
Rev. 0.2 7/04 Copyright © 2004 by Silicon Laboratories AN184

AN184

DIGITAL COUNTING SCALE

1. Introduction
The C8051F350 provides a low-cost system-on-chip
solution for digital counting/measurement scales such
as postal scales, deli scales, and analytical scales.
Using the F350, the entire measurement system can be
implemented using a few passive components, an LCD
driver, and an LCD.
This application note provides an example of a digital
counting scale design, including design considerations,
using the C8051F350.

This reference design includes the following:
Background and theory of operation
Hardware and software description
Typical performance examples
Complete firmware (developed in C)

2. Background
Bridge transducers are the most common sensor type in
digital counting scales. They convert a force into a
voltage that is proportional to the force applied to the
bridge. Bridge transducers are used because they are
extremely linear and have repeatable characteristics for
large applied forces. Their only real drawback is low
sensitivity, which typically ranges between 1 mV/V to
10 mV/V.
Transducer manufacturers exhaustively characterize
their sensors to ensure they have linear transfer
functions for the region where they are specified for use.
Bridge transducers are manufactured with various
technologies ranging from diffused silicon to bonded foil
materials. Each technology has its advantages and
disadvantages concerning its sensitivity, linearity, and
thermal stability. Consult the various manufacturer’s
data sheets to select the transducer that best meets the
application’s requirements.

Relevant Devices
This application note applies to the following devices:
C8051F350, C8051F351, C8051F352, and C8051F353.

Figure 1. C8051F350 Bridge Transducer Circuit

LCD
&

Driver

250250

250250

50 pF

5 V

VREF
50 MIPs Peak CPU

8 kB Flash

AIN1

AIN0

VDD

+3. 3 V
LDO

GND

100

100

0.1

C 8051F350

5 mV/V
+

-

AIN

24- Bit ADC

AN184

2 Rev. 0.2

3. Theory of Operation
Bridge transducers are ratiometric sensors.Therefore,
their full scale output voltage depends on the voltage
used to excite the sensor (i.e., its excitation voltage).
5 V is a common excitation voltage. For example, a
5 lb. bridge transducer with a 10 mV/V sensitivity
excited with a 5 V supply will ideally produce a 50 mV
output voltage when a 5 lb. weight is placed on the
transducer.

Equation 1. Digital Output Code

Relatively speaking, 50 mV is a small signal. To
compound the issue, high precision scales will divide
this 50 mV full scale output signal into 10,000 divisions
or 5 µV. This 5 µV equates to one unit of measure on
the scales output display (perhaps 1 oz.). Now, 5 µV is
a very small signal to resolve. The modern way to
resolve such an analog signal is to use an analog-to-
digital converter (ADC), preferably a 24-bit ADC, with
an least significant bit (LSB) that is smaller than the
signal to be resolved. A common full scale range for
most ADCs today is 2.5 V, which is set by the voltage
reference of the system. Equation 2 illustrates that one
24-bit LSB (least significant bit or 1 ADC count), with a
2.5 V reference, is 149 nV.

Equation 2. Digital Output Code

In this example, the 24-bit ADC’s 149 nV LSB easily
resolves the 5 µV minimum output level of the bridge
and provides significant overhead to account for other
system issues such as temperature drift and offset
error.
A 16-bit ADC can also be used to resolve the 5 µV
minimum transducer voltage. However, an amplifier is
required in this system as the LSB of a 16-bit ADC is
only 38 µV (2.5 V VREF). By amplifying the bridge
transducer’s output voltage by eight and increasing the
transducer’s minimum output voltage to 40 µV, the
combo amplifier plus 16-bit ADC provides enough
resolution to resolves 10,000 counts. Note that in a 16-
bit system, a 8x amplifier is marginally adequate to
resolve 5 µV. Most designers increase this gain and
design the amplifier’s gain stage to match the full scale
input range of the ADC. In this 16-bit example, a 50x
gain would be used as 50 mV times 50 is 2.5 V, the
typical full scale input of an ADC.
Here is one final comment when designing a high

accuracy counting scale, system designers need to
consider other parasitic board level issues like amplifier
noise and drift and parasitic thermocouple effects on
the system board. Thermocouple effects from common
tin/lead solder can be as high as 3 µV/°C. On a 10,000
count scale exposed to a temperature gradient of
10 degrees, the scales could drift several counts.

4. Architectural Description
The software developed in this note for digital counting
scales is based around the C8051F350. The F350 is a
fully integrated mixed-signal system-on-a-chip MCU.
The flexibility of the F350 allows for quick customizing
for a particular application’s counting scale. Highlighted
features of the F350 are listed here. For more
information, refer to the device data sheet.

High-Speed 8051-compatible micro controller core
(up to 50 MIPs peak)
In-system, full-speed, non-intrusive debug interface
True 24-Bit, ADC, with 17-Channel analog
multiplexer
Two 8-Bit, 2 mA IDACs
8 kB of on-chip Flash memory
768 bytes of on-chip RAM
SMBus/I2C and Enhanced UART serial interfaces
implemented in hardware
Four general-purpose 16-bit timers
Programmable counter/timer array (PCA) with three
capture/compare modules and watchdog timer
function
On-chip power-on reset, and VDD monitor

On-chip temperature sensor
On-chip voltage comparator
Two byte-wide I/O port (5 V tolerant)

Figure 1 illustrates a C8051F350-based digital
counting scale. The circuit consists of a bridge
transducer, a low pass filter, an LDO, an LCD driver
and an LCD. The C8051F350DK evaluation board was
used to develop and test the code. A 100 mV precision
dc signal source from an Agilent E3630A was used to
simulate the bridge transducer. The Silicon
Laboratories C2 interface on the evaluation board
aided in developing/debugging the software.

5. Software
The software works as follows. First, the software
function main() calls Config_F350() where it configures
the C8051F350’s Cross Bar, oscillator, ADC, and
timers. After the device is configured, main() calls

FullScaleout 5 lb
5 lb
-------- 5V 10mV

V
----------------×× 50mV= =

Dout Ain()2n

Vref
-------------------- 149 nV= =

AN184

Rev. 0.2 3

CalibrateADCforMeasurement() where a two point
calibration routine, self-offset calibration followed by
self-gain calibration, is performed. After errors from the
sampling system are removed, the MCU calculates the
size of one unit of measure via the function
Calculate_One_Count(). Finally, main() enters an
infinite while(1) loop. In this loop, the MCU monitors the
system temperature and the output voltage from the
bridge transducer. After the temperature is taken and
the current count on the scales is computed, the MCU
updates the output display. The system code developer
has a choice of output displays: the UART (at 9600, N,
8, 1) or an LCD driver. The UART is the default output
display. Software flow charts are detailed in Figure 2
though Figure 6.

5.1. Device Calibration
On first run, the Silicon Labs digital counting scale
software goes through a calibration sequence to
remove measurement errors, such as offset, from the
sampling system. CalibrateADCforMeasurement()
performs this task.
To ensure that the on-chip ADC contributes minimal
error to the measurement and that an accurate count is
acquired, these algorithms use a two-point self-
calibration scheme. In this scheme, a self-offset
calibration is performed followed by a self-gain
calibration. Offset calibration eliminates any ADC
offset. Gain calibration eliminates any slope error in the
ADC transfer function. For better accuracy, the user
can quickly modify the code to perform system
calibration to eliminate errors from the on-chip gain
amplifier or an external amplifier. Refer to the F350
data sheet for details. If system calibration is desired,
the user is expected to apply two known voltages,
preferably one near ground and one near full-scale.
Once self calibration is complete, the software stores
these coefficients in Flash eliminating the need to
calibrate the ADC in the future.
Calibration is most effective at slow output word rates.
If more than one gain setting is used and system
calibration is implemented, system calibration should
be performed at each gain setting to eliminate errors
between the different gain settings.
5.1.1. Caliculate_One_Count()
Caliculate_One_Count() effectively performs a system
calibration for one unit count. The unit to be counted
can be just about anything: a penny, a pencil, an
integrated circuit package. The only requirement is that

each unit be uniform and fairly consistent in weight.
To calculate the equivalent number of ADC counts that
is equal to 1 unit, the user first places the tare weight,
the “unloaded weight”, on the bridge. In this example, it
is 0 V (in real world applications, the tare weight might
be the bucket at the grocery store that holds the
produce being weighed). This value is then stored in
RAM. Then the user applies 100 mV (in the real world it
might be 100 pennies). The software then takes
another conversion (actually five conversions are taken
and averaged to minimize noise and provide a better
calibration point) and stores it in RAM. Then, the
software computes the number of ADC codes
equivalent to 1 Unit (in our case 1 mV; in real word
applications it might be 1 gram). These coefficients are
then stored in Flash for future calculations.

5.2. ADC Sampling
Once the number of ADC counts required for one unit
is computed and errors from the system have been
eliminated via self-calibration or system-calibration, the
software uses further data conversions to compute the
current count (total number of units) on the bridge
transducer.
Monitor_Weigh_Scale () is the subroutine that monitors
the transducer. It monitors the bridge via the on-chip
24-bit ADC0 at a sample rate of approximately 23 Hz.
Temperature—monitored main() while loop
Using the on-chip temperature sensor, main()’s while
loop also monitors the temperature every cycle. Note
that the on-chip temperature sensor is left uncalibrated.
For more accurate temperature measurements, a one
or two point temperature calibration may be used.
Further note that an external temperature sensor can
be used.
Update Display—updated in main() while loop
The Update_Display_Via_UART() subroutine is called
once every cycle of the infinite while loop. The code
can be modified to choose between updating via the
PC over UART or updating via LCD.
This function provides starter algorithms for the
HT1620 (Holtek) LCD driver. It provides algorithms to
write to the HT1620 and read from the HT1620.
Algorithms to activate and deactivate the elements on
the LCD that correspond to specific letters and/or
numerals will need to be added, based on the
implementation-specific LCD chosen.

AN184

4 Rev. 0.2

6. Conclusion
The C8051F350’s high level of integration and small
form-factor makes it ideal for digital counting scale
applications. This note discussed how to use the
C8051F350 family and its on-chip 24-bit analog-to-
digital converter in digital scale applications that use a
bridge transducer for the sensor. Example code is
provided.

AN184

Rev. 0.2 5

APPENDIX A—SOFTWARE FLOW DIAGRAMS

Figure 2. Main() Flow Chart.

main()

Config_F350()

while (1)

CalibrateADCfor
Measurement()

Monitor Temperature()

Monitor Weight()

Calculate_One_Count()

Update Display

AN184

6 Rev. 0.2

.

Figure 3. Calculate_One_Count() Flow Chart.

Acquire and Average 5
Conversions of 100 Units

END

Calculate_One_Count()

Calculate the Number of ADC
counts equal to one Unit

Acquire and Average 5
Conversions of Tare

Weight

Configure AMUX for
Bridge Measurements

Store Critical parameters
in FLASH

AN184

Rev. 0.2 7

Figure 4. Monitor_Weigh_Scale() Flow Chart.

Monitor_Scale()

Set AMUX for
Temperature or

Bridge

AV = AV + ADC0

I≤5?

ADC0 Done?

Start ADC0

AV = AV/5

END

No

AV = 0
I = 0

Yes

No

Yes

Return Appropriate
Parameter

Calculate Either
Temperature or

Weight on Bridge

AN184

8 Rev. 0.2

Figure 5. FLASH_PageUpdate() Flow Chart.

Erase scratch page
(512 bytes)

END

FLASH_PageUpdate()

Enable FLASH Writes

Send FLASH Access Key

Enable FLASH Erase

Initialize counter i to zero

Copy Source Byte to
Destination Byte

Send FLASH Access Key

i < 512
?

Yes

No
pread

< pstop or > pstart?
;also skip bytes

0xFF

Increment Source and
Destination Address

Counters

No

Yes

Disable FLASH Writes

Get Address of
SCRATCH_PAGE

Initialize pstart to end of
section in destination

page for exclusion

Initialize pstop to
beginning of section in

destination page for
exclusion

Initialize pread to 1st Byte
in Destination Page

-Initialize pwrite to original
destination page

-Initialize counter i to zero

Update new bytes by
copying Source Bytes to

Destination Bytes

Send FLASH Access Key

i < length
?

Yes
Nosource byte
 = 0xFF

?

Increment Source and
Destination Address

Counters

No

Yes

Copy contents of scratch
page to original

destination less the
skipped bytes which are

now 0xff; ready for update

Initialize pwrite to
beginning of section in

destination page

Initialize pread to 1st Byte
in SCRATCH_PAGE

No

AN184

Rev. 0.2 9

Figure 6. Flash_PageCopy() Flow Chart.

Erase Page (512 bytes)

END

FLASH_PageCopy()

Enable FLASH Writes

Send FLASH Access Key

Enable FLASH Erase

Initialize counter i to zero

Copy Source Byte to
Destination Byte

Send FLASH Access Key

i < 512
?

Yes

No

source byte =
0xFF

?

Increment Source and
Destination Address

Counters

No

Yes

Disable FLASH Writes

AN184

10 Rev. 0.2

APPENDIX B—SOFTWARE

F350_Weigh_Scale.h
//---
//
// Copyright 2004 Silicon Laboratories
//
// Filename: F350_Weigh_Scale.h
// Target Device: C8051F350
// Created: 15 JAN 2004
// Created By: DKC
// Tool chain: KEIL Eval C51
//
// This is header file that is used to define all preprossor directives,
// global variables, and prototypes.
// The user must modify this header file for their particular Bridge Transducer
// in use before proceeding.
//
//---
// Function Prototypes
//---
void Config_F350(void);
void FLASH_PageCopy (unsigned char code *src, unsigned char xdata *dest)
reentrant;
void FLASH_PageUpdate (unsigned char *src, unsigned char *dest, int length)
reentrant;
void CalibrateADCforMeasurement(void);
void Calculate_One_Count(void);
int Monitor_Weigh_Scale(unsigned char);
void Update_Display_Via_UART(void);
void Update_Display_Via_LCD(void);

//---
// UNIONs, STRUCTUREs, and ENUMs
//---
typedef union LONG { // byte-addressable LONG
 long l;
 unsigned char b[4];
} LONG;

typedef union INT { // byte-addressable INT
 int i;
 unsigned char b[2];
} INT;

LONG code DATA_PAGE[128] _at_ 0x1A00; // Reserved Space
char code SCRATCH_PAGE[512] _at_ 0x1800; // Reserved Space

//---
// Globale Variable Definitions
//---
 // Units;
unsigned int Temperature = 0; // 0.1K
unsigned int Weight = 0; // lbs
unsigned long Tare_Count = 0; // Digital Output,empty scale
unsigned long Full_Counts = 0; // Digital Output,full scale
unsigned long One_Count = 0; // Digital Output,one unit

AN184

Rev. 0.2 11

unsigned int Data_Word = 0; // Used to Communicate
 // to HT1620 LCD Driver

LONG temp_LONG_1,temp_LONG_2; // Temporary Storage Var.
INT temp_INT_1,temp_INT_2; // Temporary Storage Var.

//---
// 8051F350 PARAMETERS
//---
#define SYSCLK 3062500 // System clock frequency
#define BAUDRATE 9600 // Baud rate of UART in bps
#define TEMP_SENSOR_OFFSET -438 // Temp Sensor OFFSET(uV/degC)
#define TEMP_SENSOR_GAIN -1730 // Temp Sensor Gain(uV/degC)
#define VREF 3300 // ADC Volt Ref, (mV)
#define SCRATCH_PAGE 0x1800 // FLASH page, temp storage

//---
// Bit maskable PORT Definitions
//---
sbit FREE1 = P0^0; // P0.0 : FREE
sbit FREE2 = P0^1; // P0.1 : FREE
sbit FREE3 = P0^2; // P0.2 : FREE
sbit CS = P1^0; // P1.0 : Chip Select
sbit WR = P1^1; // P1.1 : Write
sbit RD = P1^2; // P1.2 : Read
sbit DATA = P1^3; // P1.3 : DATA

// AMUX Selections; Analog Inputs
#define VSCALE 0x08 // P0.0(+) : Unipolar, VIN
#define TSCALE 0xF8 // Internal : Unipolar TEMP

//---
// Calibration/Calculation PARAMETERS
//---
 // An estimate of the
 // Temperature<SLOPE>
 // in [tenth codes / K]
#define TEMP_SLOPE ((long) 16777216 / 100 * TEMP_SENSOR_GAIN / VREF)

//---
// Directives for Weigh Scale Monitor Function
//---
 // Units
#define TEMPERATURE 0x01 // 0.1K
#define WEIGHT 0x02 // Grams

//---
// Directives for Weigh Scale DATA_PAGE Elements
//---
#define Check_Byte_1 0x00 // 0x0A0A Default value
#define scale_slope 0x01 // Measurement Slope Register
#define scale_offset 0x02 // Voltage Offset Register
#define tare_count 0x03 // Voltage Offset Register
#define full_counts 0x04 // Voltage Offset Register
#define one_count 0x05 // Voltage Offset Register

AN184

12 Rev. 0.2

F350_Weigh_Scale.c

//---
//
// Copyright 2004 Silicon Laboratories
//
// Filename: F350_Weigh_Scale.h
// Target Device: 8051F350
// Created: 15 JAN 2004
// Created By: DKC
// Tool chain: KEIL Eval C51
//
// This is a stand alone weith scale design. It output units in lbs via an LCD
// or a PC via the UART.
//
//---
// Includes
//---
#include <c8051f350.h>
#include “F350_Weigh_Scale.h” //Weigh Scale Hearder File
#include <stdio.h>

//---
// Support Subroutines
//---
void Config_F350(void)
{ RSTSRC = 0x06; // Enable VDD Monitor and missing clock
//---
// PCA Configuration
//---
 PCA0MD &= ~0x40; // WDTE = 0 (Disable watchdog timer)

//---
// Port Configuration
//---
 XBR0 = 0x01; // Enable UART to Pins P0.4, P0.5
 XBR1 = 0x40; // Enable Crossbar

 P0SKIP = 0x00; // Skip No Port Pins
 P0MDOUT |= 0x10; // Enable UTX as push-pull output
 P0MDIN = 0xFF; // Configure No Pins as Analog Inputs

//---
// Oscilator Configuration
//---
 OSCICN |= 0xC0; // Configure internal oscillator for
 // its default frequency

//---
// UART0_Init
//---
//
// Configure the UART0 using Timer1, for <BAUDRATE> and 8-N-1.
//
 SCON0 = 0x10; // SCON0: 8-bit variable bit rate
 // level of STOP bit is ignored
 // RX enabled
 // ninth bits are zeros

AN184

Rev. 0.2 13

 // clear RI0 and TI0 bits
 if (SYSCLK/BAUDRATE/2/256 < 1) {
 TH1 = -(SYSCLK/BAUDRATE/2);
 CKCON |= 0x08; // T1M = 1; SCA1:0 = xx
 } else if (SYSCLK/BAUDRATE/2/256 < 4) {
 TH1 = -(SYSCLK/BAUDRATE/2/4);
 CKCON &= ~0x0B; // T1M = 0; SCA1:0 = 01
 CKCON |= 0x01;
 } else if (SYSCLK/BAUDRATE/2/256 < 12) {
 TH1 = -(SYSCLK/BAUDRATE/2/12);
 CKCON &= ~0x0B; // T1M = 0; SCA1:0 = 00
 } else {
 TH1 = -(SYSCLK/BAUDRATE/2/48);
 CKCON &= ~0x0B; // T1M = 0; SCA1:0 = 10
 CKCON |= 0x02;
 }

 TL1 = TH1; // init Timer1
 TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
 TMOD |= 0x20;
 TR1 = 1; // START Timer1
 TI0 = 1; // Indicate TX0 ready
}

//---
// FLASH_PageUpdate
//---
//
// This routine updates <length> characters at <dest> with those pointed to
// by <src> using a page-based read-modify-write process.
//
// It first erases <SCRATCH_PAGE> and copies the page containing the <dest>
// data to <SCRATCH_PAGE>, excluding <length> bytes starting at <dest>.
// It then copies <SCRATCH_PAGE> back to the page containing <dest>. Finally,
// it copies <length> bytes from <src> to <dest>, completing the update
// process.
// Note: this algorithm does not take into account memory page boundaries...
// It assumes each update is within one page.
void FLASH_PageUpdate (signed char *src, signed char *dest, int length) reentrant
{
 int i; // byte counter
 unsigned char xdata *pwrite; // FLASH write pointer
 unsigned char code *pread; // FLASH read pointer
 unsigned char code *pstop;
 unsigned char code *pstart;

 pwrite = (unsigned char xdata *) SCRATCH_PAGE;

 EA = 0; // disable interrupts (precautionary)
 PSCTL = 0x03; // MOVX writes target FLASH memory;
 // FLASH Erase operations enabled
 FLKEY = 0xA5; // FLASH key sequence #1
 FLKEY = 0xF1; // FLASH key sequence #2

 *pwrite = 0x00; // initiate erase operation

 PSCTL = 0x00; // Disable FLASH Writes

 // initialize <pread> to beginning of FLASH page containing <dest>

AN184

14 Rev. 0.2

 pread = (unsigned char code *) ((unsigned int) dest & 0xFE00);

 // <pstop> points to <dest>, which is the beginning of the area to exclude
 // from the copy process.
 pstop = (unsigned char code *) dest;

 // <pstart> points to the byte right after the area to exclude from the
 // copy process.
 pstart = (unsigned char code *) (pstop + length);

 // Now we copy the page containing <dest> to SCRATCH_PAGE, excluding
 // the bytes that are to be changed.
 for (i = 0; i < 512; i++) {
 if ((pread < pstop) || (pread >= pstart)) {
 if (*pread != 0xFF) { // exclude copying 0xff’s for efficiency

 PSCTL = 0x01; // disable FLASH erase operations;
 // MOVX writes target FLASH
 FLKEY = 0xA5; // FLASH key sequence #1
 FLKEY = 0xF1; // FLASH key sequence #2
 *pwrite = *pread; // copy bytes
 } PSCTL = 0x00; // Disable FLASH Writes
 }
 pwrite++; // advance pointers
 pread++;
 }

 // At this point, <SCRATCH_PAGE> has a copy of the entire page containing
 // <dest>, with the exclusion of the bytes to be replaced. We now copy
 // <SCRATCH_PAGE> back to the page containing <dest>.

 pwrite = (unsigned char xdata *) ((unsigned int) dest & 0xFE00);
 pread = (unsigned char code *) SCRATCH_PAGE;
 FLASH_PageCopy (pread, pwrite);

 // At this point, the page containing <dest> has been restored; the bytes
 // to be changed are now 0xFF’s; we can proceed with copying the bytes
 // from <src> into <dest> to complete the update.

 pwrite = (unsigned char xdata *) dest;

 EA = 0; // disable interrupts (precautionary)

 for (i = 0; i < length; i++) {
 if (*src != 0xFF) { // exclude writing 0xff’s for
 PSCTL = 0x01; // MOVX writes target FLASH memory
 // efficiency
 FLKEY = 0xA5; // FLASH key sequence #1
 FLKEY = 0xF1; // FLASH key sequence #2
 *pwrite++ = *src++; // copy bytes
 } PSCTL = 0x00; // Disable FLASH Writes
 }
}

//---
// FLASH_PageCopy
//---
//
// This routine copies the FLASH page starting at <src> to <dest>. It erases

AN184

Rev. 0.2 15

// the <dest> page before the copy process begins.
//
void FLASH_PageCopy (unsigned char code *src, unsigned char xdata *dest) reentrant
{
 int i; // byte counter

 EA = 0; // disable interrupts (precautionary)
 PSCTL = 0x03; // MOVX writes target FLASH memory;
 // FLASH erase operations enabled

 FLKEY = 0xA5; // FLASH key sequence #1
 FLKEY = 0xF1; // FLASH key sequence #2
 *dest = 0; // initiate erasure of <dest> FLASH
 // page
 PSCTL = 0x00; // Disable FLASH Writes

 for (i = 0; i < 512; i++) {
 if (*src != 0xFF) { // exclude writing 0xff’s for efficiency

 PSCTL = 0x01; // disable FLASH erase operations;
 // MOVX writes target FLASH memory
 FLKEY = 0xA5; // FLASH key sequence #1
 FLKEY = 0xF1; // FLASH key sequence #2
 *dest = *src; // copy bytes
 } PSCTL = 0x00; // Disable FLASH Writes
 dest++; // advance pointers
 src++;
 }
}

//---
// CalibrateADCforMeasurement
//---
// This routine assumes memory block 0x1A00 is erased
// Then this function calibrates the voltage channel and stores the calibration
// coefficients in the parameters xxx_slope and xxx_offset.
// This calibration routine uses the F350’s internal calibration functions.
//
void CalibrateADCforMeasurement(void)
{ unsigned char xdata *idata pwrite; // FLASH write pointer

 EA = 0; // Disable All Interrupts

 // Perform Self Calibration
 ADC0MD = 0x84; // Enable ADC; Internal Offset Cal.
 while(!AD0CALC); // Wait for calibration to complete

 ADC0MD = 0x85; // Enable ADC; Internal Gain Cal.
 while(!AD0CALC); // Wait for Calibration to complete

 // Memory’s been erased at 0x1A00
 // Store Gain Coefficients to FLASH
 temp_LONG_1.l = 1234; // Prepare storage parameter
 pwrite = (char xdata *)&(DATA_PAGE[scale_slope].l);
 FLASH_PageUpdate ((unsigned char *)&temp_LONG_1.b[0], pwrite, 4);

 // Memory’s been erased at 0x1A00
 // Store the Offset Coeffs to FLASH
 temp_LONG_1.l = 1234; // Prepare storage parameter

AN184

16 Rev. 0.2

 pwrite = (char xdata *)&(DATA_PAGE[scale_offset].l);
 FLASH_PageUpdate ((signed char *)&temp_LONG_1.b[0], pwrite, 4);
}

//---
// Calculate_One_Count
//---
// This routine calculates the tare weight of the scale in digital counts
// Then this function assumes the user places 100 equal units to be weighed
// on scale. From these two measurements the count of one unit is computed.
// From this, the number of units on the scales can be determined in future
// measurements
void Calculate_One_Count(void)
{ unsigned char xdata *idata pwrite;// FLASH write pointer
 char i;

 ADC0CN = 0x00; // Unipolar; Gain = 1
 ADC0DECH = 0x04; // Set Output word rate at for ~23 Hz
 ADC0DECL = 0x00; // Set Output word rate at for ~23 Hz
 ADC0MUX = VSCALE; // Select appropriate input for AMUX

 Tare_Count = 0; // Initialize to zero
 for(i=5;i;--i) // Average next 5 conversions
 {
 temp_LONG_1.l = 0;
 AD0INT = 0; // Clear end-of-conversion indicator
 ADC0MD = 0x82; // Enable ADC; Single conversions
 while(!AD0INT); // Wait for conversion to complete
 temp_LONG_1.l = ADC0H;
 temp_LONG_1.l = temp_LONG_1.l <<16;

 temp_LONG_1.l += ADC0M <<8;
 temp_LONG_1.l += ADC0L ;
 Tare_Count += temp_LONG_1.l;
 }
 Tare_Count = Tare_Count/5; // Store the Tare Digital Count Value

 Full_Counts = 0; // Initialize to zero
 for(i=5;i;--i) // Average next 5 conversions
 {
 temp_LONG_1.l = 0;
 AD0INT = 0; // Clear end-of-conversion indicator
 ADC0MD = 0x82; // Enable ADC; Single conversions
 while(!AD0INT); // Wait for conversion to complete
 temp_LONG_1.l = ADC0H;
 temp_LONG_1.l = temp_LONG_1.l <<16;

 temp_LONG_1.l += ADC0M <<8;
 temp_LONG_1.l += ADC0L ;
 Full_Counts += temp_LONG_1.l;
 }

 Full_Counts = Full_Counts/ 5; // Store the Calibration Count Value;
 // unually 100 units

 One_Count = Full_Counts - Tare_Count;
 One_Count = One_Count/100; // Divide by 100 assumes there are
 // 100 cal units on scale

 ADC0MD = 0x00; // Turn off ADC Module

AN184

Rev. 0.2 17

 // Memory’s already been erased at 0x1A00
 // Store Gain Coefficients to FLASH
 temp_LONG_1.l = 1234; // Prepare for FLASH Write
 pwrite = (char xdata *)&(DATA_PAGE[tare_count].l);
 FLASH_PageUpdate ((signed char *)&temp_LONG_1.b[0], pwrite, 4);

 temp_LONG_1.l = 1234; // Prepare for FLASH Write
 pwrite = (char xdata *)&(DATA_PAGE[full_counts].l);
 FLASH_PageUpdate ((signed char *)&temp_LONG_1.b[0], pwrite, 4);

 temp_LONG_1.l = 1234; // Prepare for FLASH Write
 pwrite = (char xdata *)&(DATA_PAGE[one_count].l);
 FLASH_PageUpdate ((signed char *)&temp_LONG_1.b[0], pwrite, 4);
}

//---
// Monitor Weigh_Scale
//---
// This routine configures the ADC’s AMUX, acquires conversions and returns
// appropriate parameter (weight or temperature) via variable result.
// Weight is returned in Unit counts. Example 100 pennies is 100.
// Temperature is returned in degree Kelvin. Ex 273 Kelvin returns a value 273
//
int Monitor_Weigh_Scale(unsigned char value)
{ char i;
 unsigned long av =0,delay_count=0;
 long signed result;

 ADC0DECH = 0x04; // Set Output word rate at for 23 Hz
 ADC0DECL = 0x00; // Set Output word rate at for 23 Hz

 switch (value)
 {
 case TEMPERATURE:
 ADC0CN = 0x00; // Unipolar; Gain = 1
 ADC0MUX = TSCALE; // Select appropriate input for AMUX
 break;

 case WEIGHT:
 ADC0CN = 0x00; // Unipolar; Gain = 1
 ADC0MUX = VSCALE; // Select appropriate input for AMUX
 break;
 }
 //Compute average of next 5 A/D conversions
 av = 0; // Initialize to Zero
 for(i=5;i;--i) // Average next 5 conversions
 {
 temp_LONG_1.l = 0;
 AD0INT = 0; // Clear end-of-conversion indicator
 ADC0MD = 0x82; // Enable ADC; Single conversions
 while(!AD0INT); // Wait for conversion to complete
 temp_LONG_1.l = ADC0H;
 temp_LONG_1.l = temp_LONG_1.l <<16;

 temp_LONG_1.l += ADC0M <<8;
 temp_LONG_1.l += ADC0L ;
 av += temp_LONG_1.l;
 }

AN184

18 Rev. 0.2

 ADC0MD = 0x00; // Turn off ADC Module

 av = av/5; // Compute the average

 switch (value)
 {
 case TEMPERATURE:
 result = (long) av /TEMP_SLOPE*1000; // Account for Temp. Slope
 result -= 100*TEMP_SENSOR_OFFSET; // Account for Temp. Offset
 result = result + 27315; // Convert to Degrees Kelvin
 break;

 case WEIGHT:
 result = av - Tare_Count;
 result = result/One_Count;
 break;
 }
 return (signed int) result;
}

void Update_Display_Via_UART(void)
{
 // Send Information to Hyper Terminal at 9600 Baud,8,n,1
 //printf (“Temperature = %d hundredths degrees K\n”, Temperature);
 printf (“Counts = %d units\n”, (int)Weight);
}
//---
// Update_Display_Via_LCD
//---
// This function provides starter algorithms for the HT1620,(Holtek) LCD driver.
// It provides algorithms to write to te HT1620 and Read from the HT1620.
// Specific algorithms to activate and deactivate the elements on the LCD that
// correspond to specific letters and numerals will need to be develop.
//
void Update_Display_Via_LCD(void)
{ unsigned char BIT_count; // counter for SPI transaction

 // Here is an example of a write command to the HT1620
 Data_Word = 0x1400; // Prepare information for writing to LCD
 Data_Word = Data_Word << 3; // Prepare information for writing to LCD
 CS = 0; // Select Serial Port
 for (BIT_count = 13; BIT_count > 0;BIT_count--)// 13 bits
 {
 DATA = Data_Word & 0x8000; // put current outgoing bit on DATA
 Data_Word = Data_Word <<1; // shift next bit into MSB

 WR = 0x01; //set sck high

 WR = 0x00; // set sck low
 }

 CS = 1; // Deselect LCD

 // Here is an example of a read command to the HT1620

 Data_Word = 0x1800; // Prepare information for writing to LCD
 Data_Word = Data_Word << 3; // Prepare information for writing to LCD
 CS = 0; // Select LCD
 for (BIT_count = 9; BIT_count > 0;BIT_count--)// 9 bits

AN184

Rev. 0.2 19

 {
 DATA = Data_Word & 0x8000; // put current outgoing bit on DATA
 Data_Word = Data_Word <<1; // shift next bit into MSB

 WR = 0x01; // set sck high

 Data_Word |= DATA; // capture current bit on DATA

 WR = 0x00; // set sck low
 }
 for (BIT_count = 4; BIT_count > 0;BIT_count--)// 4 bits
 {
 DATA = Data_Word & 0x8000; // put current outgoing bit on DATA
 Data_Word = Data_Word <<1; // shift next bit into MSB

 RD = 0x01; // set sck high

 Data_Word |= DATA; // capture current bit on DATA

 RD = 0x00; // set sck low
 }

 CS = 1; // Deselect LCD
}

//---
// Main Function
//---
// - Main calls all the functions necessary to configure the C8051F350.
// It also calls routines to calibrate the electronic scale. Once setup
// and calibration are complete, Main() determines the Unit count on
// the scale and outputs via the UART.
//
// System Calibration is only performed the first time through the cycle.
//
void main(void)
{
 Config_F350(); // Config F350

 CalibrateADCforMeasurement(); // Calibrate ADC

 Calculate_One_Count(); // Calculate the size of one count

 // Update Temperature and Bridge Monitoring Algorithms
 while(1)
 { // Once pressed get temperature and weight

 Temperature = Monitor_Weigh_Scale (TEMPERATURE);// Get Latest Temperature
 // Acquire Pack’s Voltages
 Weight = Monitor_Weigh_Scale (WEIGHT);

 // Update PC Via UART
 Update_Display_Via_UART();
 // Update PC Via LCD
 //Update_Display_Via_LCD();
 }
}
// END of File

AN184

20 Rev. 0.2

CONTACT INFORMATION
Silicon Laboratories Inc.
4635 Boston Lane
Austin, TX 78735
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: productinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

	1. Introduction
	Figure 1. C8051F350 Bridge Transducer Circuit

	2. Background
	3. Theory of Operation
	4. Architectural Description
	5. Software
	5.1. Device Calibration
	5.1.1. Caliculate_One_Count()

	5.2. ADC Sampling

	6. Conclusion
	Appendix A-Software Flow Diagrams
	Figure 2. Main() Flow Chart.
	Figure 3. Calculate_One_Count() Flow Chart.
	Figure 4. Monitor_Weigh_Scale() Flow Chart.
	Figure 5. FLASH_PageUpdate() Flow Chart.
	Figure 6. Flash_PageCopy() Flow Chart.

	Appendix B-Software
	F350_Weigh_Scale.h
	F350_Weigh_Scale.c

	Contact Information

