
Rev. 1.2 12/03 Copyright © 2003 by Silicon Laboratories AN146-DS12

AN146

HIGH-SPEED LITHIUM ION BATTERY CHARGER

Relevant Devices
This application note applies to the following device:
C8051F300.

Introduction
Driven by the need for untethered mobility and
ease of use, many systems rely on rechargeable bat-
teries as their primary power source. The battery
charger is typically implemented using a fixed-
function IC to control the charging current/voltage
profile.

The C8051F300 family provides a flexible alterna-
tive to fixed-function linear battery chargers. This
note discusses how to use the C8051F300 device in
Li-Ion battery charger applications. The Li-Ion
charging algorithms can be easily adapted to other
battery chemistries.

Key Points
• On-chip high-speed ADC provides superior

accuracy in monitoring charge voltage (critical
to prevent overcharging in Li-Ion applications),
maximizing charge effectiveness and battery
life.

• On-chip comparator and PWM provides a
means to implement a high speed buck con-
verter with a small external inductor.

• On-chip temperature sensor provides an accu-
rate and stable drive voltage for determining
battery temperature. An external RTD (resistive
temperature device) can also be accommo-
dated.

• A single C8051F300 provides full product
range for multi-chemistry chargers, expediting
time to market and reducing inventory.

Charging Basics
Batteries are exhaustively characterized to deter-
mine safe yet time-efficient charging profiles. The
optimum charging method for a battery is depen-
dent on the battery’s chemistry (Li-Ion, NiMH,
NiCd, SLA, etc.). However, most charging strate-
gies implement a 3-phase scheme:

1. Low-current conditioning phase

2. Constant-current phase

3. Constant-voltage phase/charge termination

V Pos (+)

V Neg (-)

LED

Buck
Converter

Sense Resistor

Li-Ion
Cells

8k FLASH, PWM,
Temp Sensor,

Precision Time Base

8051F300

Cygnal
Integrated
Products

Resistor
Divider

LDO

PWM Out

AIN1 - Voltage

AIN2 - Current
Amplifier

Figure 1. Lithium Ion Battery Charger Block Diagram.

AN146

2 Rev. 1.2

All batteries are charged by transferring electrical
energy into them. The maximum charge current for
a battery is dependent on the battery’s rated capac-
ity (C). For example, a battery with a cell capacity
of 1000mAh is referred to as being charged at 1C
(1 times the battery capacity) if the charge current
is 1000mA. A battery can be charged at 1/50C (20
mA) or lower if desired. However, this is a com-
mon trickle-charge rate and is not practical in fast
charge schemes where short charge-time is desired.

Most modern chargers utilize both trickle-charge
and rated charge (also referred to as bulk charge)
while charging a battery. The trickle-charge current
is usually used in the initial phases of charging to
minimize early self heating which can lead to pre-
mature charge termination. The bulk charge is usu-
ally used in the middle phase where the most of the
battery’s energy is restored.

During the final phase of battery charge, which
generally takes the majority of the charge time,
either the current or voltage or a combination of
both are monitored to determine when charging is
complete. Again, the termination scheme depends
on the battery’s chemistry. For instance, most Lith-
ium Ion battery chargers hold the battery voltage
constant, and monitor for minimum current. NiCd
batteries use a rate of change in voltage or tempera-
ture to determine when to terminate.

While charging, some of the electrical energy is
converted to thermal energy, until the battery
reaches full charge, at which time all the electrical
energy is converted to thermal energy. If charging
isn’t terminated, the battery can be damaged or
destroyed. Fast chargers (chargers that charge bat-
teries fully in less than two hours) compound this
issue, as these chargers use a high charge current to
minimize charge time. Therefore, monitoring a bat-
tery’s temperature is critical especially for Li-Ion
batteries which may explode if overcharged. Tem-
perature is monitored during all phases and charge
is terminated immediately if the temperature
exceeds a preset maximum limit.

Hardware Description
Li-Ion batteries are currently the battery chemistry
of choice for most applications due to their high
energy/space and energy/weight characteristics
when compared to other chemistries. Most modern
linear Li-Ion chargers use the tapered charge termi-
nation, minimum current (see Figure 2) method to
ensure the battery is fully charged, as does the
example code provided at the end of this applica-
tion note.

Buck Converter
The most economical way to create a tapered ter-
mination linear charger is to use a buck converter.
A buck converter is a switching regulator that uses
an inductor and/or a transformer (if isolation is
desired), as an energy storage element to transfer
energy from the input to the output in discrete
packets. Feedback circuitry regulates the energy
transfer via the transistor, also referred to as the
pass switch, to maintain a constant voltage or con-
stant current within the load limits of the circuit.

AN146

Rev. 1.2 3

Charge Current

Charge Voltage

TimeConditioning
Phase

Current regulation Voltage regulation

Figure 2. Lithium Ion Charge Profile.

-
+ VREF

Switch

Comparator

D

L

C

VBatt

VIN

Path of current flow
from L and C

Switch OFF when
VBatt > VREF

-
+ VREF

Switch

Comparator

D

L

C

VBatt

VIN

Path of current flow
 from VIN

Switch ON when
VBatt < VREF

a) Switch ON b) Switch OFF

Battery Battery

+ - +-

Inductor
Current

Supply
Current

Figure 3. Buck Converter.

AN146

4 Rev. 1.2

Buck Regulator Operation
The buck regulator operates by controlling the duty
cycle of a transistor switch. The duty cycle is auto-
matically increased to dispense more current into
the battery. A comparator closes the switch when
VBATT < VREF. As shown in Figure 3a, current
flows into the battery and capacitor C. This current
is also stored in inductor L. VBATT rises until it
exceeds VREF at which time the comparator turns
the switch off (Figure 3b). The current stored in the
inductor rapidly decreases until diode D is forward
biased, causing inductor current to flow into the
battery at a decreasing rate. Capacitor C begins dis-
charging after the inductor current has decayed and
eventually VBATT begins to fall. When VBATT falls
below VREF, the comparator again turns the switch
on and another cycle begins. On a larger scale, if
the duty cycle is decreased (shorter “on” time), the
average voltage decreases and vice versa. There-
fore, controlling the duty cycle allows one to regu-
late the voltage or the current to within desired
limits.

Selecting the Buck Converter
Inductor
To size the inductor in the buck converter, one first
assumes a 50 percent duty cycle, as this is where
the converter operates most efficiently.

Duty cycle is given by Equation 1, where T is the
period of the PWM (in our example T = 10.5µS).

With this established, select a PWM switching fre-
quency. As Equation 2 shows, the larger the PWM
switching frequency, the smaller (and more cost
effective) the inductor. Our example code config-

ures the ‘F300’s hardware to generate a 510kHz
switch rate.

Now we can calculate the inductor’s size. Assum-
ing Vi, the charging voltage, is 15V, Vsat, the satu-
ration voltage, is 0.5V, the desired output voltage,
Vo, is 4.2V, and I0MAX, the maximum output cur-
rent, is 1500 mA, the inductor should be at least
4µH.

Note that the capacitor in this circuit is simply a
ripple reducer. The larger it is the better as ripple is
inversely proportional to the size of the capacitor.

High Speed Charger
As AN037, Lithium Ion Battery Charger Using
C8051F300, illustrates, the F300’s 8-bit PWM can
be configured to generate a 96kHz PWM with no
external components. This PWM output can be
used to drive the pass switch in a buck converter
and charge a battery. However, a 96kHz frequency
requires a buck converter to utilize a relatively
large 18µH inductor. For some applications, this is
too large and costs too much. To reduce the size
and cost of this inductor requires that the switch
rate of the buck converter increase. The beauty of
the F300 lies in its flexible feature set. As men-
tioned, included in the device is a PCA (Program-
mable Counter Array) that has three 16-bit capture/
compare modules with corresponding output drives
that can be configured to provide numerous func-
tions. We can use two of the PCA’s modules, along
with two external single-pole low-pass filters, and
the on-chip comparator to generate an 8-bit,
510kHz PWM (refer to Figure 4 for details). By
setting the switch rate to 510kHz, the inductor
required to satisfy the buck converter equations is
reduced by a factor of five to approximately 4µH.

DutyCycle ton
T

---------=

Equation 1. Duty Cycle.

L Vi Vsat– Vo–()ton
2Iomax

--=

Equation 2. Inductor Size.

AN146

Rev. 1.2 5

To create a 510kHz PWM with the F300, Module 0
of the PCA is configured to provide a 510kHz
square wave via the Frequency Output Mode. This
square wave is then filtered through a low-pass fil-
ter with a 500kHz corner frequency to provide
approximately a 2 Volt peak-to-peak pseudo trian-
gle wave to the positive input of the on-chip com-
parator. For the minus input of the comparator,
Module 1 is configured as an 8-bit PWM at 96kHz
switch rate. This PWM output is then low pass fil-
tered with a corner frequency of approximately
15Hz to create a simple DC digital-to-analog con-
verter. By comparing the pseudo triangle wave to a
DC input, the output of the comparator’s output
becomes a 510kHz PWM.

The DC control path, Module1’s output in this
example, controls the duty cycle of the 510kHz
PWM output from the comparator. By varying the
duty cycle of the 8-bit 96kHz PWM, the minus
input to the comparator can be varied from 0 volts
to the supply, typically 3.3V. The accuracy of the
DC control path is limited by the settling time of
the external RC filter. For this example, compo-
nents were selected to minimize errors contributed
from this path. For more details on component
selection for the DC path, refer to AN010, 16-Bit
PWM Using an On-Chip Timer.

The overall accuracy of the 510kHz PWM output
from the comparator is mostly limited by the
pseudo triangle path to the comparator. Assuming
the DC path is error free, to create a true 8-bit
510kHz PWM output from the comparator requires
that a perfectly linear full-scale triangle wave be
input to the positive input of the comparator. A true
full scale triangle wave refers to a triangle wave
that linearly ramps from 0 volts to the positive sup-
ply and then returns back the negative supply in a
similar fashion. However, the charge and discharge
profile of a capacitor in the low pass configuration
is not linear past a time constant. Moreover, it is
desirable not to allow this capacitor to fully charge
as the pseudo triangle wave becomes more nonlin-
ear towards its peaks. Unfortunately, limiting the
overall charge time/voltage limits the overall accu-
racy of the 510kHz PWM. For example, if we com-
pare a triangle wave with a peak-to-peak voltage of
1/4 the supply to the DC control path’s voltage, we
could generate a 2-bit 510kHz PWM output from
the comparator. In practical applications, a 2-bit
510kHz has very limited use. To improve the accu-
racy requires either one of two changes: 1) increase
the voltage of the pseudo triangle wave or 2)
increase the resolution of the DC path’s PWM con-
trol. As mentioned earlier, increasing the peak-to-
peak voltage of the pseudo triangle wave can be
easily accomplished by adjusting its low pass filter
components accordingly. Our example is designed

Buck
Converter

C8051F300

 Module1

 Module0

 Comparator

TBAT

VBAT

IBAT

CMP0

Pseudo
Triangle
Wave

DC
Control

CEX1

CEX0

CMP+

CMP-

High Speed PWM

Figure 4. High Speed Charger.

AN146

6 Rev. 1.2

to provide approximately a 2 volt peak-to-peak
pseudo triangle wave. When compared to the 8-bit
PWM dc control path, we achieve approximately
7.5-bits of performance at 510kHz switch rate.

The overall resolution of the high speed PWM out-
put can be increased very easily by configuring
Module 1 to a 16-bit PWM. On an aside, if a faster
PWM output, greater than 510kHz, is desired to
reduce the inductor size further, the user can recon-
figure Module 0 to provide a faster square wave up
to ½ the internal oscillator frequency or approxi-
mately 12MHz. If this is desired, the external low
pass filter for the pseudo triangle wave path will
have to be modified to accommodate the faster
square wave. Other limitations, like comparator
speed and voltage induced across the inductor due
to the higher current transients will also have to be
considered.

Software Description
The software example that follows demonstrates a
Li-Ion battery charger using the C8051F300. The
algorithms discussed are written entirely in “C”
making them easily portable. Refer to the F300’s
datasheet for a full description of the device. Note
that the software architecture for the low speed
(96kHz) charger discussed in AN037 and the high
speed charger (510kHz) are essentially the same
(i.e. the flow charts that follow can be used for
either hardware configuration). The main differ-
ence are the control mechanisms. For the slow
speed charger in AN037, Module 0 (CEX0) is used
to control the duty cycle. For the high speed
charger Module 1 (CEX1) is used to control the
duty cycle.

Calibration
To ensure accurate voltage and current measure-
ments, the algorithms use a two-point system cali-
bration scheme. In this scheme, the user is expected
to apply two known voltages and two known cur-
rents, preferable, one point near ground and the
other point near full-scale. The algorithm then

takes these two points, calculates a slope and an
offset for both the current and voltage channels,
and stores the results in FLASH. All future conver-
sions are scaled relative to these slope and offset
calculations.

Temperature
To monitor the temperature, the algorithms use the
on-chip temperature sensor. The sensor is left
uncalibrated, but still provides a sufficiently accu-
rate temperature measurement. For more accurate
temperature measurement, one or two-point tem-
perature calibration is required.

An external temperature sensor can be used if
desired. The AMUX can be reconfigured to accom-
modate this additional input voltage.

Current
The current delivered to the battery cells is moni-
tored by measuring the voltage across a sense resis-
tor (typically tens of mohms; our example uses a
0.24 ohm resistor). To maximize current measure-
ment accuracy, this reference design uses an exter-
nal amplifier with a gain of 10. This provides about
11-bits of current measurement accuracy (8-bits
from the ADC and 3-bits from the external gain
amplifier). To further maximize current measure-
ment accuracy, the raw current measurements are
scaled via the slope and offset calibration coeffi-
cients every time a measurement conversion is
taken.

To determine the minimum current resolution,
recall that the output code of a ADC is given by
Equation 3

Dout Ain()2n

Vref
--------------------=

Equation 3. Digital Output Code.

AN146

Rev. 1.2 7

Accounting for the external amplifier, Equation 4

states that Ain is

Iin is then given by Equation 5

Assuming

• Rs = 0.24 Ω
• VREF = 3.3 V
• 2N = 256, an 8-bit converter
• External Gain = 10
• No External Gain = 1

When Dout = 1, IMIN is given by Equation 6.

When Dout=256, Imax is given by Equation 7.

It is important to note that if one chooses to modify
the algorithm, the order of mathematical operations
is important. To minimize truncation error effects,
be sure to perform multiply operations first making
the numerator as large as possible, before perform-
ing divide operations. Further recall that a long
type variable, which is the limit for the F300’s
compiler, is limited to 232-1 or approximately 4 bil-
lion.

Voltage
The battery’s voltages are divided down and moni-
tored via external resistors. Note that this example
uses the supply voltage as the ADC voltage refer-
ence. Any monitored voltage above the reference
voltage must be divided down for accurate moni-
toring. If a more accurate reference is required, an
external voltage reference can be used. Adjustment
to the divide resistors must be made accordingly.

Charging - Phase1
In Phase 1, (for description purposes, we assume
the battery is initially discharged), the ‘F30x regu-
lates the battery’s current to ILOWCURRENT (typi-
cally 1/50 C) until the battery’s voltage reaches
VMINVOLTBULK. Note that the battery’s charge cur-
rent is current limited to ILOWCURRENT to ensure
safe initial charge and to minimize battery self-
heating. If at any time the temperature increases out
of limit, charging is halted.

Charging - Phase 2
Once the battery reaches VMINVOLTBULK the
charger enters Phase 2, where the battery’s algo-
rithm controls the PWM pass switch to ensure the
output voltage provides a constant charge-current
IBULK to the battery (rate or bulk current is usually
1C and is definable in the header file as is
ILOWCURRENT and VMINVOLTBULK).

Charging - Phase 3
After the battery reaches VTop (typically 4.2 V in
single cell charger), the charger algorithm enters
Phase 3, where the PWM feeds back and regulates
the battery’s voltage. In Phase 3, the battery contin-
ues to charge until the battery’s charge current
reaches IMINIBULK, after which, the battery is
charged for an additional 30 minutes and then
charge terminates. Phase 3 typically takes the
majority of the charging time.

Ain Iin Rs 10××()=

Equation 4. Input Current with 10x Gain.

Iin Dout Vref×()

2n 10 Rs××
------------------------------------=

Equation 5. Input Current.

Imin 5.37() mA
Code
---------------=

Equation 6. IMIN.

Imax 1.37()Amps=

Equation 7. Imax.

AN146

8 Rev. 1.2

Note that in most practical applications, such as a
portable PC, the batteries may be in any of the three
phases when charging is activated. This doesn’t
really affect the charger as it simply monitors the
battery’s current condition and starts charging from
that point.

Getting Started
The reference design that accompanies this appli-
cation note is designed to charge a single cell 4.2 V
lithium ion battery. To accommodate numerous
power supplies and batteries, it charges at 250mA
bulk current. To charge a battery, first connect
power to the board by applying an 8V to 15V sup-
ply to JP1. The power supply should be able to sup-
ply a minimum of 500mA. Once the appropriate
supply is connected, connect the battery to JP3.
Connect the positive lead of the battery to pin 1 and
connect the negative lead to pin 3. Terminal 2 of
JP3 can be left unconnected as no code has been
developed to monitor temperature via an external
temperature sensor at this time. Finally, press the
reset switch and the battery will begin charging.
The PWM charge control signal can be monitored
by probing pin 5 on the C8051F300.

Recommended Operating Conditions

• Supply: 8V to 15V
• Battery: One cell, 4.2V,

with <1000mAh rating
Default Charging Parameters

• Trickle Current = 135mA
• Bulk Current = 250mA
• Regulation Voltage = 4.2V
• Termination Current = 125mA
Efficiency of Charger

• Switching Efficiency > 80%
• Voltage Accuracy > 1%
• Current Accuracy > 2%

Charging 2 Cells or More

To charge more than 1 battery cell, both the hard-
ware and software will need to be modified. For
example, to charge two 4.2 V batteries simulta-
neously, resistors R11 and R12 will need to be
switched. Then, the header file will need these
modifications:

CELLs = 2

RESB = 10

Once the header file is modified, recompile the
software and down load the new source code to the
charger board. A similar scheme can be used to
modify the board for any number of cells.

Conclusion
The C8051F300’s high level of analog integration,
small form-factor, integrated FLASH memory, and
low power consumption make it ideal for flexible
next generation battery charging applications. This
note discussed how to use the C8051F300 in Lith-
ium Ion battery charger applications at 510kHz
switch rate. Example code is provided as well.

Reference
Applications of Linear Integrated Circuits.
Eugene Hnatek, John Wiley and Sons, 1975.

AN146

Rev. 1.2 9

Appendix A - Schematic
Figure 5. High Speed Charger Schematic.

AN146

10 Rev. 1.2

Appendix B - Bill Of Materials
Figure 6. High Speed Charger Bill of Materials.

Ite
m

Q
TY

Pa
rt

Va
lu

e
Pa

ck
ag

e
No

te
s

1
1

U1
C8

05
1F

30
0

M
LP

-1
1

Cy
gn

al
 In

te
gr

at
ed

 P
ro

du
ct

s
C8

05
1F

30
0

2
1

U3
LP

V3
21

M
5

SO
T-

23
-5

Na
tio

na
l (

LP
V3

21
M

5
or

 e
qu

iv
al

en
t)

3
1

Q
1

N-
Ch

an
ne

l
SO

T-
23

Ze
te

x,
 N

-C
ha

nn
el

 3
0-

V
(D

-S
) M

O
SF

ET
, (

2N
70

02
CT

 o
r e

qu
iv

al
en

t)
4

1
Q

2
P-

Ch
an

ne
l

SO
T-

23
Ze

te
x,

 P
-C

ha
nn

el
 3

0-
V

(D
-S

) M
O

SF
ET

, (
ZX

M
P3

A1
3F

CT
-N

D
or

 e
qu

iv
al

en
t)

5
1

L1
22

uH
SM

D
Co

il
Cr

af
t I

nd
uc

to
r,

22
uH

, 1
.5

 A
, (

DO
33

16
P-

22
3

or
 e

qu
iv

al
en

t)
6

2
D3

,4
Sc

ho
ttk

y
SM

C
3A

 4
0V

 P
ow

er
 R

ec
tif

ie
r D

io
de

 (M
BR

S3
40

CT
 o

r e
qu

iv
al

en
t)

7
6

C3
,5

,7
,9

,1
0,

12
0.

1u
F

08
05

Ca
p

X7
R

50
V

5%
 (K

em
et

 C
08

05
C1

04
J5

RA
CT

U
or

 e
qu

iv
al

en
t)

8
1

C4
33

pF
08

05
Ca

p
X7

R,
 5

0V
 1

0%
 (K

em
et

 C
08

05
33

0J
5G

AC
TU

 o
r e

qu
iv

al
en

t)
9

1
C6

1
uF

08
05

Ca
p

X7
R,

 1
0V

 1
0%

 (K
em

et
 C

08
05

10
5K

8R
AC

TU
 o

r e
qu

iv
al

en
t)

10
1

C8
22

uF
EI

A6
03

2-
28

Ca
p

Ta
nt

al
um

, 1
6V

, 1
0%

 (K
em

et
 T

49
1C

22
6K

01
6A

S
or

 e
qu

iv
al

en
t)

11
1

C1
1

10
0p

F
08

05
Ca

p
X7

R
50

V
5%

 (K
em

et
 C

08
05

C1
01

K5
G

AC
TU

 o
r e

qu
iv

al
en

t)
12

2
R3

,1
5

10
0k

08
05

Re
si

st
or

 1
/1

0W
, 5

%
 (P

an
as

on
ic

 P
10

0K
CC

T-
ND

 o
r e

qu
iv

al
en

t)
13

5
R4

,1
0,

11
,1

3,
14

10
k

08
05

Re
si

st
or

 1
/1

0W
, 5

%
 (P

an
as

on
ic

 P
10

.0
KC

CT
-N

D
or

 e
qu

iv
al

en
t)

14
1

R9
1k

08
05

Re
si

st
or

 1
/1

0W
, 5

%
 (P

an
as

on
ic

 P
1.

0K
CC

T-
ND

 o
r e

qu
iv

al
en

t)
15

2
R8

,1
6

20
0

08
05

Re
si

st
or

 1
/1

0W
, 5

%
 (P

an
as

on
ic

 P
20

0C
CT

-N
D

or
 e

qu
iv

al
en

t)
16

1
R1

2
20

k
08

05
Re

si
st

or
 1

/1
0W

, 5
%

 (P
an

as
on

ic
 P

20
.0

KC
CT

-N
D

or
 e

qu
iv

al
en

t)
17

1
S1

Sw
itc

h
6M

M
, S

Q
M

om
en

ta
ry

 s
w

itc
h

(P
an

as
on

ic
 P

80
07

S-
ND

 o
r e

qu
iv

al
en

t)
18

1
RS

EN
SE

0.
24

 o
hm

08
05

Re
si

st
or

 1
/4

W
, 2

%
 (P

an
as

on
ic

 R
L1

2T
0.

24
G

CT
 o

r e
qu

iv
al

en
t)

BO
M

 T
O

TA
L

In
cl

ud
ed

 o
n

De
m

o
Bo

ar
d,

 b
ut

 N
O

T
Pa

rt
of

 B
at

te
ry

 C
ha

rg
er

 B
O

M
Ite

m
Q

TY
Pa

rt
Va

lu
e

Pa
ck

ag
e

No
te

s
1

1
U2

M
IC

52
35

SO
T-

23
-5

M
ic

re
l S

em
ic

on
du

ct
or

 (M
IC

52
35

-3
.3

M
5)

2
1

C1
1

uF
08

05
Ca

p
X7

R,
 1

0V
 1

0%
 (K

em
et

 C
08

05
10

5K
8R

AC
TU

 o
r e

qu
iv

al
en

t)
3

1
C2

2.
2

uF
EI

A3
21

6-
18

Ca
p

Ta
nt

al
um

, 1
6V

, 1
0%

 (K
em

et
 T

49
1A

22
5K

01
6A

S
or

 e
qu

iv
al

en
t)

4
2

R1
,R

2
47

5
oh

m
08

05
Re

si
st

or
 1

/1
0W

, 5
%

 (P
an

as
on

ic
 P

47
5C

CT
-N

D
or

 e
qu

iv
al

en
t)

5
2

R5
,7

1k
08

05
Re

si
st

or
 1

/1
0W

, 5
%

 (P
an

as
on

ic
 P

1.
0K

CC
T-

ND
 o

r e
qu

iv
al

en
t)

6
1

R6
10

k
08

05
Re

si
st

or
 1

/1
0W

, 5
%

 (P
an

as
on

ic
 P

10
.0

KC
CT

-N
D

or
 e

qu
iv

al
en

t)
7

1
D1

LE
D,

 R
ed

0.
1"

 th
ru

 h
ol

e
T-

1
3/

4
(P

an
as

on
ic

 L
N2

1R
PH

L
or

 e
qu

iv
al

en
t)

8
1

D2
LE

D,
 G

re
en

0.
1"

 th
ru

 h
ol

e
T-

1
3/

4
(P

an
as

on
ic

 L
N3

1G
PH

L
or

 e
qu

iv
al

en
t)

9
1

Sh
un

t
Sh

un
t

0.
1"

Sh
un

t (
92

99
57

-0
8

or
 e

qu
iv

al
en

t)
10

2
JP

1,
JP

2
1x

2
He

ad
er

0.
1"

 th
ru

 h
ol

e
Su

lli
ns

 (S
21

05
-0

2
or

 e
qu

iv
al

en
t)

11
1

JP
3

1x
3

He
ad

er
0.

1"
 th

ru
 h

ol
e

Su
lli

ns
 (S

21
05

-0
3

or
 e

qu
iv

al
en

t)
12

1
JP

4
2x

5
He

ad
er

0.
1"

 th
ru

 h
ol

e
Pr

ot
ec

te
d

w
ith

 c
en

tra
l p

ol
ar

iz
in

g
ke

y
sl

ot
 (3

M
 2

51
0-

60
02

UB
 o

r e
qu

iv
.)

13
1

P1
RA

PC
72

2
2x

5.
5m

m
 J

ac
k

Sw
itc

hc
ra

ft
(S

C1
15

3-
ND

 o
r e

qu
iv

al
en

t)
14

1
Bo

ar
d

2-
La

ye
r

2"
x1

.7
5"

PC
BE

XP
RE

SS
 (b

oa
rd

 m
an

uf
ac

tu
rin

g
se

rv
ic

es
)

AN146

Rev. 1.2 11

Appendix C - PCB Layout
Figure 7. High Speed Charger Layout (Silk Screen).

Buck Regulator Sub-circuit

JP3: Battery Input

Battery(+)
Temp
Battery(-)

JP1: 8V-15V Input Supply Terminal

(+)(-)

3.3V LDO &
Power LED

Reset Switch

C2 Interface

Current and Voltage Feedback Monitoring Sub-circuits

C8051F300

Terminal

AN146

12 Rev. 1.2

Figure 8. High Speed Charger Layout (Top Layer).

AN146

Rev. 1.2 13

Figure 9. High Speed Charger Layout (Bottom Layer).

AN146

14 Rev. 1.2

Figure 10. High Speed Charger Bill of Materials.

Ite
m

Q
TY

Pa
rt

Va
lu

e
Pa

ck
ag

e
N

ot
es

p
(

)
1

1
U

1
C

80
51

F3
00

M
LP

-1
1

C
yg

na
l I

nt
eg

ra
te

d
Pr

od
uc

ts
 C

80
51

F3
00

2
1

U
3

LP
V3

21
M

5
SO

T-
23

-5
N

at
io

na
l (

LP
V3

21
M

5
or

 e
qu

iv
al

en
t)

3
1

Q
1

N
-C

ha
nn

el
SO

T-
23

Ze
te

x,
 N

-C
ha

nn
el

 3
0-

V
(D

-S
) M

O
SF

ET
, (

2N
70

02
C

T
or

 e
qu

iv
al

en
t)

4
1

Q
2

P-
C

ha
nn

el
SO

T-
23

Ze
te

x,
 P

-C
ha

nn
el

 3
0-

V
(D

-S
) M

O
SF

ET
, (

ZX
M

P3
A1

3F
C

T-
N

D
 o

r e
qu

iv
al

en
t)

5
1

L1
22

uH
SM

D
C

oi
l C

ra
ft

In
du

ct
or

, 2
2u

H
, 1

.5
 A

, (
D

O
33

16
P-

22
3

or
 e

qu
iv

al
en

t)
6

2
D

3,
4

Sc
ho

ttk
y

SM
C

3A
 4

0V
 P

ow
er

 R
ec

tif
ie

r D
io

de
 (M

B
R

S3
40

C
T

or
 e

qu
iv

al
en

t)
7

6
C

3,
5,

7,
9,

10
,1

2
0.

1u
F

08
05

C
ap

 X
7R

 5
0V

 5
%

 (K
em

et
 C

08
05

C
10

4J
5R

AC
TU

 o
r e

qu
iv

al
en

t)
8

1
C

4
33

pF
08

05
C

ap
 X

7R
, 5

0V
 1

0%
 (K

em
et

 C
08

05
33

0J
5G

AC
TU

 o
r e

qu
iv

al
en

t)
9

1
C

6
1

uF
08

05
C

ap
 X

7R
, 1

0V
 1

0%
 (K

em
et

 C
08

05
10

5K
8R

AC
TU

 o
r e

qu
iv

al
en

t)
10

1
C

8
22

uF
EI

A6
03

2-
28

C
ap

 T
an

ta
lu

m
, 1

6V
, 1

0%
 (K

em
et

 T
49

1C
22

6K
01

6A
S

or
 e

qu
iv

al
en

t)
11

1
C

11
10

0p
F

08
05

C
ap

 X
7R

 5
0V

 5
%

 (K
em

et
 C

08
05

C
10

1K
5G

AC
TU

 o
r e

qu
iv

al
en

t)
12

2
R

3,
15

10
0k

08
05

R
es

is
to

r 1
/1

0W
, 5

%
 (P

an
as

on
ic

 P
10

0K
C

C
T-

N
D

 o
r e

qu
iv

al
en

t)
13

5
R

4,
10

,1
1,

13
,1

4
10

k
08

05
R

es
is

to
r 1

/1
0W

, 5
%

 (P
an

as
on

ic
 P

10
.0

K
C

C
T-

N
D

 o
r e

qu
iv

al
en

t)
14

1
R

9
1k

08
05

R
es

is
to

r 1
/1

0W
, 5

%
 (P

an
as

on
ic

 P
1.

0K
C

C
T-

N
D

 o
r e

qu
iv

al
en

t)
15

2
R

8,
16

20
0

08
05

R
es

is
to

r 1
/1

0W
, 5

%
 (P

an
as

on
ic

 P
20

0C
C

T-
N

D
 o

r e
qu

iv
al

en
t)

16
1

R
12

20
k

08
05

R
es

is
to

r 1
/1

0W
, 5

%
 (P

an
as

on
ic

 P
20

.0
K

C
C

T-
N

D
 o

r e
qu

iv
al

en
t)

17
1

S1
Sw

itc
h

6M
M

, S
Q

M
om

en
ta

ry
 s

w
itc

h
(P

an
as

on
ic

 P
80

07
S-

N
D

 o
r e

qu
iv

al
en

t)
18

1
R

SE
N

SE
0.

24
 o

hm
08

05
R

es
is

to
r 1

/4
W

, 2
%

 (P
an

as
on

ic
 R

L1
2T

0.
24

G
C

T
or

 e
qu

iv
al

en
t)

In
cl

ud
ed

 o
n

D
em

o
B

oa
rd

, b
ut

 N
O

T
Pa

rt
 o

f B
at

te
ry

 C
ha

rg
er

 B
O

M
Ite

m
Q

TY
Pa

rt
Va

lu
e

Pa
ck

ag
e

N
ot

es
p

(
)

1
1

U
2

M
IC

52
35

SO
T-

23
-5

M
ic

re
l S

em
ic

on
du

ct
or

 (M
IC

52
35

-3
.3

M
5)

2
1

C
1

1
uF

08
05

C
ap

 X
7R

, 1
0V

 1
0%

 (K
em

et
 C

08
05

10
5K

8R
AC

TU
 o

r e
qu

iv
al

en
t)

3
1

C
2

2.
2

uF
EI

A3
21

6-
18

C
ap

 T
an

ta
lu

m
, 1

6V
, 1

0%
 (K

em
et

 T
49

1A
22

5K
01

6A
S

or
 e

qu
iv

al
en

t)
4

2
R

1,
R

2
47

5
oh

m
08

05
R

es
is

to
r 1

/1
0W

, 5
%

 (P
an

as
on

ic
 P

47
5C

C
T-

N
D

 o
r e

qu
iv

al
en

t)
5

2
R

5,
7

1k
08

05
R

es
is

to
r 1

/1
0W

, 5
%

 (P
an

as
on

ic
 P

1.
0K

C
C

T-
N

D
 o

r e
qu

iv
al

en
t)

6
1

R
6

10
k

08
05

R
es

is
to

r 1
/1

0W
, 5

%
 (P

an
as

on
ic

 P
10

.0
K

C
C

T-
N

D
 o

r e
qu

iv
al

en
t)

7
1

D
1

LE
D

, R
ed

0.
1"

 th
ru

 h
ol

e
T-

1
3/

4
(P

an
as

on
ic

 L
N

21
R

PH
L

or
 e

qu
iv

al
en

t)
8

1
D

2
LE

D
, G

re
en

0.
1"

 th
ru

 h
ol

e
T-

1
3/

4
(P

an
as

on
ic

 L
N

31
G

PH
L

or
 e

qu
iv

al
en

t)
9

1
Sh

un
t

Sh
un

t
0.

1"
Sh

un
t (

92
99

57
-0

8
or

 e
qu

iv
al

en
t)

10
2

JP
1,

JP
2

1x
2

H
ea

de
r

0.
1"

 th
ru

 h
ol

e
Su

lli
ns

 (S
21

05
-0

2
or

 e
qu

iv
al

en
t)

11
1

JP
3

1x
3

H
ea

de
r

0.
1"

 th
ru

 h
ol

e
Su

lli
ns

 (S
21

05
-0

3
or

 e
qu

iv
al

en
t)

12
1

JP
4

2x
5

H
ea

de
r

0.
1"

 th
ru

 h
ol

e
Pr

ot
ec

te
d

w
ith

 c
en

tr
al

 p
ol

ar
iz

in
g

ke
y

sl
ot

 (3
M

 2
51

0-
60

02
U

B
 o

r e
qu

iv
.)

13
1

P1
R

AP
C

72
2

2x
5.

5m
m

 J
ac

k
Sw

itc
hc

ra
ft

(S
C

11
53

-N
D

 o
r e

qu
iv

al
en

t)
14

1
B

oa
rd

2-
La

ye
r

2"
x1

.7
5"

PC
B

EX
PR

ES
S

(b
oa

rd
 m

an
uf

ac
tu

rin
g

se
rv

ic
es

)

AN146

Rev. 1.2 15

main()

Config_F300()

Error
Detected

?

BULK_charge()

Turn off LED0, Error

No

CalibrateADCfor
Measurement()

Enable Interrupts

Clear Termination Flags
Clear Charge Status Flags

Yes

LOWCURRENT_charge()

No

Status = BULK
?

Status =
LOWCURRENT

?

Error
Detected

?

Infinite Loop

Yes/No

Yes

No

Yes

Turn on LED0

Infinite
Loop

Yes/No

Figure 11. main() Flow Chart.

AN146

16 Rev. 1.2

CalibrateADCforMearurement()

END

Setup ADC0's AMUX,
Throughput, Gain, for near
zero-scale voltage cal point

Acquire 16-bit
Measurement

Setup ADC0's AMUX,
Throughput, Gain, for near
full-scale voltage cal point

Calculate Voltage Slope
Coefficient

Calculate Voltage Offset
Coefficient

Erase Memory Page
0x1A00

Store Voltage Offset and
Slope Coefficients in

FLASH Memory

Acquire16-bit
Measurement

Setup ADC0's AMUX,
Throughput, Gain, for near
zero-scale Current cal point

Acquire 16-bit
Measurement

Setup ADC0's AMUX,
Throughput, Gain, for near
full-scale Current cal point

Calculate Current Slope
Coefficient

Calculate Current Offset
Coefficient

Store Current Offset and
Slope Coefficients in

FLASH Memory

Acquire16-bit
Measurement

Figure 12. CalibrateADCforMeasurement() Flow Chart.

AN146

Rev. 1.2 17

Appendix D - Software Flow Charts

Monitor_Battery()

Measurement
Type

?

AMUX = Current AMUX = Volt

AV = AV + ADC0 Turn PWM on

Stop PWM

I≤10?

ADC0 Done?

AMUX = Volt

Stop PWM

AMUX = Temperature

Start ADC0

AV = AV/10

END

No

Current Charge Voltage Temperature Battery Voltage

AV = 0
I = 0

Yes

No

Yes

Calculate Voltage w/
Calibration Coefficients

Calculate Current w/
Calibration Coefficients

Calculate Temperature w/
Calibration Coefficients

TemperatureCurrentVoltage w/ or w/out PWM

Return Desired Parameter

Figure 13. Monitor_Battery() Flow Chart.

AN146

18 Rev. 1.2

Bulk_Charge()

Start PWM w/ Zero Output

T
Within Limits

?

Yes

Status = const_C

Calculate bulk_finish_time

Green LED On

Regulate Battery Current

Read Charge Voltage

Change Status from
const_C to const_V

V
<max_V &
> min_Bulk

?

Status =
BULK & No

Error?

Status =
const_c

?

Charge
Voltage Within

Limits
?

Yes

No

No

ACB D

Yes

No

No

No

Yes

Yes

Set Appropriate Flags

Figure 14. Bulk_Charge() Flow Chart (Part 1).

AN146

Rev. 1.2 19

Status =
const_V &

Current
within Limits

?

Yes

Regulate Voltage()

Stop PWM
& Flag Error

Stop PWM
& Flag Error

Status = const_C
Status = LOWCURRENT

Green LED Off

Time
Overflow

?

Temp.
Overflow

?

60 Sec.
Over

?

Delay
Time
Over

?

Yes

No

No

ACB D

Yes

No

No

Yes

END

Stop PWM

const_V,
 NOT Delay & Current

Below Threshold
?

Calculate bulk_finish_time

Status = Delay

No

No

Yes

Yes

Reset Flags for Low
Current Constant

Current Mode

Figure 15. BULKCurrent() Flow Chart (Part 2).

AN146

20 Rev. 1.2

LOWCURRENT_charge()

ResetTimeBase()

Temp
within Limits

?

Charge
Voltage

Within Limits
?

V
<max_V

?

Green LED Blinking

Status = const_V

Regulate Voltage

Lowcurrent
Finish Time
reached?

Stop PWM
and flag error

Change Status
from const_C to

const_V

Status = Delay

Green LED Off

END

No

Yes

No

Yes

Yes

Yes

Yes

No

No

Yes

Calculate Finish_time

No ERROR &
LOWCURRENT =1

 ?

No

Regulate Current

V
<BulkThreshold

?

Prepare Flags to enter
Bulk Mode

No

Yes

No

Figure 16. LowCurrent_Charge() Flow Chart.

AN146

Rev. 1.2 21

Turn_PWM_Off()

END

Increment CEX1
Counter

CEX1
Counter
<0xF0?

CEX1
Counter
<0xF0?

No

Yes

No

Disable PWM Mode

Yes

Figure 17. Turn_PWM_Off() Flow Chart.

AN146

22 Rev. 1.2

measure()

END

i = 0
?

Set accumulator and
counter i variables to zero

Yes

accumulator =
accumulator + ADC0

Increment i

Clear End of Conversion
Flag

Conversion
Complete

?

No

Return 16-bit
Measurement

No

Start New Conversion

Yes

Figure 18. Measure() Flow Chart.

AN146

Rev. 1.2 23

Make Duty Cycle Larger

Voltage <
VOLT_BULK &
PCA not max

?

END

Measure Battery's
voltage

Voltage >
VOLT_BULK &

PCA not 0

Make Duty Cycle Smaller

Regulate_Voltage()

Voltage
< VOLT_BULK + Tolerence

& > VOLT_BULK
?

No

Yes

Yes

Yes

No

No

Figure 19. Regulate_Voltage() Flow Chart.

AN146

24 Rev. 1.2

Make Duty Cycle Larger

Current <
passed current &

PCA not max
?

END

Current >
passed current &

PCA not 0

Make Duty Cycle Smaller

Regulate_Current()

No

Yes

Yes

Yes

No

No

Measure Current

Monitor Voltage
w/ PWM off

Current =
passed value

?

Voltage <
 VOLT_LOWCURRENT

± Tolerence
?

CHARGE_STATUS =
const_V

No

Yes

Figure 20. Regulate_Current() Flow Chart.

AN146

Rev. 1.2 25

PCA_OVERFLOW_ISR()

END

60 = time.sec
?

Yes

Increment time.hour

Reset time.hour

Reset time.count to
overflow value

0 = time.count

No

No

24 = time.hour

LOW
CURRENT
charge &
no errors

?

odd
second

?

Reset PCA Counter and
PCA Interrupts

Yes

Increment time.min

60 = time.min
?

Yes

Reset time.min

Reset time.sec

Increment time.sec

No

Yes

No

No

No

Yes

Yes

Turn on LED

Turn Off LED

Decrement time.count

Figure 21. PCA_OVERFLOW_ISR() Flow Chart.

AN146

26 Rev. 1.2

Appendix E - Firmware (Header File)
//---
//
// Copyright 2003 Cygnal Integrated Products, Inc.
//
// Filename: F300_HighSpeed_BC.h
// Target Device: 8051F300
// Created: 1 MAR 2003
// Created By: DKC
// Tool chain: KEIL Eval C51
//
// This header file is used to define all preprocessor directives, prototypes,
// and global variable for F300_HighSpeed_BC.c.
//
// The user should modify this header file before proceeding as key
// battery parameter limits are set here.
//

//---
// Function Prototypes
//---
void Config_F300(void);
void Reset_Time_Base(void);
void CalibrateADCforMeasurement(void);
void Regulate_Current(int);
void Regulate_Voltage(void);
void Turn_PWM_Off(void);
int Monitor_Battery(unsigned char);
void Bulk_Charge(void);
void Lowcurrent_Charge(void);
unsigned int Measure(void);

//---
// UNIONs, STRUCTUREs, and ENUMs
//---
typedef union LONG { // byte-addressable LONG
 long l;
 unsigned char b[4];
} LONG;

typedef union INT { // byte-addressable INT
 int i;
 unsigned char b[2];
} INT;

typedef struct
{
 unsigned long int t_count;
 int sec; // global seconds
 int min; // global minutes
 int hour; // global hour
}time_struct;

//---
// Global Variable Definitions
//---
time_struct TIME; // Global Struct to Track Time

AN146

Rev. 1.2 27

char bdata TERMINATION; // Global Variable to Track Termination
char bdata CHARGE_STATUS; // Global Variable to Track Charging
INT code CHECK_BYTE _at_ 0x1A00; // 0x0A0A Default value, for later use
LONG code VOLT_SLOPE _at_ 0x1A60; // Volt Slope Register
LONG code VOLT_OFFSET _at_ 0x1A64; // Volt Offset Register
LONG code I_NOAMP_SLOPE _at_ 0x1A70; // Current Slope Register,ext. amp off
LONG code I_NOAMP_OFFSET _at_ 0x1A74; // Current Offset Register,ext. amp.off
LONG temp_LONG_1,temp_LONG_2; // Temporary Storage Variables
INT temp_INT_1,temp_INT_2; // Temporary Storage Variables
int Current = 0; // Most recent Current Measurement
int Voltage = 0; // used to account for voltage drop
 // across sense resistor

//---
// Bit maskable CHARGE STATUS Register Definition
//---
sbit BULK = CHARGE_STATUS^0; // bit 0 : BULK charge status bit
sbit LOWCURRENT = CHARGE_STATUS^1; // bit 1 : LOWCURRENT charge status bit
sbit ERROR = CHARGE_STATUS^2; // bit 2 : ERROR before/during charging
sbit CONST_V = CHARGE_STATUS^3; // bit 3 : charged w/ constant VOLTAGE
sbit CONST_C = CHARGE_STATUS^4; // bit 4 : charged w/ constant CURRENT
sbit DELAY = CHARGE_STATUS^5; // bit 5 : BULK charge DELAY for LiIon
 // after CURRENT threshold detection
sbit READY = CHARGE_STATUS^6; // bit 6 : Lowcurrent charge is
 // terminated; battery is charged
sbit FREE1 = CHARGE_STATUS^7; // bit 7 : Not Currently used

//---
// Bit Maskable TERMINATION Register Definition
//---
sbit TEMP_MIN = TERMINATION^0; // bit 0 : minimum TEMPERATURE overflow
sbit TEMP_MAX = TERMINATION^1; // bit 1 : maximum TEMPERATURE overflow
sbit I_MIN = TERMINATION^2; // bit 2 : minimum CURRENT overflow
sbit I_MAX = TERMINATION^3; // bit 3 : maximum CURRENT overflow
sbit TIME_MAX = TERMINATION^4; // bit 4 : maximum time overflow
sbit VOLT_MAX = TERMINATION^5; // bit 5 : maximum VOLTAGE overflow
sbit VOLT_MIN = TERMINATION^6; // bit 6 : minimum VOLTAGE overflow
sbit FREE2 = TERMINATION^7; // bit 7 : Not Currently used

//---
// Bit maskable PORT Definitions
//---
sbit LED0 = P0 ^ 2; // bit 2 : LED0, Pin P0.2
sbit CMPOUT = P0 ^ 3; // bit 3 : Comparator Output
sbit CMPIN1 = P0 ^ 4; // bit 4 : Comparator + Input
sbit CMPIN2 = P0 ^ 5; // bit 5 : Comparator - Input
sbit CEX0 = P0 ^ 6; // bit 6 : Frequency Output Mode.
sbit CEX1 = P0 ^ 7; // bit 7 : 8-bit PWM
 // AMUX Selections; Analog Inputs
#define VBAT 0xF0; // bit 0 : Voltage Ch.; Analog In
#define IBAT 0xF1; // bit 1 : Current Ch.; Analog In
#define TBAT 0xF8; // bit 2 : Temp. Ch.; Analog In

//---
// 8051F300 PARAMETERS
//---
#define SYSCLK 24500000 // System clock frequency
#define TEMP_SENSOR_GAIN 3300 // Temp Sensor Gain in (uV / degC)
#define TEMP_GAIN 2 // PGA gain setting

AN146

28 Rev. 1.2

#define INT_CURRENT_GAIN 1 // PGA gain setting
#define EXT_CURRENT_GAIN 10 // External gain setting
#define VREF 3300 // ADC Voltage Reference (mV)
#define SCRATCH_PAGE 0x1C00 // FLASH page used for temp storage
#define PWM_CLOCK SYSCLK/255 // PWM frequency is 96 kHz

//---
// Calibration/Calculation PARAMETERS
//---
#define V1_CAL 67 // 1st cal point for 2 point cal.
#define V2_CAL 2800 // 2nd cal point for 2 point cal.
#define I1_CAL 33 // 1st cal point for 2 point cal.
#define I2_CAL 2800 // 2nd cal point for 2 point cal.
#define RSENSE 24 // RSENSE is default to 240mohm
#define RESB 20 // 20k Ohms,Voltage Divide Resistor
#define RESAB 30 // 30k Ohms,Sum of Divide Resistor

#define TEMP_SLOPE ((long) TEMP_GAIN * TEMP_SENSOR_GAIN * 65536 / 100 / VREF)
 // An estimate of the Temperature<SLOPE>
 // in [tenth codes / K]
 // The temperature measurement is
 // within 3 degrees of accuracy.

//---
// Monitor_Battery Switch PARAMETERS
//---
#define TEMPERATURE 7 // Value for Switch Statement
#define VOLTAGE 5 // Value for Switch Statement
#define VOLTAGE_PWM_OFF 3 // Value for Switch Statement
#define CURRENT 1 // Value for Switch Statement

//---
// Battery/Pack Parameters
//---
#define CELLS 1 // Number of cells in the battery pack
#define CAPACITY 250 // mAh, Battery Capacity (LiIon)
#define LiIon_CELL_VOLT 4200 // mV, Nominal Charge Voltage
#define I_BULK (unsigned int)(CAPACITY)
#define I_LOWCURRENT (unsigned int)(135)
#define VOLT_BULK (unsigned int)(CELLS*LiIon_CELL_VOLT)

#define VOLT_LOWCURRENT (unsigned int)(CELLS*LiIon_CELL_VOLT)

#define VOLT_TOLERANCE (unsigned int)(CELLS*LiIon_CELL_VOLT/100)// 1 Percent Acc
#define CURRENT_TOLERENCE (unsigned int)(CAPACITY/10) // 10 Percent Acc
#define IMIN 100 // Minium Battery Charging is 100 mA
#define IMAX 1350 // Maximum Allowed Current to Protect Hardware

//---
// Battery Characteristics: Charge TERMINATION Limits
//---
#define MIN_TEMP_ABS 26300 // Abs. min. TEMPERATURE = -10 C, 263K
#define MAX_TEMP_ABS 35300 // Abs. max. TEMPERATURE = 70C, 323K:
#define MIN_VOLT_BULK (unsigned int)(CELLS*LiIon_CELL_VOLT*2/3) // Minimum BULK Voltage
#define MAX_VOLT_ABS (unsigned int)(CELLS * LiIon_CELL_VOLT)
#define MIN_I_BULK (unsigned int)(125)
#define MAX_TIME_LOWCURRENT 30 // Max Lowcurrent Charge Time = 90min
#define MAX_TIME_BULK 90 // Maximum BULK Charge Time = 90 min

AN146

Rev. 1.2 29

 // at 1C CURRENT
#define BULK_TIME_DELAY 30 // DELAY = 30min after “MIN_I_BULK”
END OF FILE

AN146

30 Rev. 1.2

Appendix F - Firmware (Source File)
//---
//
// Copyright 2003 Cygnal Integrated Products, Inc.
//
// Filename: F300_HighSpeed_BC.c
// Target Device: 8051F300
// Created: 1 March 2003
// Created By: DKC
// Tool chain: KEIL Eval C51
//
// This is a stand alone battery charger for a Lithium ION battery.
// It utilizes a buck converter, controlled by the on-chip 8-bit PWM,
// to provide constant current followed by constant voltage battery charge.
// The High Frequency Output Mode is used to generate the switch rate.
// The default rate is 510 kHz.
//
//---
// Includes
//---
#include <c8051f300.h>
#include “F300_HighSpeed_BC.h” // Battery Hearder File

//---
// Functions
//---

void Config_F300(void)
{ RSTSRC = 0x02; // Enable VDD Monitor
 XBR0 = 0x37; // Skip P0.0,1,2,4,5; they’re analog In
 XBR1 = 0x90; // Enable P0.6, P0.7, as CEX0 and CEX1
 XBR2 = 0x40; // Make CEX0 an 8-Bit PWM
 // and CEX1 Frequency Output Mode
 // Also, Enable crossbar and weak pull-ups

 CMPIN2 = 1; // Make Comparator Output Initially low
 CMPIN1 = 0; // to minimize current spikes on start-up

 P0MDOUT = 0xC8; // Set P0.3,6,7 output to push-pull
 P0MDIN = 0xC8; // Configure P0.0,1,2,4,5 as Analog Inputs

 OSCICN = 0x07; // Set SYSCLK to 24.5MHz, internal osc.

 ADC0CN = 0xC0; // Turn on the ADC Module;
 // enable low power mode for settling

 REF0CN = 0x0C; // Configure ADC’s to use VDD for
 // Voltage Reference,
 // Enable On-chip Temperature Sensor

//--
// Comparator Register Configuration
//--

 CPT0MX = 0x22; // Comparator 0 MUX Selection Register
 // P0.4,5 Input to Comparator

AN146

Rev. 1.2 31

 // P0.3 Output of Comparator
 CPT0MD = 0x00; // Comparator 0 Mode Selection Register
 CPT0CN = 0x80; // Comparator 0 Control Register, Turn on

//---
// PCA Configuration
//---
 PCA0MD = 0x00; // Disable WDT
 PCA0MD = 0x08; // Set PWM Time base = SYSCLK

 PCA0L = 0x00; // Initialize PCA Counter to Zero
 PCA0H = 0x00;

 PCA0CN = 0x40; // Enable PCA Counter
 // Clear PCA Counter Overflow flag
 //Module 0
 PCA0CPM0 = 0x00; // Configure CCM0 to Frequency Output Mode
 PCA0CPL0 = 0x28; // Initialize PCA PWM to small duty cycle
 PCA0CPH0 = 0x28; // 0x18 makes output frequency ~510kHz
 // 0x28 makes output frequency ~306kHz

 //Module 1
 PCA0CPM1 = 0x42; // Configure CCM0 to 8-bit PWM mode
 PCA0CPL1 = 0xE0; // Initialize PCA PWM to small duty cycle
 PCA0CPH1 = 0xE0; // 0xB9 Ensures a Soft Initial Charge

 //Module 2
 PCA0CPM2 = 0x49; // Configure Module 1 as software timer
 PCA0CPL2 = 0xFF; // Initialize to 255 so that Interrupt
 // is generated when PCA ends
 // 8-bit PWM Cycle
 PCA0CPH2 = 0x00; // PCA0CPH is the high byte of the
 // Output Compare Module

 EIE1 = 0x08; // Enable PCA Overflow Interrupt
}

//---
// Reset_Time_Base - Resets all Time Counting Values
//---
void Reset_Time_Base()
{
 TIME.sec = 0x00;
 TIME.min = 0x00;
 TIME.hour = 0x00;
 TIME.t_count = PWM_CLOCK;
}

//---
// Initialize CalibrateADCforVoltageMeasurement
//---
// This function calibrates the voltage channel and stores the calibration
// coefficients in the parameters volt_slope and volt_offset.
//
void CalibrateADCforMeasurement()
// This calibration routine uses a 2 point cal.
{ unsigned char xdata *pwrite; // FLASH write pointer
 long i=0;

AN146

32 Rev. 1.2

 EA = 0; // Disable All Interrupts

 // Wait until 1st calibration voltage is ready for cal
 //while (SW0 == 1); // Wait until SW0 pushed
 for (i=0;i<100000;i++); // Wait for Switch Bounce

 // Once ready, Get the first calibration voltage
 AMX0SL = VBAT; // Select appropriate input for AMUX
 ADC0CF = (SYSCLK/5000000) << 3; // ADC conversion clock = 5.0MHz
 ADC0CF &=0xF8; // Clear any Previous Gain Settings
 ADC0CF |= 0x01; // PGA gain = 1
 temp_INT_1.i = Measure();

 // Wait until 2nd calibration voltage is ready for cal
 //while (SW0 == 1); // Wait until SW0 pushed
 //for (i=0;i<100000;i++); // Wait for Switch Bounce

 // Once ready, Get the 2nd calibration voltage
 AMX0SL = VBAT; //Change Mux for second point
 temp_INT_2.i = Measure();

 // Calculate the SLOPE // V1 and V2 are in tenth of a degree
 temp_LONG_1.l = (unsigned)(temp_INT_2.i-temp_INT_1.i);
 temp_LONG_1.l *= (unsigned)100; // Account for Math Truncation Error
 temp_LONG_1.l /= (unsigned)(V2_CAL - V1_CAL);

 // Calculate the OFFSET
 temp_LONG_2.l = (unsigned)temp_INT_1.i;
 temp_LONG_2.l -= (signed)(temp_LONG_1.l * V1_CAL/100);

 temp_LONG_1.l = 2050; // If no cal. use these
 temp_LONG_2.l = 0; // as default values

 // Erased memory at page 0x1A00
 pwrite = (char xdata *)&(CHECK_BYTE.b[0]);

 PSCTL = 0x03; // MOVX writes target FLASH memory;
 // FLASH erase operations enabled

 FLKEY = 0xA5; // FLASH key sequence #1
 FLKEY = 0xF1; // FLASH key sequence #2
 *pwrite = 0x00; // initiate PAGE erase

 // Write the Volt SLOPE and OFFSET to Flash
 PSCTL = 1; // MOVX writes to Flash

 pwrite = (char xdata *)&(VOLT_SLOPE.b[0]);
 FLKEY = 0xA5;
 FLKEY = 0xF1; // enable flash write
 *pwrite = temp_LONG_1.b[0];
 pwrite = (char xdata *)&(VOLT_SLOPE.b[1]);
 FLKEY = 0xA5;
 FLKEY = 0xF1; // enable flash write
 *pwrite = temp_LONG_1.b[1];
 pwrite = (char xdata *)&(VOLT_SLOPE.b[2]);
 FLKEY = 0xA5;
 FLKEY = 0xF1; // enable flash write
 *pwrite = temp_LONG_1.b[2];

AN146

Rev. 1.2 33

 pwrite = (char xdata *)&(VOLT_SLOPE.b[3]);
 FLKEY = 0xA5;
 FLKEY = 0xF1; // enable flash write
 *pwrite = temp_LONG_1.b[3];

 pwrite = (char xdata *)&(VOLT_OFFSET.b[0]);
 FLKEY = 0xA5;
 FLKEY = 0xF1; // enable flash write
 *pwrite = temp_LONG_2.b[0];
 pwrite = (char xdata *)&(VOLT_OFFSET.b[1]);
 FLKEY = 0xA5;
 FLKEY = 0xF1; // enable flash write
 *pwrite = temp_LONG_2.b[1];
 pwrite = (char xdata *)&(VOLT_OFFSET.b[2]);
 FLKEY = 0xA5;
 FLKEY = 0xF1; // enable flash write
 *pwrite = temp_LONG_2.b[2];
 pwrite = (char xdata *)&(VOLT_OFFSET.b[3]);
 FLKEY = 0xA5;
 FLKEY = 0xF1; // enable flash write
 *pwrite = temp_LONG_2.b[3];

 PSCTL = 0; // MOVX writes target XRAM

//---
// Initialize CalibrateADCforCurrentMeasurement_NOAMP
//---
// This function calibrates the current channel with no external amp
// and stores the calibration coefficients in the
// parameters i_noamp_slope and i_noamp__offset.
//
// This calibration routine uses a 2 point cal.
 // Wait until calibration voltage is ready for cal
 //while (SW0 == 1); // Wait until SW0 pushed
 //for (i=0;i<100000;i++); // Wait for Switch Bounce

 // Once ready, Get the first calibration voltage
 AMX0SL = IBAT; // Select appropriate input for AMUX
 ADC0CF = (SYSCLK/5000000) << 3; // ADC conversion clock = 5.0MHz
 ADC0CF &=0xF8; // Clear any Previous Gain Settings
 ADC0CF |= 0x03; // Set PGA gain = 4
 temp_INT_1.i = Measure(); // Acquire 16-bit Conversion
 temp_INT_1.i *= 2; // Account for Differential Mode

 // Wait until 2nd calibration voltage is ready for cal
 //while (SW0 == 1); // Wait until SW0 pushed
 //for (i=0;i<100000;i++); // Wait for Switch Bounce

 // Once ready, Get the 2nd calibration voltage
 temp_INT_2.i = Measure(); // Acquire 16-bit Conversion
 temp_INT_2.i *=2; // Account for Differential Mode

 // Calculate the SLOPE
 temp_LONG_1.l = (unsigned)(temp_INT_2.i - temp_INT_1.i);
 temp_LONG_1.l *= (unsigned)100; // Account for Math Truncation Error
 temp_LONG_1.l /= (unsigned)(I2_CAL - I1_CAL);
 temp_LONG_1.l /= (unsigned)INT_CURRENT_GAIN;// Account for Gain

 // Calculate the OFFSET

AN146

34 Rev. 1.2

 temp_LONG_2.l = (signed)(temp_INT_1.i/INT_CURRENT_GAIN);
 temp_LONG_2.l -= (signed)(temp_LONG_1.l * V1_CAL/100);

 temp_LONG_1.l = 2050; // If no cal. use these
 temp_LONG_2.l = 0; // as default values

 // Memory at 0x1A00 is already erased
 // Write the Volt SLOPE and OFFSET to Flash
 PSCTL = 1; // MOVX writes to Flash

 pwrite = (char xdata *)&(I_NOAMP_SLOPE.b[0]);
 FLKEY = 0xA5;
 FLKEY = 0xF1; // enable flash write
 *pwrite = temp_LONG_1.b[0];
 pwrite = (char xdata *)&(I_NOAMP_SLOPE.b[1]);
 FLKEY = 0xA5;
 FLKEY = 0xF1; // enable flash write
 *pwrite = temp_LONG_1.b[1];
 pwrite = (char xdata *)&(I_NOAMP_SLOPE.b[2]);
 FLKEY = 0xA5;
 FLKEY = 0xF1; // enable flash write
 *pwrite = temp_LONG_1.b[2];
 pwrite = (char xdata *)&(I_NOAMP_SLOPE.b[3]);
 FLKEY = 0xA5;
 FLKEY = 0xF1; // enable flash write
 *pwrite = temp_LONG_1.b[3];

 pwrite = (char xdata *)&(I_NOAMP_OFFSET.b[0]);
 FLKEY = 0xA5;
 FLKEY = 0xF1; // enable flash write
 *pwrite = temp_LONG_2.b[0];
 pwrite = (char xdata *)&(I_NOAMP_OFFSET.b[1]);
 FLKEY = 0xA5;
 FLKEY = 0xF1; // enable flash write
 *pwrite = temp_LONG_2.b[1];
 pwrite = (char xdata *)&(I_NOAMP_OFFSET.b[2]);
 FLKEY = 0xA5;
 FLKEY = 0xF1; // enable flash write
 *pwrite = temp_LONG_2.b[2];
 pwrite = (char xdata *)&(I_NOAMP_OFFSET.b[3]);
 FLKEY = 0xA5;
 FLKEY = 0xF1; // enable flash write
 *pwrite = temp_LONG_2.b[3];

 PSCTL = 0; // MOVX writes target XRAM
}

//---
// Measure
//---
//
// This routine averages 65536 ADC samples and returns a 16-bit unsigned
// result.
//
unsigned int Measure (void)
{
 unsigned i; // sample counter
 unsigned long accumulator=0L; // here’s where we integrate the
 // ADC samples

AN146

Rev. 1.2 35

 // read the ADC value and add to running total
 i = 0;
 do {
 AD0INT = 0; // clear end-of-conversion indicator
 AD0BUSY = 1; // initiate conversion
 while(!AD0INT); // wait for conversion to complete
 accumulator += ADC0; // read adc value and accumulate
 i++; // update counter
 } while (i != 0x0000);

 // the accumulator now contains 16 added bits of which 8 are usable
 return (unsigned int) (accumulator >> 8);
}

//---
// Regulate_Current
//---
// This routine monitors the battery’s current and adjusts
// the PWM (i.e. duty cycle) to keep the current at a known value
//
void Regulate_Current(int passed_current)
{ unsigned int temp = 0,delay_count = 0;
 do{
 temp = Monitor_Battery(CURRENT); // Measure Current
 if (temp < passed_current)
 { PCA0CPH1--;

 for(delay_count = 0;delay_count<2500;delay_count++);
}

 if (temp > passed_current)
 { PCA0CPH1++;
 for(delay_count = 0;delay_count<2500;delay_count++);
 }

 }while ((temp < (passed_current - CURRENT_TOLERENCE)) ||
 (temp > (passed_current + CURRENT_TOLERENCE)));
 // I_BULK or I_LOWCURRENT is set now

 temp = Monitor_Battery(VOLTAGE_PWM_OFF);
 // If VOLTAGE within range,
 // change from constant CURRENT charge
 // mode to constant VOLTAGE charge mode
 if ((temp >= (VOLT_LOWCURRENT - VOLT_TOLERANCE*2)) &&
 (temp <= (VOLT_LOWCURRENT + VOLT_TOLERANCE*2)))
 {
 CONST_C = 0;
 CONST_V = 1;
 }

}

//---
// Regulate_Voltage
//---
// This routine monitors the battery’s voltage and adjusts
// the PWM (i.e. duty cycle) to keep the voltage at a known value
//
void Regulate_Voltage(void)
{ unsigned int temp = 0,delay_count = 0;

AN146

36 Rev. 1.2

 // set VOLT_BULK (with “soft start”)
 do{
 temp = Monitor_Battery(VOLTAGE);

if (temp < VOLT_BULK)
 { PCA0CPH1--;
 for(delay_count = 0;delay_count<2500;delay_count++);
 }
 if (temp > VOLT_BULK)
 { PCA0CPH1++;
 for(delay_count = 0;delay_count<2500;delay_count++);
 }

 }while ((temp < (VOLT_BULK - VOLT_TOLERANCE)) ||
 (temp > (VOLT_BULK + VOLT_TOLERANCE)));
 // VOLTAGE is set now
}

//---
// Turn_PWM_Off
//---
// This routine peforms a soft charge turn off by taking the PWM’s
// duty cycle slowly to zero.
//
void Turn_PWM_Off(void)
{
 do{
 if (PCA0CPH1 < 0xF0)
 PCA0CPH1++;

 }while (PCA0CPH1 < 0xF0);
 // Duty Cycle is now small and safe to turn off.

 PCA0CPM0 = 0x00; // Disable PWM
}

//---
// Monitor_Battery
//---
// This routine acts as a switch when gathering different conversion types.
// It adjusts the throughput, adjust the AMUX and returns the current in mA,
// voltage in mV, and temperature in C, 2% accurate.
//
int Monitor_Battery(unsigned char value)
{
 char i;
 unsigned long av =0,delay_count=0;
 long signed result;

 ADC0CF = (SYSCLK/5000000) << 3; // ADC conversion clock = 5.0MHz
 ADC0CF &= 0xF8; // Clear any Previous Gain Settings

 switch (value)
 {
 case TEMPERATURE:
 //Turn_PWM_Off(); // Turn PWM Off
 AMX0SL = TBAT; // Select appropriate input for AMUX
 ADC0CF |= 0x02; // Set PGA gain = 2
 break;

AN146

Rev. 1.2 37

 case VOLTAGE:
 AMX0SL = VBAT; // Select appropriate input for AMUX
 ADC0CF |= 0x01; // Set PGA gain = 1
 break;

 case VOLTAGE_PWM_OFF:
 //Turn_PWM_Off(); // Turn PWM Off
 AMX0SL = VBAT; // Select appropriate input for AMUX
 ADC0CF |= 0x01; // Set PGA gain = 1
 break;

case CURRENT:
 AMX0SL = IBAT; // Select appropriate input for AMUX
 ADC0CF |= 0x01; // Set PGA gain = 1
 break;

 }

 //Compute average of next 10 A/D conversions
 for(delay_count = 0;delay_count<2500;delay_count++);// Allow Settling Time
 for(av=0,i=10;i;--i){
 AD0INT = 0; // clear end-of-conversion indicator
 AD0BUSY = 1; // initiate conversion
 while(!AD0INT); // wait for conversion to complete
 av = av+ADC0;
 }

 av = av/10; // Compute the average
 av = av<<8; // Convert to 16-bit conversion
 // ...to account for 16-bit cal.
 // coefficients

 PCA0CPM0 = 0x46; // Turn on PWM

 switch (value)
 { case TEMPERATURE:
 result = (long) av * 1000/TEMP_SLOPE;
 break;

 case VOLTAGE:
 case VOLTAGE_PWM_OFF:
 result = (av - VOLT_OFFSET.l); // Account for System Errors
 result *= 100; // Account for Math Truncation Error
 result *= RESAB; // Account for Divide Resistors

 result /= VOLT_SLOPE.l; // Convert to Voltage in Millivolts
 result /= RESB;
 result -= ((RSENSE*Current)/100); // Account for Sense Resistor Voltage Drop

break;
 case CURRENT:
 result = (av - I_NOAMP_OFFSET.l); // Account for System Errors
 result *= 100; // Account for Math Truncation Error
 result *= 100; // Account for Sense Resistor

 result /= I_NOAMP_SLOPE.l; // Convert to Milliamps
 result /= RSENSE; // Account for Sense Resistor
 result /= EXT_CURRENT_GAIN; // Account for external Amplifier

 Current = (int) result;
 break;

 }

AN146

38 Rev. 1.2

 return (int) result;
}

//---
// Bulk_Charge Function
//---
void Bulk_Charge(void)
{
 unsigned int temp = 0;
 unsigned int bulk_finish_hour = 0;
 unsigned int bulk_finish_min = 0;
 unsigned int delay_hour = 0;
 unsigned int delay_min = 0;
 unsigned int last_min = 0;

 Reset_Time_Base(); // Reset Time Base to zero

 // Calculate BULK charge finish time
 bulk_finish_min = (TIME.min + MAX_TIME_BULK);
 bulk_finish_hour = TIME.hour;
 while (bulk_finish_min > 60)
 {
 bulk_finish_min = bulk_finish_min - 60;
 bulk_finish_hour++;
 }

 CONST_C = 1; // Start in constant current charge mode
 DELAY = 0; // Reset timer DELAY

 temp = Monitor_Battery(TEMPERATURE); // Monitor Temperature
 // Is temperature within range?

 if ((temp > MIN_TEMP_ABS) && (temp < MAX_TEMP_ABS))
 {
 temp = Monitor_Battery(VOLTAGE); // Monitor Voltage

 // Is Voltage within range?
 Voltage = temp; // for Debug

if ((temp <= (MAX_VOLT_ABS + VOLT_TOLERANCE)) && (temp > MIN_VOLT_BULK))
 {
 PCA0CPM0 = 0x46; // Turn on PWM

 // Enter main loop in Bulk_Charge()
 while ((BULK == 1) && (ERROR == 0))
 {
 if (CONST_C == 1)
 Regulate_Current(I_BULK);

 else if (CONST_V == 1)
 { Current = Monitor_Battery(CURRENT); // Measure Current
 if((Current < IMIN)||(Current > IMAX))
 { CONST_V = 0; // Exit CONST_V
 CONST_C = 1; // Prepare to enter CONST_C
 BULK = 0; // Prepare to exit BULK mode
 LOWCURRENT = 1; // Prepare to enter LOWCURRENT Mode

 if (Current < IMIN)
 I_MIN = 1; // Indicate Specific Error for Debug

AN146

Rev. 1.2 39

 else
 I_MAX = 1; // Indicate Specific Error for Debug
 }

 else if ((Current < IMAX) && (Current > IMIN))
 { I_MAX = 0; // Reset Error Flag

 I_MIN = 0; // Reset Error Flag
 Regulate_Voltage(); // Charge with Constant Voltage
 }
 }

 // Now, Check for error and charge termination conditions
 // If above max charge time, flag error
 // Test for BULK Charge Time Out

 // Monitor Time
 if ((TIME.hour == bulk_finish_hour) && (TIME.min == bulk_finish_min)
 && (DELAY == 0))
 {
 Turn_PWM_Off(); // Turn Off PWM
 TIME_MAX = 1; // Set Time max error flag
 ERROR = 1; // Set general error flag
 }

 // Monitor Temperature
 temp = Monitor_Battery(TEMPERATURE);
 if ((temp < MIN_TEMP_ABS) && (temp > MAX_TEMP_ABS))

{
 Turn_PWM_Off(); // Turn Off PWM

 if (temp < MIN_TEMP_ABS)
 TEMP_MIN = 1; // Set Temperature below minimum flag
 else
 TEMP_MAX = 1; // Set Temperature exceeds maximum flag

 ERROR = 1; // Set general error flag
 }

 // Minute elapsed?
 // Check for minimum current
 // if reached, enter last DELAY charge
 if (TIME.min != last_min)
 {
 last_min = TIME.min;
 if ((CONST_V == 1) && (DELAY == 0) && (Monitor_Battery(CURRENT)
 <= MIN_I_BULK))
 {
 // Calculate TOP OFF Battery Time finish time
 delay_min = (TIME.min + BULK_TIME_DELAY);
 delay_hour = TIME.hour;
 while (delay_min > 60)
 {
 delay_min = delay_min - 60;
 delay_hour++;
 }
 DELAY = 1; // Set Delay Flag
 }

 // Monitor Delay time, time up?

AN146

40 Rev. 1.2

 if ((TIME.hour == delay_hour)&&(TIME.min == delay_min) &&
 (DELAY == 1))
 {
 Turn_PWM_Off(); // Turn Off PWM
 CONST_V = 0; // Exit CONST_V
 CONST_C = 1; // Prepare to enter CONST_C
 BULK = 0; // Prepare to exit BULK mode
 LOWCURRENT = 1; // Prepare to enter LOWCURRENT Mode
 }
 }
 } // End Main While loop
 }

 else if(ERROR == 0)
 {
 if (temp > (MAX_VOLT_ABS + VOLT_TOLERANCE))
 { VOLT_MAX = 1; // Set Max Voltage error flag
 ERROR = 1; // Set general error flag
 }

 else if(temp < MIN_VOLT_BULK)
 { VOLT_MIN = 1; // Set Minimum bulk voltage error flag
 LOWCURRENT = 1; // Switch to LOWCURRENT mode
 BULK = 0; // Exit Bulk Charge mode
 } // battery’s voltage very low
 }
 }

 else if(ERROR == 0) // Absolute temperature out of range?
 {
 if (temp < MIN_TEMP_ABS)
 TEMP_MIN = 1; // Set Temperature below minimum flag
 else
 TEMP_MAX = 1; // Set Temperature exceeds maximum flag

 ERROR = 1; // Set general error flag
 }
}

//---
// Lowcurrent_Charge
//---

void Lowcurrent_Charge(void)
{
 unsigned int temp = 0;
 unsigned int lowcurrent_finish_min = 0;
 unsigned int lowcurrent_finish_hour = 0;

 Reset_Time_Base(); // Reset Time base to zero

 // Calculate LOWCURRENT finish time
 lowcurrent_finish_min = (TIME.min + MAX_TIME_LOWCURRENT);
 lowcurrent_finish_hour = TIME.hour;
 while (lowcurrent_finish_min > 60)
 {
 lowcurrent_finish_min = lowcurrent_finish_min - 60;
 lowcurrent_finish_hour++;
 }

AN146

Rev. 1.2 41

 // Enter Main Lowcurrent Loop.
 // Only exits are upon error and full charge
 while ((LOWCURRENT == 1) && (ERROR == 0))
 {
 temp = Monitor_Battery(TEMPERATURE);// Get Temperature Reading
 // Is TEMPERATURE within limits
 if ((temp > MIN_TEMP_ABS) && (temp < MAX_TEMP_ABS))
 {
 // Is Battery’s Charge Voltage below max charge voltage
 temp = Monitor_Battery(VOLTAGE); // Get Voltage Reading
 if (temp <= (VOLT_LOWCURRENT + VOLT_TOLERANCE))
 {
 if (CONST_C == 1) // CONST_C ?, charge w/ constant current
 Regulate_Current(I_LOWCURRENT);

 if (CONST_V == 1) // CONST_V?, charge w/ constant voltage
 Regulate_Voltage();

 if ((temp >= MIN_VOLT_BULK) && (DELAY == 0))// Bulk Threshold voltage met?
 { LOWCURRENT = 0; // Exit LOWCURRENT mode
 BULK = 1; // Switch to Bulk Charge mode
 }
 // Check elapsed time
 if ((TIME.hour == lowcurrent_finish_hour) &&
 (TIME.min == lowcurrent_finish_min))
 {
 TIME_MAX = 1; // Set Time MAX error flag
 ERROR = 1; // Set general error flag
 }
 }
 else if(ERROR == 0) // Voltage to high?
 {
 VOLT_MAX = 1; // Set Max voltage error flag
 ERROR = 1; // Set general error flag
 }
 }
 else if(ERROR == 0) // Absolute temperature out of range?
 {
 if (temp < MIN_TEMP_ABS)
 TEMP_MIN = 1; // Set Temperature below minimum flag
 else
 TEMP_MAX = 1; // Set Temperature exceeds maximum flag

 ERROR = 1; // Set general error flag
 }
 }
}

//---
// Main Function
//---
void main(void)
{
 EA = 0; // Disable All Interrupts
 Reset_Time_Base();
 Config_F300(); // Config F300
//Turn_PWM_Off(); // Turn PWM off before Calibration
//CalibrateADCforMeasurement(); // Calibrate F300

AN146

42 Rev. 1.2

 EA = 1; // Enable All Active Interrupts

 while(1)
 {
 LED0 = 0; // Turn LED0 off

 TERMINATION = 0x00; // Reset Termination Flags
 CHARGE_STATUS = 0x00; // Reset Charge Status Flags

LOWCURRENT = 0;
BULK = 1; // Start in LOWCURRENT Charge Mode

 CONST_C = 1;

 while (ERROR == 0)
 {
 if (BULK == 1)
 {
 Bulk_Charge(); // Enter Bulk Charge Mode

 }
 if (LOWCURRENT == 1)
 Lowcurrent_Charge(); // Enter Lowcurrent_Charge function
 // Toggle LED0 at 1 Hz rate via ISR
 }

 if (ERROR == 1)
 {
 Turn_PWM_Off();; // Turn PWM Off
 EA = 0; // Disable All Interrupts
 while (1); // Enter a eternal loop
 // No recovery except “reset-button”
 }
 }
}

//---
// Interrupt Service Routines
//---

//---
// PCA_ISR
//---
// This routine counts the elapsed time in seconds, minutes, hours.
// It also toggles LED0 every second when in Lowcurrent Charge Mode.
// This routine interrupts every time the PCA counter overflows, every 256
// SYSCLK cycles. After SYSCLK/256 interrupts, one second has elapsed.
//
 void PCA_OVERFLOW_ISR (void) interrupt 9
{ int time_sec;
 PCA0CN = 0x40; // Reset all PCA Interrupt Flags

 PCA0H = 0x00; // Reset High Byte of PCA Counter
 // of 8-bit PWM we are using Module1

 if (0x0000 == --TIME.t_count)
 {
 TIME.t_count = PWM_CLOCK; // Reset 1 Second Clock
 if (60 == ++TIME.sec) // Account for elapsed seconds
 { // Reset second counter every minute
 TIME.sec = 0x00;
 if (60 == ++TIME.min) // Account for elapsed minutes

AN146

Rev. 1.2 43

 { // Reset minute counter every hour
 TIME.min = 0x00;
 if (24 == ++TIME.hour) // Account for elapsed hours
 TIME.hour = 0x00; // Reset hour counter every day
 }
 }
 time_sec = TIME.sec;

 if ((LOWCURRENT == 1) && (ERROR == 0))
 { // Blink LED0 at 1 Hz if in Lowcurrent
 //if (TIME.sec % 2)
 // LED0 = 0; // Turn on LED every odd second
 //else
 // LED0 = 1; // Turn on LED every even second
 }
 }
}

END OF FILE

AN146

44 Rev. 1.2

Contact Information
Silicon Laboratories Inc.
4635 Boston Lane
Austin, TX 78735
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: productinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

	Relevant Devices
	Introduction
	Key Points
	Charging Basics
	Hardware Description
	Buck Converter
	Buck Regulator Operation
	Selecting the Buck Converter Inductor
	High Speed Charger

	Software Description
	Calibration
	Temperature
	Current
	Voltage
	Charging - Phase1
	Charging - Phase 2
	Charging - Phase 3

	Getting Started
	Conclusion
	Reference
	Appendix A - Schematic
	Appendix B - Bill Of Materials
	Appendix C - PCB Layout
	Appendix D - Software Flow Charts
	Appendix E - Firmware (Header File)
	Appendix F - Firmware (Source File)

