SILICON LABODORATORIES

AN184

DIGITAL COUNTING SCALE

Relevant Devices
This application note applies to the following devices:

C8051F350, C8051F351, C8051F352, and C8051F353.

1. Introduction

The C8051F350 provides a low-cost system-on-chip
solution for digital counting/measurement scales such
as postal scales, deli scales, and analytical scales.
Using the F350, the entire measurement system can be
implemented using a few passive components, an LCD
driver, and an LCD.

This application note provides an example of a digital
counting scale design, including design considerations,
using the C8051F350.

This reference design includes the following:
m Background and theory of operation

m Hardware and software description

m Typical performance examples

m Complete firmware (developed in C)

2. Background

Bridge transducers are the most common sensor type in
digital counting scales. They convert a force into a
voltage that is proportional to the force applied to the
bridge. Bridge transducers are used because they are
extremely linear and have repeatable characteristics for
large applied forces. Their only real drawback is low
sensitivity, which typically ranges between 1 mV/V to
10 mV/\V.

Transducer manufacturers exhaustively characterize
their sensors to ensure they have linear transfer
functions for the region where they are specified for use.
Bridge transducers are manufactured with various
technologies ranging from diffused silicon to bonded foil
materials. Each technology has its advantages and
disadvantages concerning its sensitivity, linearity, and
thermal stability. Consult the various manufacturer’s
data sheets to select the transducer that best meets the
application’s requirements.

5V
N
+3.3V
LDO
250 250
100

50 pF
| |

C8051F 350

AINO

24- Bit ADC
VREF LCD

50 MIPs Peak CPU &
8 kB Flash Driver

AIN

AIN1

GND

il

Figure 1. C8051F350 Bridge Transducer Circuit

Rev. 0.2 7/04

Copyright © 2004 by Silicon Laboratories

AN184

AN184

3. Theory of Operation

Bridge transducers are ratiometric sensors.Therefore,
their full scale output voltage depends on the voltage
used to excite the sensor (i.e., its excitation voltage).
5V is a common excitation voltage. For example, a
51b. bridge transducer with a 10 mV/V sensitivity
excited with a 5 V supply will ideally produce a 50 mV
output voltage when a 5 Ib. weight is placed on the
transducer.

_5lb 10mv _
FullScaleout = 5Ibx5V><—V 50mV

Equation 1. Digital Output Code

Relatively speaking, 50 mV is a small signal. To
compound the issue, high precision scales will divide
this 50 mV full scale output signal into 10,000 divisions
or 5 uV. This 5 pV equates to one unit of measure on
the scales output display (perhaps 1 0z.). Now, 5 pV is
a very small signal to resolve. The modern way to
resolve such an analog signal is to use an analog-to-
digital converter (ADC), preferably a 24-bit ADC, with
an least significant bit (LSB) that is smaller than the
signal to be resolved. A common full scale range for
most ADCs today is 2.5V, which is set by the voltage
reference of the system. Equation 2 illustrates that one
24-bit LSB (least significant bit or 1 ADC count), with a
2.5V reference, is 149 nV.

_ (Ain)2"
Vref

Equation 2. Digital Output Code

In this example, the 24-bit ADC’s 149 nV LSB easily
resolves the 5 yV minimum output level of the bridge
and provides significant overhead to account for other
system issues such as temperature drift and offset
error.

A 16-bit ADC can also be used to resolve the 5 uVv
minimum transducer voltage. However, an amplifier is
required in this system as the LSB of a 16-bit ADC is
only 38 uV (2.5V Vggp). By amplifying the bridge
transducer’s output voltage by eight and increasing the
transducer’s minimum output voltage to 40 pV, the
combo amplifier plus 16-bit ADC provides enough
resolution to resolves 10,000 counts. Note that in a 16-
bit system, a 8x amplifier is marginally adequate to
resolve 5 yV. Most designers increase this gain and
design the amplifier’s gain stage to match the full scale
input range of the ADC. In this 16-bit example, a 50x
gain would be used as 50 mV times 50 is 2.5V, the
typical full scale input of an ADC.

Here is one final comment when designing a high

Dout =149nV

accuracy counting scale, system designers need to
consider other parasitic board level issues like amplifier
noise and drift and parasitic thermocouple effects on
the system board. Thermocouple effects from common
tin/lead solder can be as high as 3 pV/°C. On a 10,000
count scale exposed to a temperature gradient of
10 degrees, the scales could drift several counts.

4. Architectural Description

The software developed in this note for digital counting
scales is based around the C8051F350. The F350 is a
fully integrated mixed-signal system-on-a-chip MCU.
The flexibility of the F350 allows for quick customizing
for a particular application’s counting scale. Highlighted
features of the F350 are listed here. For more
information, refer to the device data sheet.

m High-Speed 8051-compatible micro controller core
(up to 50 MIPs peak)

m In-system, full-speed, non-intrusive debug interface

True 24-Bit, ADC, with 17-Channel analog
multiplexer

Two 8-Bit, 2 mA IDACs
8 kB of on-chip Flash memory
768 bytes of on-chip RAM

SMBus/I12C and Enhanced UART serial interfaces
implemented in hardware

Four general-purpose 16-bit timers

Programmable counter/timer array (PCA) with three
capture/compare modules and watchdog timer
function

m On-chip power-on reset, and Vpp monitor

m On-chip temperature sensor
m On-chip voltage comparator
m Two byte-wide I/O port (5 V tolerant)

Figure 1 illustrates a C8051F350-based digital
counting scale. The circuit consists of a bridge
transducer, a low pass filter, an LDO, an LCD driver
and an LCD. The C8051F350DK evaluation board was
used to develop and test the code. A 100 mV precision
dc signal source from an Agilent E3630A was used to
simulate the bridge transducer. The Silicon
Laboratories C2 interface on the evaluation board
aided in developing/debugging the software.

5. Software

The software works as follows. First, the software
function main() calls Config_F350() where it configures
the C8051F350’s Cross Bar, oscillator, ADC, and
timers. After the device is configured, main() calls

2 Rev. 0.2

SILICON LABORATORIES

AN184

CalibrateADCforMeasurement() where a two point
calibration routine, self-offset calibration followed by
self-gain calibration, is performed. After errors from the
sampling system are removed, the MCU calculates the
size of one unit of measure via the function
Calculate_One_Count(). Finally, main() enters an
infinite while(1) loop. In this loop, the MCU monitors the
system temperature and the output voltage from the
bridge transducer. After the temperature is taken and
the current count on the scales is computed, the MCU
updates the output display. The system code developer
has a choice of output displays: the UART (at 9600, N,
8, 1) or an LCD driver. The UART is the default output
display. Software flow charts are detailed in Figure 2
though Figure 6.

5.1. Device Calibration

On first run, the Silicon Labs digital counting scale
software goes through a calibration sequence to
remove measurement errors, such as offset, from the
sampling system. CalibrateADCforMeasurement()
performs this task.

To ensure that the on-chip ADC contributes minimal
error to the measurement and that an accurate count is
acquired, these algorithms use a two-point self-
calibration scheme. In this scheme, a self-offset
calibration is performed followed by a self-gain
calibration. Offset calibration eliminates any ADC
offset. Gain calibration eliminates any slope error in the
ADC transfer function. For better accuracy, the user
can quickly modify the code to perform system
calibration to eliminate errors from the on-chip gain
amplifier or an external amplifier. Refer to the F350
data sheet for details. If system calibration is desired,
the user is expected to apply two known voltages,
preferably one near ground and one near full-scale.

Once self calibration is complete, the software stores
these coefficients in Flash eliminating the need to
calibrate the ADC in the future.

Calibration is most effective at slow output word rates.
If more than one gain setting is used and system
calibration is implemented, system calibration should
be performed at each gain setting to eliminate errors
between the different gain settings.

5.1.1. Caliculate_One_Count()

Caliculate_One_Count() effectively performs a system
calibration for one unit count. The unit to be counted
can be just about anything: a penny, a pencil, an
integrated circuit package. The only requirement is that

each unit be uniform and fairly consistent in weight.

To calculate the equivalent number of ADC counts that
is equal to 1 unit, the user first places the tare weight,
the “unloaded weight”, on the bridge. In this example, it
is 0 V (in real world applications, the tare weight might
be the bucket at the grocery store that holds the
produce being weighed). This value is then stored in
RAM. Then the user applies 100 mV (in the real world it
might be 100 pennies). The software then takes
another conversion (actually five conversions are taken
and averaged to minimize noise and provide a better
calibration point) and stores it in RAM. Then, the
software computes the number of ADC codes
equivalent to 1 Unit (in our case 1 mV; in real word
applications it might be 1 gram). These coefficients are
then stored in Flash for future calculations.

5.2. ADC Sampling

Once the number of ADC counts required for one unit
is computed and errors from the system have been
eliminated via self-calibration or system-calibration, the
software uses further data conversions to compute the
current count (total number of units) on the bridge
transducer.

Monitor_Weigh_Scale () is the subroutine that monitors
the transducer. It monitors the bridge via the on-chip
24-bit ADCO at a sample rate of approximately 23 Hz.

Temperature—monitored main() while loop

Using the on-chip temperature sensor, main()’'s while
loop also monitors the temperature every cycle. Note
that the on-chip temperature sensor is left uncalibrated.
For more accurate temperature measurements, a one
or two point temperature calibration may be used.
Further note that an external temperature sensor can
be used.

Update Display—updated in main() while loop

The Update Display Via UART() subroutine is called
once every cycle of the infinite while loop. The code
can be modified to choose between updating via the
PC over UART or updating via LCD.

This function provides starter algorithms for the
HT1620 (Holtek) LCD driver. It provides algorithms to
write to the HT1620 and read from the HT1620.
Algorithms to activate and deactivate the elements on
the LCD that correspond to specific letters and/or
numerals will need to be added, based on the
implementation-specific LCD chosen.

SILICON LABORATORIES

Rev. 0.2 3

AN184

6. Conclusion

The C8051F350’s high level of integration and small
form-factor makes it ideal for digital counting scale
applications. This note discussed how to use the
C8051F350 family and its on-chip 24-bit analog-to-
digital converter in digital scale applications that use a
bridge transducer for the sensor. Example code is
provided.

®
4 Rev. 0.2 @

SILICON LABORATORIES

AN184

APPENDIX A—SOFTWARE FLOW DIAGRAMS

Config_F350()

Y

CalibrateADCfor
Measurement()

v

Calculate_One_Count()

Monitor Temperature()

v

Monitor Weight()

v

Update Display

Figure 2. Main() Flow Chart.

SILICON LABORATORIES

Rev. 0.2

AN184

Calculate_One_Count()

Configure AMUX for
Bridge Measurements

Y

Acquire and Average 5
Conversions of Tare
Weight

v

Acquire and Average 5
Conversions of 100 Units

v

Calculate the Number of ADC
counts equal to one Unit

v

Store Critical parameters
in FLASH

v

Figure 3. Calculate_One_Count() Flow Chart.

Rev. 0.2

SILICON LABORATORIES

AN184

Monitor_Scale()

Set AMUX for
Temperature or
Bridge

No

Yes

Start ADCO

No
ADCO Done?
Yes

AV = AV + ADCO

— AV = AV/5

v

Calculate Either
Temperature or
Weight on Bridge

v

Return Appropriate
Parameter

Figure 4. Monitor_Weigh_Scale() Flow Chart.

®
@ Rev. 0.2 7

SILICON LABORATORIES

AN184

FLASH_PageUpdate()

Get Address of
SCRATCH_PAGE

Y

Enable FLASH Erase

Y

Send FLASH Access Key

Y

Erase scratch page
(512 bytes)

v

Enable FLASH Writes

Y

Initialize pread to 1st Byte
in Destination Page

Initialize pstop to
beginning of section in
destination page for
exclusion

Initialize pstart to end of
section in destination
page for exclusion

Initialize counter i to zero

No

A

Initialize pwrite to
beginning of section in
destination page

v

Initialize pread to 1st Byte
in SCRATCH_PAGE

v

Copy contents of scratch
page to original
destination less the
skipped bytes which are
now Oxff; ready for update

-Initialize pwrite to original
destination page
-Initialize counter i to zero

pread
< pstop or > pstart?
;also skip bytes
OxFF

Send FLASH Access Key

Y

Copy Source Byte to
Destination Byte

Increment Source and
Destination Address
Counters

Send FLASH Access Key

Update new bytes by
copying Source Bytes to
Destination Bytes

Increment Source and
Destination Address
Counters

A

Disable FLASH Writes

Figure 5. FLASH_PageUpdate() Flow Chart.

SILICON LABORATORIES

AN184

FLASH_PageCopy()

Enable FLASH Erase

v

Send FLASH Access Key

v

Erase Page (512 bytes)

v

Enable FLASH Writes

v

Initialize counter i to zero

]
-

source byte =
OxFF
?

Send FLASH Access Key

v

Copy Source Byte to
Destination Byte

v

Increment Source and
Destination Address l—
Counters

v

Disable FLASH Writes

Figure 6. Flash_PageCopy() Flow Chart.

®
@ Rev. 0.2 9

SILICON LABORATORIES

AN184

APPENDIX B—SOFTWARE

F350_Weigh_Scale.h

//
// Copyright 2004 Silicon Laboratories
//

// This is header file that is used to define all preprossor directives,

// The user must modify this header file for their particular Bridge Transducer

// Filename: F350 Weigh Scale.h

// Target Device: C8051F350

// Created: 15 JAN 2004

// Created By: DKC

// Tool chain: KEIL Eval C51

//

// global variables, and prototypes.
// in use before proceeding.

//

/=

// Function Prototypes

void Config F350(void);

void FLASH PageCopy (unsigned char code *src, unsigned char xdata *dest)

reentrant;

void FLASH PageUpdate (unsigned char *src,

reentrant;

void CalibrateADCforMeasurement (void) ;
void Calculate One Count (void);

int Monitor Weigh Scale (unsigned char);
void Update Display Via UART (void);

void Update Display Via LCD(void);

// UNIONs, STRUCTUREs, and ENUMs
typedef union LONG ({

long 1;

unsigned char b[4];

} LONG;

typedef union INT ({

int 1i;
unsigned char b[2];
} INT;
LONG code DATA PAGE[128] _at_ 0x1A00;

char code SCRATCH PAGE[512] at 0x1800;

unsigned int Temperature =
unsigned int Weight =

unsigned long Full Counts =
unsigned long One Count =

0
0
unsigned long Tare Count = 0;
0
0

//

unsigned char *dest, int length)

byte-addressable LONG

byte-addressable INT

Reserved Space
Reserved Space

1bs

Digital Output,empty scale
Digital Output,full scale
Digital Output,one unit

10

Rev. 0.2

SILICON LABORATORIES

AN184

unsigned int Data Word = 0; // Used to Communicate
// to HT1620 LCD Driver

LONG temp LONG 1,temp LONG 2; // Temporary Storage Var.

INT temp INT 1,temp INT 2; // Temporary Storage Var.

A s
// 8051F350 PARAMETERS

[mm e
#define SYSCLK 3062500 // System clock frequency
#define BAUDRATE 9600 // Baud rate of UART in bps
#define TEMP_ SENSOR OFFSET -438 // Temp Sensor OFFSET (uV/degC)
#define TEMP SENSOR GAIN -1730 // Temp Sensor Gain (uv/degC)
#define VREF 3300 // ADC Volt Ref, (mV)

#define SCRATCH_PAGE 0x1800 // FLASH page, temp storage
ettt
// Bit maskable PORT Definitions

A
sbit FREE1 = P0"0; // P0.0 FREE

sbit FREE2 = P0"1; // PO.1 FREE

sbit FREE3 = P0"2; // P0.2 : FREE

sbit Cs = P1"0; // P1.0 : Chip Select

sbit WR = P1"1; // Pl.1 Write

sbit RD = P1"2; // PL.2 Read

sbit DATA = P1"3; // P1.3 DATA

// AMUX Selections; Analog Inputs

#define VSCALE 0x08 // P0.0(+) : Unipolar, VIN
#define TSCALE 0xF8 // Internal : Unipolar TEMP
/-
// Calibration/Calculation PARAMETERS

e e

// An estimate of the

// Temperature<SLOPE>

// in [tenth codes / K]
#define TEMP SLOPE ((long) 16777216 / 100 * TEMP_SENSOR GAIN / VREF)

e e
// Directives for Weigh Scale Monitor Function
i e Rl
// Units
#define TEMPERATURE 0x01 // 0.1K
#define WEIGHT 0x02 // Grams
et e e
// Directives for Weigh Scale DATA PAGE Elements
/=
#define Check Byte 1 0x00 // 0xOAOA Default value
#define scale slope 0x01 // Measurement Slope Register
#define scale offset 0x02 // Voltage Offset Register
#define tare count 0x03 // Voltage Offset Register
#define full counts 0x04 // Voltage Offset Register
#define one count 0x05 // Voltage Offset Register

Rev. 0.2

SILICON LABORATORIES

11

AN184

F350_Weigh_Scale.c

J e R R
//

// Copyright 2004 Silicon Laboratories
//

// Filename: F350 Weigh Scale.h
// Target Device: 8051F350

// Created: 15 JAN 2004

// Created By: DKC

// Tool chain: KEIL Eval C51

//

// This is a stand alone weith scale design. It output units in lbs via an LCD
// or a PC via the UART.

//

/=
// Includes

#include <c8051£350.h>
#include “F350 Weigh Scale.h” //Weigh Scale Hearder File
#include <stdio.h>

/) mm e
// Support Subroutines
e e
void Config F350(void)
{ RSTSRC = 0x06; // Enable VDD Monitor and missing clock
e
// PCA Configuration
ettt
PCAOMD &= ~0x40; // WDTE = 0 (Disable watchdog timer)
/e
// Port Configuration
e
XBRO = 0x01; // Enable UART to Pins P0.4, PO0.5
XBR1 = 0x40; // Enable Crossbar
POSKIP = 0x00; // Skip No Port Pins
POMDOUT |= 0x10; // Enable UTX as push-pull output
POMDIN = OxFF; // Configure No Pins as Analog Inputs
ettt
// Oscilator Configuration
e
OSCICN |= 0xCO0; // Configure internal oscillator for
// its default frequency
et
// UARTO Init
et
//
// Configure the UARTO using Timerl, for <BAUDRATE> and 8-N-1.
//
SCONO = 0x10; // SCONO: 8-bit variable bit rate
// level of STOP bit is ignored
// RX enabled
// ninth bits are zeros

12 Rev. 0.2

SILICON LABORATORIES

AN184

//
//
Vo

{

// clear RIO and TIO bits
if (SYSCLK/BAUDRATE/2/256 < 1) {
TH1 = - (SYSCLK/BAUDRATE/2) ;
CKCON |= 0x08; // TIM = 1; SCAl:0 = xx
} else if (SYSCLK/BAUDRATE/2/256 < 4) {
TH1 = - (SYSCLK/BAUDRATE/2/4) ;
CKCON &= ~0x0B; // TIM = 0; SCAl:0 = 01
CKCON |= 0x01;
} else if (SYSCLK/BAUDRATE/2/256 < 12) {
TH1 = - (SYSCLK/BAUDRATE/2/12);
CKCON &= ~0x0B; // TIM = 0; SCAl:0 = 00
} else {
TH1 = - (SYSCLK/BAUDRATE/2/48) ;
CKCON &= ~0x0B; // TIM = 0; SCAl:0 = 10
CKCON |= 0x02;
}
TL1l = TH1; // init Timerl
TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
TMOD |= 0x20;
TR1 = 1; // START Timerl
TIO = 1; // Indicate TX0 ready

This routine updates <length> characters at <dest> with those pointed to
by <src> using a page-based read-modify-write process.

It first erases <SCRATCH PAGE> and copies the page containing the <dest>
data to <SCRATCH_ PAGE>, excluding <length> bytes starting at <dest>.
It then copies <SCRATCH PAGE> back to the page containing <dest>. Finally,
it copies <length> bytes from <src> to <dest>, completing the update
process.
Note: this algorithm does not take into account memory page boundaries...
It assumes each update is within one page.
id FLASH PageUpdate (signed char *src, signed char *dest, int length) reentrant

int i; // byte counter
unsigned char xdata *pwrite; // FLASH write pointer
unsigned char code *pread; // FLASH read pointer
unsigned char code *pstop;

unsigned char code *pstart;

pwrite = (unsigned char xdata *) SCRATCH PAGE;

EA = 0; // disable interrupts (precautionary)

PSCTL = 0x03; // MOVX writes target FLASH memory;
// FLASH Erase operations enabled

FLKEY = O0xA5; // FLASH key sequence #1

FLKEY = OxF1; // FLASH key sequence #2

*pwrite = 0x00; // initiate erase operation

PSCTL = 0x00; // Disable FLASH Writes

// initialize <pread> to beginning of FLASH page containing <dest>

Rev. 0.2 13

SILICON LABORATORIES

AN184

pread = (unsigned char code *) ((unsigned int) dest & OxFE00);

// <pstop> points to <dest>, which is the beginning of the area to exclude
// from the copy process.
pstop = (unsigned char code *) dest;

// <pstart> points to the byte right after the area to exclude from the
// copy process.
pstart = (unsigned char code *) (pstop + length);

// Now we copy the page containing <dest> to SCRATCH PAGE, excluding
// the bytes that are to be changed.
for (i1 = 0; 1 < 512; i++4) {

if ((pread < pstop) || (pread >= pstart)) {
if (*pread != O0xFF) { // exclude copying O0xff’s for efficiency
PSCTL = 0x01; // disable FLASH erase operations;
// MOVX writes target FLASH
FLKEY = O0OxA5; // FLASH key sequence #1
FLKEY = OxF1; // FLASH key sequence #2
*pwrite = *pread; // copy bytes
} PSCTL = 0x00; // Disable FLASH Writes
}
pwrite++; // advance pointers
pread++;

// At this point, <SCRATCH PAGE> has a copy of the entire page containing
// <dest>, with the exclusion of the bytes to be replaced. We now copy
// <SCRATCH PAGE> back to the page containing <dest>.

pwrite = (unsigned char xdata *) ((unsigned int) dest & OxFEO0O0);

pread = (unsigned char code *) SCRATCH_PAGE;

FLASH PageCopy (pread, pwrite);

// At this point, the page containing <dest> has been restored; the bytes
// to be changed are now OxFF’s; we can proceed with copying the bytes

// from <src> into <dest> to complete the update.

pwrite = (unsigned char xdata *) dest;

EA = 0; // disable interrupts (precautionary)

for (1 = 0; 1 < length; i++) {

if (*src != OxFF) { // exclude writing Oxff’s for
PSCTL = 0x01; // MOVX writes target FLASH memory
// efficiency
FLKEY = 0xA5; // FLASH key sequence #1
FLKEY = O0xF1; // FLASH key sequence #2
*pwrite++ = *src++; // copy bytes
} PSCTL = 0x00; // Disable FLASH Writes
}
}
[m e -
// FLASH PageCopy
/e o
//

// This routine copies the FLASH page starting at <src> to <dest>. It erases

14 Rev. 0.2

SILICON LABORATORIES

AN184

// the <dest> page before the copy process begins.

//
void FLASH PageCopy (unsigned char code *src, unsigned char xdata *dest) reentrant
{
int i; // byte counter
EA = 0; // disable interrupts (precautionary)
PSCTL = 0x03; // MOVX writes target FLASH memory;
// FLASH erase operations enabled
FLKEY = 0xA5; // FLASH key sequence #1
FLKEY = 0xF1; // FLASH key sequence #2
*dest = 0; // initiate erasure of <dest> FLASH
// page
PSCTL = 0x00; // Disable FLASH Writes
for (1 = 0; 1 < 512; 1i++)
if (*src != OxFF) { // exclude writing Oxff’s for efficiency
PSCTL = 0x01; // disable FLASH erase operations;
// MOVX writes target FLASH memory
FLKEY = O0xA5; // FLASH key sequence #1
FLKEY = 0xF1; // FLASH key sequence #2
*dest = *src; // copy bytes
} PSCTL = 0x00; // Disable FLASH Writes
dest++; // advance pointers
src++;

//
//
//
!/
!/
1/
//
vO

{

This routine assumes memory block O0x1A00 is erased

Then this function calibrates the voltage channel and stores the calibration
coefficients in the parameters xxx slope and xxx offset.

This calibration routine uses the F350’s internal calibration functions.

id CalibrateADCforMeasurement (void)

unsigned char xdata *idata pwrite; // FLASH write pointer

EA = 0; // Disable All Interrupts

// Perform Self Calibration

ADCOMD = 0x84; // Enable ADC; Internal Offset Cal.
while (!ADOCALC) ; // Wait for calibration to complete
ADCOMD = 0x85; // Enable ADC; Internal Gain Cal.

while (!ADOCALC) ; // Wait for Calibration to complete

// Memory’s been erased at 0x1A00
// Store Gain Coefficients to FLASH
temp LONG 1.1 = 1234; // Prepare storage parameter
pwrite = (char xdata *)&(DATA PAGE[scale slope].l);
FLASH PageUpdate ((unsigned char *)é&temp LONG 1.b[0], pwrite, 4);
// Memory’s been erased at 0x1A00
// Store the Offset Coeffs to FLASH
// Prepare storage parameter

temp LONG 1.1 = 1234;

Rev. 0.2

SILICON LABORATORIES

15

AN184

pwrite = (char xdata *)&(DATA PAGE[scale offset].l);
FLASH PageUpdate ((signed char *)é&temp LONG 1.b[0], pwrite, 4);

// Calculate One Count

/==
// This routine calculates the tare weight of the scale in digital counts

// Then this function assumes the user places 100 equal units to be weighed

// on scale. From these two measurements the count of one unit is computed.

// From this, the number of units on the scales can be determined in future

// measurements

void Calculate One Count (void)

{ unsigned char xdata *idata pwrite;// FLASH write pointer

char 1i;

ADCOCN = 0x00; // Unipolar; Gain = 1

ADCODECH = 0x04; // Set Output word rate at for ~23 Hz
ADCODECL = 0x00; // Set Output word rate at for ~23 Hz
ADCOMUX = VSCALE; // Select appropriate input for AMUX

Tare Count = 0; // Initialize to zero

for (i=5;1i;--1) // Average next 5 conversions

{
temp LONG 1.1 = 0;
ADOINT = 0; // Clear end-of-conversion indicator
ADCOMD = 0x82; // Enable ADC; Single conversions
while (!ADOINT) ; // Wait for conversion to complete
temp_LONG_l.l = ADCOH;
temp LONG 1.1 = temp LONG 1.1 <<16;
temp LONG 1.1 += ADCOM <<8;
temp LONG 1.1 += ADCOL ;
Tare Count += temp LONG 1.1;

}

Tare Count = Tare Count/5; // Store the Tare Digital Count Value
Full Counts = 0; // Initialize to zero
for (i=5;1i;--1) // Average next 5 conversions

{
temp LONG 1.1 = 0;
ADOINT = 0; // Clear end-of-conversion indicator
ADCOMD = 0x82; // Enable ADC; Single conversions
while (!ADOINT) ; // Wait for conversion to complete
temp LONG 1.1 = ADCOH;
temp LONG 1.1 = temp LONG 1.1 <<16;
temp LONG 1.1 += ADCOM <<8;
temp LONG 1.1 += ADCOL ;
Full Counts += temp LONG 1.1;

Full Counts = Full Counts/ 5; // Store the Calibration Count Value;
// unually 100 units

One Count = Full Counts - Tare Count;

One Count = One Count/100; // Divide by 100 assumes there are
// 100 cal units on scale

ADCOMD = 0x00; // Turn off ADC Module

16 Rev. 0.2

SILICON LABORATORIES

AN184

// Memory’s already been erased at 0x1A00
// Store Gain Coefficients to FLASH

temp LONG 1.1 = 1234; // Prepare for FLASH Write

pwrite = (char xdata *)&(DATA PAGE[tare count].l);

FLASH PageUpdate ((signed char *)é&temp LONG 1.b[0], pwrite, 4);

temp LONG 1.1 = 1234; // Prepare for FLASH Write
pwrite = (char xdata *) & (DATA PAGE[full counts].l);
FLASH PageUpdate ((signed char *)é&temp LONG 1.b[0], pwrite, 4);

temp LONG 1.1 = 1234; // Prepare for FLASH Write
pwrite = (char xdata *)&(DATA PAGE[one count].l);
FLASH PageUpdate ((signed char *)é&temp LONG 1.b[0], pwrite, 4);

This routine configures the ADC’s AMUX, acquires conversions and returns
appropriate parameter (weight or temperature) via variable result.

Weight is returned in Unit counts. Example 100 pennies is 100.

Temperature is returned in degree Kelvin. Ex 273 Kelvin returns a value 273

int Monitor Weigh Scale (unsigned char value)

{

char 1i;
unsigned long av =0,delay count=0;
long signed result;

0x04; // Set Output word rate at for 23 Hz
0x00; // Set Output word rate at for 23 Hz

ADCODECH
ADCODECL

switch (value)

{
case TEMPERATURE:

ADCOCN = 0x00; // Unipolar; Gain = 1
ADCOMUX = TSCALE; // Select appropriate input for AMUX
break;

case WEIGHT:

ADCOCN = 0x00; // Unipolar; Gain = 1
ADCOMUX = VSCALE; // Select appropriate input for AMUX
break;

}
//Compute average of next 5 A/D conversions
av = 0; // Initialize to Zero
for(i=5;1i;--1) // Average next 5 conversions
{

temp LONG 1.1 = 0;

ADOINT = 6; // Clear end-of-conversion indicator
ADCOMD = 0x82; // Enable ADC; Single conversions

while (!ADOINT) ; // Wait for conversion to complete
temp LONG 1.1 = ADCOH;

temp LONG 1.1 = temp LONG 1.1 <<16;

temp LONG 1.1 += ADCOM <<8;

temp LONG 1.1 += ADCOL ;

av += temp LONG 1.1;

31

Rev. 0.2

LICON LABORATORIES

17

AN184

VO

{

VO

{

ADCOMD = 0x00; // Turn off ADC Module
av = av/5; // Compute the average
switch (value)

{
case TEMPERATURE:

result = (long) av /TEMP_SLOPE*1000; // Account for Temp. Slope
result -= 100*TEMP_ SENSOR OFFSET; // Account for Temp. Offset
result = result + 27315; // Convert to Degrees Kelvin

break;

case WEIGHT:

result = av - Tare Count;
result = result/One Count;
break;

}

return (signed int) result;

id Update Display Via UART (void)

// Send Information to Hyper Terminal at 9600 Baud, 8,n,1
//printf (“Temperature = %d hundredths degrees K\n”, Temperature);
printf (“Counts = %d units\n”, (int)Weight);

This function provides starter algorithms for the HT1620, (Holtek) LCD driver.
It provides algorithms to write to te HT1620 and Read from the HT1620.
Specific algorithms to activate and deactivate the elements on the LCD that
correspond to specific letters and numerals will need to be develop.

id Update Display Via LCD(void)
unsigned char BIT count; // counter for SPI transaction

// Here is an example of a write command to the HT1620

Data Word = 0x1400; // Prepare information for writing to LCD
Data Word = Data Word << 3; // Prepare information for writing to LCD
Cs = 0; // Select Serial Port

for (BIT count = 13; BIT count > 0;BIT count--)// 13 bits
{

DATA = Data Word & 0x8000; // put current outgoing bit on DATA
Data Word = Data Word <<1; // shift next bit into MSB
WR = 0x01; //set sck high
WR = 0x00; // set sck low
}
cs =1; // Deselect LCD

// Here is an example of a read command to the HT1620

Data Word = 0x1800; // Prepare information for writing to LCD
Data Word = Data Word << 3; // Prepare information for writing to LCD
cs = 0; // Select LCD

for (BIT count = 9; BIT count > 0;BIT count--)// 9 bits

18

Rev. 0.2

SILICON LABORATORIES

AN184

!/
!/
1/
//
//
//
!/
VO

{

}
//

DATA = Data Word & 0x8000; // put current outgoing bit on DATA
Data Word = Data Word <<1; // shift next bit into MSB

WR = 0x01; // set sck high

Data Word |= DATA; // capture current bit on DATA

WR = 0x00; // set sck low

}
for (BIT count = 4; BIT count > 0;BIT count--)// 4 bits

{

DATA = Data Word & 0x8000; // put current outgoing bit on DATA
Data Word = Data Word <<1; // shift next bit into MSB
RD = 0x01; // set sck high
Data Word |= DATA; // capture current bit on DATA
RD = 0x00; // set sck low
}
Cs = 1; // Deselect LCD

- Main calls all the functions necessary to configure the C8051F350.
It also calls routines to calibrate the electronic scale. Once setup
and calibration are complete, Main() determines the Unit count on

the scale and outputs via the UART.

System Calibration is only performed the first time through the cycle.
id main (void)
Config F350(); // Config F350
CalibrateADCforMeasurement () ; // Calibrate ADC
Calculate One Count(); // Calculate the size of one count

// Update Temperature and Bridge Monitoring Algorithms
while (1)
{ // Once pressed get temperature and weight
Temperature = Monitor Weigh Scale (TEMPERATURE) ; // Get Latest Temperature
// Acquire Pack’s Voltages
Weight = Monitor Weigh Scale (WEIGHT)

// Update PC Via UART
Update Display Via UART();

// Update PC Via LCD
//Update Display Via LCD();

END of File

31

Rev. 0.2 19

LICON LABORATORIES

AN184

CONTACT INFORMATION

Silicon Laboratories Inc.
4635 Boston Lane

Austin, TX 78735

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: productinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

20 Rev. 0.2

SILICON LABORATORIES

	1. Introduction
	Figure 1. C8051F350 Bridge Transducer Circuit

	2. Background
	3. Theory of Operation
	4. Architectural Description
	5. Software
	5.1. Device Calibration
	5.1.1. Caliculate_One_Count()

	5.2. ADC Sampling

	6. Conclusion
	Appendix A-Software Flow Diagrams
	Figure 2. Main() Flow Chart.
	Figure 3. Calculate_One_Count() Flow Chart.
	Figure 4. Monitor_Weigh_Scale() Flow Chart.
	Figure 5. FLASH_PageUpdate() Flow Chart.
	Figure 6. Flash_PageCopy() Flow Chart.

	Appendix B-Software
	F350_Weigh_Scale.h
	F350_Weigh_Scale.c

	Contact Information

