the required SPI traffic between the Silicon Labs
device and the MMC.

Target: C8051F32x

Tool chain: KEIL C51 6.03 / KEIL EVAL C51

Includes
nclude <c8051£320.h> // SFR declarations
nclude <stdio.h> // printf () and getchar ()
nclude <ctype.h> // tolower ()

16-bit SFR Definitions for ‘F32x

Rev. 0.1

SILICON LABORATORIES

13

AN189

sfrl6 DP = 0x82; // data pointer

sfrl6 TMR2RL = Oxca; // Timer2 reload value

sfrl6 TMR2 = Oxcc; // Timer2 counter

sfrl6 PCAOCP1 = 0xe9; // PCAO Module 1 Capture/Compare

sfrl6 PCAOCP2 = Oxeb; // PCAO Module 2 Capture/Compare

sfrl6 PCAOQ = 0xf9; // PCAO counter

sfrl6 PCAOCPO = Oxfb; // PCAO Module 0 Capture/Compare

sfrl6 ADCO = 0Oxbd; // ADCO Data

[
// Global CONSTANTS

/e e e
#define VERSION N1.0” // version identifier

#define TRUE 1

#define FALSE 0

#define START SYSCLK 12000000

#define SYSCLK START SYSCLK * 2 // SYSCLK frequency in Hz

#define BAUDRATE 115200 // Baud rate of UART in bps

#define SAMPLE RATE 4096 // Sample frequency in Hz

#define INT_ DEC 4096 // integrate and decimate ratio
#define FULL_ SCALE 65536 // Full scale ADCO value

#define PREC FACTOR 1024 // This constant is used to preserve

// precision during temperature calc;
// VREF offset constant used (.01 mV)

#define VREF 243000
// in conversion of ADC sample to temp
// value;
// Temp sensor offset constant used
#define V_OFFSET 77600

// in conversion of ADC sample to temp
// value (.01 mV);

#define TEMP_ SLOPE 2.86 // Temp sensor slope constant used
// in conversion of ADC sample to temp
// value;

// Constants that define available card sizes, 8MB through 128MB

#define PS_8MB 8388608L

#define PS_16MB 16777216L
#define PS 32MB 33554432L
#define PS 64MB 67108864L
#define PS 128MB 134217728L

// Physical size in bytes of one MMC FLASH sector
#define PHYSICAL BLOCK SIZE 512

// Erase group size = 16 MMC FLASH sectors
#define PHYSICAL GROUP_SIZE PHYSICAL BLOCK SIZE * 16

// Log table start address in MMC FLASH
#define LOG ADDR 0x00000000

// Size in bytes for each log entry
#define LOG ENTRY SIZE sizeof (LOG_ENTRY)

#define BUFFER_ENTRIES 32

// Size of XRAM memory buffer that stores table entries

14 Rev. 0.1

SILICON LABORATORIES

AN189

// before they are written to MMC
#define BUFFER SIZE LOG_ENTRY SIZE * BUFFER ENTRIES

// Command table value definitions
// Used in the MMC Command Exec function to
// decode and execute MMC command requests

#define EMPTY O
#define YES 1
#define NO 0
#define CMD 0
#define RD 1
#define WR 2
#define R1 0
#define Rlb 1
#define R2 2
#define R3 3

// Start and stop data tokens for single and multiple
// block MMC data operations

#define START_SBR 0xXFE
#define START MBR 0xXFE
#define START_SBW 0xXFE
#define START MBW 0xFC
#define STOP_MBW 0xFD

// Mask for data response token after an MMC write
#define DATA RESP_MASK 0x11

// Mask for busy token in Rlb response
#define BUSY BIT 0x80

// Command Table Index Constants:

// Definitions for each table entry in the command table.

// These allow the MMC Command Exec function to be called with a
// meaningful parameter rather than a number.

#define GO IDLE STATE 0
#define SEND OP_COND 1
#define SEND_CSD 2
#define SEND_CID 3
#define STOP_TRANSMISSION 4
#define SEND_ STATUS 5
#define SET BLOCKLEN 6
#define READ SINGLE BLOCK 7
#define READ MULTIPLE BLOCK 8
#define WRITE BLOCK 9
#define WRITE MULTIPLE BLOCK 10
#define PROGRAM CSD 11
#define SET WRITE PROT 12
#define CLR_WRITE PROT 13
#define SEND WRITE PROT 14
#define TAG_SECTOR_START 15
#define TAG_SECTOR END 16
#define UNTAG SECTOR 17
#define TAG ERASE GROUP START 18
#define TAG_ERASE_GROUP_END 19
#define UNTAG_ERASE_GROUP 20
#define ERASE 21
#define LOCK_UNLOCK 22
#define READ_OCR 23

Rev. 0.1 15

SILICON LABORATORIES

AN189

#define CRC_ON OFF 24
sbit LED = P2"2; // LED=’1’ means ON
sbit SW2 = P270; // SW2='0’ means switch pressed
sbit TX0 = P0"4; // UARTO TX pin
sbit RX0 = P0"5; // UARTO RX pin
[mm e
// UNIONs, STRUCTUREs, and ENUMs
e
typedef union LONG ({ // byte-addressable LONG
long 1;
unsigned char b[4];
} LONG;
typedef union INT ({ // byte-addressable INT
int 1i;
unsigned char b[2];
} INT;
typedef union { // byte-addressable unsigned long

unsigned long 1;
unsigned char b[4];
} ULONG;

typedef union { // byte-addressable unsigned int
unsigned int i;
unsigned char b[2];

} UINT;
typedef struct LOG_ENTRY { // (7 bytes per entry)
int wTemp; // temperature in hundredths of a
// degree
unsigned int uDay; // day of entry
unsigned char bHour; // hour of entry
unsigned char bMin; // minute of entry
unsigned char bSec; // second of entry
unsigned char pad; // dummy byte to ensure aligned access;

} LOG_ENTRY;

// The states listed below represent various phases of
// operation;
typedef enum STATE {

RESET, // Device reset has occurred;
RUNNING, // Data is being logged normally;
FINISHED, // Logging stopped, store buffer;
STOPPED // Logging completed, buffer stored;
} STATE;

// This structure defines entries into the command table;
typedef struct {

unsigned char command byte; // OpCode;

unsigned char arg required; // Indicates argument requirement;
unsigned char CRC; // Holds CRC for command if necessary;
unsigned char trans_ type; // Indicates command transfer type;
unsigned char response; // Indicates expected response;
unsigned char var length; // Indicates varialble length transfer;

16 Rev. 0.1

SILICON LABORATORIES

AN189

} COMMAND;

// Command table for MMC.

// mode;

// definition;

COMMAND

xdata

xdata LOG ENTRY LogRecord;

code
{ 0,NO
{ 1,NO
{ 9,NO
{10, NO

,0x95,CMD, R1
, 0xFF,CMD, R1
,0xFF,RD ,R1
,0xFF,RD ,R1
{12,NO , OxFF,CMD,R1
{13,NO , OxFF,CMD, R2
{16, YES, OxFF, CMD, R1
{17,YES, OXFF,RD ,R1
{18,YES, OXxFF,RD ,R1
{24,YES, OXFF,WR ,R1
{25,YES, OxFF,WR ,R1
{27,NO , OxFF,CMD,R1

This table contains all commands available in SPI

commandlist[25]

, NO

{
}I
}I
}I
}I
}I
}I
}I
}I

,YES},
+NO },
,YES},

, NO

{28,YES, 0xFF, CMD, R1b, NO
{29, YES, OxFF, CMD, R1b, NO

{30, YES, OxFF, CMD, R1
{32,YES, OxFF,CMD, R1
{33, YES, OxFF, CMD, R1
{34, YES, OxFF, CMD, R1
{35, YES, OxFF, CMD, R1
{36, YES, OxFF, CMD, R1
{37,YES, OxFF, CMD, R1

{38, YES, OxFF, CMD, R1b, NO
{42,YES, 0xFF,CMD, R1b, NO

{58,NO ,0xFF,CMD,R3
{59, YES, OxFF, CMD, R1

LONG Result = {0L};

, NO
, NO

xdata unsigned long uLogCount;
LOG _ENTRY xdata *pLogTable;

xdata

xdata

xdata

xdata

xdata

xdata

xdata

STATE State =

unsigned long PHYSICAL SIZE;

RESET;

unsigned long LOG SIZE;

}I
}I
}I
}I
}I
}I
}I
}I
}I
}I
}I
}I
}I
}

}i

//
/7
/7
//
//
//
//
/7
/7
//
//
//
//
/7
/7
//
//
//
//
/7
/7
//
//
//

unsigned long PHYSICAL BLOCKS;

char LOCAL BLOCK[BUFFER SIZE];
char SCRATCH BLOCK[PHYSICAL BLOCK SIZE];

char error;

CMDO;
CMD1;
CMD9;
CMD10;
CMD12;
CMD13;
CMD16;
CMD17;
CMD18;
CMD24;
CMD25;
CMD27;
CMD28;
CMD29;
CMD30;
CMD32;
CMD33;
CMD34;
CMD35;
CMD36;
CMD37;
CMD38;
CMD42;
CMD58;
// CMD59;

//

//
//
//
//
//
//
//
//
//

//
//

Format of command entries is described above in command structure

GO IDLE STATE: reset card;
SEND OP COND: initialize card;
SEND CSD: get card specific data;
SEND CID: get card identifier;
STOP_TRANSMISSION: end read;

SEND STATUS: read card status;
SET BLOCKLEN: set block size;
READ SINGLE BLOCK: read 1 block;
READ MULTIPLE BLOCK: read > 1;
WRITE BLOCK: write 1 block;

WRITE MULTIPLE BLOCK: write > 1;
PROGRAM CSD: program CSD;

SET WRITE PROT: set wp for group;
CLR WRITE PROT: clear group wp;
SEND WRITE PROT: check wp status;
TAG SECTOR START: tag lst erase;
TAG SECTOR_END: tag end(single);
UNTAG SECTOR: deselect for erase;
TAG_ERASE GROUP START;

TAG_ERASE GROUP_END;
UNTAG_ERASE_GROUP;

ERASE: erase all tagged sectors;
LOCK_UNLOCK;

READ OCR: read OCR register;
CRC_ON _OFF: toggles CRC checking;

ADCO decimated value

Memory space for each log entry
Current number of table entries
Pointer to buffer for table entries
System state variable; Determines
how log update function will exec;
MMC size variable; Set during
initialization;

Available number of bytes for log
table;

MMC block number;
initialization;

Computed during

SILICON LABORATORIES

Rev. 0.1

17

AN189

void main (void);

// Support Subroutines
void MENU ListCommands (void); // Outputs user menu choices via UART

// Logging Subroutines

void LogUpdate (void); // Builds MMC log table

unsigned long LogFindCount () ; // Returns current number of log entries
void LogErase (void); // Erases entire log table

void LogPrint (void); // Prints log through UART

void LogInit (LOG _ENTRY *pEntry); // Initializes area for building entries

// High Level MMC_FLASH Functions

void MMC FLASH Init (void); // Initializes MMC and configures it to
// accept SPI commands;

// Reads <length> bytes starting at
// <address> and stores them at <pchar>;
unsigned char MMC FLASH Read (unsigned long address, unsigned char *pchar,
unsigned int length);

// Clears <length> bytes starting at
// <address>; uses memory at <scratch>
// for temporary storage;
unsigned char MMC FLASH Clear (unsigned long address, unsigned char *scratch,
unsigned int length);

// Writes <length> bytes of data at
// <wdata> to <address> in MMC;
// <scratch> provides temporary storage;
unsigned char MMC FLASH Write (unsigned long address, unsigned char *scratch,
unsigned char *wdata, unsigned int length);

// Clears <length> bytes of FLASH
// starting at <addressl>; Requires that
// desired erase area be sector aligned;
unsigned char MMC FLASH MassErase (unsigned long addressl,
unsigned long length);

// Low Level MMC FLASH Functions

// Decodes and executes MMC commands;
// <cmd> is an index into the command
// table and <argument> contains a
// 32-bit argument if necessary; If a
// data operation is taking place, the
// data will be stored to or read from
// the location pointed to by <pchar>;
unsigned int MMC Command Exec (unsigned char cmd, unsigned long argument,
unsigned char *pchar);

// Initialization Subroutines

void SYSCLK Init (void);
void PORT Init (void);

18 Rev. 0.1

SILICON LABORATORIES

AN189

void UARTO Init (void);
void ADCO Init (void);
void Soft Init (void);

void Timer(0 Init
void Timer2 Init
void SPI Init

(int counts);
(int counts) ;
(void) ;

// Interrupt Service Routines

void ADCO ISR (void);
void Soft ISR (void);

void main (void) {
idata char key press;
// Disable Watchdog timer
PCAOMD &= ~0x40;

PORT Init ();

SYSCLK Init ();

UARTO Init ();

SPT TInit ();

TimerZ_Init (SYSCLK/SAMPLE_RATE);
ADCO Init ();

Soft Init ();

MMC_FLASH Init();

ADOEN = 1;

State = RESET;

pLogTable
uLogCount = LogFindCount () ;

printf (™M\n”);
MENU ListCommands ();

State = STOPPED;

while (1)
{

key press = getchar();

key press = tolower (key press);

switch

{

(key press)

case ‘c’:
if (State == STOPPED)
{
printf
LogErase () ;

(“\n Clear Log\n”);

//

//
//

//
//
!/
//
//
//
//
//
!/

//
//

//

//
//

//
//
//
//
/7

//
//

!/
!/

//

Input character from UART;

WDTE = 0 (clear watchdog timer
enable) ;
Initialize crossbar and GPIO;

Initialize oscillator;

Initialize UARTO;

Initialize SPIO;

Init Timer?2 for 1l6-bit autoreload;
Init ADCO;

Initialize software interrupts;
Initialize MMC card;

enable ADCO;

Set global state machine to reset
state;

Initialize log table buffer pointer

(LOG_ENTRY xdata *)LOCAL BLOCK;

Find current number of log table
entries;

Print list of commands;

Global state is STOPPED; no data
is being logged;

Enable global interrupts;

Serial port command decoder;

Get command character;
Convert to lower case;

Clear log;
Only execute if not logging;

erase log entries;

SILICON LABORATORIES

Rev. 0.1

19

AN189

uLogCount = LogFindCount();// update global log entry count;
}

break;
case ‘d’: // Display log;
if (State == STOPPED) // Only execute if not logging;

{
printf (“\n Display Log\n”);

LogPrint () ; // Print the log entries;
}
break;
case ‘i': // Init RTC;
if (State == STOPPED) // Only execute if not logging;

{
printf (“\n Init RTC values\n”);

EA = 0; // Disable interrupts;
LogInit (&LogRecord) ; // Clear current time;
EA = 1; // Reenable interrupts;
}
break;
case ‘p’: // Stop logging;
if (State != STOPPED) // Only execute if not stopped already;
{
State = FINISHED; // Set state to FINISHED
printf (™\n Stop Logging\n”);
while (State != STOPPED){} // Wait for State = STOPPED;
}
break;
case ‘s': // Start logging
if (State == STOPPED) // Only execute if not logging;

{
printf (“\n Start Logging\n”);

State = RUNNING; // Start logging data
}
break;
case ‘?': // List commands;
if (State == STOPPED) // Only execute if not logging;

{

printf (“\n List Commands\n”);

MENU_ListCommands () ; // List Commands
}
break;
default: // Indicate unknown command;
if (State == STOPPED) // Only execute if not logging;

{
printf (“\n Unknown command: ‘%x’\n”, key press);
MENU_ ListCommands () ; // Print Menu again;
}
break;
} // switch
} // while

20 Rev. 0.1

SILICON LABORATORIES

AN189

// This routine prints a list of available commands.

//
void MENU ListCommands (void)
{

printf (“\nData logging example version %$s\n”, VERSION) ;

printf (“Copyright 2004 Silicon Laboratories.\n\n”);

printf (“Command List\n”);

printf (™ \n”) ;

printf (% ‘¢’ - Clear Log\n”);

printf (Y ‘d’ - Display Log\n”);

printf (Y ‘i’ - Init RTC\n”);

printf (Y ‘p’ - Stop Logging\n”):

printf (% ‘s’ - Start Logging\n”);

printf (™ ‘2’ - List Commands\n”);

printf (“\n”);
}
[mm e -
// Logging Subroutines
e
/mm e e -
// LogUpdate ()
[m e -
// This routine is called by the ADC ISR at ~1Hz if State == RUNNING or

// FINISHED. Here we read the decimated ADC value, convert it to temperature
// in hundredths of a degree C, and add the log entry to the log table buffer.
// If the buffer is full, or the user has stopped the logger, we must commit
// the buffer to the MMC FLASH. <State> determines if the system is logging

// normally (State == RUNNING), or if the user has stopped the logging
// process (State == FINISHED).
//
//
void LogUpdate (void)
{
idata ULONG voltage; // Long voltage value;
idata int temp_int, temp frac; // Integer and fractional portions of

// Temperature;
// Count variable for number of
// Log entries in local buffer;

static idata unsigned int 1LogCount = 0;

EA = 0; // Disable interrupts (precautionary):;
voltage.l = Result.l; // Retrieve 32-bit ADC value;

EA = 1; // Re-enable interrupts;

// Calculate voltage in .01 millivolt;
// units;

voltage.l = voltage.l * ((VREF*PRECiFACTOR) / FULL SCALE / TEMPisLOPE),‘
// Handle temp sensor voltage offset;

voltage.l = voltage.l - ((V_OFFSET*PREC FACTOR / TEMP SLOPE)) ;

voltage.b[4] = voltage.b[3]; // Scale down by PREC FACTOR with a

voltage.b[3] = voltage.b[2]; // 10-bit shift; <voltage> now contains

voltage.b[2] = voltage.b[l]; // temperature value;

voltage.b[l] = voltage.b[0];

voltage.b[0] = 0;

voltage.l = voltage.l >> 2;

LogRecord.wTemp = (int)voltage.l; // Store temp value in temporary log
// entry;

Rev. 0.1 21

SILICON LABORATORIES

AN189

if (uLogCount == 0) // If the FLASH table has been cleared,
{ // The local buffer is reset;
lLogCount = 0; // Reset number of local table entries;

// Reset local buffer pointer;
(LOG_ENTRY xdata *)LOCAL BLOCK;

pLogTable
}
if (State == RUNNING) // Execute the following if the logger
{ // is logging normally;
// Check to see if the log table is
// full;
if ((uLogCount*LOG ENTRY SIZE) < LOG_SIZE)
{

*pLogTable = LogRecord; // Copy temporary log entry to buffer;
pLogTable++; // Increment buffer pointer;
lLogCount++; // Increment local log entry count;
uLogCount++; // Increment global log entry count;

// If the buffer is full, it must be
// written to FLASH;
if (1LogCount == (unsigned int) (BUFFER SIZE / LOG_ENTRY SIZE))
{
// Call FLASH Write function; Write to
// address pointed at by the global
// entry count less the local buffer
// count;
MMC FLASH Write ((uLogCount -
(unsigned long)lLogCount) *LOG ENTRY SIZE,
(unsigned char xdata *)SCRATCH BLOCK,
(unsigned char xdata *)LOCAL BLOCK, BUFFER SIZE);

1LogCount = 0; // Reset the local buffer size
// and pointer;
pLogTable = (LOG _ENTRY xdata *)LOCAL BLOCK;

// Update display;
temp int = LogRecord.wTemp / 100;

temp frac = LogRecord.wTemp - ((long) temp int * 100L);
printf (Y %081lu\t”, uLogCount) ;

printf (“%02u: “, (unsigned)LogRecord.uDay) ;

printf (“%02u:”, (unsigned) LogRecord.bHour) ;

printf (“%02u:”, (unsigned) LogRecord.bMin) ;

printf (“%02u “, (unsigned) LogRecord.bSec);

printf (“%$+02d.%02d\n”, temp int, temp frac);

else // If the FLASH table is full, stop
{ // logging data and print the full
State = STOPPED; // message;

printf (“Log is full\n”);

}
else if (State == FINISHED) // If the data logger has been stopped
{ // by the user, write the local buffer
// to FLASH;
MMC FLASH Write ((uLogCount - (unsigned long)lLogCount)*LOG ENTRY SIZE,
(unsigned char xdata *)SCRATCH BLOCK,

22 Rev. 0.1

SILICON LABORATORIES

AN189

(unsigned char xdata *)LOCAL BLOCK,
1LogCount*LOG ENTRY SIZE);
lLogCount = 0; // Reset the local buffer size;
// and pointer;
pLogTable = (LOG_ENTRY xdata *)LOCAL_BLOCK;

State = STOPPED; // Set the state to STOPPED;
}
}
/e
// LogFindCount ()
/e e

// This function finds the number of entries already stored in the MMC log;

//
unsigned long LogFindCount ()

{

unsigned long Count = 0; // Count variable, incremented as table
// entries are read;

unsigned long i = 0; // Address variable, used to read table
// table entries from FLASH;

LOG_ENTRY xdata *TempEntry; // Temporary log entry space;

// Initialize temp space in
// SCRATCH BLOCK of external memory;
TempEntry = (LOG _ENTRY xdata *)SCRATCH BLOCK;

// Loop through the table looking for a
// blank entry;

for (i=LOG_ADDR;i<LOG_SIZE;i += LOG_ENTRY_SIZE)

{
// Read one entry from address i of
// FLASH;

MMC FLASH Read((unsigned long) (i), (unsigned char xdata *) SCRATCH BLOCK,
(unsigned int)LOG ENTRY SIZE);

// Check if entry is blank;
if ((TempEntry->bSec == 0x00) && (TempEntry->bMin == 0x00)
&& (TempEntry->bHour == 0x00))

// If entry is blank, set Count;

Count = (i/LOG_ENTRY SIZE) - LOG_ADDR;
break; // Break out of loop;
}
}
return Count; // Return entry count;
}
et
// LogErase
e

// This function clears the log table using the FLASH Mass Erase capability.
//
void LogErase (void)

{

// Call Mass Erase function with start
// of table as address and log size as

// length;
MMC FLASH MassErase (LOG_ADDR, LOG SIZE);
uLogCount = 0; // Reset global count;

Rev. 0.1

SILICON LABORATORIES

23

A e
// LogPrint
/mm e e -
// This function prints the log table. Entries are read one at a time, temp
// 1s broken into the integer and fractional portions, and the log entry is
// displayed on the PC through UART.
//
void LogPrint (void)
{

idata long temp int, temp frac; // Integer and fractional portions of

// temperature;
idata unsigned long 1i; // Log index;

//
//

unsigned char xdata *pchar;

LOG ENTRY xdata *TempEntry;

Pointer to external mem space for
FLASH Read function;

printf (“Entry#\tTime\t\tResult\n”);// Print display column headers;
// Assign pointers to local block;
// FLASHRead function stores incoming
// data at pchar, and then that data can
// be accessed as log entries through
// TempEntry;
pchar = (unsigned char xdata *)LOCAL BLOCK;
TempEntry = (LOG _ENTRY xdata *)LOCAL BLOCK;
for (1 = 0; i < uLogCount; i++) // For each entry in the table,
{ // do the following;

//

Read the entry from FLASH;

MMC FLASH Read((unsigned long) (LOG ADDR + i*LOG_ENTRY SIZE), pchar,

(unsigned int)LOG_ENTRY SIZE);

// break temperature into integer and fractional components

(long)
(long)

temp int =
temp frac =

// display log entry

printf (Y $1u\t%03u: %02u:%02u:%02u
TempEntry->uDay, (unsigned)
(unsigned) TempEntry->bMin,
(unsigned) TempEntry->bSec) ;
printf (“$+021d.%021d\n”, temp int,
}
}
F
// Loglnit
[/ mm e

// Initialize the Log Entry space
//

void LogInit
{

(LOG_ENTRY *pEntry)

pEntry->wTemp = 0;
pEntry->uDay = 0;
pEntry->bHour = 0;

(TempEntry->wTemp)
(TempEntry->wTemp) -

/ 100L;

((long) temp int * 100L);

Y, 1+ 1),

TempEntry->bHour,

temp frac);

(all zeros);

24

Rev. 0.1

SILICON LABORATORIES

AN189

//
//
//
//
!/
!/
1/
//
//
//
!/
!/
//
//
//
//
!/
!/
//
//
//
//
!/
!/
1/
//
//
//

un

{

|
o
~

pEntry->bMin =
pEntry->bSec

I
o
~

This function generates the necessary SPI traffic for all MMC SPI commands.
The three parameters are described below:

cmd: This parameter is used to
the desired command. The

index into the command table and read
Command Table Index Constants allow the

caller to use a meaningful constant name in the cmd parameter
instead of a simple index number. For example, instead of calling
MMC Command Exec (0, argument, pchar) to send the MMC into idle

state, the user can call

MMC Command Exec (GO IDLE

STATE, argument, pchar);

argument: This parameter is used for MMC commands that require an argument.
MMC arguments are 32-bits long and can be values such as an
an address, a block length setting, or register settings for the
MMC.

pchar: This parameter is a pointer to the local data location for MMC

data operations. When a read or write occurs, data will be stored
or retrieved from the location pointed to by pchar.

The MMC Command Exec function indexes the command table using the cmd
parameter. It reads the command table entry into memory and uses information

from that entry to determine how to
response value;

proceed. Returns the 16-bit card

signed int MMC Command Exec (unsigned char cmd, unsigned long argument,
unsigned char *pchar)

idata COMMAND current command;

idata ULONG long arg;

static unsigned long current blklen
unsigned long old blklen = 512;

idata unsigned int counter = 0;
idata UINT card response;

idata unsigned char data resp;
idata unsigned char dummy CRC;

current command = commandlist[cmd];

SPIODAT = OxFF;
while (!SPIF) {}
SPIF = 0;
NSSMDO = O0;

// Local space for the command table

// entry;

// Union variable for easy byte

// transfers of the argument;

// Static variable that holds the

// current data block length;

= 512;

// Temp variable to preserve data block
// length during temporary changes;

// Byte counter for multi-byte fields;
// Variable for storing card response;
// Variable for storing data response;
// Dummy variable for storing CRC field;

// Retrieve desired command table entry
// from code space;

// Send buffer SPI clocks to ensure no
// MMC operations are pending;

// Select MMC by pulling CS low;

SILICON LABORATORIES

Rev. 0.1 25

AN189

SPIODAT = OxFF;
while (!SPIF) {}

SPIF = 0;
//
SPIODAT = (current command.command byte
long arg.l = argument; //
//

if (current command.command byte ==

{

current blklen = argument;

if ((current command.command byte ==
(current command.command byte ==

{
old blklen = current blklen;
current blklen = 16;

}

while (!SPIF) {}

SPIF = 0;

if (current command.arg required ==
{

counter = 0;

while (counter <= 3)

{

SPIODAT = long arg.b[counter];

counter++;
while (!SPIF) {}
SPIF = 0;
}
}
else
{
counter = 0;

while (counter <= 3)

{
SPIODAT = 0x00;

counter++;
while (!SPIF) {}
SPIF = 0;

}

SPIODAT = current command.CRC;
while (!SPIF) {}

SPIF = 0;

!/

//
//
//
//
//
1/

16)

//
//
//
//
//

Send another byte of SPI clocks;

Issue command opcode;

| 0x40);
Make argument byte addressable;
If current command changes block
length, update block length variable
to keep track;
Command byte = 16 means that a set
block length command is taking place
and block length variable must be
set;

Command byte = 9 or 10 means that a
l6-byte register value is being read
from the card, block length must be
set to 16 bytes, and restored at the
end of the transfer;

9) I
10))

//
//

//
//

//
//
//

YES)

//
//

Command is a GET_CSD or GET CID,
set block length to 1l6-bytes;

Wait for initial SPI transfer to end;
Clear SPI Interrupt flag;

If an argument is required, transmit
one, otherwise transmit 4 bytes of
0x00;

Transmit CRC byte; In all cases
except CMDO, this will be a dummy

// character;

26

Rev. 0.1

SILICON LABORATORIES

AN189

if (current command.response == R1)

{

SPIODAT = OxFF;

while (!SPIF) {}

SPIF = 0;

card response.b[0] = SPIODAT;
}

// The command table entry will indicate
// what type of response to expect for
// a given command; The following

// conditional handles the MMC response;

// Read

the R1 response from the card;

// Write dummy value to SPI so that
// the response byte will be shifted in;

// Save

while ((card response.b[0] & BUSY BIT));

// Read

else if (current command.response == Rlb)

{
do

{

SPIODAT = OxFF;

while (!SPIF) {}

SPIF = 0;

card response.b[0] = SPIODAT;
}

the response;

the Rlb response;

// Start SPI transfer;

// Save

while ((card response.b[0] & BUSY BIT));

do

{
SPIODAT = OxFF;
while (!SPIF) {}

// Wait

SPIF = 0;
}
while (SPIODAT == 0x00); // When
} // card
// Read
else if (current command.response == R2)

{
do

{

SPIODAT = OXxFF;

while (!SPIF) {}

SPIF = 0;

card response.b[0] = SPIODAT;
}

card response

for busy signal to end;

byte from card is non-zero,
is no longer busy;
R2 response

// Start SPI transfer;

// Read

while ((card response.b[0] & BUSY BIT));

SPIODAT = OxFF;
while (!SPIF) {}
SPIF = 0;
card response.b[1l] = SPIODAT;
}
else
{
do
{
SPIODAT = OxFF;
while (!SPIF) {}
SPIF = 0;
card response.b[0] = SPIODAT;

// Read

// Read

first byte of response;

second byte of response;

R3 response;

// Start SPI transfer;

// Read

first byte of response;

SILICON LABORATORIES

Rev. 0.1

27

AN189

}

while ((card response.b[0]

counter = 0;
while (counter <= 3) //
{ //
counter++; //
SPIODAT = OxFF; //
while (!SPIF) {}
SPIF = 0;
*pchar++ = SPIODAT;

}

switch (current command.trans_ type)

1/

{ //
//
//
case RD: //
do //
{ //
SPIODAT = OxFF; //
while (!SPIF) {}
SPIF = 0;
}
while (SPTODAT != START SBR); //
counter = 0; //
//

while (counter <

{

SPIODAT = 0x00; //
while (!SPIF) {}
SPIF = 0;
*pchar++ = SPIODAT; //
counter++; //
}
SPIODAT = 0x00; //
while (!SPIF) {} //
SPIF = 0; //
dummy CRC = SPIODAT; //
SPIODAT = 0x00;
while (!SPIF) {}
SPIF = 0;
dummy CRC = SPIODAT;
break;
case WR: //
SPIODAT = OxFF; //
while (!SPIF) {} //
SPIF = 0;

SPIODAT = START SBW; //
while (!SPIF) {}

SPIF = 0;
counter = 0; //
//

while (counter <

{

SPIODAT = *pchar++; //
while (!SPIF) {}

SPIF = 0;

counter++; //

& BUSY BIT));

Read next three bytes and store them
in local memory; These bytes make up
the Operating Conditions Register
(OCR) ;

This conditional handles all data
operations; The command entry
determines what type, if any,
operations need to occur;

Read data from the MMC;

Wait for a start read token from
the MMC;

Start a SPI transfer;

data

Check for a start read token;
Reset byte counter;
Read <current blklen> bytes;

(unsigned int)current blklen)

Start SPI transfer;

Store data byte in local memory;
Increment data byte counter;

After all data is read, read the two
CRC bytes; These bytes are not used
in this mode, but the placeholders
must be read anyway;

Write data to the MMC;
Start by sending 8 SPI clocks so
the MMC can prepare for the write;

Send the start write block token;

Reset byte counter;
Write <current blklen> bytes to MMC;

(unsigned int)current blklen)

Write data byte out through SPI;

Increment byte counter;

28

Rev. 0.1

SILICON LABORATORIES

AN189

SPIODAT = OxFF;
while (!SPIF) {}
SPIF = 0;
SPIODAT = OxFF;
while (!SPIF) {}
SPIF = 0;

do
{
SPIODAT = OxFF;
while (!SPIF) {}
SPIF = 0;
data resp = SPIODAT;

// Write CRC bytes

(don’t cares);

// Read Data Response from card;

// When bit 0 of the MMC response
// 1s clear, a valid data response
// has been received;

while ((data resp & DATA RESP MASK) != 0x01);

do

{
SPIODAT = OXxFF;
while (!SPIF) {}
SPIF = 0;

}

while (SPIODAT == 0x00);

SPIODAT = OxFF;
while (!SPIF) {}

SPIF = 0;
break;
default: break;

}

SPIODAT = OxFF;
while (!SPIF) {}
SPIF = 0;

NSSMDO = 1;
SPIODAT = OxFF;
while (!SPIF) {}
SPIF = 0;

if((current_command.command_byte ==
(current command.command byte ==
{
current_blklen = old_blklen;
}

return card response.i;

// This function initializes the flash card,
and reads the operating conditions register to ensure that the device

// mode,

// has initialized correctly. It also

// Wait for end of busy signal;

// Start SPI transfer to receive
// busy tokens;

// When a non-zero token is returned,
// card is no longer busy;

// Issue 8 SPI clocks so that all card
// operations can complete;

// Deselect memory card;

// Send 8 more SPI clocks to ensure

// the card has finished all necessary

// operations;

// Restore old block length if needed;
) L

10))

configures it to operate in SPI

determines the size of the card by

SILICON LABORATORIES

Rev. 0.1

29

AN189

// reading the Card Specific Data Register (CSD).

void MMC FLASH Init (void)
{

idata UINT card status; // Stores card status returned from

// MMC function calls(MMC Command Exec);
idata unsigned char counter = 0; // SPI byte counter;
idata unsigned int size; // Stores size variable from card;
unsigned char xdata *pchar; // Xdata pointer for storing MMC

// register values;
// Transmit at least 64 SPI clocks
// before any bus comm occurs.
pchar = (unsigned char xdata*)LOCAL BLOCK;
for (counter = 0; counter < 8; counter++)
{
SPIODAT = OXxXFF;
while (!SPIF) {}

SPIF = 0;
}
NSSMDO = 0; // Select the MMC with the CS pin;
// Send 16 more SPI clocks to
// ensure proper startup;
for (counter = 0; counter < 2; counter++)

{
SPIODAT = OxFF;
while (!SPIF) {}
SPIF = 0;

// Send the GO_IDLE STATE command with
// CS driven low; This causes the MMC
// to enter SPI mode;
card status.i = MMC Command Exec (GO _IDLE STATE,EMPTY, EMPTY) ;
// Send the SEND OP COND command
do // until the MMC indicates that it is
{ // no longer busy (ready for commands);
SPIODAT = OxFF;
while (!SPIF) {}
SPIF = 0;
card status.i = MMC Command Exec (SEND OP COND,EMPTY, EMPTY) ;
}
while ((card status.b[0] & 0x01));

SPIODAT = OxFF; // Send 8 more SPI clocks to complete
while (!SPIF) {} // the initialization sequence;

SPIF = 0;

do // Read the Operating Conditions

{ // Register (OCR);
card status.i = MMC Command Exec (READ OCR,EMPTY,pchar) ;

}
while (! (*pchar&0x80)) ; // Check the card busy bit of the OCR;

card status.i = MMC Command Exec (SEND STATUS,EMPTY, EMPTY) ;
// Get the Card Specific Data (CSD)
// register to determine the size of the

// MMC;
card status.i = MMC Command Exec (SEND CSD,EMPTY, pchar) ;
pchar += 9; // Size indicator is in the 9th byte of

// CSD register;
// Extract size indicator bits;
size = (unsigned int) ((((*pchar) & 0x03) << 1)

30 Rev. 0.1

SILICON LABORATORIES

AN189

//
!/
!/
!/
//
//
//
!/
!/
1/
//
//
//

un

{

(((*(pchar+l)) & 0x80) >> 7));
switch (size) // Assign PHYSICAL SIZE variable to
{ // appropriate size constant;

case 1: PHYSICAL SIZE = PS 8MB; break;
case 2: PHYSICAL SIZE = PS 16MB; break;
case 3: PHYSICAL SIZE = PS 32MB; break;
case 4: PHYSICAL SIZE = PS_64MB; break;

case 5: PHYSICAL SIZE = PS 128MB; break;
default: break;

// Determine the number of MMC sectors;
PHYSICAL_BLOCKS = PHYSICAL_SIZE / PHYSICAL_BLOCK_SIZE;
LOG_SIZE = PHYSICAL SIZE - LOG_ADDR;

This function reads <length> bytes of FLASH from MMC address <address>, and
stores them in external RAM at the location pointed to by <pchar>.
There are two cases that must be considered when performing a read. If the
requested data is located entirely in a single FLASH block, the function
sets the read length appropriately and issues a read command. If requested
data crosses a FLASH block boundary, the read operation is broken into two
parts. The first part reads data from the starting address to the end of
the starting block, and then reads from the start of the next block to the
end of the requested data. Before each read, the read length must be set
to the proper value.
signed char MMC FLASH Read (unsigned long address, unsigned char *pchar,
unsigned int length)

idata unsigned long flash page 1; // Stores address of first FLASH page;
idata unsigned long flash page 2; // Stores address of second FLASH page;
idata unsigned int card status; // Stores MMC status after each MMC

// command;

if (length > 512) return 0; // Test for valid data length; Length
// must be less than 512 bytes;
// Find address of first FLASH block;
flash page 1 = address & ~(PHYSICAL BLOCK SIZE-1);
// Find address of second FLASH block;
flash page 2 = (address+length-1) & ~(PHYSICAL BLOCK SIZE-1);
if (flash page 1 == flash page 2) // Execute the following if data is
{ // located within one FLASH block;
// Set read length to requested data
// length;
card status = MMC Command Exec (SET BLOCKLEN, (unsigned long)length,
EMPTY) ;
// Issue read command;
card status = MMC Command Exec (READ SINGLE BLOCK, address,pchar) ;
}
else // Execute the following if data crosses
{ // MMC block boundary;
// Set the read length to the length
// from the starting address to the
// end of the first FLASH page;
card status = MMC Command Exec (SET BLOCKLEN,
(unsigned long) (flash page 2 - address),
EMPTY) ;

Rev. 0.1 31

SILICON LABORATORIES

AN189

// Issue read command;
card status = MMC Command Exec (READ SINGLE BLOCK, address,pchar) ;
// Set read length to the length from
// the start of the second FLASH page
// to the end of the data;
card status = MMC Command Exec (SET BLOCKLEN,
(unsigned long) length -
(flash page 2 - address),
EMPTY) ;
// Issue second read command; Notice
// that the incoming data stored in
// external RAM must be offset from the
// original pointer value by the length
// of data stored during the first read
// operation;

card status = MMC Command Exec (READ

SINGLE BLOCK, flash page 2,

pchar + (flash page 2 - address));

// This function erases <length> bytes of flash starting at address <address>.

// The <scratch> pointer points to a 512 byte area of XRAM that can

// be used as temporary storage space. The flow of this function is similar

// to the FLASH Read function in that there are two possible cases. If the

// space to be cleared is contained within one MMC block, the block can be

// stored locally and erased from the MMC. Then the desired area can be

// cleared in the local copy and the block can be written back to the MMC. If

// the desired clear area crosses a FLASH block boundary, the previous steps

// must be executed seperately for both blocks.

unsigned char MMC FLASH Clear (unsigned long address, unsigned char *scratch,
unsigned int length)

{

idata unsigned long flash page 1; // Stores address of first FLASH page;
idata unsigned long flash page 2; // Stores address of second FLASH page;
idata unsigned int card status; // Stores MMC status after each MMC
// command;
idata unsigned int counter; // Counter for clearing bytes in local
// block copy;
unsigned char xdata *index; // Index into local block used for
// clearing desired data;
if (length > 512) return 0; // Test desired clear length; If
// length > 512, break out and return
// zero;

// Calculate first FLASH page address;
flash page 1 = address & ~(PHYSICAL BLOCK SIZE-1);
// Calculate second FLASH page address;
flash_page_2 = (address+length-1) & ~(PHYSICAL BLOCK SIZE-1);
if (flash page 1 == flash page 2) // Clear space all in one FLASH block
{ // condition;
// Read first FLASH block;
card _status = MMC Command Exec (SET BLOCKLEN,
(unsigned long)PHYSICAL BLOCK SIZE,
EMPTY) ;
card status = MMC Command Exec (READ SINGLE BLOCK, flash page 1,scratch);
// Set index to address of area to clear

32 Rev. 0.1

SILICON LABORATORIES

AN189

// in local block;

index = (unsigned int) (address % PHYSICAL BLOCK SIZE) + scratch;
counter = 0;
while (counter<length) // Clear desired area in local block;

{
*index++ = 0x00;
counter++;

// Tag first FLASH page for erase;
card status = MMC Command Exec (TAG SECTOR START, flash page 1,EMPTY)
card status = MMC Command Exec (TAG SECTOR END, flash page 1,EMPTY) ;

// Erase first FLASH page;
card status = MMC Command Exec (ERASE,EMPTY, EMPTY) ;

// Write local copy of block back out

// to MMC;
card status = MMC Command Exec (WRITE BLOCK, flash page 1,scratch);

}
else // Clear space crosses FLASH block
{ // boundaries condition;

// Follow same procedure as for single

// block case above; Read first block

// clear data from start address to end

// of block; Erase block in FLASH;

// Write local copy back out;
card status = MMC Command Exec (SET BLOCKLEN,

(unsigned long) PHYSICAL BLOCK SIZE,

EMPTY) ;
card status = MMC Command Exec (READ SINGLE BLOCK, flash page 1,scratch);
index = (unsigned int) (address % PHYSICAL BLOCK SIZE) + scratch;
counter = (unsigned int) (flash page 2 - address);

while (counter > 0)

{

*index++
counter--;

OxXFF;

}
card status = MMC Command Exec (TAG SECTOR END, flash page 1,EMPTY);
card status MMC Command Exec (ERASE,EMPTY, EMPTY) ;
card status = MMC Command Exec (WRITE BLOCK, flash page 1,scratch);
// Same process as above, but using
// second FLASH block; Area to be
// cleared extends from beginning of
// second FLASH block to end of desired
// clear area;
card status = MMC Command Exec (READ SINGLE BLOCK, flash page 2,scratch);
index = scratch;
counter = (unsigned int) (length - (flash page 2 - address));
while (counter > 0)

{

*index++ = OxFF;
counter--;
}
card status = MMC Command Exec (TAG SECTOR END, flash page 2,EMPTY) ;
card status = MMC Command Exec (ERASE,EMPTY,EMPTY) ;
card status = MMC Command Exec (WRITE BLOCK, flash page 2,scratch);

// MMC_FLASH Write

Rev. 0.1

SILICON LABORATORIES

33

AN189

//

// This function operates much like the MMC FLASH Clear and MMC_FLASH Read

// functions. As with the others, if the desired write space crosses a FLASH

// block boundary, the operation must be broken into two pieces.

// MMC FLASH Write uses the MMC FLASH Clear function to clear the write space

// before issuing any writes. The desired write space is cleared using

// MMC FLASH Clear, then the data is read in, the previously cleared write

// space is modified, and the data is written back out.

//

// While it would be more efficient to avoid the MMC FLASH Clear and simply

// perform a read-modify-write operation, using MMC FLASH Clear helps make the

// process easier to understand.

unsigned char MMC FLASH Write (unsigned long address, unsigned char *scratch,
unsigned char *wdata, unsigned int length)

idata unsigned long flash page 1; // First FLASH page address;

idata unsigned long flash page 2; // Second FLASH page address;

idata unsigned int card status; // Stores status returned from MMC;

idata unsigned int counter; // Byte counter used for writes to
// local copy of data block;

unsigned char xdata *index; // Pointer into local copy of data

// block, used during modification;
MMC FLASH Clear (address,scratch,length); // Clear desired write space;
if (length > 512) return 0; // Check for valid data length;
// Calculate first FLASH page address;
flash page 1 = address & ~(PHYSICAL BLOCK SIZE-1);
// Calculate second FLASH page address;
flash page 2 = (address+length-1) & ~(PHYSICAL BLOCK SIZE-1);
if (flash page 1 == flash page 2) // Handle single FLASH block condition;
{
// Set block length to default block
// size (512 bytes);
card status = MMC Command Exec (SET BLOCKLEN,
(unsigned long)PHYSICAL BLOCK SIZE,
EMPTY) ;
// Read data block;
card status = MMC Command Exec (READ SINGLE BLOCK, flash page 1,scratch);

index = (unsigned int) (address % PHYSICAL BLOCK SIZE) + scratch;
counter = 0;
while (counter<length) // Modify write space in local copy;

{
*index++ = *wdata++;
counter++;

// Write modified block back to MMC;
card status = MMC Command Exec (WRITE BLOCK, flash page 1,scratch);
}
else // Handle multiple FLASH block
{ // condition;
// Set block length to default block
// size (512 bytes);
card status = MMC Command Exec (SET BLOCKLEN,
(unsigned long)PHYSICAL BLOCK SIZE,
EMPTY) ;
// Read first data block;
card status = MMC Command Exec (READ SINGLE BLOCK, flash page 1,scratch);
index = (unsigned int) (address % PHYSICAL BLOCK SIZE) + scratch;
counter = (unsigned int) (flash page 2 - address);

34 Rev. 0.1

SILICON LABORATORIES

AN189

while (counter > 0) // Modify data in local copy of first
{ // block;

*index++ = *wdata++;

counter--;

// Write local copy back to MMC;
card status = MMC Command Exec (WRITE BLOCK, flash page 1,scratch);
// Read second data block;
card status = MMC Command Exec (READ SINGLE BLOCK, flash page 2,scratch);

index = scratch;

counter = (unsigned int) (length - (flash page 2 - address));

while (counter > 0) // Modify data in local copy of second
{ // block;

*index++ = *wdata++;
counter--;

// Write local copy back to MMC;
card status = MMC Command Exec (WRITE BLOCK, flash page 2,scratch);

//
// This function erases <length> bytes of flash starting with the block
// indicated by <addressl>. This function only handles sector-sized erases
// or larger. Function should be called with sector-aligned erase addresses.
unsigned char MMC FLASH MassErase (unsigned long addressl,
unsigned long length)
{
idata unsigned char card status; // Stores card status returned from MMC;
// Store start and end sectors to be
// to be erased;
idata unsigned long flash page 1, flash page 2;
// Store start and end groups to be
// erased;
idata unsigned long flash group 1, flash group 2;
// Compute first sector address for
// erase;
flash page 1 = addressl & ~(PHYSICAL BLOCK SIZE-1);
// Compute first group address for
// erase;
flash group 1 = flash page 1 &~ (PHYSICAL GROUP SIZE-1);
// Compute last sector address for
// erase;
flash page 2 = (addressl + length) & ~(PHYSICAL BLOCK SIZE-1);
// Compute last group address for erase;
flash group 2 = flash page 2 &~ (PHYSICAL GROUP SIZE-1);

if (flash group 1 == flash group 2) // Handle condition where entire erase
{ // space is in one erase group;
// Tag first sector;
card status = MMC Command Exec (TAG SECTOR START, flash page 1,EMPTY);
// Tag last sector;
card status = MMC Command Exec(TAG SECTOR END, flash page 2,EMPTY);
// Issue erase command;
card status = MMC Command Exec (ERASE,EMPTY,EMPTY) ;

Rev. 0.1

SILICON LABORATORIES

35

AN189

else // Handle condition where erase space
{ // crosses an erase group boundary;
// Tag first erase sector;
card status = MMC Command Exec (TAG SECTOR START, flash page 1,EMPTY);
// Tag last sector of first group;
card status = MMC Command Exec (TAG SECTOR END,
(flash group 1 +
(unsigned long) (PHYSICAL GROUP_SIZE
- PHYSICAL BLOCK SIZE)),EMPTY);
// Issue erase command;
card status = MMC Command Exec (ERASE,EMPTY,EMPTY) ;
// Tag first sector of last erase group;
card status = MMC Command Exec(TAG SECTOR START, flash group 2,EMPTY) ;
// Tag last erase sector;
card status = MMC Command Exec (TAG SECTOR END, flash page 2,EMPTY) ;
// Issue erase;
card status = MMC Command Exec (ERASE,EMPTY,EMPTY) ;
// Conditional that erases all groups
// between first and last group;
if (flash group 2 > (flash group 1 + PHYSICAL GROUP_SIZE))
{
// Tag first whole group to be erased;
card status = MMC Command Exec (TAG ERASE GROUP START,
(flash group 1 +
(unsigned long) PHYSICAL GROUP_SIZE),EMPTY);
// Tag last whole group to be erased;
card status = MMC Command Exec (TAG ERASE GROUP END,
(flash page 2 -
(unsigned long) PHYSICAL GROUP_SIZE),EMPTY) ;
// Issue erase command;
MMC Command Exec (ERASE,EMPTY, EMPTY) ;

card status

return card status;

//

// ADCO end-of-conversion ISR

// Here we take the ADCO sample, add it to a running total <accumulator>, and
// decrement our local decimation counter <int dec>. When <int dec> reaches
// zero, we post the decimated result in the global variable <result>.

//

// In addition, this ISR is used to keep track of time. Every 4096 samples,
// approximately once a second, we update the seconds, minutes, hours, and days
// for the temperature timestamp. If the global state is RUNNING or FINISHED,
// a low priority software interrupt56 is generated and the log is updated.

// Using the low priority interrupt allows the MMC communication to execute

// without disrupting the temperature sampling process. The ADC end-of-conv
// interrupt is set to high priority, so it will be executed even if a low

// priority interrupt is already in progress.

void ADCO ISR (void) interrupt 10

36 Rev. 0.1

SILICON LABORATORIES

AN189

static unsigned int dec=INT DEC; // integrate/decimate counter
// we post a new result when
// int _dec = 0

static LONG accumulator={0L}; // here’s where we integrate the
// ADC samples

ADOINT = 0; // clear ADC conversion complete
// indicator

accumulator.l += ADCO; // read ADC value and add to running
// total
int dec--; // update decimation counter
if (int_dec == 0) { // if zero, then post result
int _dec = INT DEC; // reset counter

// Result = accumulator >> 6
// Perform my shifting left 2, then byte-swapping

accumulator.l <<= 2; // accumulator = accumulator << 2
Result.b[0] = 0; // Result = accumulator >> 8
Result.b[3] = accumulator.b[2];

Result.b[2] = accumulator.b[l];

Result.b[l] = accumulator.b[0];

accumulator.l = 0L; // reset accumulator
LogRecord.bSec++; // update seconds counter

if (LogRecord.bSec == 60)

{
LogRecord.bSec = 0;
LogRecord.bMin++; // update minutes counter
if (LogRecord.bMin == 60)
{
LogRecord.bMin = 0;
LogRecord.bHour++; // update hours counter
if (LogRecord.bHour == 24)
{
LogRecord.bHour = 0;
LogRecord.uDay++; // update days counter

if ((State == RUNNING) | | (State == FINISHED))

{
ADOWINT = 1;

// This ISR executes whenever a log update is needed. It simply clears the

// interrupt flag and executes the LogUpdate function. This is a low priority
// ISR, so the ADC end-of-conversion ISR will interrupt it if necessary. This
// prevents the long MMC communication process from disrupting temperature

// sampling.

Rev. 0.1 37

SILICON LABORATORIES

AN189

//
void Soft ISR (void)
{

interrupt 9

ADOWINT =
LogUpdate (

0; // Clear software interrupt flag;
)

e
// Initialization Subroutines
[mm e
[mm e e -
// SYSCLK Init
/e
//
// This routine initializes the system clock to use the internal 24.5MHz
// oscillator as its clock source. Enables missing clock detector reset. Also
// configures and enables the external crystal oscillator.
//
void SYSCLK_Init (void)
{
OSCICN |= 0x06; // Configure internal oscillator for
// its maximum frequency;
VDMOCN = 0x80; // Enable VDD Monitor
RSTSRC |= 0x06; // Enable missing clock detector and
// VDD Monitor as reset sources;
CLKMUL = 0x00; // Reset multiplier; Internal Osc is
// multiplier source;
CLKMUL |= 0x80; // Enable Clock Multiplier;
// Wait 5 us for multiplier to be enabled
TMR2CN = 0x00; // STOP Timer2; Clear TF2H and TF2L;
// disable low-byte interrupt; disable
// split mode; select internal timebase
CKCON |= 0x10; // Timer2 uses SYSCLK as 1its timebase
TMR2RL = START SYSCLK / 200000; // Init reload values 12 MHz / (5E"-6)
TMR2 = TMR2RL; // Init Timer2 with reload value
ET2 = 0; // disable Timer2 interrupts
TF2H = 0;
TR2 = 1; // start Timer2
while (!TF2H); // wait for overflow
TF2H = 0; // clear overflow indicator
TR2 = 0; // Stop Timer2;
CLKMUL |= 0xCO0; // Initialize Clock Multiplier
while (! (CLKMUL & 0x20)) // Wait for MULRDY
CLKSEL = 0x02; // Select SYSCLK * 4 / 2 as clock source
}
/e
// PORT_Init
/m e
//
// Configure the Crossbar and GPIO ports.
// P0.0 - SCK
// PO.1 - MISO
38 Rev. 0.1

SILICON LABORATORIES

AN189

// P0.2 - XTAL1l (skipped by Crossbar)
// P0.3 - XTAL2 (skipped by Crossbar)
// P0.4 - UART TX (push-pull)
// P0.5 - UART RX
// P0.6 - MOSI
// PO.7 - VREF
// P1.7 - NSS
// P2.2 - LED (push-pull)
// P2.1 - SW2
//
void PORT Init (void)
{
POSKIP = 0x80;
XBRO = 0x03;
XBR1 = 0x40;
POMDIN &= ~0x80;
POMDOUT |= 0x1D;
P2MDOUT |= 0x04;

Configure the UARTO using Timerl,

void UARTO Init
{

(void)

SCONO = 0x10;

if
{

(SYSCLK/BAUDRATE/2/256 < 1)

TH1 = - (SYSCLK/BAUDRATE/2) ;
CKCON |= 0x08;

}

else if

{

(SYSCLK/BAUDRATE/2/256 < 4)

TH1 = - (SYSCLK/BAUDRATE/2/4) ;
CKCON &= ~0x0B;
CKCON |= 0x01;
}
else if
{
TH1 = - (SYSCLK/BAUDRATE/2/12);
CKCON &= ~0x0B;
}
else
{

TH1 = - (SYSCLK/BAUDRATE/2/48);

(SYSCLK/BAUDRATE/2/256 < 12)

//
!/
//
!/
//

//

//
!/

//
//
//
//
//

//

//

!/

skip VREF in crossbar
assignments

UARTO TX and RX pins enabled,
enabled

Enable crossbar and weak pull-ups

SPI

configure VREF as analog input

enable TX0,SCK,MOSI as a push-pull
enable LED as a push-pull output

for <BAUDRATE> and 8-N-1.

SCONO: 8-bit variable bit rate
level of STOP bit is ignored
RX enabled
ninth bits are zeros
clear RIO and TIO bits

TIM = 1; SCAl1:0 = xx

TIM = 0; SCAl1:0 = 01

TI1M = 0; SCA1l:0 = 00

SILICON LABORATORIES

Rev. 0.1 39

AN189

CKCON &= ~0x0B; // TIM = 0; SCAl:0 = 10
CKCON |= 0x02;
}
TL1l = TH1; // init Timerl
TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
TMOD |= 0x20;
TR1 = 1; // START Timerl
TIO = 1; // Indicate TX0 ready

// Configure SPIO for 8-bit, 2MHz SCK, Master mode, polled operation, data
// sampled on lst SCK rising edge.

void SPI Init (void)
{
SPIOCFG = 0x70; // data sampled on rising edge, clk
// active low,
// 8-bit data words, master mode;

SPIOCN = 0xO0F; // 4-wire mode; SPI enabled; flags
// cleared

SPIOCKR = SYSCLK/2/10000000; // SPI clock <= 10MHz
}
[
// ADCO Init
/) mm e
//

// Configure ADCO to use Timer2 overflows as conversion source, to
// generate an interrupt on conversion complete, and to sense the output of

// the temp sensor with a gain of 2 (we want the white noise). Enables ADC
// end of conversion interrupt. Leaves ADC disabled.
//

void ADCO Init (void)
{
ADCOCN = 0x02; // ADCO disabled; normal tracking
// mode; ADCO conversions are initiated
// on overflow of Timer2;

AMX0P = Ox1E; // Select temp sensor as positive input;
AMXON = Ox1F; // Select GND as negative input;
ADCOCF = (SYSCLK/2000000) << 3; // ADC conversion clock <= 2.0MHz
REFOCN = 0x07; // Enable temp sensor, bias generator,
// and internal VREF;
EIE1l |= 0x08; // Enable ADCO EOC interrupt;
EIP1 |= 0x08; // ADC EOC interrupt is high priority;
}
/m e
// Soft Init
[m e -
//

// This function enables ADC Window Compare interrupts and clears the interrupt
// flag. Since the window compare interrupt is not being used in this example,

40 Rev. 0.1

SILICON LABORATORIES

AN189

// we can use it as a low priority software interrupt. This interrupt can be
// used to execute log updates without disturbing the ADC sampling process.
//

void Soft Init (void)
{
ADOWINT = 0; // Clear ADCO window compare interrupt
// flag;
EIEl |= 0x04; // Enable ADCO window compare
// interrupts;
}
e
// Timer2 Init
[mm e
//

// This routine initializes Timer2 to use SYSCLK as its timebase and to
// generate an overflow at <SAMPLE RATE> Hz.

//

void Timer2 Init

{

(int counts)

TMR2CN = 0x01; // Clear TF2H, TF2L; disable TF2L
// interrupts; T2 in 16-bit mode;
// Timer2 stopped;

CKCON |= 0x30; // Timer 2 uses SYSCLK as clock
// source

TMR2RL = -counts; // reload once per second

TMR2 = TMR2RL; // init Timer2

ET2 = 0; // Disable Timer2 interrupts

TR2 = 1; // Start Timer?2

MMC_DataLogger_ EEPROM.c

A e
// MMC_DataLogger EEPROM.c

/mm e e -
// Copyright 2003 Silicon Laboratories

//

// AUTH: BW / JS / GV

// DATE: 8 MAR 04

//

// This software shows an example of a data logging application that maintains
// the log on an MMC card. In addition, this software uses an external EEPROM
// to buffer MMC data.
// on-chip external memory.

//

// Control Function:

//

// The system is controlled via the hardware UART,
// determined by the constant <BAUDRATE>,

operating at a baud rate
using Timerl overflows as the baud

// rate source. The commands are as follows (not case sensitive):
// ‘¢’ - Clear Log

// ‘d’ - Display Log

// ‘i’ - Init RTC

// ‘p’ - Stop Logging

// ‘s’ - Start Logging

This removes the need to buffer large amounts of data in

Rev. 0.1

SILICON LABORATORIES

41

AN189

// ‘?' - List Commands
//

// Sampling Function:
//

// The ADC is configured to sample the on-chip temperature sensor at 4.096kHz,
// using TimerO (in 8-bit auto-reload mode) as the start-of-conversion source.
// The ADC result is accumulated and decimated by a factor of 4096, yielding
// a 16-bit resolution quantitity from the original 10-bit sample at an

// effective output word rate of about 1Hz. This decimated value is

// stored in the global variable <result>.

//

// A note about oversampling and averaging as it applies to this temp

// sensor example: The transfer characteristic of the temp sensor on the

// ‘F320 family of devices is 2.86mV/C. The LSB size of the ADC using the
// internal VREF (2.43V) as its voltage reference is 2.3mV/code.

// This means that adjacent ADC codes are about ~1 degrees C apart.

//

// If we desire a higher temperature resolution, we can achieve it by

// oversampling and averaging (See AN118 on the Silicon labs website). For
// each additional bit of resolution required, we must oversample by a power
// of 4. For example, increasing the resolution by 4 bits requires

// oversampling by a factor of 474, or 256.

//

// By what factor must we oversample to achieve a temperature resolution to
// the nearest hundredth of a degree C? 1In other words, “How may bits of

// resolution do we need to add?” The difference between 1 degrees C and

// 0.01 degrees C is a factor of 100 (100 is between 276 and 2”7, so we need
// somewhere between 6 and 7 more bits of resolution). Choosing ‘6 bits’,
// we calculate our oversampling ratio to be 476, or 4096.

//

// A note about accuracy: oversampling and averaging provides a method to
// increase the ‘resolution’ of a measurement. The technique does nothing
// to improve a measurement’s ‘accuracy’. Just because we can measure a

// 0.01 degree change in temperature does not mean that the measurements

// are accurate to 0.01 degrees. Some possible sources of inaccuracies in
// this system are:

// 1. manufacturing tolerances in the temperature sensor itself (transfer
// characteristic variation)

// 2. VDD or VREF tolerance

// 3. ADC offset, gain, and linearity variations

// 4. Device self-heating

//

// Temperature Clock Function:

//

// The temperature clock maintains a record of days, hours, minutes, and
// seconds. The current time record is stored with the temperature value

// in each log entry. Clock updates are performed in the ADC end-of-conversion
// ISR at approximately once every second.

//

// Storage Function:

//

// MMC FLASH is used for storing the log entries. Each entry contains

// the temperature in hundredths of a degree C, the day, hour, minute, and

// second that the reading was taken. The LogUpdate function stores log

// entries in an EEPROM buffer and then writes that buffer out to the

// MMC when it is full. Communication with the MMC is performed through the

// MMC access functions. These functions provide transparent MMC access to
// the higher level functions (logging functions). The MMC interface is broken
// into two pieces. The high level piece consists of the user callable MMC

42 Rev. 0.1

SILICON LABORATORIES

AN189

// access functions (MMC FLASH Read, MMC FLASH Write, MMC FLASH Clear,

// MMC FLASH MassErase). These functions are called by the user to execute

// data operations on the MMC. They break down the data operations into MMC

// commands. The low level piece consists of a single command execution

// function (MMC Command Exec) which is called by the MMC data manipulation

// functions. This function is called every time a command must be sent to the
// MMC. It handles all of the required SPI traffic between the Cygnal device
// and the MMC. Communication between the EEPROM and the Cygnal device is

// performed using SMBus.

//

// Target: C8051F32x

// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

[mm e
// Includes

[mm e -
#include <c8051£f320.h> // SFR declarations

#include <stdio.h> // printf () and getchar ()

#include <ctype.h> // tolower ()

[m e -
// 16-bit SFR Definitions for ‘F31x, ‘F32x, ‘F33x

=
sfrl6 DP = 0x82; // data pointer

sfrle TMR2RL = Oxca; // Timer2 reload value

sfrle TMR2 = Oxcc; // Timer2 counter

sfrl6 ADCO = 0Oxbd; // ADCO Data

/) mm e
// Global CONSTANTS

[mm e
#define VERSION N1.0” // version identifier

#define TRUE 1

#define FALSE 0

#define START SYSCLK 12000000

#define SYSCLK START SYSCLK * 2 // SYSCLK frequency in Hz

#define BAUDRATE 115200 // Baud rate of UART in bps

#define SAMPLE RATE 4096 // Sample frequency in Hz

#define INT DEC 4096 // integrate and decimate ratio

#define TEMP OFFSET 50900000L // Temp sensor offset constant used
// in conversion of ADC sample to temp
// value;

#define TEMP SLOPE 187433L // Temp sensor slope constant used

// in conversion of ADC sample to temp
// value;

#define TEMP VREF 2430 // VREF offset constant used

// in conversion of ADC sample to temp
// value;

#define EEPROM SIZE 32768
#define EEPROM PAGE SIZE 64

Rev. 0.1

SILICON LABORATORIES

43

AN189

// Constants that define available card sizes, 8MB through 128MB

#define PS_8MB 8388608L

#define PS_16MB 16777216L
#define PS 32MB 33554432L
#define PS 64MB 67108864L
#define PS 128MB 134217728L

// Physical size in bytes of one MMC FLASH sector
#define PHYSICAL BLOCK SIZE 512

// Erase group size = 16 MMC FLASH sectors
#define PHYSICAL GROUP SIZE PHYSICAL BLOCK SIZE * 16

// Log table start address in MMC FLASH
#define LOG_ADDR 0x0000

// Size in bytes for each log entry
#define LOG ENTRY SIZE sizeof (LOG_ENTRY)

// Size of EEPROM buffer that stores table entries
// before they are written to MMC.
#define BUFFER SIZE LOG ENTRY SIZE * 10

// Command table value definitions
// Used in the MMC_Command Exec function to
// decode and execute MMC command requests

#define EMPTY O
#define YES 1
#define NO 0
#define CMD 0
#define RD 1
#define WR 2
#define R1 0
#define R1lb 1
#define R2 2
#define R3 3

// Start and stop data tokens for single and multiple
// block MMC data operations

#define START SBR 0XFE
#define START MBR 0XFE
#define START SBW 0xXFE
#define START_ MBW 0xFC
#define STOP_MBW 0xFD

// Mask for data response token after an MMC write
#define DATA RESP _MASK 0x11

// Mask for busy token in Rlb response
#define BUSY BIT 0x80

// Command Table Index Constants:

// Definitions for each table entry in the command table.

// These allow the MMC Command Exec function to be called with a
// meaningful parameter rather than a number.

#define GO _IDLE_STATE 0
#define SEND_OP_COND 1
#define SEND_CSD 2

44 Rev. 0.1

SILICON LABORATORIES

AN189

#define SEND CID 3
#define STOP TRANSMISSION 4
#define SEND_STATUS 5
#define SET BLOCKLEN 6
#define READ SINGLE BLOCK 7
#define READ MULTIPLE BLOCK 8
#define WRITE BLOCK 9
#define WRITE MULTIPLE BLOCK 10
#define PROGRAM CSD 11
#define SET WRITE PROT 12
#define CLR_WRITE PROT 13
#define SEND WRITE PROT 14
#define TAG_SECTOR_START 15
#define TAG_SECTOR_END 16
#define UNTAG_SECTOR 17
#define TAG_ERASE GROUP_START 18
#define TAG_ERASE GROUP_END 19
#define UNTAG_ERASE GROUP 20
#define ERASE 21
#define LOCK_UNLOCK 22
#define READ OCR 23
#define CRC_ON_OFF 24

// LOCAL BLOCK is the start of an EEPROM buffer for incoming temperature data;
// When this buffer is full, the page is written out to the MMC and erased for
// new data;

#define LOCAL_ BLOCK 0x1000
// SCRATCH BLOCK is used by the high level MMC functions as temporary storage;
#define SCRATCH BLOCK 0x0000

// SMBus Definitions

#define SMB_FREQUENCY 300000 // Target SCL clock rate
#define WRITE 0x00 // SMBus WRITE command
#define READ 0x01 // SMBus READ command

// Device addresses (7 bits, lsb is a don’t care)

#define EEPROM ADDR 0xA0 // Device address for slave target
// Note: This address is specified
// in the Microchip 24LCO02B
// datasheet.

// SMBus Buffer Size

#define SMB BUFF SIZE 0x08 // Defines the maximum number of bytes
// that can be sent or received in a
// single transfer

// Status vector - top 4 bits only

#define SMB MTSTA 0xEQ // (MT) start transmitted
#define SMB MTDB 0xCO // (MT) data byte transmitted
#define SMB MRDB 0x80 // (MR) data byte received

// End status vector definition

et i
// UNIONs, STRUCTUREs, and ENUMs
e e bttt bbbl b
typedef union LONG // byte-addressable LONG

{
long 1;

Rev. 0.1 45

SILICON LABORATORIES

AN189

unsigned char b[4];

} LONG;

typedef union INT

{

int 1i;

unsigned char b[2];

} INT;

typedef union
{

unsigned long 1;
unsigned char b[4];

} ULONG;

typedef union UINT

{

unsigned int i;
unsigned char b[2];

} UINT;

typedef struct LOG ENTRY

{

int wTemp;

unsigned int uDay;

unsigned char bHour;
unsigned char bMin;
unsigned char bSec;

} LOG_ENTRY;

// byte-addressable INT

// byte-addressable unsigned long

// byte-addressable unsigned int

//

!/
//
//
//
//
//

(7 bytes per entry)

temperature in hundredths of a

degree

day of entry
hour of entry

minute of
second of

entry
entry

// The states listed below represent various phases of

// operation;

typedef enum STATE

{
RESET,
RUNNING,
FINISHED,
STOPPED

} STATE;

// This structure defines entries

typedef struct

{
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

} command;

// Command table for MMC.

char
char
char
char
char
char

command byte;
arg required;
CRC;

trans type;
response;

var length;

into

//
//
//
//

//
!/
//
!/
//
//

Device reset has occurred;

Data is being logged normally;
Logging stopped, store buffer;
Logging completed, buffer stored;

OpCode;

Indicates
Holds CRC
Indicates
Indicates
Indicates

the command table;

argument requirement;

for command if necessary;
command transfer type;
expected response;
varialble length transfer;

This table contains all commands available in SPI

// mode; Format of command entries is described above in command structure
// definition;
code command commandlist[25] = {
{ 0,NO ,0x95,CMD,R1 ,NO }, // CMDO; GO _IDLE STATE: reset card;
{ 1,NO ,0xFF,CMD,R1 ,NO }, // CMDl; SEND OP_COND: initialize card;
®
46 Rev. 0.1

SILICON LABORATORIES

AN189

xdata
xdata
xdata
xdata
xdata
xdata

xdata

xdata

xdata

xdata

xdata

xdata

xdata

xdata

{ 9,NO ,0xFF,RD ,R1
{10,NO ,O0xFF,RD ,R1
{12,NO , OxFF,CMD,R1
{13,NO , OxFF,CMD,R2
{16, YES, OxFF,CMD, R1
{17, YES, OxFF,RD ,R1
{18, YES, OxFF,RD ,R1
{24,YES, OxFF,WR ,R1
{25,YES, OxFF,WR ,R1
{27,NO , OxFF,CMD,R1

}I
}I
}I
}I
}I
}I

,YES},

, NO

by

,YES},

, NO

{28,YES, 0xFF,CMD, R1b, NO
{29, YES, 0xFF,CMD, R1b, NO

{30, YES, OxFF, CMD, R1
{32, YES, OxFF, CMD, R1
{33, YES, OxFF, CMD, R1
{34, YES, OxFF, CMD, R1
{35, YES, OxFF, CMD, R1
{36, YES, OxFF, CMD, R1
{37, YES, OxFF, CMD, R1

, NO

{38,YES, 0xFF,CMD, R1b,NO
{42,YES, 0xFF,CMD, R1b,NO

{58,NO , OxFF,CMD, R3
{59, YES, OxFF, CMD, R1

LONG Result = {0L};

LOG_ENTRY LogRecord;
unsigned long uLogCount;

, NO
, NO

unsigned int pLogTable;

STATE State = RESET;
unsigned long PHYSICAL SIZE;

unsigned long PHYSICAL BLOCKS;

unsigned long LOG SIZE;

}I
}I
}I
}I
}I
}I
}I
}I
}I
}I
}I
}I
}I
}I

’

//
/7
//
//
/7
//
//
/7
/7
//
//
//
//
/7
/7
//
//
//
//
/7
/7
//
//

CMD9; SEND CSD: get card specific data;
CMD10; SEND CID: get card identifier;
CMD12; STOP_ TRANSMISSION: end read;
CMD13; SEND STATUS: read card status;
CMD16; SET BLOCKLEN: set block size;
CMD17; READ SINGLE BLOCK: read 1 block;
CMD138; READ MULTIPLE BLOCK: read > 1;
CMD24; WRITE BLOCK: write 1 block;
CMD25; WRITE MULTIPLE BLOCK: write > 1;
CMD27; PROGRAM CSD: program CSD;

CMD28; SET WRITE PROT: set wp for group;
CMD29; CLR WRITE PROT: clear group wp;
CMD30; SEND WRITE PROT: check wp status;
CMD32; TAG SECTOR START: tag lst erase;
CMD33; TAG SECTOR END: tag end(single);
CMD34; UNTAG SECTOR: deselect for erase;
CMD35; TAG ERASE GROUP START;

CMD36; TAG ERASE GROUP END;

CMD37; UNTAG_ERASE GROUP;

CMD38; ERASE: erase all tagged sectors;
CMD42; LOCK UNLOCK;

CMD58; READ OCR: read OCR register;
CMD59; CRC ON OFF: toggles CRC checking;

// ADCO decimated value

// Memory space for each log entry

// Current number of table entries

// Pointer to buffer for table entries
// System state variable; Determines
// how log update function will exec;
// MMC size variable; Set during

// initialization;
// MMC block number;
// initialization;
// Available number of bytes for log
// table

Computed during

unsigned char EEPROM PageBuffer[64];

unsigned char* pSMB DATA IN;

// Global pointer for SMBus data
// All receive data is written here

unsigned char SMB SINGLEBYTE OUT;// Global holder for single byte writes.

unsigned char* pSMB DATA OUT;

unsigned char SMB DATA LEN;

UINT WORD ADDR;

// Global pointer for SMBus data.
// All transmit data is read from here

// Global holder for number of bytes
// to send or receive in the current
// SMBus transfer.

// Global holder for the EEPROM word
// address that will be accessed in

SILICON LABORATORIES

Rev. 0.1

47

AN189

// the next transfer

xdata unsigned char TARGET; // Target SMBus slave address

bit SMB BUSY = 0; // Software flag to indicate when the
// EEPROM ReadByte () or
// EEPROM WriteByte ()

// functions have claimed the SMBus

bit SMB RW; // Software flag to indicate the
// direction of the current transfer

bit SMB SENDWORDADDR; // When set, this flag causes the ISR
// to send the 8-bit <WORD_ ADDR>

// after sending the slave address.

bit SMB HIGHBYTENOTSENT;

bit SMB RANDOMREAD; // When set, this flag causes the ISR
// to send a START signal after sending
// the word address.

bit SMB ACKPOLL; // When set, this flag causes the ISR
// to send a repeated START until the

// slave has acknowledged its address

bit update;

void main (void);

// Support Subroutines
void MENU ListCommands (void); // Outputs user menu choices via UART

// Logging Subroutines

void LogUpdate (void) ; // Builds MMC log table

unsigned long LogFindCount () ; // Returns current number of log entries
void LogErase (void); // Erases entire log table

void LogPrint (void); // Prints log through UART

void LogInit (LOG_ENTRY *pEntry); // Initializes area for building entries

// High Level MMC FLASH Functions

void MMC FLASH Init (void); // Initializes MMC and configures it to
// accept SPI commands;

// Reads <length> bytes starting at
// <address> and stores them at <pchar>;
unsigned char MMC FLASH Read (unsigned long address, unsigned int pchar,
unsigned int length);

// Writes <length> bytes of data at

// <wdata> to <address> in MMC;

// <scratch> provides temporary storage;
unsigned char MMC FLASH Write (unsigned long address, unsigned int scratch,

48 Rev. 0.1

SILICON LABORATORIES

AN189

unsigned int wdata, unsigned int length);
// Clears <length> bytes of FLASH
// starting at <addressl>; Requires that
// desired erase area be sector aligned;
(unsigned long addressl,
unsigned long length);

unsigned char MMC FLASH MassErase

// Low Level MMC FLASH Functions

// Decodes and executes MMC commands;
// <cmd> is an index into the command
// table and <argument> contains a
// 32-bit argument if necessary; If a
// data operation is taking place, the
// data will be stored to or read from
// the location pointed to by <pchar>;
unsigned int MMC Command Exec (unsigned char cmd, unsigned long argument,
unsigned int pchar);

// SMBus Routines
// Send a block of data of size
// <len> bytes to address <addr> in the
// EEPROM;
void EEPROM WriteArray(unsigned int addr, char* SrcAddr,unsigned char len);
// Read a block of data of size <len>
// from address <src_addr> in the EEPROM
// and store it at <dest_addr> in local
// memory;
void EEPROM ReadArray (unsigned char* dest addr, unsigned int src_ addr,
unsigned char len);
// Writes <dat> to address <addr> in the
// EEPROM;
void EEPROM WriteByte(unsigned int addr, unsigned char dat);
// Returns the value at address <addr>
// in the EEPROM;
unsigned char EEPROM ReadByte(unsigned int addr);
// Clear <length> bytes of data at
// address <addr> in the EEPROM;
void EEPROM Clear (unsigned int addr, unsigned int length);
// Initialization Subroutines

void SYSCLK Init (void);

void PORT Init (void);

void UARTO Init (void);

void ADCO Init (void);

void TimerO Init (void);

void Timer2 Init (int counts);
void SPI Init (void);

void SMBus Init (void);

// Interrupt Service Routines

void ADCO ISR (void);
void Soft ISR (void);

Rev. 0.1

SILICON LABORATORIES

49

AN189

void main (void)

{

idata char key press; // Input character from UART;

// Disable Watchdog timer

PCAOMD &= ~0x40; // WDTE = 0 (clear watchdog timer
// enable) ;

PORT Init (); // Initialize crossbar and GPIO;

SYSCLK_Init (); // Initialize oscillator;

UARTO_Init (); // Initialize UARTO;

SPI Init (); // Initialize SPIO;

TimerO Init ()
Timer2 Init (SYSCLK/SAMPLE RATE); // Init Timer2 for 16-bit autoreload;

ADCO Init (); // Init ADCO;

ADOEN = 1; // enable ADCO;

State = RESET; // Set global state machine to reset
// state;

SMBus_Init(); // Configure and enable SMBus

State = STOPPED; // Global state is STOPPED; no data
// 1is being logged;

EA = 1; // Enable global interrupts;

// Clear space in EEPROM for buffers
EEPROM Clear ((unsigned int)LOCAL BLOCK,
(unsigned int)PHYSICAL BLOCK SIZE);
EEPROM Clear ((unsigned int)SCRATCH BLOCK,
(unsigned int)PHYSICAL BLOCK SIZE);
MMC FLASH Init(); // Initialize MMC card;
// Initialize log table buffer pointer

pLogTable LOCAL BLOCK;

uLogCount = LogFindCount () ; // Find current number of log table
// entries;

update = 0;

printf (“\n”); // Print list of commands;
MENU ListCommands () ;
while (1) // Serial port command decoder;
{
if (RIO == 1)
{
key press = getchar(); // Get command character;
// Convert to lower case;
key press = tolower (key press);

switch (key press) {
case ‘c’: // Clear log;
if (State == STOPPED) // Only execute if not logging;
{
printf (“\n Clear Log\n”);
LogErase () ; // erase log entries;
// update global log entry count;
uLogCount = LogFindCount () ;
}

break;
case ‘d’: // Display log;
if (State == STOPPED) // Only execute if not logging;

{

50 Rev. 0.1

SILICON LABORATORIES

AN189

printf (M\n Display Log\n”);

LogPrint () ; // Print the log entries;
}
break;
case ‘i’: // Init RTC;
if (State == STOPPED) // Only execute if not logging;

{
printf (“\n Init RTC values\n”);

EA = 0; // Disable interrupts;
LogInit (&LogRecord) ; // Clear current time;

EA = 1; // Reenable interrupts;

}

break;

case ‘p’: // Stop logging;

if (State != STOPPED) // Only execute if not stopped already;
{

State = FINISHED; // Set state to FINISHED
printf (M\n Stop Logging\n”);

update = 1; // Update one more time to

// clean up results;

}

break;
case ‘s’: // Start logging
if (State == STOPPED) // Only execute if not logging;

{
printf (“\n Start Logging\n”);

State = RUNNING; // Start logging data
}
break;
case ‘?': // List commands;
if (State == STOPPED) // Only execute if not logging;

{

printf (“\n List Commands\n”) ;

MENU_ListCommands () ; // List Commands
}
break;
default: // Indicate unknown command;
if (State == STOPPED) // Only execute if not logging;

{

printf (“\n Unknown command: ‘%x’\n”, key press);

MENU_ListCommands () ; // Print Menu again;
}
break;
} // switch
}y // if
if (update)
{
update = 0;
LogUpdate () ;
}
} // while
}
[m e
// Support Subroutines
/m e -
[m e e

// MENU_ ListCommands

Rev. 0.1

SILICON LABORATORIES

51

AN189

// This routine prints a list of available commands.
//

void MENU ListCommands (void)

{

printf (“\nData logging example version %s\n”, VERSION) ;
printf (“Copyright 2004 Slllcon Laboratories.\n\n”);

printf (“Command List\n”

printf (™ \n”) ;
printf (Y ‘¢’ - Clear Log\n”);

(
(
(
(
(
printf (% ‘d’ - Display Log\n”);
(
(
(
(
(

printf (Y ‘i’ - Init RTC\n”);

printf (™ ‘p’ - Stop Logging\n”);

printf (Y ‘s’ - Start Logging\n”);

printf (™ ‘2’ - List Commands\n”);

printf (“\n”);
}
/e
// Logging Subroutines
/s
e et skl b
// LogUpdate ()
B
// This routine is called by the ADC ISR at ~1Hz if State == RUNNING or

// FINISHED. Here we read the decimated ADC value, convert it to temperature
// in hundredths of a degree C, and add the log entry to the log table buffer.
// If the buffer is full, or the user has stopped the logger, we must commit
// the buffer to the MMC FLASH. <State> determines if the system is logging

// normally (State == RUNNING), or if the user has stopped the logging
// process (State == FINISHED).
//
//
void LogUpdate (void)
{
static idata long temperature; // long temperature value;
idata int temp_ int, temp frac; // Integer and fractional portions of

// Temperature;
// Count variable for number of
// Log entries in local buffer;
static idata unsigned int 1LogCount = 0;
unsigned char* 12 pointer;
LOG_ENTRY record buffer;
LOG_ENTRY* 1 pointer;

EA = 0; // Disable interrupts (precautionary);
temperature = Result.l; // Retrieve 32-bit ADC value;

record buffer = LogRecord;

EA = 1; // Re-enable interrupts;

// Calculate temperature in hundredths
// of a degree (l6-bit full scale);
temperature = (temperature * TEMP VREF) - TEMP OFFSET;
temperature 100 * temperature / TEMP_ SLOPE;

record buffer.wTemp = (int)temperature; // Store temp value in temporary log
// entry;

52 Rev. 0.1

SILICON LABORATORIES

AN189

if (uLogCount == 0) //
{ //
lLogCount = 0; //
//
pLogTable = LOCAL BLOCK;
}
if (State == RUNNING) //
{ //
//
//
if ((uLogCount*LOG ENTRY SIZE)

{
1 pointer =
12 pointer =

&record buffer;

//
//
EEPROM WriteArray (pLogTable,

If the FLASH table has been cleared,
The local buffer is reset;

Reset number of local table entries;
Reset local buffer pointer;

Execute the following if the logger
is logging normally;

Check to see if the log table is
full;

< LOG SIZE)

(unsigned char*) (1 _pointer);

Write the current log entry to the
EEPROM buffer;

12 pointer,

LOG_ENTRY SIZE);

pLogTable+=LOG_ENTRY SIZE; // Increment buffer pointer;

1LogCount++; // Increment local log entry count;

uLogCount++; // Increment global log entry count;
// If the buffer is full, it must be
// written to FLASH;

if (1LogCount == (unsigned int) (BUFFER SIZE / LOG_ENTRY SIZE))

{
// Call FLASH Write function; Write to
// address pointed at by the global
// entry count less the EEPROM buffer
// count;

MMC FLASH Write ((uLogCount -

(unsigned long)lLogCount) *LOG ENTRY SIZE,
SCRATCH BLOCK, LOCAL BLOCK, BUFFER SIZE);

1LogCount = 0; //
//
pLogTable = LOCAL BLOCK;
}
//
temp int = record buffer.wTemp /

temp frac =

record buffer.wTemp -

Reset the EEPROM buffer size
and pointer;

Update display;
100;

((long) temp int * 100L);

printf (™ %$081lu\t%$04u: %02u:%02u:%02u “, ulogCount,
(unsigned)record_buffer.uDay, (unsigned) record buffer.bHour,
(unsigned) record buffer.bMin, (unsigned) record buffer.bSec);
printf (“%+02d.%02d\n”, temp int, temp frac);
}
else // If the FLASH table is full, stop
{ // logging data and print the full
State = STOPPED; // message;
printf (“Log is full\n”);
}
}
else if (State == FINISHED) // If the data logger has been stopped
{ // by the user, write the local buffer
// to FLASH;

SILICON LABORATORIES

Rev. 0.1 53

AN189

MMC FLASH Write ((uLogCount - (unsigned long)lLogCount)*LOG ENTRY SIZE,
SCRATCH_BLOCK, LOCAL BLOCK,
1LogCount*LOG ENTRY SIZE);

lLogCount = 0; // Reset the local buffer size;

// and pointer;
pLogTable = LOCAL BLOCK;

State = STOPPED; // Set the state to STOPPED;
}
}
/e
// LogFindCount ()
/) e

// This function finds the number of entries already stored in the MMC log;
//

unsigned long LogFindCount ()

{

unsigned long Count = 0; // Count variable, incremented as table
// entries are read;
unsigned long i = 0; // Address variable, used to read table

// table entries from FLASH;
LOG_ENTRY Entry;
LOG_ENTRY *TempEntry; // Temporary log entry space;

// Initialize temp space in
// SCRATCH BLOCK of external memory;

// Loop through the table looking for a
// blank entry;
TempEntry = &Entry;
for (i=LOGfADDR;i<LOGfSIZE;i += LOG_ENTRY SIZE)
{
// Read one entry from address i of
// FLASH;
MMC FLASH Read((unsigned long) (i), SCRATCH BLOCK,
(unsigned int)LOG ENTRY SIZE);
// Move the entry from EEPROM space to
// local memory for testing;
EEPROM_ReadArray((unsigned char*) TempEntry, SCRATCH BLOCK, LOG ENTRY SIZE) ;
// Check if entry is blank;
if ((TempEntry->bSec == 0x00) && (TempEntry->bMin == 0x00)
&& (TempEntry->bHour == 0x00))

// If entry is blank, set Count;

Count = (i/LOG_ENTRY_SIZE) - LOG_ADDR;
break; // Break out of loop;
}
}
return Count; // Return entry count;
}
/e
// LogErase
[m e

// This function clears the log table using the FLASH Mass Erase capability.
//

void LogErase (void)

{

// Call Mass Erase function with start

54 Rev. 0.1

SILICON LABORATORIES

AN189

VO

{

// of table as address and log size as

// length;
MMC FLASH MassErase (LOG_ADDR, LOG SIZE);
uLogCount = 0; // Reset global count;

This function prints the log table. Entries are read one at a time, temp
is broken into the integer and fractional portions, and the log entry is

displayed on the PC through UART.
id LogPrint (void)
idata long temp int, temp frac; // Integer and fractional portions of
// temperature;
idata unsigned long 1i; // Log index;

LOG_ENTRY Entry;
LOG_ENTRY *TempEntry;

TempEntry = &Entry;
printf (“Entry#\tTime\t\tResult\n”);// Print display column headers;
// Assign pointers to local block;
// FLASHRead function stores incoming

// data at pchar, and then that data can

// be accessed as log entries through
// TempEntry;

for (i = 0; i < uLogCount; i++) // For each entry in the table,
{ // do the following;
// Read the entry from FLASH;

MMC FLASH Read((unsigned long) (LOG ADDR + i*LOG_ENTRY SIZE), SCRATCH BLOCK,

(unsigned int)LOG ENTRY SIZE);

// Move entry from EEPROM space to local

// memory;

EEPROM ReadArray ((unsigned char*)TempEntry, SCRATCH BLOCK, LOG _ENTRY SIZE);

// break temperature into integer and fractional components
temp_int = (long) (TempEntry->wTemp) / 100L;
temp frac = (long) (TempEntry->wTemp) - ((long) temp int * 100L);

// display log entry

printf (% %$1ul\t%03u: %02u:%02u:%02u “, (i + 1),
TempEntry->uDay, (unsigned) TempEntry->bHour,
(unsigned) TempEntry->bMin,
(unsigned) TempEntry->bSec);

printf (“$+021d.%021d\n”, temp int, temp frac);

// Initialize the Log Entry space (all zeros);
//
void LogInit (LOG _ENTRY *pEntry)

{

31

Rev. 0.1

LICON LABORATORIES

55

AN189

unsigned int MMC Command Exec

pEntry->wTemp = 0;
pEntry->uDay = 0;
pEntry->bHour = 0;
pEntry->bMin = 0;
pEntry->bSec

Il
o
~

This function generates the necessary SPI traffic for all MMC SPI commands.
The three parameters are described below:

cmd: This parameter is used to index into the command table and read
the desired command. The Command Table Index Constants allow the
caller to use a meaningful constant name in the cmd parameter
instead of a simple index number. For example, instead of calling
MMC Command Exec (0, argument, pchar) to send the MMC into idle

state, the user can call

MMC Command Exec (GO IDLE STATE, argument, pchar);

argument: This parameter is used for MMC commands that require an argument.
MMC arguments are 32-bits long and can be values such as an
an address, a block length setting, or register settings for the

MMC.

pchar:

This parameter is a pointer to the EEPROM data location for MMC

data operations. When a read or write occurs, data will be stored
or retrieved from the location pointed to by pchar.

The MMC Command Exec function indexes the command table using the cmd
parameter. It reads the command table entry into memory and uses information
from that entry to determine how to proceed. Returns 16-bit card response

value.

(unsigned char cmd, unsigned long argument,

unsigned int pchar)

idata command current command; !/
//
idata ULONG long arg; //
//
//
//

static unsigned long current blklen =

//
idata unsigned long old blklen = 512;
//
idata unsigned int counter = 0; //
idata UINT card response; //
idata unsigned char data resp; //
idata unsigned char dummy CRC; //
//
//

idata unsigned char EEPROM BufferIndex;

Local space for the command table
entry;

Union variable for easy byte
transfers of the argument;

Static variable that holds the
current data block length;

512;

Temp variable to preserve data block

length during temporary changes;

Byte counter for multi-byte fields;
Variable for storing card response;
Variable for storing data response;
Dummy variable for storing CRC field;
Index variable for keeping track of
where you are in the EEPROM page;

56

Rev. 0.1

SILICON LABORATORIES

AN189

current command = commandlist([cmd]; // Retrieve desired command table entry
// from code space;

SPIODAT = OxFF; // Send buffer SPI clocks to ensure no
while (!SPIF) {} // MMC operations are pending;
SPIF = 0;
NSSMDO = O; // Select MMC by pulling CS low;
SPIODAT = OxFF; // Send another byte of SPI clocks;
while (!SPIF) {}
SPIF = 0;

// Issue command opcode;
SPIODAT = (current command.command byte | 0x40);
long arg.l = argument; // Make argument byte addressable;

// If current command changes block
// length, update block length variable
// to keep track;

if (current command.command byte == 16)
{
current blklen = argument; // Command is a read, set local block
} // length;
if ((current command.command byte == 9) ||
(current command.command byte == 10))
{
old blklen = current blklen; // Command is a GET CSD or GET CID,
current blklen = 16; // set block length to 1l6-bytes;
}
while (!SPIF) {} // Wait for initial SPI transfer to end;
SPIF = 0; // Clear SPI Interrupt flag;

// If an argument is required, transmit
// one, otherwise transmit 4 bytes of
// OxFF;
if (current command.arg required == YES)
{
counter = 0;
while (counter <= 3)
{
SPIODAT = long_arg.b[counter];
counter++;
while (!SPIF) {}
SPIF = 0;

}
else
{
counter = 0;
while (counter <= 3)
{
SPIODAT = 0x00;
counter++;
while (!SPIF) {}
SPIF = 0;

}

SPIODAT = current command.CRC; // Transmit CRC byte; In all cases
while (!SPIF) {} // except CMDO, this will be a dummy
SPIF = 0; // character;

// The command table entry will indicate

Rev. 0.1 57

SILICON LABORATORIES

AN189

// what type of response to expect for
// a given command; The following
// conditional handles the MMC response;

if (current command.response == RI1) // Read the Rl response from the card;
{
do
{
SPIODAT = OxFF; // Write dummy value to SPI so that
while (!SPIF) {} // the response byte will be shifted in;
SPIF = 0;
card response.b[0] = SPIODAT; // Save the response;

}
while ((card response.b[0] & BUSY BIT));

// Read the Rlb response;

else if (current command.response == Rlb)
{
do
{
SPIODAT = OxFF; // Start SPI transfer;
while (!SPIF) {}
SPIF = 0;
card response.b[0] = SPIODAT; // Save card response

}
while ((card response.b[0] & BUSY BIT));
do // Wait for busy signal to end;
{
SPIODAT = OxFF;
while (!SPIF) {}

SPIF = 0;
}
while (SPIODAT == 0x00); // When byte from card is non-zero,
} // card is no longer busy;
// Read R2 response
else if (current command.response == R2)
{
do
{
SPIODAT = OxFF; // Start SPI transfer;
while (!SPIF) {}
SPIF = 0;
card response.b[0] = SPIODAT; // Read first byte of response;

}

while ((card response.b[0] & BUSY BIT));
SPIODAT = OXxXFF;

while (!SPIF) {}

SPIF = 0;
card response.b[1l] = SPIODAT; // Read second byte of response;
}
else // Read R3 response;
{
do
{
SPIODAT = OxFF; // Start SPI transfer;
while (!SPIF) {}
SPIF = 0;
card response.b[0] = SPIODAT; // Read first byte of response;

}
while ((card response.b[0] & BUSY BIT));

58 Rev. 0.1

SILICON LABORATORIES

AN189

counter = 0;
while (counter <= 3) // Read next three bytes and store them
{ // in local memory; These bytes make up
counter++; // the Operating Conditions Register
SPIODAT = OxFF; // (OCR) ;
while (!SPIF) {}
SPIF = 0;
data resp = SPIODAT;

//
//

EEPROM WriteByte (pchar,data resp);

pchar++;

}

switch(current_command.trans_type)

//

Send data read from MMC to EEPROM
buffer;

’

This conditional handles all data

{ // operations; The command entry
// determines what type, if any, data
// operations need to occur;
case RD: // Read data from the MMC;
do // Wait for a start read token from
{ // the MMC;
SPIODAT = OxFF; // Start a SPI transfer;
while (!SPIF) {}
SPIF = 0;
}
while (SPIODAT != START SBR); // Check for a start read token;
counter = 0; // Reset byte counter;

//
EEPROM BufferIndex = 0;
while (counter <

{

Read <current_blklen> bytes;

(unsigned int)current blklen)

SPIODAT = 0x00; // Start SPI transfer;

while (!SPIF) {}

SPIF = 0;
// Build a small buffer of data
// in local memory;

EEPROM PageBuffer [EEPROM BufferIndex] =

EEPROM BufferIndex++;

SPIODAT;

// If the buffer reaches the size of a

// physical EEPROM page, write buffered

// data out to EEPROM and reset buffer;
if(EEPROM_BufferIndeX >= EEPROM_PAGE_SIZE)

{
//
EEPROM WriteArray (pchar,
//
pchar += EEPROM PAGE SIZE;

Send data to EEPROM;

&EEPROM PageBuffer[0], EEPROM PAGE SIZE);

Increment EEPROM page;

EEPROM BufferIndex = 0; // Reset local buffer index;
}
counter++; // Increment data byte counter;
}
// Write any remaining buffered data to
if (EEPROM BufferIndex != 0) // EEPROM;

EEPROM WriteArray (pchar,

&EEPROM PageBuffer[0], EEPROM BufferIndex) ;

SPIODAT = 0x00; // After all data is read, read the two
while (!SPIF) {} // CRC bytes; These bytes are not used
SPIF = 0; // in this mode, but the placeholders
dummy CRC = SPIODAT; // must be read anyway;

SILICON LABORATORIES

Rev. 0.1

59

AN189

SPIODAT = 0x00;
while (!SPIF) {}

SPIF = 0;
dummy CRC = SPIODAT;
break;
case WR: // Write data to the MMC;
SPIODAT = OxFF; // Start by sending 8 SPI clocks so
while (!SPIF) {} // the MMC can prepare for the write;
SPIF = 0;
SPIODAT = START SBW; // Send the start write block token;
counter = 0; // Reset byte counter;
while (!SPIF) {}
SPIF = 0;

// Prime Buffer Index
EEPROM BufferIndex = EEPROM PAGE SIZE;
// Write <current blklen> bytes to MMC;
while (counter < (unsigned int)current blklen)
{ // When EEPROM page is full, reset local
// buffer and move to next EEPROM page;
if(EEPROM_BufferIndex > EEPROM PAGE SIZE-1)
{
// Send data to EEPROM;
EEPROM ReadArray (&EEPROM PageBuffer[0],pchar, EEPROM PAGE SIZE);
// Reset local buffer index;
EEPROM BufferIndex = 0;
// Update EEPROM page;
pchar += EEPROM PAGE SIZE;

// Write data byte out through SPI;
SPIODAT = EEPROM_PageBuffer[EEPROM_BufferIndex];
EEPROM BufferIndex++;

counter++; // Increment byte counter;
while (!SPIF) {}
SPIF = 0;
}
SPIODAT = OxFF; // Write CRC bytes (don’t cares);
while (!SPIF) {}
SPIF = 0;

SPIODAT = OxFF;
while (!SPIF) {}
SPIF = 0;

do // Read Data Response from card;
{ //
SPIODAT = OXxFF;
while (!SPIF) {}
SPIF = 0;
data resp = SPIODAT;
} // When bit 0 of the MMC response
// is clear, a valid data response
// has been received;

while ((data resp & DATA RESP MASK) != 0x01);
do // Wait for end of busy signal;
{
SPIODAT = OxFF; // Start SPI transfer to receive
while (!SPIF) {} // busy tokens;
SPIF = 0;

60 Rev. 0.1

SILICON LABORATORIES

AN189

}

while (SPIODAT == 0x00); //
//
SPIODAT = OxFF; //
while (!SPIF) {} //
SPIF = 0;
break;
default: break;
}
SPIODAT = OxFF;
while (!SPIF) {}
SPIF = 0;
NSSMDO = 1; //
SPIODAT = OxFF; //
while (!SPIF) {} //
SPIF = 0; //
//
if((current_command.command_byte ==
(current command.command byte ==

{

current_blklen = old_blklen;

}

return card response.i;

// This function initializes the flash card,
and reads the operating conditions register to ensure that the device
It also determines the size of the card by

// mode,
// has initialized correctly.

// reading the Card Specific Data Register

When a non-zero token is returned,
card is no longer busy;

Issue 8 SPI clocks so that all card
operations can complete;

Deselect memory card;

Send 8 more SPI clocks to ensure
the card has finished all necessary
operations;

Restore old block length if needed;

9) 1
10))

configures it to operate in SPI

(CSD) .

Stores card status returned from

MMC function calls (MMC Command Exec);
SPI byte counter;

Stores size variable from card;
Pointer int EEPROM for storing MMC
register values;

4 bytes of memory for use in storing
temporary register values from MMC;
Local storage for data from MMC;
Transmit at least 64 SPI clocks
before any bus comm occurs.

void MMC FLASH Init (void)
{
idata UINT card status; //
//
idata unsigned char counter = 0; //
idata unsigned int size; //
unsigned int pchar; //
//
unsigned char spacel[4]; //
//
unsigned char *1lpchar; //
//
//
pchar = LOCAL BLOCK;
lpchar = &space[0];
for (counter = 0; counter < 10; counter++)
{
SPIODAT = OxFF;
while (!SPIF) {}
SPIF = 0;

SILICON LABORATORIES

Rev. 0.1

61

AN189

// Send the GO _IDLE STATE command with
// CS driven low; This causes the MMC
// to enter SPI mode;
card status.i = MMC Command Exec (GO _IDLE STATE,EMPTY, EMPTY) ;
// Send the SEND OP COND command
do // until the MMC indicates that it is
{ // no longer busy (ready for commands);
SPIODAT = OxFF;
while (!SPIF) {}
SPIF = 0;
card status.i = MMC Command Exec (SEND OP COND,EMPTY,EMPTY) ;
}
while ((card status.b[0] & 0x01));

SPIODAT = OxFF; // Send 8 more SPI clocks to complete
while (!SPIF) {} // the initialization sequence;

SPIF = 0;

do // Read the Operating Conditions

{ // Register (OCR);

card status.i = MMC Command Exec (READ OCR,EMPTY,pchar);
// Get OCR from EEPROM;
EEPROM ReadArray (lpchar, pchar,4);
}
while (! (*1pchar&0x80)) ; // Test for card ready;

card status.i = MMC Command Exec (SEND STATUS,EMPTY, EMPTY) ;
// Get the Card Specific Data (CSD)
// register to determine the size of the
// MMC;
card status.i = MMC Command Exec (SEND CSD,EMPTY,pchar);
// Get CSD from EEPROM;
*1lpchar = EEPROM ReadByte (pchar+9);
// Size indicator is in the 9th byte of
// CSD register;
// Extract size indicator bits;

size = (unsigned int) ((((*1lpchar) & 0x03) << 1)
(((* (lpchar+l)) & 0x80) >> 7));

switch (size) // Assign PHYSICAL SIZE variable to
{ // appropriate size constant;

case 1: PHYSICAL SIZE = PS_SMB; break;

case 2: PHYSICAL SIZE = PS 16MB; break;

case 3: PHYSICAL SIZE = PS 32MB; break;

case 4: PHYSICAL SIZE = PS 64MB; break;

case 5: PHYSICAL SIZE = PS 128MB; break;
default: break;

// Determine the number of MMC sectors;
PHYSICAL_BLOCKS = PHYSICAL_SIZE / PHYSICAL_BLOCK_SIZE;
LOG_SIZE = PHYSICAL_SIZE - LOG_ADDR;

// This function reads <length> bytes of MMC data from address <address>, and

// stores them in EEPROM space at the location pointed to by <pchar>.

// There are two cases that must be considered when performing a read. If the
// requested data is located entirely in a single FLASH block, the function

// sets the read length appropriately and issues a read command. If requested
// data crosses a FLASH block boundary, the read operation is broken into two

62 Rev. 0.1

SILICON LABORATORIES

AN189

// parts. The first part reads data from the starting address to the end of
// the starting block, and then reads from the start of the next block to the

// end of the requested data.
// to the proper value.

Before each read, the read length must be set

unsigned char MMC FLASH Read (unsigned long address, unsigned int pchar,
unsigned int length)

{

idata unsigned long flash page 1; // Stores address of first FLASH page;
idata unsigned long flash page 2; // Stores address of second FLASH page;
idata unsigned int card status; // Stores MMC status after each MMC

if (length > 512) return 0;

// command;

// Test for valid data length; Length
// must be less than 512 bytes;
// Find address of first FLASH block;

flash page 1 = address & ~(PHYSICAL BLOCK SIZE-1);

// Find address of second FLASH block;

flash page 2 = (address+length-1) & ~(PHYSICAL BLOCK SIZE-1);
if (flash page 1 == flash page 2) // Execute the following if data is

{

// located within one FLASH block;
// Set read length to requested data
// length;

card status = MMC Command Exec (SET BLOCKLEN, (unsigned long)length,

EMPTY) ;
// Issue read command;

card status = MMC Command Exec (READ SINGLE BLOCK,address,pchar) ;

}

else

{

// Execute the following if data crosses
// MMC block boundary;

// Set the read length to the length

// from the starting address to the

// end of the first FLASH page;

card status = MMC Command Exec (SET BLOCKLEN,

(unsigned long) (flash page 2 - address),
EMPTY) ;
// Issue read command;

card status = MMC Command Exec (READ SINGLE BLOCK, address,pchar) ;

// Set read length to the length from
// the start of the second FLASH page
// to the end of the data;

card status = MMC Command Exec (SET BLOCKLEN,

(unsigned long) length -

(flash page 2 - address),

EMPTY) ;
// Issue second read command; Notice
// that the incoming data stored in
// external RAM must be offset from the
// original pointer value by the length
// of data stored during the first read
// operation;

card status = MMC Command Exec (READ SINGLE BLOCK, flash page 2,

pchar + (flash page 2 - address));

SILICON LABORATORIES

Rev. 0.1

63

AN189

//
//
//
//
1/
//
1/
//
//

This function operates much like the MMC FLASH Read function. As

with the MMC FLASH Read function,

block boundary, the operation must be broken into two pieces.

MMC FLASH Write first reads the addressed block of MMC data into the EEPROM,
then modifies the contents of that block in EEPROM space; Finally, the MMC

block

space;

is erased in the MMC and replaced by the updated block from EEPROM

unsigned char MMC FLASH Write (unsigned long address, unsigned int scratch,

{

idata
idata
idata
idata

idata

unsigned int wdata, unsigned int length)

unsigned long flash page 1; // First FLASH page address;
unsigned long flash page 2; // Second FLASH page address;
unsigned int card status; // Stores status returned from MMC;
unsigned int counter; // Byte counter used for writes to

// local copy of data block;
unsigned int temp length;

unsigned int index; // Pointer into local copy of data

// block, used during modification;

if (length > 512) return 0; // Check for valid data length;

flash page 1 = address & ~(PHYSICAL BLOCK SIZE-1);

// Calculate second FLASH page address;
flash page 2 = (address+length-1) & ~(PHYSICAL BLOCK SIZE-1);
if (flash page 1 == flash page 2) // Handle single FLASH block condition;

{

// Calculate first FLASH page address;

// Set block length to default block
// size (512 bytes);

card status = MMC Command Exec (SET BLOCKLEN,

(unsigned long)PHYSICAL BLOCK SIZE,
EMPTY) ;
// Read data block into EEPROM;

card status = MMC Command Exec (READ SINGLE BLOCK, flash page 1,scratch);

index = (unsigned int) (address % PHYSICAL BLOCK SIZE) + scratch;
counter = 0;
while (length>0) // This loop updates the temporary
{ // MMC Page (in EEPROM) with the contents
if (length<=64) // of the current temperature buffer;
{
counter = length;
length = 0;
}
else
{
counter = 64;
length -= 64;

// Read temperature data
EEPROM ReadArray (&EEPROM PageBuffer[0],wdata, counter);

// Store in temp MMC page (in EEPROM) ;
EEPROM WriteArray(index, &EEPROM PageBuffer[0], counter);

wdata+=EEPROM PAGE SIZE; // Update temperature buffer pointer;

index+=EEPROM PAGE SIZE; // Update temp MMC page (in EEPROM)
// pointer;

counter = 0;

// Write modified block back to MMC;

card status = MMC Command Exec (WRITE BLOCK, flash page 1,scratch);

if the desired write space crosses a FLASH

64

Rev. 0.1

SILICON LABORATORIES

AN189

else // Handle multiple FLASH block
{ // condition;
// Set block length to default block
// size (512 bytes);
card status = MMC Command Exec (SET BLOCKLEN,
(unsigned long)PHYSICAL BLOCK SIZE,
EMPTY) ;
// Read first data block into EEPROM;
card status = MMC Command Exec (READ SINGLE BLOCK, flash page 1,scratch);

index = (unsigned int) (address % PHYSICAL BLOCK SIZE) + scratch;

temp length = length;

length = (unsigned int) (flash page 2 - address);

while (length>0) // Modify write space in EEPROM copy;

{
if (length<=64)

{

counter = length;
length = 0;

}

else

{
counter = 64;
length -= 64;

// Read temperature data from buffer;
EEPROM ReadArray (&EEPROM PageBuffer[0],wdata, counter);
// Write temperature data to copied
// MMC page;
EEPROM WriteArray (index, &EEPROM PageBuffer([0], counter);
wdatat+=counter;
index+=counter;
counter = 0;

// Write EEPROM copy back to MMC;
card status = MMC Command Exec (WRITE BLOCK, flash page 1,scratch);
// Read second data block;
card status = MMC Command Exec (READ SINGLE BLOCK, flash page 2,scratch);

index = scratch;
length = (unsigned int) (temp length - (flash page 2 - address));
while (length>0) // Modify write space in EEPROM copy;

{
if (length<=64)
{

counter = length;
length = 0;

}

else

{
counter = 64;
length -= 64;

// Read temperature data from buffer;
EEPROM ReadArray (&EEPROM PageBuffer[0],wdata,counter);

// Write data to MMC page copy in

// EEPROM;
EEPROM WriteArray(index, &EEPROM PageBuffer[0], counter);
wdatat+=counter;
index+=counter;

Rev. 0.1 65

SILICON LABORATORIES

AN189

counter = 0;

// Write EEPROM copy back to MMC;
card status = MMC Command Exec (WRITE BLOCK, flash page 2,scratch);

// This function erases <length> bytes of flash starting with the block
// indicated by <addressl>. This function only handles sector-sized erases
// or larger. Function should be called with sector-aligned erase addresses.
unsigned char MMC FLASH MassErase (unsigned long addressl,
unsigned long length)
{
idata unsigned char card status; // Stores card status returned from MMC;
// Store start and end sectors to be
// to be erased;
idata unsigned long flash page 1, flash page 2;
// Store start and end groups to be
// erased;
idata unsigned long flash group 1, flash group 2;
// Compute first sector address for
// erase;
flash page 1 = addressl & ~(PHYSICAL BLOCK SIZE-1);
// Compute first group address for
// erase;
flash group 1 = flash page 1 &~ (PHYSICAL GROUP SIZE-1);
// Compute last sector address for
// erase;
flash page 2 = (addressl + length) & ~(PHYSICAL BLOCK SIZE-1);
// Compute last group address for erase;
flash group 2 = flash page 2 &~ (PHYSICAL GROUP SIZE-1);

if (flash_group_1 == flash group 2) // Handle condition where entire erase
{ // space is in one erase group;
// Tag first sector;
card status = MMC Command Exec (TAG SECTOR START, flash page 1,EMPTY)
// Tag last sector;
card status = MMC Command Exec (TAG SECTOR END, flash page 2,EMPTY) ;
// Issue erase command;
card status = MMC Command Exec (ERASE,EMPTY, EMPTY) ;
}
else // Handle condition where erase space
{ // crosses an erase group boundary;
// Tag first erase sector;
card status = MMC Command Exec (TAG SECTOR START, flash page 1,EMPTY);
// Tag last sector of first group;
card status = MMC Command Exec (TAG SECTOR _END,
(flash group 1 +
(unsigned long) (PHYSICAL GROUP_SIZE
- PHYSICAL BLOCK SIZE)),EMPTY);
// Issue erase command;
card status = MMC Command Exec (ERASE,EMPTY, EMPTY) ;
// Tag first sector of last erase group;
card status = MMC Command Exec (TAG SECTOR START, flash group 2,EMPTY);
// Tag last erase sector;

66 Rev. 0.1

SILICON LABORATORIES

AN189

card status = MMC Command Exec(TAG SECTOR END, flash page 2,EMPTY);
// Issue erase;
card status = MMC Command Exec (ERASE,EMPTY,EMPTY) ;
// Conditional that erases all groups
// between first and last group;
if (flash group 2 > (flash group 1 + PHYSICAL GROUP_SIZE))
{
// Tag first whole group to be erased;
card status = MMC Command Exec (TAG ERASE GROUP START,
(flash group 1 +
(unsigned long)PHYSICAL GROUP_SIZE),EMPTY) ;
// Tag last whole group to be erased;
MMC Command Exec (TAG_ERASE GROUP_END,
(flash page 2 -
(unsigned long)PHYSICAL GROUP_SIZE),EMPTY);
// Issue erase command;
card status = MMC Command Exec (ERASE,EMPTY,EMPTY) ;

card status

return card status;

// SMBus Subroutines

// EEPROM WriteArray ()

// This function sends a block of data to an EEPROM using SMBus. EEPROM writes
// must be performed on only one EEPROM page at a time, so writes that span

// more than one page must be broken into multiple smaller writes. Write

// length is limited to 64 bytes (the length of one EEPROM page) .

void EEPROM WriteArray(unsigned int addr, unsigned char* SrcAddr,
unsigned char len)

unsigned int EEPROM Pagel;

unsigned int EEPROM Page2;

unsigned char section count;

unsigned int temp len;
// Compute the EEPROM pages involved in
// the data transmission;

EEPROM Pagel addr & ~(EEPROM PAGE SIZE - 1);

EEPROM Page2 = (addr+(unsigned int)len - 1) & ~(EEPROM PAGE SIZE - 1);
// If more than one EEPROM page is
// involved, break the write into
// two separate writes.

if (EEPROM Pagel != EEPROM Page2)
{
// Calculate the length of the second
// write;
temp len = (addr + len) - EEPROM Page2;
// Calculate the length of the first
// write;

len = EEPROM Page2 - addr;
// Setup loop for two seperate writes;

section count = 2;

Rev. 0.1

SILICON LABORATORIES

67

AN189

}

else

section count = 1;

while (section count >= 1)

{

while (SMB BUSY) ;

SMB BUSY = 1;

TARGET = EEPROM_ADDR;
SMB RW = WRITE;

SMB SENDWORDADDR = 1;
SMB_RANDOMREAD = 0;

SMB ACKPOLL = 1;

WORD ADDR.i = addr;

pSMB DATA OUT = SrcAddr;
SMB_DATA LEN = len;

STA = 1;
while(SMB_BUSY);
section count--;
if (section count==1)
{

SrcAddr+=len;

len = temp len;

addr = EEPROM Page2;

// EEPROM ReadArray ()

!/

//
//

//
//
//

//
1/
//
//
//
!/
!/
!/

//
//

//
!/

Otherwise only a single write is
necessary;

okay to spin here because
SMBus Rate >> Temp sample rate
Set up SMBus for EEPROM write;

Target EEPROM device;

Indicate write operation;

Send word addess after slave address;
Send a START after the word address;
Indicate poll for acknoledgement;
Indicate data address;

Pointer to data;

Data length;

Start SMBus transaction
Poll for SMBus not busy;

Update length and address and
perform additional write if needed;

// Reads up to 64 data bytes from the EEPROM slave specified by the
// <EEPROM ADDR> constant.

void EEPROM ReadArray (unsigned char* dest addr, unsigned int src_addr,
unsigned char len)

while (SMB BUSY);
SMB_BUSY = 1;

// Set SMBus ISR parameters
TARGET = EEPROM ADDR;
SMB RW = WRITE;

SMB_SENDWORDADDR = 1;

SMB_ RANDOMREAD = 1;

SMB ACKPOLL = 1;

// Specify the Incoming Data

//
!/

//
//
!/
!/
//
//
//
//
//
1/
!/
//

Wait for SMBus to be free;
Claim SMBus (set to busy);

Set target slave address;

A random read starts as a
write then changes to a read
after the repeated start is
sent; The ISR handles this
switchover if the ;
<SMB_RANDOMREAD> bit is set;
Send Word Address after Slave
Address;

Send a START after the word
address;

Enable Acknowledge Polling;

68

Rev. 0.1

SILICON LABORATORIES

AN189

WORD ADDR.i = src addr; !/

Set the target address in the

// EEPROM’s internal memory space;
// Set the the incoming data pointer;
pSMB DATA IN = (unsigned char*) dest addr;

!/
//
//

SMB_DATA LEN = len;

// Initiate SMBus Transfer
STA = 1;

while (SMB_BUSY) ; //

EEPROM WriteByte ()

Specify to ISR that the next
transfer will contain <len> data
bytes;

Wait until data is read;

This function writes the value in <dat> to location <addr> in the EEPROM
then polls the EEPROM until the write is complete.

void EEPROM WriteByte(unsigned int addr, unsigned char dat)

{

while (SMB_ BUSY);
SMB BUSY = 1;

//
//

// Set SMBus ISR parameters

TARGET = EEPROM ADDR; //
SMB_RW = WRITE; //
SMB_SENDWORDADDR = 1; !/

//
//
//
//
//
//
//

SMB_RANDOMREAD = 0;

SMB ACKPOLL = 1;

// Specify the Outgoing Data

WORD_ADDR.i = addr; //
//
SMB_SINGLEBYTE OUT = dat; //
//

//

pSMB_DATA OUT = &SMB_SINGLEBYTE OUT;//
//

SMB DATA LEN = 1; //
//

// Initiate SMBus Transfer
STA = 1;
while (SMB BUSY) ;

Wait for SMBus to be free;
Claim SMBus (set to busy);

Set target slave address;

Mark next transfer as a write;
Send Word Address after Slave
Address;

Do not send a START signal
the word address;

Enable Acknowledge Polling
will automatically restart
transfer if the slave does
acknoledge its address;

after

(The ISR
the
not

Set the target address in the
EEPROM’s internal memory space;
Store dat (local variable) in a
global variable so the ISR can read
it after this function exits;

The outgoing data pointer points to
the <dat> variable;

Specify to ISR that the next transfer
will contain one data byte;

SILICON LABORATORIES

Rev. 0.1

69

AN189

// EEPROM ReadByte ()

//

// This function returns a single byte from location <addr> in the EEPROM then
// polls the <SMB BUSY> flag until the read is complete.

unsigned char EEPROM ReadByte(unsigned int addr)
{

unsigned char retval; // Holds the return value;
while (SMB_BUSY); // Wait for SMBus to be free;
SMB BUSY = 1; // Claim SMBus (set to busy):;

// Set SMBus ISR parameters

TARGET = EEPROM ADDR; // Set target slave address;

SMB_RW = WRITE; // A random read starts as a write
// then changes to a read after
// the repeated start is sent; The
// ISR handles this switchover if
// the <SMB_RANDOMREAD> bit is set;

SMB_SENDWORDADDR = 1; // Send Word Address after Slave

// Address;
SMB_RANDOMREAD = 1; // Send a START after the word address;
SMB ACKPOLL = 1; // Enable Acknowledge Polling;

// Specify the Incoming Data
WORD_ADDR.1 = addr; // Set the target address in the EEPROM
// internal memory space;

PSMB DATA IN = &retval; // The incoming data pointer points to
// the <retval> variable;

Il
[N
~.

SMB_DATA LEN // Specify to ISR that the next transfer

// will contain one data byte;

// Initiate SMBus Transfer
STA = 1;
while (SMB_BUSY) ; // Wait until data is read;

return retval;

void EEPROM Clear (unsigned int addr, unsigned int length)
{
unsigned int i;
for(i = addr; i < (addr+length); i++)
EEPROMﬁWriteByte(i,EMPTY);

// ADCO end-of-conversion ISR

70 Rev. 0.1

SILICON LABORATORIES

AN189

//
//
//
//
//
//
//
//
//
//
//
//
void ADCO ISR (void)
{

Here we take the ADCO sample,
decrement our local decimation counter
zero,

In addition,
approximately once a second,
for the temperature timestamp.

we update
If the

interrupt is set to high priority,

interrupt 10 using 3

static unsigned int dec=INT DEC; //
//
//
static LONG accumulator={0L}; //
//

xdata unsigned int buffer[256];

unsigned char count;

ADOINT = 0; //
//
if (int dec % 16 == 0)
{
buffer[count] = ADCO;
count++;
}
accumulator.l += ADCO; //
//
int dec--; //
if (int_dec == 0) //
{
int dec = INT DEC; !/
// Result = accumulator >> 6
// Perform my shifting left 2, then
accumulator.l <<= 2; //
Result.b[0] = 0; //
Result.b[1l] = accumulator.b[0];
Result.b[2] = accumulator.b[1l];
Result.b[3] = accumulator.b[2];
accumulator.l = 0L; //
LogRecord.bSec++; //
if (LogRecord.bSec == 60)
{
LogRecord.bSec = 0;
LogRecord.bMin++; //
if (LogRecord.bMin == 60)
{
LogRecord.bMin = 0;
LogRecord.bHour++; //
if (LogRecord.bHour == 24)
{
LogRecord.bHour = 0;
LogRecord.uDay++; //

add it to a running total <accumulator>,

this ISR is used to keep track of time.

and

<int dec>. When <int dec> reaches

we post the decimated result in the global variable <result>.

Every 4096 samples,
the seconds, minutes, hours, and days
global state is RUNNING or FINISHED,

a low priority software interrupt is generated and the log is updated.
Using the low priority interrupt allows the MMC communication to execute
without disrupting the temperature sampling process.
so it will be executed even if a low
priority interrupt is already in progress.

The ADC end-of-conv

integrate/decimate counter

we post a new result when

int dec = 0

here’s where we integrate the
ADC samples

clear ADC conversion complete
indicator

read ADC value and add to running
total
update decimation counter

if zero, then post result

reset counter
byte-swapping

accumulator accumulator << 2
Result = accumulator >> 8

reset accumulator
update seconds counter

update minutes counter

update hours counter

update days counter

SILICON LABORATORIES

Rev. 0.1 71

AN189

if ((State == RUNNING) | | (State == FINISHED))

update = 1;

// SMBus Interrupt Service Routine

!/

(ISR)

// SMBus ISR state machine

// - Master only implementation - no slave or arbitration states defined

// - All incoming data is written starting at the global pointer <pSMB DATA IN>
// - All outgoing data is read from the global pointer <pSMB DATA OUT>

//
void SMBus ISR (void) interrupt 7 using 2
{
bit FAIL = 0; //
//
static char i; //
//
//
static bit SEND_ START = 0; //

switch

{

// Master Transmitter/Receiver:

case SMB MTSTA:

if (!SMB BUSY)

{

(SMBOCN & O0xFO) //

break;
}
SMBODAT = TARGET; //
SMBODAT |= SMB RW; //
STA = 0; //
i=0; //

SMB_HIGHBYTENOTSENT = 1;

break;

// Master Transmitter:

case SMB MTDB:
if (ACK)
{

Data byte

(or Slave Address)

Used by the ISR to flag failed

transfers;
Used by the ISR to count the
number of data bytes sent or
received;

Send a start;

Status vector;

START condition transmitted;

Load address of the target;
Load R/W bit;

Manually clear START bit;
Reset data byte counter;

transmitted;

// Slave Address or Data Byte
// Acknowledged?

if (SEND_START)

{

STA = 1;
SEND START = 0;

break;

}

if (SMB_SENDWORDADDR)

// Are we sending the word address?

72

Rev. 0.1

SILICON LABORATORIES

AN189

if (SMB_ HIGHBYTENOTSENT)
{
// Send word address;
SMBODAT = WORDiADDR.b [01;
// Clear flag;
SMB_ HIGHBYTENOTSENT = 0;
break;
}
else
{
SMBODAT = WORD ADDR.b[1];
// Clear flag;
SMB_SENDWORDADDR = 0;

if (SMB_RANDOMREAD)

{
SEND START = 1; // Send START after the next ACK cycle;
SMB_RW = READ;

break;
}
if (SMB_RW==WRITE) // Is this transfer a WRITE?
{
if (i < SMB DATA LEN) // Is there data to send?
{ // Send data byte;
SMBODAT = (unsigned char)*pSMB DATA OUT;
PSMB_DATA OUT++; // Increment data out pointer;
i++; // Increment number of bytes sent;
}
else
{
STO = 1; // Set STO to terminate transfer;
SMB BUSY = 0; // Clear software busy flag;
}
}
else {} // If this transfer is a READ,
// then take no action; Slave
// address was transmitted; A
// separate ‘case’ is defined
// for data byte recieved;
}
else // If slave NACK;

{
if (SMB ACKPOLL)

{

STA = 1; // Restart transfer;
}
else
{
FAIL = 1; // Indicate failed transfer
} // and handle at end of ISR;

Rev. 0.1 73

SILICON LABORATORIES

AN189

}

break;

// Master Receiver: byte received
case SMB MRDB:
if (i < SMB DATA LEN) // Is there any data remaining?
{
*pSMB_DATA IN = SMBODAT; // Store received byte;

PSMB_DATA IN++; // Increment data in pointer;
it+; // Increment number of bytes received;
ACK = 1; // Set ACK bit (may be cleared later

// in the code);

if (i == SMB_DATA LEN) // This is the last byte;
{
SMB BUSY = 0; // Free SMBus interface;
ACK = 0; // Send NACK to indicate last byte
// of this transfer;
STO = 1; // Send STOP to terminate transfer;
}
break;
default:
FAIL = 1; // Indicate failed transfer
// and handle at end of ISR;
break;
}
if (FAIL) // If the transfer failed,
{ // reset communication;
SMBOCF &= ~0x80;
SMBOCFE |= 0x80;
SMB_BUSY = 0; // Free SMBus;
}
SI=0; // Clear interrupt flag;
}
/e e
// Initialization Subroutines
[mm e e
[
// SYSCLK Init
et il b
//

// This routine initializes the system clock to use the internal
// oscillator as its clock source. Enables missing clock detector reset.

void SYSCLK Init (void)
{

OSCICN |= 0x03; // Configure internal oscillator for
// its maximum frequency;

VDMOCN = 0x08; // Enable VDD Monitor;

RSTSRC |= 0x06; // Enable missing clock detector and

74 Rev. 0.1

SILICON LABORATORIES

AN189

//
CLKMUL = 0x00; //
//
CLKMUL |= 0x80; //
// Wait 5 us for multiplier to be enabled
TMR2CN = 0x00; //
//
//
CKCON |= 0x10; //
TMR2RL = START SYSCLK / 200000; //
TMR2 = TMR2RL; //
ET2 = 0; //
TF2H = 0;
TR2 = 1; //
while (!TF2H); //
TF2H = 0; //
TR2 = 0; //
CLKMUL |= 0xCO; //
while (! (CLKMUL & 0x20)) //
CLKSEL = 0x02; //
}
//
// PORT Init
//
//
// Configure the Crossbar and GPIO ports.
// P0.0 - SCK (push-pull)
// P0.1 - MISO
// P0.2 - MOSI (push-pull)
// P0.3 - NSS (push-pull)
// PO.4 - UART TX (push-pull)
// P0.5 - UART RX
// P0.6 - SDA
// P0.7 - VREF (Skipped by crossbar)
// P1.0 - SCL
// P1.1 - SDA
// P1.2 - SCL
void PORT Init (void)
{
POSKIP = 0xCO; //
//
P1SKIP = 0x01; //
XBRO = 0x07; //
//
XBR1 = 0x40; //
POMDIN &= ~0x80; //
POMDOUT |= 0x1D; //
PO &= ~0x40;
Pl &= ~0x01;

VDD Monitor as reset sources;
Reset multiplier; Internal Osc is
multiplier source;

Enable Clock Multiplier;

STOP Timer2; Clear TF2H and TF2L;
disable low-byte interrupt; disable
split mode; select internal timebase
Timer2 uses SYSCLK as its timebase

Init reload values 12 MHz / (5E"-6)
Init Timer2 with reload value
disable Timer2 interrupts

start Timer2

wait for overflow

clear overflow indicator
Stop Timer2;

Initialize Clock Multiplier
Wait for MULRDY
Select SYSCLK * 4 / 2 as clock source

Skip VREF in crossbar
assignments; Skip P1l.6;

Skip P1.0;

UARTO TX and RX pins enabled,
enabled, SMBus enabled;
Enable crossbar and weak pull-ups;

SPI

Configure VREF as analog input;
Enable TXO0,SCK,MOSI as a push-pull;

SILICON LABORATORIES

Rev. 0.1

75

AN189

/=
// UARTO Init
[
//
// Configure the UARTO using Timerl, for <BAUDRATE> and 8-N-1.
//
void UARTO Init (void)
{
SCONO = 0x10; // SCONO: 8-bit variable bit rate
// level of STOP bit is ignored
// RX enabled
// ninth bits are zeros
// clear RIO and TIO bits

if (SYSCLK/BAUDRATE/2/256 < 1)
{

TH1 = - (SYSCLK/BAUDRATE/2) ;
CKCON |= 0x08; // TIM = 1; SCAl:0 = xx
}
else if (SYSCLK/BAUDRATE/2/256 < 4)
{
TH1 = - (SYSCLK/BAUDRATE/2/4);
CKCON &= ~0x0B;
CKCON |= 0x01; // T1IM = 0; SCAl:0 = 01
}
else if (SYSCLK/BAUDRATE/2/256 < 12)
{
TH1 = - (SYSCLK/BAUDRATE/2/12);
CKCON &= ~0x0B; // TIM = 0; SCAl:0 = 00
}
else
{
TH1 = - (SYSCLK/BAUDRATE/2/48) ;
CKCON &= ~0x0B;
CKCON |= 0x02; // TIM = 0; SCAl:0 = 10
}
TL1 = TH1; // init Timerl
TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
TMOD |= 0x20;
TR1 = 1; // START Timerl
TIO = 1; // Indicate TX0 ready
}
/=
// SPI0 Init
[
//

// Configure SPIO0 for 8-bit, 2MHz SCK, Master mode, polled operation, data
// sampled on 1lst SCK rising edge.

void SPI Init (void)
{
SPIOCFG = 0x70; // Data sampled on rising edge, clk
// active low,
// 8-bit data words, master mode;

SPIOCN = O0xO0F; // 4-wire mode; SPI enabled; flags
// cleared

76 Rev. 0.1

SILICON LABORATORIES

AN189

SPIOCKR = SYSCLK/2/2000000; // SPI clock <= 2MHz

// SMBus_Init ()

// SMBus configured as follows:
// - SMBus enabled
// - Slave mode disabled

// - Timerl used as clock source. The maximum SCL frequency will be

// approximately 1/3 the Timerl overflow rate

// - Setup and hold time extensions enabled

// - Free and SCL low timeout detection enabled
/s

void SMBus Init (void)
{
SMBOCF = 0x54; // Use Timer0 overflows as SMBus clock
// source;
// Disable slave mode;
// Enable setup & hold time extensions;
// Enable SMBus Free timeout detect;

SMBOCF |= 0x80; // Enable SMBus;

EIE1l |= 0x01; // Enable SMBus interrupts;
}
/mm e e -
// ADCO Init
/m e -
//

// Configure ADCO to use Timer2 overflows as conversion source, to
// generate an interrupt on conversion complete, and to sense the output of

// the temp sensor with a gain of 2 (we want the white noise). Enables ADC
// end of conversion interrupt. Leaves ADC disabled.
//

void ADCO Init (void)
{
ADCOCN = 0x02; // ADCO disabled; normal tracking
// mode; ADCO conversions are initiated
// on overflow of Timer2;

AMX0P = Ox1E; // Select temp sensor as positive input;
AMXON = Ox1F; // Select GND as negative input;
ADCOCF = (SYSCLK/2000000) << 3; // ADC conversion clock <= 6.0MHz
REFOCN = 0x07; // Enable temp sensor, bias generator,
// and internal VREF;
EIE1l |= 0x08; // Enable ADCO EOC interrupt;
EIP1 |= 0x08; // ADC EOC interrupt is high priority;
}
[mm e
// TimerO Init ()
//
// TimerO configured as the SMBus clock source as follows:
// — TimerO in 8-bit auto-reload mode

// — SYSCLK / 12 as Timer0O clock source
// - TimerO overflow rate => 3 * SMB FREQUENCY

Rev. 0.1

SILICON LABORATORIES

77

AN189

// - The maximum SCL clock rate will be ~1/3 the Timer(O overflow rate

// - Timer(O enabled

void Timer(0 Init (void)
{
CKCON &= ~0x07;

TMOD |= 0x02;

THO = —(SYSCLK/SMB_FREQUENCY/lZ/3);
TLO = THO;

TRO = 1;

1/
//
//
//
//
//

Timer0 clock source = SYSCLK / 12;
Timer0 in 8-bit auto-reload mode;
Timer0 configured to overflow at 1/3
the rate defined by SMB_ FREQUENCY;

Init TimerO;
Timer0 enabled;

// This routine initializes Timer2 to use SYSCLK as its timebase and to
// generate an overflow at <SAMPLE RATE> Hz.

//
void Timer2 Init (int counts)
{

TMR2CN = 0x01;

CKCON |= 0x30;

TMR2RL = -counts;
TMR2 = TMR2RL;
ET2 = 0;

TR2 = 1;

!/
!/
//
//
//
//
//
//
//

Clear TF2H, TF2L; disable TF2L
interrupts; T2 in 16-bit mode;
Timer2 stopped;

Timer 2 uses SYSCLK as clock
source

reload once per second

init Timer2

Disable Timer2 interrupts
Start Timer2

78

Rev. 0.1

SILICON LABORATORIES

AN189

NOTES:

SILICON LABORATORIES

Rev. 0.1

79

AN189

CONTACT INFORMATION

Silicon Laboratories Inc.
4635 Boston Lane

Austin, TX 78735

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: productinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

80 Rev. 0.1

SILICON LABORATORIES

	1. Introduction
	1.1. MMC Overview
	1.2. Data Logger Overview

	2. MMC Details
	2.1. MMC Memory Structure
	2.2. MMC Commands
	Figure 1. SPI Hardware Connection
	2.2.1. Communication Format
	Figure 2. Communication Format
	2.2.2. MMC Commands

	2.3. MMC Interface Low Level Operation
	Table 1. Command List
	Figure 3. Command Execution Flowchart

	2.4. MMC Interface High Level Operation
	Figure 4. Data Alignment
	2.4.1. Flash Initialization
	Figure 5. Flash Initialization
	2.4.2. Flash Read
	Figure 6. Flash Read Operation
	Figure 7. Flash Clear Operation
	2.4.4. Flash Write
	Figure 8. Flash Write Operation
	2.4.5. Flash Mass Erase
	Figure 9. Flash Mass Erase Operation

	3. Data Logger Details
	3.1. Data Logger Operation
	3.2. Temperature Sampling
	3.3. Logging Routines
	3.3.1. Log Initialization
	3.3.2. Log Size Checking
	3.3.3. Log Erase
	3.3.4. Log Print
	3.3.5. Log Update

	4. Reduced RAM Implementation
	4.1. Temperature Buffer
	4.2. MMC Data Operations
	4.3. EEPROM Communication
	Figure 10. SPI and EEPROM Hardware Connection

	4.4. MMC_DataLogger.c

