
Rev. 1.4 12/03 Copyright © 2003 by Silicon Laboratories AN145-DS14

AN145

THREE-CHANNEL POWER SEQUENCER

Relevant Devices
This application note applies to the following devices:
C8051F330.

Introduction
The C8051F330 can provide low-cost power
sequencing and supervision in systems with up to
three power supply rails. During power ramp up, it
controls in-rush current by limiting the output slew
rate and performs real-time tracking to minimize
the voltage difference between supply rails. Once
ramping is complete, it monitors the outputs and
shuts down all supply rails if an over-voltage,
under-voltage, over-current, or single-rail failure
condition is detected.

This reference design includes:
• Background and theory of operation.
• Hardware and software description including

how to customize and use the firmware.
• Typical performance examples.
• A schematic, bill of materials, and PCB area

estimate for a three rail solution.
• Complete firmware (source and object code

included) that can be used as-is for a three rail
solution. A two rail solution can be achieved by
turning off the third rail.

Background
An increasing number of devices such as FPGAs,
DSPs, RISC-CPUs, and communications ICs oper-
ate at two or more supply voltages. The core logic
commonly operates from 1.3V to 2.5V in order to
save power while the I/O supply operates from 3.3
to 5 V to interface with other devices.

A common requirement for these ICs is that supply
rails should track while ramping and stabilize at
their target voltages 100 ms or more before the
device is brought out of reset. Also, these devices
often require large decoupling capacitors. Control-
ling in-rush current by limiting the slew rate on
power up can prevent damage to the decoupling
capacitors.

Many systems with multiple supplies require sys-
tem health monitoring and protection. The health
monitor checks for overvoltage, undervoltage, or
overcurrent on any of the supply rails. It provides
protection by putting the system into reset and
shutting down all supply rails if abnormal condi-
tions are detected on any of the supply rails.

The Silicon Labs Power Sequencing Solution is
ideal for multi-supply systems where the reliability
requirements or IC replacement cost are key issues.

+12V
Main

3.3V LDO

1.8V LDO

1.5V LDO

Cygnal
Power

Sequencer1.5V
1.8V

3.3V

1.5V
1.8V

3.3V

Multi-Supply IC

Figure 1. Multi-Supply IC that Requires Power Sequencing and Management

AN145

2 Rev. 1.4

The C8051F330 MCU is available in a 20-pin MLP with a 4x4mm footprint. The entire solution includ-
ing power MOSFETs can be implemented in less than 1 square inch of PCB space.

Theory of Operation
The Silicon Labs power sequencer uses its on-chip ADC and PWM output capabilities to implement a
state-machine-based feedback control loop. This control loop performs real-time voltage tracking during
ramp up and provides power supply monitoring and protection once ramping is complete. It also manages
the “system reset” (S_RESET) and “power good” (POWER_G) signals.

The power sequencer controls the output voltages by varying the source-drain resistance of a power
MOSFET placed between the input and output terminal. The MOSFET resistance can vary from being an
open circuit to a virtual short circuit, based on the gate voltage. The power sequencer controls the MOS-
FET resistance using a low-pass filtered PWM signal at the gate, as shown in Figure 2.

Using its on-chip ADC, the power sequencer measures the input and output voltages for each channel.
This allows it to perform real-time voltage tracking on power up and provide protection from over-volt-
age, under-voltage, over-current, or single-rail failure conditions after all channels have stabilized.

INPUT OUTPUT

C8051F330

Analog Input

Analog Input

PWM Output

Attenuator +12V Attenuator

Figure 2. Single Channel Model

AN145

Rev. 1.4 3

System States
The power sequencer has four states of normal operation, shown in Figure 3. On reset, the system starts
normal operation unless the calibrate/shutdown (CAL/SD) switch is pressed. If the CAL/SD switch is
pressed, the system enters Configuration mode as shown in Figure 4.

Input Validation

The VALIDATE state monitors the channel input voltages until they are within specified operating
ranges. It also checks if the 12V supply is powered. Once all supply rails are “on”, it waits a programma-
ble wait time (10 ms - 30 sec with a default of 100 ms) for the supplies to stabilize. At the end of the wait
time, the system measures and records the actual supply voltages at the channel inputs. This measurement
is used by the RAMP state to determine when ramping is complete.

Ramping Algorithm

While ramping, the outputs rise at a programmable monotonic slew rate until each of the channel outputs
reaches its target voltage. The slew rate can be programmed to any value from 250 V/s to 500 V/s.

Figure 3. System State Definitions

VALIDATE
State

RAMP
State

MONITOR
State

POWER DOWN
State

S_RESET Signal

CH1
CH2
CH3

Outputs

10 ms - 30 sec
Default 100 ms

Max time: 100 ms

POWER_G Signal

10 ms - 30 sec
Default 100 ms

AN145

4 Rev. 1.4

Reset

Switch S2
Pressed or
First Run?

Yes
Enter

Configuration
Mode

No

Validate and Wait UART
Activity?

10 sec.
Timeout?

Configuration
Menu

Calibrate

Reset

Disable
10 sec.
Timeout

RAMP

MONITOR

while(1);

Supply
Failure

User
Shutdown

POWER DOWN

100 ms
Timeout

User
Shutdown

Supply Failure
or Timeout

UART
Not

Enabled

Figure 4. System State Flow Diagram

AN145

Rev. 1.4 5

The ramping algorithm keeps the output voltages
as close as possible to a calculated “ideal” line, as
shown in Figure 5. At each sampling point, the
algorithm compares the output voltage to the
“ideal” line and decides whether to hold or incre-
ment the output voltage and the ideal line. Figure 5
shows that the output voltage for a single channel
can be much lower, slightly lower, or higher than
the “ideal” line.

The three cases are discussed below:

Case 1. The output voltage is much lower than the
“ideal” line (see Point 1 in Figure 5). Action
Taken. Increase output voltage and hold the ideal
line.

Case 2. The output voltage is slightly lower than
the “ideal” line (see Point 2 in Figure 5).
Action Taken. Increase output voltage and
increase the ideal line.

Case 3. The output voltage is higher than the
“ideal” line (see Point 3 in Figure 5).
Action Taken. Hold output voltage and increase
the ideal line.

The ramping algorithm also checks the differential
voltage between each channel and the other chan-
nel(s). As shown in Figure 6, if a channel starts lag-
ging (i.e. the differential voltage between the
channel and another channel has exceeded the
tracking threshold), the remaining channel(s) (and
their ideal lines) are held at their current values
until the slower channel “catches up”.

Once ramping is complete, the power good
(POWER_G) signal is driven HIGH and the system
moves to the MONITOR state. If the system does
not finish ramping before the 100 ms timeout, all
outputs are shut down and the inputs are re-vali-
dated.

System Monitoring and
Protection
In the MONITOR state, channel inputs and outputs
are monitored to provide protection from overvolt-
age, undervoltage, overcurrent, and single rail fail-
ure conditions.

The system reset (S_RESET) signal is driven
HIGH a programmable wait time after the system

"Ideal" Line
Channel Output

3

1

2

Figure 5. Example RAMP State Decisions

Tracking
Threshold

Figure 6. Example Tracking Decision

AN145

6 Rev. 1.4

has entered the MONITOR state (10 ms to 30 sec
with a default wait time of 100 ms).

Overvoltage and undervoltage conditions are
detected when the output voltage for a channel has
exceeded or fallen below 8% of the channel voltage
(3.3V, 1.8V, or 1.5V). Overcurrent is detected when
the input and output voltages vary by greater than
400 mV on any channel.

If any of the above conditions is detected on any
rail, the S_RESET and POWER_G signals are
driven LOW and the system powers down and re-
validates the inputs. A 100 mV hysteresis on re-
validation prevents the system from continuously
ramping up and down if a supply voltage is hover-
ing near the overvoltage or undervoltage threshold.

While in the MONITOR state, the user can issue a
User Shutdown by pressing the CAL/SD switch. A
User Shutdown initiates a soft ramp down on all
outputs and puts the CPU in a low power Stop
mode until the next reset or power-on event.

Soft Power Down
The Power Down State is entered when the 100 ms
ramp timeout has expired, a power failure is
detected, or a User Shutdown has occurred.

In this state, the POWER_G and S_RESET signals
are driven LOW. The channel outputs are ramped
down to provide a “soft” shutdown. The outputs
track based on stored calibration data.

Hardware Description
In this design, PCA0 is used to generate the PWM
signals that control the power MOSFET resistance.
ADC0 is used to measure the voltages at the inputs
and outputs.

A complete schematic for a 3 channel system using
the C8051F330 is shown in Appendix A on page
20. A bill of materials for this system is shown in
Appendix B.

PWM Generation
The Program Counter Array (PCA) in 8-bit PWM
mode generates three PWM signals used to control
the output voltages. These signals are named
CEX0, CEX1, and CEX2. The frequency of the
PWM signals is configured to 95.7 kHz, or 256
SYSCLK cycles between falling edges. The
SYSCLK frequency is 24.5 MHz, derived from the
calibrated internal oscillator.

The duty cycle of the PWM signal is set by writing
an 8-bit PWM code to the high byte of a PCA Cap-
ture Module Register (PCA0CPH0, PCA0CPH1,
or PCA0CPH2), as described in the PCA chapter of
the C8051F33x Datasheet.

Power MOSFET Control
The power MOSFET resistance decreases as the
gate voltage increases. When the gate voltage is 0V,
the MOSFET is an open circuit. As the gate voltage
moves closer to 12V, the MOSFET resistance
decreases until it becomes a virtual short.

The NPN Transistor and +12V pull-up resistor
translate the 0V to 3.3V PWM signal to a 0V to
12V PWM signal. This signal is low pass filtered
before reaching the MOSFET gate. This reduces
ripple on the output voltage during the ramp phase.
Once ramping is complete, the MOSFET is turned
completely on.

ADC Sampling
The on-chip 10-bit ADC0 is configured to sample
at a rate of 47.85 kHz, exactly twice the PWM fre-
quency. Synchronizing the ADC sampling with the
PWM signal reduces digital noise in the ADC sam-
ples.

ADC0 starts conversions on Timer 2 overflow.
During device initialization, Timer 2 and the PCA
counter are started together so that ADC samples
are always aligned with the falling edge of the
PWM signal.

AN145

Rev. 1.4 7

The ADC positive input MUX determines which
analog input is currently being sampled. The MUX
can be changed on-the-fly and is managed by the
Timer2_ISR during the RAMP and MONITOR
states. In all other states, MUX switching is han-
dled by polled code.

Software Description
The main power sequencing and monitoring con-
trol loop in this design is implemented in software.
Figure 7 shows an overview of program flow start-
ing from a device reset.

Device Calibration
On first run, the Silicon Labs power sequencer goes
through a calibration sequence to characterize the
external circuitry. During calibration, the output
voltage is measured at each PWM code and a cali-
bration table is built in FLASH mapping PWM
codes to output voltages. This allows the output
waveform to be controlled in 50 mV steps regard-
less of MOSFET device-to-device variations or dif-
ferences in channel loading.

The initial calibration ramp rises slower than a a
typical ramp in normal operation. After all chan-
nels reach their target value and the calibration
table is complete, the CAL_DONE flag is cleared
to indicate a successful calibration and a software
reset is issued. Throughout the calibration
sequence, the S_RESET and POWER_G signals
are held LOW.

After device initialization, the C8051F330 verifies
the calibration data stored in non-volatile FLASH
memory. If the CAL_DONE byte reads 0xFF, the
value of uninitialized FLASH memory, verification
will fail and the device will re-enter the calibration
sequence.

Variable Initialization
Global variables are used to share data and system
state information between polled code and interrupt

code. The initializations are performed each time
the system enters the VALIDATE state.

VALIDATE State
The VALIDATE state is implemented in polled
code by the ValidateInput() routine. It first verifies
that the 12V supply is turned on. Next, it monitors
the channel inputs until they are all within their
overvoltage and undervoltage thresholds.

After validation, the system pauses for a program-
mable wait time <VAL_WAITTIME> using the
wait_ms() support routine to allow the inputs to set-
tle. The wait_ms() routine uses Timer 3 to pause
polled code for a given number of milliseconds.
Interrupts can be serviced while polled code is
paused.

After all channel inputs have settled, the Vali-
dateInput() routine records the ADC code mea-
sured from each channel in its corresponding
<CHx_TARGET_CODE> variable. These vari-
ables are used during the RAMP state to determine
when ramping is complete.

RAMP State
The RAMP state is implemented in interrupt driven
code using Timer2_ISR and ADC0_ISR.
Timer2_ISR cycles the ADC positive input MUX
through the channel outputs on Timer 2 overflows.
Note that the Timer 2 overflow event also starts a
new ADC conversion before the ADC MUX is
changed.

Figure 8 shows program flow in the ADC0_ISR
when the system is in the RAMP state. The
ADC0_ISR handles tracking and ramping deci-
sions made while the outputs are rising. These deci-
sions are shown in Figure 5 and Figure 6 and
explained on page 5.

Once ramping is complete, the PWM signals are
parked LOW, making the MOSFET a virtual short.
The system state is changed to MONITOR.

AN145

8 Rev. 1.4

MONITOR State

Main()

Switch S2
Pressed? Yes

No

Initialize Global
Variables

Start ADC
Sampling

at 47.85 kHz

Reset

Enter RAMP State
and Enable Interrupts

Timer 2_ISR
Manages ADC MUX

Switching

ADC0_ISR
Manages PWM output and

Channel MonitoringState Monitoring
Polled Code

Power
Failure

while(1);

User
Shutdown

Initialze System
Clock, Port I/O and

PCA

Initialize UART for
115200 Baud

8-N-1
Communication

(optional)

Verify Calibration Data
Device

Uncalibrated

Device
Calibrated

Validate and Wait

Configure and
Calibrate

Figure 7. Software Flow Diagram

AN145

Rev. 1.4 9

In the MONITOR state, Timer2_ISR cycles the ADC positive input MUX through the channel outputs

Yes

RAMP

CHANNEL 2?

Finished
Ramping?

No

No Tracking
OK? No

1. Hold Vout
2. Ideal Line = Vout + Delta
3. Return From Interrupt

1. Compare current ADC reading with the expected ADC
 reading (ie. the "ideal" line). Three cases are possible.

 Case 1: Vout is much lower than "ideal" line.
 Action: Increase output voltage and hold "ideal" line.

 Case 2: Vout is slightly lower than "ideal" line.
 Action: Increase output voltage and increase "ideal" line.

 Case 3: Vout is higher than "ideal" line.
 Action: Hold output voltage and increase "ideal" line.

2. Return From Interrupt

Yes

Turn off PWM
signal.

Yes

Channel 2

Channel 3
No

Channel 1

Finished
Ramping

all Channels?

STATE =
MONITOR

Return From
Interrupt

YesNo

Yes

Timeout?

No

1. STATE = POWER DOWN
2. Return From InterruptYes

CHANNEL 1?

Figure 8. RAMP State of ADC0_ISR

AN145

10 Rev. 1.4

and inputs. This allows ADC0_ISR to detect over-
voltage, undervoltage, overcurrent, and single rail
failure conditions.

A programmable wait time <MON_WAITTIME>
after the system has entered the MONITOR state,
the S_RESET signal is de-asserted by state-moni-
toring polled code executing in the main() routine.

Figure 9 shows program flow in ADC0_ISR when
the system is in the MONITOR state. If a power
failure or User Shutdown is detected, ADC0_ISR
sets the system state to POWER DOWN.

POWER DOWN State
In the POWER DOWN State, the outputs ramp
down at a rate of approximately 250 V/s, managed
by the ADC0_ISR.

The 3.3V channel starts ramping down first. Once
it has fallen to 1.8V, both the 3.3V and 1.8V ramp
down until they reach 1.5V. From this point, all
three channels ramp down until all outputs are
turned off.

Once all outputs are turned off, state-monitoring
code executing in the main() routine restarts the
validation process or puts the CPU in Stop mode
until the next reset.

AN145

Rev. 1.4 11

How to Configure the Firmware

MONITOR

CHANNEL 1?

CHANNEL 2?

Is output
within

tolerance?

No

Yes

Channel 2

Channel 3

Yes

Channel 1

Return From
Interrupt

Yes

No

STATE = POWER DOWN

Figure 9. MONITOR State of ADC0_ISR

AN145

12 Rev. 1.4

The firmware provided in APPENDIX A is ready for use, as-is, in an end system. The firmware consists
of two files: PS_V1.3.h and PS_V1.3.c, and can be built using the KEIL C51 development tools. The
object code for the C8051F330 in HEX format is included in the file PS_F330_V1.3.0.hex.

Table 1 describes system-level parameters located in PS_V1.3.h that can be modified to customize the
firmware.

Table 1. System Parameters Defined in the PS_V1.3.h Header File

Constant Factory
Setting Description

F330 1 Specifies that the Target MCU is a C8051F330.

UART_ENABLE 0 Enables ‘1’ or disables ‘0’ configuration over
UART. When disabled, the system parameters are
specified at compile time.

THREE_CHANNEL 1 Enables ‘1’ or disables ‘0’ the third channel. When
the third channel is disabled, it is not validated and
its output remains at 0V.

DEFAULT_RAMP_RATE 500 Default maximum slew rate (in V/s) on power up.

DEFAULT_VAL_WAITTIME 100 Default time (in ms) between inputs validated and
the start of ramping.

DEFAULT_MON_WAITTIM
E

100 Default time (in ms) between outputs valid
(POWER_G rising) and the S_RESET rising edge.

OVERVOLTAGE_PROTEC
TION

1 Enables ‘1’ or disables ‘0’ overvoltage protection.

OVERCURRENT_PROTEC
TION

1 Enables ‘1’ or disables ‘0’ overcurrent protection.

RAMP_TIMEOUT_ENABLE 1 Enables ‘1’ or disables ‘0’ the ramp timeout. When
the ramp timeout is enabled, the outputs will shut
down if all channels have not reached their target
voltage before the timeout occurs.

RAMP_TIMEOUT 100 Maximum time (in ms) allowed for ramping.

NUM_RETRIES 3 Maximum number of power up attempts allowed
after the first power failure.

AN145

Rev. 1.4 13

Performance Examples

Features
• Low cost 25 MIPS FLASH MCU in a 4x4 mm 20-pin MLP. PCB area requires less than 1 square inch

for entire design, including power MOSFETs.
• Two or three channel power supply sequencer/supervisor with real-time voltage tracking on ramp up

and soft shut down.
• Adjustable monotonic slew rate from 250 V/s to 500 V/s.
• “System Reset” and “Power Good” signals with adjustable time-outs.
• Devices calibrate on first-run to compensate for MOSFET device-to-device variations and differences

in channel loading.
• UART Interface for optional reconfiguration.

CH1_VTARGET_MIN
CH2_VTARGET_MIN
CH3_VTARGET_MIN

3036L
1656L
1380L

Determines the undervoltage threshold (in mV) for
a channel. These constants must end in the letter
‘L’.
ex. 3036L for a 3036 mV undervoltage threshold

CH1_VTARGET_MAX
CH2_VTARGET_MAX
CH3_VTARGET_MAX

3564L
1944L
1620L

Determines the overvoltage threshold (in mV) for a
channel. These constants must end in the letter ‘L’.
These constants are ignored if overvoltage
protection is disabled.

OVERCURRENT_VTH 400L Determines the overcurrent threshold in mV.
If the voltage drop between the input and output
side of the MOSFET on any channel exceeds this
threshold after ramping is complete, an
overcurrent condition will be detected. This
constant must end in the letter ‘L’.

STRICT_VAL_DELTA 100L Determines the Power-Fail Hysteresis.
Overvoltage threshold is decreased and
undervoltage threshold in increased by this
amount (in mV) after a power failure. This constant
must end in the letter ‘L’.

R10
R11

2800L
5360L

The value of resistors R10 and R11 (3.3V channel
input and output voltage attenuators and corre-
sponding output resistors) in Ohms.
These constants must end in the letter ‘L’.

Table 1. System Parameters Defined in the PS_V1.3.h Header File

Constant Factory
Setting Description

AN145

14 Rev. 1.4

Power-up Example
Figure 10 shows the behavior of the outputs as the 3.3V supply is turned on. The C8051F330 is powered
from the input side of the 3.3V supply. The 1.5V, 1.8V, and 12V supplies are available prior to the 3.3V
supply in this example. Note that the system can tolerate the supplies rising in any order.

3.3V Rail
1.8V Rail
1.5V Rail

3.3V Supply

Figure 10. 3.3V Supply Turning On

AN145

Rev. 1.4 15

Ramp Up and POWER_G Signal Example
Figure 10 shows typical system ramp up behavior and the POWER_G signal rising after all outputs have
stabilized. The ramp rate is configured to 500 V/s.

3.3V Rail
1.8V Rail
1.5V Rail

POWER_G
Signal

Figure 11. Typical Ramp Up and POWER_G Signal

AN145

16 Rev. 1.4

Ramp Up and S_RESET Signal Example
Figure 10 shows typical system ramp up behavior and the S_RESET signal. The S_RESET signal is con-
figured to rise 100 ms after the POWER_G signal. The ramp rate is configured to 500 V/s.

3.3V Rail
1.8V Rail
1.5V Rail

S_RESET
Signal

Figure 12. Typical Ramp Up and S_RESET Signal

AN145

Rev. 1.4 17

User Shutdown and POWER_G Signal Example
Figure 10 shows typical system ramp down behavior and the POWER_G signal falling when the user
presses the CAL/SD switch.

3.3V Rail
1.8V Rail
1.5V Rail

POWER_G
Signal

Figure 13. Typical User Shutdown and POWER_G Signal

AN145

18 Rev. 1.4

Power Failure and S_RESET Signal Example
Figure 10 shows system ramp down behavior and the S_RESET signal falling when a failure is detected
on the 1.8V channel.

3.3V Rail
1.8V Rail
1.5V Rail

S_RESET
Signal

Figure 14. 1.8V Supply Failure and S_RESET Signal

AN145

Rev. 1.4 19

Configuration Using the Serial Port (Optional)
After the C8051F330 has been programmed, system parameters can be configured over a 115200 BAUD
8-N-1 UART link with a PC. Once configured, these parameters are stored in non-volatile FLASH mem-
ory. The interface is an ASCII based command line. This functionality could also be implemented using
the SMBus/I2C serial port.

The parameters that can be specified at run-time are:

• Slew Rate (V/s)
• Input Valid to Ramp Start Wait Time (ms)
• Output Valid to S_RESET rising edge (ms)

The configuration menu can be accessed by holding down the CAL/SD switch during a reset, as shown in
Figure 4 on page 4.

Estimated Board
Real-Estate
The PCB area required for this design can be estimated by totaling the area required by the individual
components as shown in Table 2 . The total area requirement for this design is less than 1 square inch.

Table 2. Estimated Component PCB Area

Device Area
(sq. inch) Quantity Total Area

(sq. in)

C8051F330 4 x 4 mm 20-pin MLP 0.025 1 0.025

SI4420DY Power MOSFET 0.056 3 0.168

MMBT2222A NPN Amplifier (BJT) 0.018 3 0.054

10µF Tantalum Capacitor (2 per channel) 0.023 6 0.138

0.1µF Decoupling Capacitor (0805) (2 per channel) 0.008 6 0.048

4.7uF Tantalum Capacitor at VREF pin 0.012 1 0.012

0.12uF Filtering Capacitor (0805) (1 per channel) 0.008 3 0.024

0.1uF Capacitor at VREF pin (0805) 0.008 1 0.008

0.1uF Capacitor at VDD (0805) 0.008 1 0.008

Resistor (0805) 0.008 27 0.216

Total Area 0.701 sq. in

AN145

20 Rev. 1.4

Appendix A - Schematic

AN145

Rev. 1.4 21

Appendix B - Bill of Materials

Qty Part Value Package Manufacturer

1 U1 C8051F330 MLP-20 Silicon Labs

3 T1, T2, T3 SI4420DY SO-8 Vishay

3 T4, T5, T6 MMBT2222A SOT-23 Fairchild

1 C16 4.7uF CP-3216

6 C2, C4, C6, C8, C10, C12 10uF CP-3216

3 C13, C14, C15 0.12uF CNP-0805

8 C1, C3, C5, C7, C9, C11, C17, C18 0.1uF CNP-0805

6 R7, R8, R9, R30, R31, R32 1.2K R-0805

10 R1, R2, R3, R14, R16, R18, R20, R26, R28,
R29

1K R-0805

2 R10, R12 2.8K R-0805

3 R4, R5, R6 2.87K R-0805

2 R11, R13 5.36K R-0805

3 R22, R23, R24 8.25K R-0805

1 R27 24K R-0805

Note: NOPOP and Optional Items are not shown.

AN145

22 Rev. 1.4

Appendix C - Firmware (Source File)
//---
// PS_V1.3.c
//---
//
// AUTH: FB
// DATE: 26 JUN 03
//
// VERSION: 1.3.0
//
// Two or Three Channel Power Sequencing Solution for the
// C8051F330 and C8051F300.
//
// Target: C8051F330 and C8051F300
// Tool chain: KEIL C51
//

//---
// Includes
//---

#include “PS_V1.3.h”

#if(F330)
 #include <c8051f330.h> // SFR declarations
 #include <stdio.h>
 #include <stdlib.h>

 //--
 // 16-bit SFR Definitions for ‘F33x
 //--

 sfr16 DP = 0x82; // data pointer
 sfr16 TMR3RL = 0x92; // Timer3 reload value
 sfr16 TMR3 = 0x94; // Timer3 counter
 sfr16 IDA0 = 0x96; // IDAC0 data
 sfr16 ADC0 = 0xbd; // ADC0 data
 sfr16 ADC0GT = 0xc3; // ADC0 Greater-Than
 sfr16 ADC0LT = 0xc5; // ADC0 Less-Than
 sfr16 TMR2RL = 0xca; // Timer2 reload value
 sfr16 TMR2 = 0xcc; // Timer2 counter
 sfr16 PCA0CP1 = 0xe9; // PCA0 Module 1 Capture/Compare
 sfr16 PCA0CP2 = 0xeb; // PCA0 Module 2 Capture/Compare
 sfr16 PCA0 = 0xf9; // PCA0 counter
 sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 Capture/Compare

#else

 #include <c8051F300.h>

 //--
 // 16-bit SFR Definitions for ‘F30x
 //--

 sfr16 DP = 0x82; // data pointer
 sfr16 TMR2RL = 0xca; // Timer2 reload value
 sfr16 TMR2 = 0xcc; // Timer2 counter

AN145

Rev. 1.4 23

 sfr16 PCA0CP1 = 0xe9; // PCA0 Module 1 Capture/Compare
 sfr16 PCA0CP2 = 0xeb; // PCA0 Module 2 Capture/Compare
 sfr16 PCA0 = 0xf9; // PCA0 counter
 sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 Capture/Compare

#endif // (F330)

//---
// Function Prototypes
//---

void main (void);

// Initialization Routines
void VDM_Init (void);
void SYSCLK_Init (void);
void PORT_Init (void);
void EX0_Init(void);
void ADC0_Init_AD0BUSY (void);
void ADC0_Init (void);
void PCA_Init (void);
void UART0_Init (void);
void Timer2_Init (int counts);

// State Implementation Routines
void ValidateInput (void);
void GlobalVarInit (void);

// Interrupt Service Routines
void EX0_ISR (void);
void Timer2_ISR (void);
void ADC0_ISR (void);

// Support Routines
void wait_ms (int ms);
void FLASH_ErasePage(unsigned addr);
void FLASH_Write(unsigned dest, char *src, unsigned num);
void Print_Menu(void);

// Calibration Routines
void Calibrate (void);
void CH1_Calibrate (int v_target);
void CH2_Calibrate (int v_target);
void CH3_Calibrate (int v_target);

//---
// Global Constants
//---

#if(F330)
 #define F300 0
#else
 #define F300 1
 #define UART_ENABLE 0 // Must be ‘0’ for the ‘F300
 #define THREE_CHANNEL 0 // Must be ‘0’ for the ‘F300
#endif // (F330)

#if(F330)

AN145

24 Rev. 1.4

 sbit S2 = P0^7; // CAL/SD Switch on target board
 sbit S_RESET = P1^7; // System Reset Signal
 sbit POWER_G = P0^2; // Power Good Signal
#else
 sbit S2 = P0^0; // CAL/SD Switch on target board
 sbit S_RESET = P0^7; // System Reset Signal
#endif // (F330)

#define TRUE 1
#define FALSE 0

#define CH1 0
#define CH2 1
#define CH3 2

// System Level Constants
#define SYSCLK 24500000 // SYSCLK frequency (Hz)
#define BAUDRATE 115200 // Baud rate of UART (bps)

#define SAMPLE_RATE 15951 // ADC0 sampling rate per channel (Hz)
#define NUMCHANNELS 3 // Number of channels
#define ADC_SAMPLERATE 48 // ADC sampling rate (kHz)

// Define ADC Resolution and VREF
#if(F330)
 #define ADC_RES 1024L // 10-bit ADC
 #define VREF 2430L // ADC voltage reference (mV)
#else
 #define ADC_RES 256L // 8-bit ADC
 #define VREF 3300L // ADC voltage reference (mV)
#endif // (F330)

enum { CAL, VAL, RAMP, MON, SHUTDOWN, OFF }; // System state definitions

// Addresses for user variables stored in FLASH
#define RAMP_RATE_ADDR 0x1A00 // Address for Ramp Rate
#define VAL_WAITTIME_ADDR 0x1A02 // Address vor Validate Wait Time
#define MON_WAITTIME_ADDR 0x1A04 // Address for Monitor Wait Time
#define CAL_DONE_ADDR 0x1A06

#define CH1_DATA_ADDR 0x1A07 // Starting address of CH1 cal data
#define CH2_DATA_ADDR 0x1B00 // Starting address of CH2 cal data
#define CH3_DATA_ADDR 0x1B80 // Starting address of CH3 cal data

// Constants used for calibration
#define VSTEP 50 // Voltage step size in mV

#define DETECT_MV 300 // # of mV allowed for detecting a
 // channel has reached its target
 // voltage

#define DETECT_ERR ((DETECT_MV*ADC_RES)/VREF)
 // # of codes allowed for detecting
 // a channel has reached its target
 // voltage

#define CAL_DETECT_MV (DETECT_MV-50) // # of mV allowed for detecting a

AN145

Rev. 1.4 25

 // channel has reached its target
 // voltage

#define CAL_DETECT_ERR ((CAL_DETECT_MV*ADC_RES)/VREF)
 // # of codes allowed for detecting
 // a channel has reached its target
 // voltage during calibration

#define TRACK_ERR 52 // # of codes allowed for tracking error

#define OVERCURRENT_ERR ((OVERCURRENT_VTH*ADC_RES)/VREF)
 // If the input and output differ by
 // greater than this number of ADC
 // codes (equivalent to 400mV) during
 // the Monitor state, the system shuts
 // down all outputs if overcurrent
 // protection is enabled

#define STRICT_VAL_ERR ((STRICT_VAL_DELTA*ADC_RES)/VREF)
 // Number of ADC codes to restrict the
 // inputs for validation after a failure
 // has been detected

// Type definition allowing access to any byte of a 32-bit variable
typedef union LONGS { // A variable of this type can
 // be accessed as:
 long Long; // (1) 32-bit long,
 int Int[2]; // (2) 16-bit ints,
 char Char[4]; // (4) 8-bit chars,

 struct S { // or a Struct.
 char High;
 int Mid;
 char Low;
 }S;

} LONGS;

//---
// Global Variables
//---

// The current system state initialized to the Validate state
char STATE = VAL;

// The number of retries allowed before the system goes into an off state
char RETRY = NUM_RETRIES;

// The currently selected channel initialized to Channel 1
char CH = CH1;

// The current ADC0_ISR iteration while in the ramp state
// Used to determine a timeout
unsigned int ADC0_ISR_i;

// ADC0 Positive MUX input channel selection.

AN145

26 Rev. 1.4

// When these constants are written to the AMX0P register, the corresponding
// channel is selected as the ADC input.
// The arrays are initialized as follows for the ‘F330:
// { CH1, CH2, CH3, CH1 }
// and as follows for the ‘F300:
// { CH1, CH2, X, CH1 }
// CH1 is repeated to simplify Timer2_ISR
#if(F330)
 char code VIN_PIN[NUMCHANNELS + 1] = { 0x06, 0x09, 0x0C, 0x06 };
 char code VOUT_PIN[NUMCHANNELS + 1] = { 0x08, 0x0B, 0x0E, 0x08};
 char code PWM_PIN[NUMCHANNELS] = { 0x01, 0x0A, 0x0D };
#else
 char code VIN_PIN[NUMCHANNELS + 1] = { 0xF2, 0xF1, 0xF0, 0xF2 };
 char code VOUT_PIN[NUMCHANNELS + 1] = { 0xF5, 0xF6, 0xF0, 0xF5};
 char code PWM_PIN[NUMCHANNELS] = { 0xF3, 0xF4, 0xF0 };
#endif // (F330)

// User Shutdown Signal, set when user presses the S2 switch while the
// system is in the Monitor state
bit USER_SHUTDOWN;

// Used by the MONITOR State to determine whether the system is currently
// sampling the input or the output side of the currently selected
// channel <CH>
bit MONITOR_INPUT;

// Used to signal if at least one of the power supply rails is near the
// maximum or minimum cutoff points.
// This bit is set to 0 at reset and set to 1 in the Monitor state if
// a power supply failure occurs.
bit STRICT_VALIDATION = 0;

// Boolean values used to determine system state
bit CH1_INPUT_VALIDATED;
bit CH2_INPUT_VALIDATED;
#if(THREE_CHANNEL)
bit CH3_INPUT_VALIDATED;
#endif // THREE_CHANNEL

// Boolean values used to determine system state
bit CH1_OUTPUT_VALIDATED;
bit CH2_OUTPUT_VALIDATED;
#if(THREE_CHANNEL)
bit CH3_OUTPUT_VALIDATED;
#endif // THREE_CHANNEL

// ADC codes used to determine if outputs are meeting the tracking specification
int CH1_PREV_VALUE;
int CH2_PREV_VALUE;
#if(THREE_CHANNEL)
int xdata CH3_PREV_VALUE;
#endif // THREE_CHANNEL

// PWM codes used to control the channel outputs;
unsigned char CH1_PWM;
unsigned char CH2_PWM;
#if(THREE_CHANNEL)
unsigned char CH3_PWM;
#endif // THREE_CHANNEL

AN145

Rev. 1.4 27

// Variable declarations for user constants and calibration data stored in FLASH
// All variables in this section are stored in the same 512 byte FLASH sector
int code RAMP_RATE _at_ RAMP_RATE_ADDR; // ramp rate in V/s
int code VAL_WAITTIME _at_ VAL_WAITTIME_ADDR; // Input Valid to Ramp Start [ms]
int code MON_WAITTIME _at_ MON_WAITTIME_ADDR; // Output Valid to S_RESET rising
char code CAL_DONE _at_ CAL_DONE_ADDR; // Calibration complete flag. This
 // byte is cleared after calibration
 // is complete.

#define USER_DATA_SIZE 7 // Size of user defined varibles

// CH1 Calibration Data
// Since the entire 512 byte “calibration data” FLASH page is erased by software,
// it must not contain any program code. The CH1_DATA array grows to fill all
// unused space on the FLASH page.
unsigned char code CH1_DATA[256 - USER_DATA_SIZE] _at_ CH1_DATA_ADDR;
// CH2 Calibration Data
unsigned char code CH2_DATA[128] _at_ CH2_DATA_ADDR;
// CH3 Calibration Data
unsigned char code CH3_DATA[128] _at_ CH3_DATA_ADDR;

// Indices for the calibration data arrays
unsigned char CH1_i; // CH1 Array Index
unsigned char CH2_i; // CH2 Array Index
#if(THREE_CHANNEL)
unsigned char CH3_i; // CH3 Array Index
#endif // THREE_CHANNEL

// These variables are set to advance through the last few
// PWM codes before turning off the PWM signal
bit CH1_RAMP_END;
bit CH2_RAMP_END;
#if(THREE_CHANNEL)
bit CH3_RAMP_END;
#endif // THREE_CHANNEL

bit ch1_tracking_disabled = 0;
bit ch2_tracking_disabled = 0;
#if(THREE_CHANNEL)
bit ch3_tracking_disabled = 0;
#endif // THREE_CHANNEL

// Counter for Power Good signal
static int pgcounter = 0;

// Target ADC code for each channel
// These variables are set to by the ValidateInput() routine after all inputs
// have settled. They are used to determine when the output voltage has reached
// the input voltage.
int CH1_TARGET_CODE;
int CH2_TARGET_CODE;
#if(THREE_CHANNEL)
int xdata CH3_TARGET_CODE;
#endif // THREE_CHANNEL

// Minimum and Maximum specified ADC readings once the inputs or outputs have
// stabilized. Used in the VALIDATE and MONITOR states to determine if the
// rail voltages are within the specified limits.

AN145

28 Rev. 1.4

int CH1_TARGET_CODE_MIN;
int CH2_TARGET_CODE_MIN;
#if(THREE_CHANNEL)
int xdata CH3_TARGET_CODE_MIN;
#endif // THREE_CHANNEL

int CH1_TARGET_CODE_MAX;
int CH2_TARGET_CODE_MAX;
#if(THREE_CHANNEL)
int xdata CH3_TARGET_CODE_MAX;
#endif // THREE_CHANNEL

LONGS CH1_DELTA_CODE; // The ADC code used to set the
LONGS CH2_DELTA_CODE; // next expected code
#if(THREE_CHANNEL)
LONGS xdata CH3_DELTA_CODE;
#endif // THREE_CHANNEL

LONGS CH1_EXPECTED_CODE; // This value is the ADC code
LONGS CH2_EXPECTED_CODE; // for an “ideal” curve
#if(THREE_CHANNEL)
LONGS xdata CH3_EXPECTED_CODE;
#endif // THREE_CHANNEL

//---
// MAIN Routine
//---

void main (void) {
 int temp_int; // temporary int

 PCA0MD &= ~0x40; // disable Watchdog timer

 S_RESET = 0; // Clear S_RESET Signal

 #if(F330)
 POWER_G = 0; // Clear POWER_G Signal
 #endif // F330

 VDM_Init (); // initialize VDD Monitor
 SYSCLK_Init (); // initialize System Clock
 PORT_Init (); // initialize Port I/O
 PCA_Init(); // initialize PCA
 EX0_Init(); // initialize External Interrupt 0
 // and leave disabled

 // Initialize the ADC to start conversions on Timer 3 overflows
 // and to generate an End of Conversion Interrupt
 ADC0_Init();

 // Initialze Timer 2 to update at one half the the PWM frequency
 Timer2_Init(512);

 // Synchronize the PCA and Timer 3 (Timer 3 is stopped and initialized
 // to its reload value)
 CR = 0; // stop PCA
 PCA0 = 0x0000;

AN145

Rev. 1.4 29

 CR = 1; // start PCA
 TMR2CN = 0x04; // start Timer 2

 // If the S2 switch is pressed, then enter configuration mode
 if(!S2) {

 while(!S2); // Wait until switch released

 #if(UART_ENABLE)
 // Initialize UART0
 UART0_Init ();
 #endif // UART_ENABLE

 // Print Configuration menu and store calibration data in FLASH
 Calibrate ();

 // Issue a software reset
 RSTSRC = 0x12;
 }

 // Verify that the system level parameters stored in FLASH
 // are initialized properly

 // If RAMP_RATE is not initialized, set it to its default value
 if(RAMP_RATE == 0xFFFF){
 temp_int = DEFAULT_RAMP_RATE;
 FLASH_Write(RAMP_RATE_ADDR, (char*) &temp_int, 2);
 }
 // If VAL_WAITTIME is not initialized, set it to its default value
 if(VAL_WAITTIME == 0xFFFF){
 temp_int = DEFAULT_VAL_WAITTIME;
 FLASH_Write(VAL_WAITTIME_ADDR, (char*) &temp_int, 2);
 }
 // If MON_WAITTIME is not initialized, set it to its default value
 if(MON_WAITTIME == 0xFFFF){
 temp_int = DEFAULT_MON_WAITTIME;
 FLASH_Write(MON_WAITTIME_ADDR, (char*) &temp_int, 2);
 }

 #if(THREE_CHANNEL)
 // If CH1, CH2, or CH3 data is not available, enter configuration mode.
 if((CH1_DATA[0]==0xFF) || (CH2_DATA[0]==0xFF) || (CH3_DATA[0]==0xFF)
 ||(CAL_DONE != 0x00)){
 #else
 // If CH1, or CH2 data is not available, enter configuration mode.
 if((CH1_DATA[0]==0xFF) || (CH2_DATA[0]==0xFF) ||(CAL_DONE != 0x00)){
 #endif // THREE_CHANNEL

 #if(UART_ENABLE)
 // Initialize UART0
 UART0_Init ();
 #endif // UART_ENABLE

 // Print Configuration menu and store calibration data in FLASH
 Calibrate ();

 // Issue a software reset
 RSTSRC = 0x12;

AN145

30 Rev. 1.4

 }

 while (1){

 S_RESET = 0; // Assert S_RESET Signal

 #if(F330)
 POWER_G = 0; // De-Assert the POWER_G signal
 #endif // F330

 // Disable Interrupts
 EA = 0;

 // Call the GlobalVarInit() routine to initialize global variables
 GlobalVarInit();

 // Sets the VTARGET for each channel to its Vin and verifies
 // that Vin is within 8% of the channel values.
 ValidateInput();

 // If the output has passed strict validation, loosen the validation
 // requirements and re-validate
 if(STRICT_VALIDATION){
 STRICT_VALIDATION = 0;
 GlobalVarInit();
 ValidateInput();
 }

 // Set the system state to RAMP
 STATE = RAMP;

 // Set current channel to CH1
 CH = CH1;

 // Change ADC positive input MUX to CH1 and discard an ADC sample
 #if(F330)
 AMX0P = VOUT_PIN[CH1];
 #else
 AMX0SL = VOUT_PIN[CH1];
 #endif // F330

 // Discard the first ADC reading after the MUX change
 AD0INT = 0; // clear conversion complete flag
 while(!AD0INT); // wait for conversion to complete

 // Clear Interrupt flags to avoid immediately servicing an
 // interrupt
 AD0INT = 0; // clear conversion complete flag
 TMR2CN &= ~0x80; // Clear Timer 2 Interrupt Flag

 // Enable ADC0 ISR and Timer 2 ISR
 ET2 = 1; // enable Timer 2 interrupts
 #if(F330)
 EIE1 |= 0x08; // Enable ADC0 End of Conversion
 #else // Interrupts
 EIE1 |= 0x04;

AN145

Rev. 1.4 31

 #endif // F330

 // Enable Global Interrupts to start ramping the output voltage
 EA = 1;

 //--
 // RAMP State
 //--

 while(STATE == RAMP); // Polled code does not perform any
 // tasks in the ramp state

 //--
 // MON State
 //--
 //
 // After the RAMP state, the system can only be in the Monitor,
 // Shutdown, Validate, or Off states.
 //

 // If the system has entered the Monitor state, assert the
 // POWER_G signal and start the S_RESET timeout
 if(STATE == MON){

 // assert the POWER_G signal
 #if(F330)
 POWER_G = 1;
 #endif

 // start the Monitor state timeout
 wait_ms(MON_WAITTIME);
 }

 // The Monitor state timeout has now expired.
 // If the system is still in the Monitor state, de-assert S_RESET
 if(STATE == MON){
 S_RESET = 1;
 }

 while(STATE == MON); // wait in this loop until the state
 // changes

 //--
 // SHUTDOWN and OFF States
 //--
 // After a successful shutdown, the state will change to
 // OFF or VALIDATE.
 //

 while(STATE != VAL){

 if(STATE == OFF){
 while(1){
 RSTSRC = 0x02; // Disable missing clock detector
 PCON |= 0x02; // Put CPU in Stop Mode
 }
 }

AN145

32 Rev. 1.4

 }

 // We have now entered the validate state after a power failure
 if(RETRY){

 RETRY--;

 } else {

 while(1){
 RSTSRC = 0x02; // Disable missing clock detector
 PCON |= 0x02; // Put CPU in Stop Mode
 }

 } // if(RETRY)

 } // while(1)

} // main

//---
// GlobalVarInit
//---
//
// This function initializes global variables used by the ADC0_ISR while
// the system is in the RAMP state.
//
void GlobalVarInit (void)
{
 long temp_long;

 //--
 // Validate State Initializations
 //--
 //
 //
 // Calculate <TARGET_CODE_MIN> and <TARGET_CODE_MAX> for all
 // three channels
 // <TARGET_CODE_MIN> is VTARGET_MIN converted to an ADC code
 // and <TARGET_CODE_MAX> is VTARGET_MAX converted to an ADC code
 // Equations:
 // <TARGET_CODE_MIN> = <VTARGET_MIN>/VREF * 2^10 (10-bit ADC)
 // <TARGET_CODE_MAX> = <VTARGET_MAX>/VREF * 2^8 (8-bit ADC)

 // Calculate the <TARGET_CODE_MIN> for CH1 and translate down
 CH1_TARGET_CODE_MIN =
 ((((CH1_VTARGET_MIN * ADC_RES)/VREF) * R11) / (R10+R11));
 if(STRICT_VALIDATION) {
 CH1_TARGET_CODE_MIN += ((STRICT_VAL_ERR * R11) / (R10+R11));
 }

 // Calculate the <TARGET_CODE_MIN> for CH2
 CH2_TARGET_CODE_MIN = ((CH2_VTARGET_MIN * ADC_RES)/VREF);
 if(STRICT_VALIDATION) {
 CH2_TARGET_CODE_MIN += STRICT_VAL_ERR;
 }

AN145

Rev. 1.4 33

 #if(THREE_CHANNEL)
 // Calculate the <TARGET_CODE_MIN> for CH3
 CH3_TARGET_CODE_MIN = ((CH3_VTARGET_MIN * ADC_RES)/VREF);
 if(STRICT_VALIDATION) {
 CH3_TARGET_CODE_MIN += STRICT_VAL_ERR;
 }
 #endif // THREE_CHANNEL

 // Calculate the <TARGET_CODE_MAX> for CH1 and translate down
 CH1_TARGET_CODE_MAX =
 ((((CH1_VTARGET_MAX * ADC_RES)/VREF) * R11) / (R10+R11));
 if(STRICT_VALIDATION) {
 CH1_TARGET_CODE_MAX -= ((STRICT_VAL_ERR * R11) / (R10+R11));
 }

 // Calculate the <TARGET_CODE_MAX> for CH2
 CH2_TARGET_CODE_MAX = ((CH2_VTARGET_MAX * ADC_RES)/VREF);
 if(STRICT_VALIDATION) {
 CH2_TARGET_CODE_MAX -= STRICT_VAL_ERR;
 }

 #if(THREE_CHANNEL)
 // Calculate the <TARGET_CODE_MAX> for CH3
 CH3_TARGET_CODE_MAX = ((CH3_VTARGET_MAX * ADC_RES)/VREF);
 if(STRICT_VALIDATION) {
 CH3_TARGET_CODE_MAX -= STRICT_VAL_ERR;
 }
 #endif // THREE_CHANNEL

 // Set the <INPUT_VALIDATED> flags to FALSE
 CH1_INPUT_VALIDATED = FALSE;
 CH2_INPUT_VALIDATED = FALSE;
 #if(THREE_CHANNEL)
 CH3_INPUT_VALIDATED = FALSE;
 #endif // THREE_CHANNEL

 //--
 // RAMP State Initializations
 //--
 //
 //
 // Initialize the indexes to the calibration data in FLASH
 CH1_i = 0;
 CH2_i = 0;
 #if(THREE_CHANNEL)
 CH3_i = 0;
 #endif // THREE_CHANNEL

 // Set the initial PWM Codes to zero.
 CH1_PWM = 0;
 CH2_PWM = 0;
 #if(THREE_CHANNEL)
 CH3_PWM = 0;
 #endif // THREE_CHANNEL

 // Clear the Power Good Counter
 pgcounter = 0;

AN145

34 Rev. 1.4

 // Select Channel 1 as the current channel
 CH = CH1;

 // Calculate <DELTA_CODE> for all three channels
 // <DELTA_CODE> is the number of ADC codes (multiplied by
 // 256 to maintain precision) that should increment during each
 // sampling period to achieve the desired ramp rate.
 // Equation:
 // <DELTA_CODE> = (<RAMP_RATE/SAMPLE_RATE>/VREF * ADC_RES) * 256

 // Calculate the <DELTA_CODE> for all channels
 temp_long = RAMP_RATE; // read the ramp rate from FLASH

 // Multiply by ADC_RES
 #if(ADC_RES == 1024L)
 temp_long <<= 10; // multiply by ADC_RES = 2^10
 #elif(ADC_RES == 256L)
 temp_long <<= 8; // multiply by ADC_RES = 2^8
 #elif
 #error(“Unsupported ADC Resolution”)
 #endif // ADC_RES

 // Shift ADC code to the two middle bytes of a long
 temp_long <<= 8; // multipy by 256

 temp_long /= VREF; // divide by VREF (mV)

 // Divide by the sample rate (kHz)
 temp_long *= 1000; // multiply numerator by 1000 (Hz->kHz)
 // equivalent to
 // temp_long/(SAMPLE_RATE/1000)
 temp_long /= SAMPLE_RATE; // divide by SAMPLE_RATE (Hz)

 CH1_DELTA_CODE.Long = temp_long;
 CH2_DELTA_CODE.Long = temp_long;
 #if(THREE_CHANNEL)
 CH3_DELTA_CODE.Long = temp_long;
 #endif // THREE_CHANNEL

 // Set the <EXPECTED_CODE[ch]> one <DELTA_CODE> below 0V
 CH1_EXPECTED_CODE.Long = - (CH1_DELTA_CODE.Long);
 CH2_EXPECTED_CODE.Long = - (CH2_DELTA_CODE.Long);
 #if(THREE_CHANNEL)
 CH3_EXPECTED_CODE.Long = - (CH3_DELTA_CODE.Long);
 #endif // THREE_CHANNEL

 // Set the <OUTPUT_VALIDATED[ch]> flag to FALSE
 CH1_OUTPUT_VALIDATED = FALSE;
 CH2_OUTPUT_VALIDATED = FALSE;
 #if(THREE_CHANNEL)
 CH3_OUTPUT_VALIDATED = FALSE;
 #endif // THREE_CHANNEL

 // Set the <RAMP_END> flags to zero
 CH1_RAMP_END = 0;

AN145

Rev. 1.4 35

 CH2_RAMP_END = 0;
 #if(THREE_CHANNEL)
 CH3_RAMP_END = 0;
 #endif // THREE_CHANNEL

 // Set PREV_VALUE to zero
 CH1_PREV_VALUE = 0;
 CH2_PREV_VALUE = 0;
 #if(THREE_CHANNEL)
 CH3_PREV_VALUE = 0;
 #endif // THREE_CHANNEL

 // Clear Tracking disabled flags
 ch1_tracking_disabled = 0;
 ch2_tracking_disabled = 0;
 #if(THREE_CHANNEL)
 ch3_tracking_disabled = 0;
 #endif // THREE_CHANNEL

 // Set Ramp State iteration counter to zero
 ADC0_ISR_i = 0;

 //--
 // MON State Initializations
 //--
 //
 //
 // Clear the user shutdown signal
 USER_SHUTDOWN = 0;

 // Disable External Interrupt 0 interrupts
 // They will be enabled after ramping is complete
 EX0 = 0;

 // Initialize the monitoring bit for outputs.
 // When this bit is set to 1, the ADC samples the currently
 // selected channel’s input.
 MONITOR_INPUT = 0;

}

//---
// ValidateInput
//---
//
// This routine exits when all inputs are at their target voltage.
//
void ValidateInput(void)
{
 int target_code_min; // target ADC code
 LONGS acc;
 char ch = CH1; // currently selected channel
 int i;
 int target_code;
 int target_code_max;
 bit supply_ok = 0;

 // Verify that the 12V supply is working properly

AN145

36 Rev. 1.4

 // Disable PCA I/O and make (CH2_PWM) an analog input
 #if(F330)
 XBR1 &= ~0x40; // disable Crossbar
 XBR1 &= ~0x03; // update Crossbar to disable PCA I/O
 P1MDIN &= ~0x04; // make CH2 PWM_PIN an analog input
 XBR1 |= 0x40; // re-enable the Crossbar
 #else
 XBR2 &= ~0x40; // disable Crossbar
 XBR1 &= ~0xC0; // update Crossbar to disable PCA I/O
 P0MDIN &= ~0x10; // make CH2 PWM_PIN (P0.4) an analog input
 XBR2 |= 0x40; // re-enable the Crossbar
 #endif // F330

 // Configure the ADC Positive MUX to CH2 PWM_PIN
 #if(F330)
 AMX0P = PWM_PIN[CH2];
 #else
 AMX0SL = PWM_PIN[CH2];
 #endif // F330

 // Skip an ADC reading
 AD0INT = 0; // clear conversion complete flag
 while(!AD0INT); // wait for conversion to complete

 while(!supply_ok){

 // Take an ADC reading;
 AD0INT = 0; // clear conversion complete flag
 while(!AD0INT); // wait for conversion to complete

 // The voltage at the CH3 PWM pin should be around 3.3V if the +12V
 // supply is ok.
 // Check if Voltage at CH3 PWM pin is greater than 1.5 volts (+12V
 // supply is ok)
 supply_ok = (ADC0 > ((1500L*ADC_RES)/VREF));

 } // while(!supply_ok)

 // Re-enable PCA I/O
 #if(F330)
 XBR1 &= ~0x40; // disable Crossbar
 #if(THREE_CHANNEL)
 XBR1 |= 0x03; // update Crossbar to enable CEX 1, 2 and 3
 #else
 XBR1 |= 0x02; // update Crossbar to enable CEX 1 and 2
 #endif // THREE_CHANNEL
 P1MDIN |= 0x04; // configure CEX1 to digital mode
 P1MDOUT|= 0x04; // configure CEX1 to push-pull mode
 XBR1 |= 0x40; // re-enable the Crossbar
 #else
 XBR2 &= ~0x40; // disable Crossbar
 XBR1 |= 0x80; // update Crossbar to enable PCA I/O
 P0MDIN |= 0x10; // configure CEX1 to digital mode
 P0MDOUT|= 0x10; // configure CEX1 to push-pull mode
 XBR2 |= 0x40; // re-enable the Crossbar
 #endif // F330

AN145

Rev. 1.4 37

 // Stay in this loop until all input channels have reached their minimum
 // specified target voltage
 do{

 // Configure the ADC Positive Input MUX to the input of the
 // currently selected channel.
 #if(F330)
 AMX0P = VIN_PIN[ch];
 #else
 AMX0SL = VIN_PIN[ch];
 #endif // F330

 // Select a minimum target code based on the current channel
 switch(ch){
 case CH1: target_code_min = CH1_TARGET_CODE_MIN;
 target_code_max = CH1_TARGET_CODE_MAX;
 break;
 case CH2: target_code_min = CH2_TARGET_CODE_MIN;
 target_code_max = CH2_TARGET_CODE_MAX;
 break;
 #if(THREE_CHANNEL)
 case CH3: target_code_min = CH3_TARGET_CODE_MIN;
 target_code_max = CH3_TARGET_CODE_MAX;
 break;
 #endif // THREE_CHANNEL

 default: break;

 } // switch(ch)

 // Skip an ADC reading
 AD0INT = 0; // clear conversion complete flag
 while(!AD0INT); // wait for conversion to complete

 // Take an ADC reading;
 AD0INT = 0; // clear conversion complete flag
 while(!AD0INT); // wait for conversion to complete

 // Set the <INPUT_VALIDATED> flag for this channel if the ADC
 // reading is within the overvoltage and undervoltage spec.
 switch(ch){
 case CH1: CH1_INPUT_VALIDATED =

 #if(OVERVOLTAGE_PROTECTION)
 ((ADC0 >= target_code_min) && (ADC0 <= target_code_max));
 #else
 (ADC0 >= target_code_min);
 #endif // OVERVOLTAGE_PROTECTION

 break;

 case CH2: CH2_INPUT_VALIDATED =

 #if(OVERVOLTAGE_PROTECTION)
 ((ADC0 >= target_code_min) && (ADC0 <= target_code_max));
 #else
 (ADC0 >= target_code_min);
 #endif // OVERVOLTAGE_PROTECTION

AN145

38 Rev. 1.4

 break;
 #if(THREE_CHANNEL)
 case CH3: CH3_INPUT_VALIDATED =

 #if(OVERVOLTAGE_PROTECTION)
 ((ADC0 >= target_code_min) && (ADC0 <= target_code_max));
 #else
 (ADC0 >= target_code_min);
 #endif // OVERVOLTAGE_PROTECTION

 break;
 #endif

 default: break;

 } // switch(ch)

 // Advance to the next channel. If past the last channel, set
 // the current channel to CH1.
 ch++;

 #if(THREE_CHANNEL)
 if(ch >= 3){
 ch = CH1;
 }
 #else
 if(ch >= 2){
 ch = CH1;
 }
 #endif // THREE_CHANNEL

 #if(THREE_CHANNEL)
 } while(!(CH1_INPUT_VALIDATED && CH2_INPUT_VALIDATED && CH3_INPUT_VALIDATED));
 #else
 } while(!(CH1_INPUT_VALIDATED && CH2_INPUT_VALIDATED));
 #endif

 // Now all channel inputs are within their specified voltage range
 // Wait for all inputs to settle to their steady state value.
 // This timeout is user-defined and can be set from the configuration menu.
 // The default timeout is 100 ms.

 wait_ms(VAL_WAITTIME);

 // Now all channel inputs have settled to their steady-state values.
 // Record the ADC code measured at each input in the corresponding
 // <CHx_TARGET_CODE>

 // Repeat the following for all channels
 #if(THREE_CHANNEL)
 for(ch = 0; ch < 3; ch++) {
 #else
 for(ch = 0; ch < 2; ch++) {
 #endif

 // Configure the ADC Positive Input MUX to the input of the
 // currently selected channel.
 #if(F330)

AN145

Rev. 1.4 39

 AMX0P = VIN_PIN[ch];
 #else
 AMX0SL = VIN_PIN[ch];
 #endif // F330

 // Discard the first ADC reading after the MUX change
 AD0INT = 0; // clear conversion complete flag
 while(!AD0INT); // wait for conversion to complete

 // obtain 1024 samples
 acc.Long = 0;
 for(i = 0; i < 1024; i++){

 // obtain one sample
 AD0INT = 0;
 while(!AD0INT);

 // add to accumulator
 acc.Long += ADC0;

 } // for(i = 0; i < 1024; i++)

 // take the average (divide by 1024 = 2^10)
 target_code = acc.S.Mid >> 2; // Accessing the middle two
 // bytes of the long variable
 // is equivilant to an 8-bit
 // shift or divide by 256

 // Set the <CHx_TARGET_CODE> for the currenly selected channel
 switch(ch){
 case CH1: CH1_TARGET_CODE = target_code;
 break;
 case CH2: CH2_TARGET_CODE = target_code;
 break;
 #if(THREE_CHANNEL)
 case CH3: CH3_TARGET_CODE = target_code;
 break;
 #endif // THREE_CHANNEL

 default: break;

 } // switch(ch)

 } // for(ch = 0; ch < 3; ch++)

} // ValidateInput

//---
// Interrupt Service Routines
//---
//---
// EX0_ISR
//---
void EX0_ISR (void) interrupt 0
{
 USER_SHUTDOWN = 1;
 EX0 = 0; // Disable External Interrupt 0
 // interrupts

AN145

40 Rev. 1.4

}

//---
// Timer2_ISR
//---
void Timer2_ISR (void) interrupt 5 using 2
{

 if(STATE == RAMP){

 // Change the ADC MUX to VOUT for the next channel
 #if(F330)
 AMX0P = VOUT_PIN[(CH+1)];
 #else
 AMX0SL = VOUT_PIN[(CH+1)];
 #endif // F330

 } else

 if(STATE == MON){
 // Change the ADC MUX to VOUT or VIN for the next channel
 // The MONITOR_INPUT bit is managed by the ADC0_ISR
 if(MONITOR_INPUT){

 #if(F330)
 AMX0P = VIN_PIN[(CH+1)];
 #else
 AMX0SL = VIN_PIN[(CH+1)];
 #endif // F330

 } else {

 #if(F330)
 AMX0P = VOUT_PIN[(CH+1)];
 #else
 AMX0SL = VOUT_PIN[(CH+1)];
 #endif // F330

 } // if(MONITOR_INPUT)

 }

 TMR2CN &= ~0x80; // Clear Timer 2 Interrupt Flag

}

//---
// ADC0_ISR
//---
#if(F330)
 void ADC0_ISR (void) interrupt 10 using 1
#else
 void ADC0_ISR (void) interrupt 8 using 1
#endif // F330
{
 static int adc_code; // The raw ADC reading for CH1, CH2, CH3

AN145

Rev. 1.4 41

 static LONGS ch1_adc_code; // The scaled ADC reading for CH1, valid until
 // the end of the third channel.
 static int ch2_adc_code; // Used to temporarily hold the CH2 ADC Code
 // until the end of the third channel, when
 // all three CHx_PREV_VALUE variables are
 // updated.
 static bit pg_bit = 0;

 // Variables used during ramp end to increment the PWM code.
 static char ch1_inc = 0;
 static char ch2_inc = 0;
 #if(THREE_CHANNEL)
 static xdata char ch3_inc = 0;
 #endif // THREE_CHANNEL

 bit shutdown = 0;

 AD0INT = 0; // Clear ADC Conversion Complete Interrupt
 // Flag
 // read the current ADC code
 adc_code = ADC0;

 switch(STATE){

 //--
 // RAMP State
 //--
 //
 // Increase and track the output voltages on all enabled channels at
 // <RAMP_RATE> mA/sec until all channels have reached their target
 // voltage.
 //
 // If Vout has not yet reached the target voltage and is within tracking
 // requirements for the channel. There are the possible states that Vout
 // can be in with respect to the ideal curve.
 //
 // Case 1: Vout is much less than ideal line.
 // Action: Increment Vout and hold ideal line.
 //
 // Case 2: Vout is slightly below ideal line.
 // Action: Increment Vout and increment ideal line.
 //
 // Case 3: Vout is slightly above the ideal line.
 // Action: Hold Vout and increment ideal line.
 //
 case RAMP:

 ADC0_ISR_i++; // increment iteration counter

 // If the ISR stays in the RAMP state for more than 100ms, shutdown and
 // go back to the VAL state.
 // RAMP_TIMEOUT [ms] * sampling rate[kHz]
 #if(RAMP_TIMEOUT_ENABLE)
 if(ADC0_ISR_i > (RAMP_TIMEOUT * ADC_SAMPLERATE))
 {
 ADC0_ISR_i = 0;
 STATE = SHUTDOWN;
 STRICT_VALIDATION = 1; // Set the Strict Validation Flag

AN145

42 Rev. 1.4

 }
 #endif

 // CHANNEL 1
 if(CH == CH1){

 // If Vout is not already at the target voltage for this channel
 if(!CH1_OUTPUT_VALIDATED){

 if(!CH1_RAMP_END){

 // TRACKING REQUIREMENT:
 // If Vout is (TRACK_ERR ADC codes) greater than the
 // other two channels, hold Vout and the Ideal line

 // Multiply by (R10+R11)/R11 * 65536
 ch1_adc_code.Long = (long) (adc_code * (((R10+R11)*65536)/R11));

 #if(THREE_CHANNEL)
 if((ch1_adc_code.Int[0]) > (CH2_PREV_VALUE + TRACK_ERR) ||
 (ch1_adc_code.Int[0]) > (CH3_PREV_VALUE + TRACK_ERR)){
 #else
 if((ch1_adc_code.Int[0]) > (CH2_PREV_VALUE + TRACK_ERR)){
 #endif // THREE_CHANNEL

 // Hold Vout and the adjust ideal line to current ADC value + Delta Code
 CH1_EXPECTED_CODE.S.Mid =(ch1_adc_code.Int[0] + CH1_DELTA_CODE.Int[0]);
 CH1_EXPECTED_CODE.Char[0] = 0;
 CH1_EXPECTED_CODE.Char[3] = CH1_DELTA_CODE.Char[3];

 } else

 // CASE 1: Vout is much less than the ideal line
 if(ch1_adc_code.Int[0] <=
 (CH1_EXPECTED_CODE.S.Mid - CH1_DELTA_CODE.S.Mid)){

 // Increment Vout and hold the ideal line
 CH1_PWM = CH1_DATA[CH1_i++];

 // If end of table has been reached,
 // Go to Ramp End
 if(CH1_PWM == 0xFF){
 CH1_PWM = PCA0CPH0;
 CH1_RAMP_END = 1;
 }

 } else

 // CASE 2: Vout is slightly less than the ideal line
 if(ch1_adc_code.Int[0] <= CH1_EXPECTED_CODE.S.Mid){

 // Increment Vout to the next table entry
 CH1_PWM = CH1_DATA[CH1_i++];

 // If end of table has been reached,
 // Go to Ramp End
 if(CH1_PWM == 0xFF){
 CH1_PWM = PCA0CPH0;
 CH1_RAMP_END = 1;

AN145

Rev. 1.4 43

 }

 // Increment Ideal Line
 CH1_EXPECTED_CODE.Long += CH1_DELTA_CODE.Long;

 } else

 // CASE 3: Vout is higher than the ideal line
 {
 // Hold Vout and increment the ideal line
 CH1_EXPECTED_CODE.Long += CH1_DELTA_CODE.Long;

 }

 } // if(!CH1_RAMP_END)

 // Check if Vout has reached the target voltage for the channel
 if(adc_code >=
 (CH1_TARGET_CODE - DETECT_ERR) || CH1_RAMP_END) {

 // Set the Ramp End Flag to force execution of the following
 // code until ramping has ended
 if(!CH1_RAMP_END){

 CH1_RAMP_END = 1;

 }

 // Disable tracking if we are within the window
 // set to maximum positive code minus tracking error
 if((adc_code >= (CH1_TARGET_CODE - DETECT_ERR))
 && !ch1_tracking_disabled
){

 CH1_PREV_VALUE = adc_code;
 ch1_tracking_disabled = 1;

 } else {

 // For CH1, Tracking is not required if we have reached
 // ramp end since this is only remaining channel

 } // if(adc_code >= ...)

 // If the PWM code is less than 0xFF, then increment it
 // by 1/5 codes until it is >= 0xFF. Once it has reached 0xFF,
 // validate the output for the channel and output a
 // 0% duty cycle.
 if(CH1_PWM < 0xFF){

 if(ch1_inc == 0){
 CH1_PWM = PCA0CPH0 + 1;
 ch1_inc = 5;
 pg_bit = !pg_bit;
 } else {
 ch1_inc--;
 }

AN145

44 Rev. 1.4

 if(ch1_tracking_disabled){

 // Enter Loop every 620us
 if((ch1_inc == 1) && pg_bit){

 // Compare ADC code to previous value + 18mV (5 ADC Codes)
 if(adc_code <= CH1_PREV_VALUE + 5){
 pgcounter++;
 } // adc_code

 // Update previous value for the MONITOR state
 CH1_PREV_VALUE = adc_code;

 // If output stablilizes for 8 iterations (min 4.96us) after
 // CH1 has exceeded the ramp-end threshold, validate all
 // channels.
 if(pgcounter == 8){

 // clear the ECOM bit for this channel to produce a 0%
 // duty cycle
 PCA0CPM0 &= ~0x40;
 PCA0CPM1 &= ~0x40;
 PCA0CPM2 &= ~0x40;

 CH1_OUTPUT_VALIDATED = TRUE;
 CH2_OUTPUT_VALIDATED = TRUE;
 CH3_OUTPUT_VALIDATED = TRUE;

 // Update previous value for the MONITOR state
 CH1_PREV_VALUE = 0x7FFF - TRACK_ERR;

 } // if(pgcounter == 8)

 } // if((ch1_inc == 1) && pg_bit)

 } // if(ch1_tracking_disabled)

 } else {

 // validate the output for this channnel
 CH1_OUTPUT_VALIDATED = TRUE;

 // Set CH1_PREV_VALUE for the Monitor State
 CH1_PREV_VALUE = 0x7FFF - TRACK_ERR;

 // clear the ECOM bit for this channel to produce a 0%
 // duty cycle
 PCA0CPM0 &= ~0x40;

 } // CH1_PWM < 0xFF

 } else {

 // Tracking variable <ch1_adc_code> already updated above

 } // if(adc_code ... || ch1_ramp_end)

 } // (!CH1_OUTPUT_VALIDATED)

AN145

Rev. 1.4 45

 } else

 // CHANNEL 2
 if(CH == CH2){

 // If Vout is not already at the target voltage for this channel
 if(!CH2_OUTPUT_VALIDATED){

 if(!CH2_RAMP_END){

 // TRACKING REQUIREMENT:
 // If Vout is (TRACK_ERR ADC codes) greater than the
 // other two channels, hold Vout and the Ideal line
 #if(THREE_CHANNEL)
 if((adc_code) > (CH1_PREV_VALUE + TRACK_ERR) ||
 (adc_code) > (CH3_PREV_VALUE + TRACK_ERR)){
 #else
 if((adc_code) > (CH1_PREV_VALUE + TRACK_ERR)){
 #endif // THREE_CHANNEL

 // Hold Vout and the adjust ideal line to current ADC value + Delta Code
 CH2_EXPECTED_CODE.S.Mid = (adc_code + CH2_DELTA_CODE.Int[0]);
 CH2_EXPECTED_CODE.Char[0] = 0;
 CH2_EXPECTED_CODE.Char[3] = CH2_DELTA_CODE.Char[3];

 } else

 // CASE 1: Vout is much less than the ideal line
 if(adc_code <=
 (CH2_EXPECTED_CODE.S.Mid - CH2_DELTA_CODE.S.Mid)){

 // Increment Vout and hold Ideal line
 CH2_PWM = CH2_DATA[CH2_i++];

 // If end of table has been reached,
 // Go to Ramp End
 if(CH2_PWM == 0xFF){
 CH2_PWM = PCA0CPH1;
 CH2_RAMP_END = 1;
 }

 } else

 // CASE 2: Vout is slightly less than the ideal line
 if(adc_code <= CH2_EXPECTED_CODE.S.Mid){

 // Increment Vout to the next table entry
 CH2_PWM = CH2_DATA[CH2_i++];

 // If end of table has been reached,
 // Go to Ramp End
 if(CH2_PWM == 0xFF){
 CH2_PWM = PCA0CPH1;
 CH2_RAMP_END = 1;
 }

AN145

46 Rev. 1.4

 // Increment the ideal line
 CH2_EXPECTED_CODE.Long += CH2_DELTA_CODE.Long;

 } else

 // CASE 3: Vout is higher than the ideal line
 {
 // Hold Vout and increment the ideal line
 CH2_EXPECTED_CODE.Long += CH2_DELTA_CODE.Long;

 }

 } // if(!CH2_RAMP_END)

 // Check if Vout has reached the target voltage for the channel
 if(adc_code >=
 (CH2_TARGET_CODE - DETECT_ERR) || CH2_RAMP_END) {

 // Set the Ramp End Flag to force execution of the following
 // code until ramping has ended
 if(!CH2_RAMP_END){

 CH2_RAMP_END = 1;

 }

 // Disable tracking
 // set to maximum positive code minus tracking error
 if(adc_code >= (CH2_TARGET_CODE - DETECT_ERR)){

 CH2_PREV_VALUE = 0x7FFF - TRACK_ERR;
 ch2_tracking_disabled = 1;

 } else {

 // Update Previous Value for tracking
 ch2_adc_code = (adc_code);
 }

 // If the PWM code is less than 0xFF, then increment it
 // by 1/5 codes until it is >= 0xFF. Once it has reached 0xFF,
 // validate the output for the channel and output a
 // 0% duty cycle.
 if(CH2_PWM < 0xFF){

 if(ch2_inc == 0){
 CH2_PWM = PCA0CPH1 + 1;
 ch2_inc = 5;
 } else {
 ch2_inc--;
 }

 } else {

 // validate the output for this channnel
 CH2_OUTPUT_VALIDATED = TRUE;

 // clear the ECOM bit for this channel to produce a 0%
 // duty cycle

AN145

Rev. 1.4 47

 PCA0CPM1 &= ~0x40;

 }

 } else {

 // Update Previous Value for tracking
 ch2_adc_code = (adc_code);
 }

 } // if(!CH2_OUTPUT_VALIDATED)

 } else

 // CHANNEL 3
 { // CH == CH3

 #if(THREE_CHANNEL)
 // If Vout is not already at the target voltage for this channel
 if(!CH3_OUTPUT_VALIDATED){

 if(!CH3_RAMP_END){

 // TRACKING REQUIREMENT:
 // If Vout is (TRACK_ERR ADC codes) greater than the
 // other two channels, hold Vout and the Ideal line
 if((adc_code) > (CH1_PREV_VALUE + TRACK_ERR) ||
 (adc_code) > (CH2_PREV_VALUE + TRACK_ERR)){

 // Hold Vout and the adjust ideal line to current ADC value + Delta Code
 CH3_EXPECTED_CODE.S.Mid = (adc_code + CH3_DELTA_CODE.Int[0]);
 CH3_EXPECTED_CODE.Char[0] = 0;
 CH3_EXPECTED_CODE.Char[3] = CH3_DELTA_CODE.Char[3];

 } else

 // CASE 1: Vout is much less than the ideal line
 if(adc_code <=
 (CH3_EXPECTED_CODE.S.Mid - CH3_DELTA_CODE.S.Mid)){

 // Increment Vout and hold the ideal line
 CH3_PWM = CH3_DATA[CH3_i++];

 // If end of table has been reached,
 // Go to Ramp End
 if(CH3_PWM == 0xFF){
 CH3_PWM = PCA0CPH2;
 CH3_RAMP_END = 1;
 }

 } else

 // CASE 2: Vout is slightly less than the ideal line
 if(adc_code <= CH3_EXPECTED_CODE.S.Mid){

 // Increment Vout to the next table entry
 CH3_PWM = CH3_DATA[CH3_i++];

AN145

48 Rev. 1.4

 // If end of table has been reached,
 // Go to Ramp End
 if(CH3_PWM == 0xFF){
 CH3_PWM = PCA0CPH2;
 CH3_RAMP_END = 1;
 }

 // Increment the ideal line
 CH3_EXPECTED_CODE.Long += CH3_DELTA_CODE.Long;

 } else

 // CASE 3: Vout is higher than the ideal line
 {
 // Hold Vout and increment the ideal line
 CH3_EXPECTED_CODE.Long += CH3_DELTA_CODE.Long;

 }

 }// if(!CH3_RAMP_END)

 // Check if Vout has reached the target voltage for the channel
 if(adc_code >=
 (CH3_TARGET_CODE - DETECT_ERR) || CH3_RAMP_END) {

 // Set the Ramp End Flag to force execution of the following
 // code until ramping has ended
 if(!CH3_RAMP_END){

 CH3_RAMP_END = 1;

 }

 // Disable tracking or update tracking variable
 // set to maximum positive code minus tracking error
 if(adc_code >= (CH3_TARGET_CODE - DETECT_ERR)){
 CH3_PREV_VALUE = 0x7FFF - TRACK_ERR;
 ch3_tracking_disabled = 1;

 } else {

 // Update Previous Value for tracking
 if(!ch3_tracking_disabled) {
 CH3_PREV_VALUE = (adc_code);
 }
 }

 // If the PWM code is less than 0xFF, then increment it
 // by 1/5 codes until it is >= 0xFF. Once it has reached 0xFF,
 // validate the output for the channel and output a
 // 0% duty cycle.
 if(CH3_PWM < 0xFF){

 if(ch3_inc == 0){
 CH3_PWM = PCA0CPH2 + 1;
 ch3_inc = 5;
 } else {
 ch3_inc--;

AN145

Rev. 1.4 49

 }

 } else {

 // validate the output for this channnel
 CH3_OUTPUT_VALIDATED = TRUE;

 // clear the ECOM bit for this channel to produce a
 // 0% duty cycle
 PCA0CPM2 &= ~0x40;

 }

 } else {

 // Update Previous Value for tracking
 CH3_PREV_VALUE = (adc_code);
 }

 } // end if(!CH3_OUTPUT_VALIDATED)

 #endif // THREE_CHANNEL

 // Make sure array index is less than 128 (clear the MSB)
 CH1_i &= ~0x80;
 CH2_i &= ~0x80;
 #if(THREE_CHANNEL)
 CH3_i &= ~0x80;
 #endif // THREE_CHANNEL

 // UPDATE THE PWM OUTPUT FOR CH1, CH2, CH3
 if(PCA0CPM0 & 0x40) { PCA0CPH0 = CH1_PWM; }
 if(PCA0CPM1 & 0x40) { PCA0CPH1 = CH2_PWM; }
 #if(THREE_CHANNEL)
 if(PCA0CPM2 & 0x40) { PCA0CPH2 = CH3_PWM; }
 #endif // THREE_CHANNEL

 // UPDATE TRACKING VARIABLES
 if(!ch1_tracking_disabled) { CH1_PREV_VALUE = ch1_adc_code.Int[0];}
 if(!ch2_tracking_disabled) { CH2_PREV_VALUE = ch2_adc_code;}
 // CH3 already updated above

 }

 // If all channels have been validated, switch to the monitor state
 #if(THREE_CHANNEL)
 if(CH1_OUTPUT_VALIDATED && CH2_OUTPUT_VALIDATED && CH3_OUTPUT_VALIDATED) {
 #else
 if(CH1_OUTPUT_VALIDATED && CH2_OUTPUT_VALIDATED) {
 #endif // THREE_CHANNEL

 STATE = MON; // Change system state to Monitor
 EX0 = 1; // Enable External Interrupt 0
 // interrupts to set the
 // USER_SHUTDOWN bit when the
 // CAL/SD switch is pressed while
 // in the Monitor State

AN145

50 Rev. 1.4

 }

 break;

 //--
 // MON State
 //--
 //
 // Monitor the output and input voltages on all enabled channels to ensure
 // proper operation
 //
 // Note: Upon Entry into this state, all <CHx_PREV_VALUE> variables should
 // be set to a very large positive number (ex. 0x7FFF).
 // This is required for overcurrent protection.
 //
 case MON:

 shutdown = 0;

 if(CH == CH1){

 // Verify that the voltage on CH1 is within spec.
 #if(OVERVOLTAGE_PROTECTION)
 if(adc_code < CH1_TARGET_CODE_MIN ||
 adc_code > CH1_TARGET_CODE_MAX){
 shutdown = 1;
 }
 #else
 if(adc_code < CH1_TARGET_CODE_MIN){
 shutdown = 1;
 }
 #endif // OVERVOLTAGE_PROTECTION

 #if(OVERCURRENT_PROTECTION)
 if(MONITOR_INPUT){

 if((adc_code - CH1_PREV_VALUE) > ((OVERCURRENT_ERR * R10) / (R10+R11))){
 shutdown = 1;
 }

 } else {

 CH1_PREV_VALUE = adc_code;

 }
 #endif // OVERCURRENT_PROTECTION

 } else

 if (CH == CH2){

 // Verify that the voltage on CH2 is within spec.
 #if(OVERVOLTAGE_PROTECTION)
 if(adc_code < CH2_TARGET_CODE_MIN ||
 adc_code > CH2_TARGET_CODE_MAX){
 shutdown = 1;
 }
 #else
 if(adc_code < CH2_TARGET_CODE_MIN){

AN145

Rev. 1.4 51

 shutdown = 1;
 }
 #endif // OVERVOLTAGE_PROTECTION

 #if(OVERCURRENT_PROTECTION)
 if(MONITOR_INPUT){

 if((adc_code - CH2_PREV_VALUE) > (OVERCURRENT_ERR)){
 shutdown = 1;
 }

 } else {

 CH2_PREV_VALUE = adc_code;

 }
 #endif // OVERCURRENT_PROTECTION

 } else

 // CH == CH3
 {
 #if(THREE_CHANNEL)
 // Verify that the voltage on CH3 is within spec.
 #if(OVERVOLTAGE_PROTECTION)
 if(adc_code < CH3_TARGET_CODE_MIN ||
 adc_code > CH3_TARGET_CODE_MAX){
 shutdown = 1;
 }
 #else
 if(adc_code < CH3_TARGET_CODE_MIN){
 shutdown = 1;
 }
 #endif // OVERVOLTAGE_PROTECTION

 #if(OVERCURRENT_PROTECTION)
 if(MONITOR_INPUT){

 if((adc_code - CH3_PREV_VALUE) > (OVERCURRENT_ERR)){
 shutdown = 1;
 }

 } else {

 CH3_PREV_VALUE = adc_code;

 }
 #endif // OVERCURRENT_PROTECTION
 #endif // THREE_CHANNEL
 }

 // If the system or the user requests a shutdown, assert the
 // S_RESET signal, de-assert the POWER_G signal, and switch
 // to the SHUTDOWN state
 if(shutdown || USER_SHUTDOWN){

 S_RESET = 0; // Assert the S_RESET signal

AN145

52 Rev. 1.4

 #if(F330)
 POWER_G = 0; // De-Assert the POWER_G signal
 #endif // F330

 STRICT_VALIDATION = 1; // Set the Strict Validation Flag
 // to avoid oscillation

 STATE = SHUTDOWN; // Switch to validate state

 ADC0_ISR_i = 0; // Clear the ADC0_ISR iteration counter

 }

 break;

 //--
 // SHUTDOWN State
 //--
 //
 // Shut down all outputs
 //
 case SHUTDOWN:

 if(ADC0_ISR_i >= 10){

 ADC0_ISR_i = 0;

 // If all indexes are at table entry zero, change the state to VAL
 // or OFF
 #if(THREE_CHANNEL)
 if((CH1_i == 0) && (CH2_i == 0) && (CH3_i == 0)) {
 #else
 if((CH1_i == 0) && (CH2_i == 0)) {
 #endif // THREE_CHANNEL

 // Force all outputs to 0V by setting duty cycle to 100%
 CH1_PWM = 0;
 CH2_PWM = 0;
 #if(THREE_CHANNEL)
 CH3_PWM = 0;
 #endif // THREE_CHANNEL

 // If a user shutdown has been detected (CAL/SD switch pressed),
 // then put the system in the OFF state. The OFF state puts the CPU
 // in Stop Mode. Othewise re-validate the inputs and start
 // ramping again. Assume a power failure has occured.
 if(USER_SHUTDOWN){
 STATE = OFF;
 } else {
 STATE = VAL;
 }

 }

 // Start decrementing CH1 output. When the CH1 index reaches CH2 index,
 // then decrement both channels.
 // When CH1 and CH2 indexes fall to the CH3 index, decrement all three
 // channels.
 if(CH1_i > 0){

AN145

Rev. 1.4 53

 CH1_PWM = CH1_DATA[CH1_i--];
 }

 if((CH2_i > 0) && (CH2_i >= (CH1_i - 1))){

 CH2_PWM = CH2_DATA[CH2_i--];
 }

 #if(THREE_CHANNEL)
 if((CH3_i > 0) && (CH3_i >= (CH1_i - 1))){

 CH3_PWM = CH3_DATA[CH3_i--];
 }
 #endif // THREE_CHANNEL

 // UPDATE THE PWM OUTPUT FOR CH1, CH2, CH3
 PCA0CPH0 = CH1_PWM;
 PCA0CPH1 = CH2_PWM;
 #if(THREE_CHANNEL)
 PCA0CPH2 = CH3_PWM;
 #endif // THREE_CHANNEL

 } else {

 ADC0_ISR_i++;

 }
 break;

 } // end switch(STATE)

 // switch to next channel
 CH++;
 if(CH >= 3){
 CH = 0;
 if(STATE == MON){
 MONITOR_INPUT = !MONITOR_INPUT; // Toggle monitoring between
 } // inputs and outputs
 }

}// end ADC0_ISR

//---
// Support Routines
//---

//---
// wait_ms
//---
//

AN145

54 Rev. 1.4

// This routine inserts a delay of <ms> milliseconds.
//
void wait_ms(int ms)
{
 int ms_save = ms;

 #if(F330)
 TMR3CN = 0x00; // Configure Timer 3 as a 16-bit
 // timer counting SYSCLKs/12
 TMR3RL = -(SYSCLK/1000/12); // Timer 3 overflows at 1 kHz
 TMR3 = TMR3RL;

 TMR3CN |= 0x04; // Start Timer 3

 while(ms){
 TMR3CN &= ~0x80; // Clear overflow flag
 while(!(TMR3CN & 0x80)); // wait until timer overflows
 ms--; // decrement ms
 }

 TMR3CN &= ~0x04; // Stop Timer 3
 #else

 // DELAY <MS> milliseconds using Timer 0
 TMOD = 0x02; // Timer0 Mode 2
 CKCON &= ~0x0F; // Clear Timer0 bits
 CKCON |= 0x02; // Timer0 counts SYSCLK/48

 TH0 = -(SYSCLK/3000/48); // Timer 0 overflows at 3 kHz

 TR0 = 1; // Start Timer 0

 // repeat this loop three times, each loop taking 0.333 ms * <MS>
 while(ms){
 TF0 = 0; // clear overflow flag
 while(!TF0); // wait until timer overflows
 ms--; // decrement ms
 }

 ms = ms_save;

 while(ms){
 TF0 = 0; // clear overflow flag
 while(!TF0); // wait until timer overflows
 ms--; // decrement ms
 }

 ms = ms_save;

 while(ms){
 TF0 = 0; // clear overflow flag
 while(!TF0); // wait until timer overflows
 ms--; // decrement ms
 }

 TR0 = 0; // Stop Timer 0
 #endif // F330
}

AN145

Rev. 1.4 55

//---
// FLASH_ErasePage
//---
//
// This routine erases the FLASH page at <addr>.
//
void FLASH_ErasePage(unsigned addr)
{
 bit EA_SAVE = EA; // Save Interrupt State
 char xdata * idata pwrite; // FLASH write/erase pointer

 pwrite = (char xdata *) addr; // initalize write/erase pointer

 EA = 0; // Disable Interrupts

 FLKEY = 0xA5; // Write first key code
 FLKEY = 0xF1; // Write second key code

 PSCTL |= 0x03; // MOVX writes target FLASH
 // Enable FLASH erasure

 *pwrite = 0; // Initiate FLASH page erase

 PSCTL = 0x00; // Disable FLASH writes/erases

 EA = EA_SAVE; // Restore Interrupt State

}

//---
// FLASH_Write
//---
//
// This routine writes a set of bytes to FLASH memory. The target address
// is given by <dest>, <src> points to the array to copy, and <num> is the
// size of the array.
//
void FLASH_Write(unsigned dest, char *src, unsigned num)
{
 unsigned idata i; // loop counter
 char xdata * idata pwrite; // FLASH write/erase pointer
 char the_data; // holds data to write to FLASH
 bit EA_SAVE = EA; // Save Interrupt State

 pwrite = (char xdata*) dest; // initialize write/erase pointer
 // to target address in FLASH

 for (i = 0; i < num; i++) {

 the_data = *src++; // read data byte

 EA = 0; // disable interrupts

 FLKEY = 0xA5; // Write first key code
 FLKEY = 0xF1; // Write second key code

AN145

56 Rev. 1.4

 PSCTL |= 0x01; // PSWE = 1; MOVX writes target FLASH
 *pwrite = the_data; // write the data
 PSCTL &= ~0x01; // PSWE = 0; MOVX writes target XRAM

 EA = EA_SAVE; // restore interrupts
 pwrite++; // advance write pointer
 }

}

//---
// Print_Menu
//---
//
// This routine prints the system menu to the UART
//

#if(UART_ENABLE)

void Print_Menu(void)
{
 puts(“\n\nConfig Menu:\n”);
 puts(“1. Set Ramp Rate”);
 puts(“2. Set VAL wait time”);
 puts(“3. Set MON wait time”) ;
 puts(“4. Calibrate and Save Changes”);
 puts(“?. Print Menu”);

}

#endif // UART_ENABLE

//---
// CAL State Routines
//---

//---
// Calibrate
//---
//
// This Routine configures and calibrates the device.
//
void Calibrate(void)
{
 int RAMP_RATE_SAV = RAMP_RATE;
 int VAL_WAITTIME_SAV = VAL_WAITTIME;
 int MON_WAITTIME_SAV = MON_WAITTIME;

 char temp_char; // temporary char
 int v_cal;
 bit cal_complete = 0;

#if(UART_ENABLE)

 int xdata timeout = 10000; // 10 second delay

 #define input_str_len 10 // buffer to hold characters entered

AN145

Rev. 1.4 57

 char xdata input_str[input_str_len]; // at the command prompt
 int xdata input_int;

 // Start 10 sec timeout and also poll for UART activity on RX
 RI0 = 0;
 while (timeout > 0){
 if(RI0){
 break;
 } else {
 puts(“PRESS ANY KEY TO CONTINUE”);
 wait_ms(1000);
 timeout -= 1000;
 }

 }

 // timeout has passed or user pressed a key

 // execute the following code if the user pressed a key,
 // otherwise, skip this code and calibrate device
 if(RI0){

 RI0 = 0;
 Print_Menu();

 while(1){

 puts(“\nEnter a command >”);
 gets(input_str, input_str_len);

 switch(input_str[0]){

 case ‘1’: // Set Ramp Rate
 puts(“\nEnter the new Ramp Rate (250 - 500)[V/s]:”);
 gets(input_str, input_str_len);
 input_int = atoi(input_str);

 // validate
 while(!(input_int >= 250 && input_int <= 500)){
 puts(“\nEnter a valid Ramp Rate between 250 and 500 [V/s]:”);
 gets(input_str, input_str_len);
 input_int = atoi(input_str);
 }

 RAMP_RATE_SAV = input_int;

 break;

 case ‘2’: // Set input settling time
 puts(“\nEnter the new (Input Valid -> Ramp Start) wait time [ms]:”);
 gets(input_str, input_str_len);
 input_int = atoi(input_str);

 // validate
 while(!(input_int >= 10 && input_int <= 30000)){
 puts(“\nEnter timeout between 10 and 30000ms:”);

AN145

58 Rev. 1.4

 gets(input_str, input_str_len);
 input_int = atoi(input_str);
 }

 VAL_WAITTIME_SAV = input_int;

 break;

 case ‘3’: // Set S_RESET wait time
 puts(“\nEnter the new (Output Valid -> S_RESET Rising) wait time [ms]:”);
 gets(input_str, input_str_len);
 input_int = atoi(input_str);

 // validate
 while(!(input_int >= 10 && input_int <= 30000)){
 puts(“\nEnter timeout between 10 and 30000ms:”);
 gets(input_str, input_str_len);
 input_int = atoi(input_str);
 }

 MON_WAITTIME_SAV = input_int;

 break;

 case ‘4’:
 break;

 default:
 puts(“** Invalid Input **\n”);
 Print_Menu();
 break;
 }

 // If user selected calibrate and save
 if(input_str[0] == ‘4’){

 // exit the while loop
 break;
 }
 }

 }

#endif // UART_ENABLE

 #if(UART_ENABLE)
 puts(“\nVALIDATING INPUTS”);
 #endif // UART_ENABLE

 GlobalVarInit();
 ValidateInput ();

 #if(UART_ENABLE)
 puts(“CALIBRATING”);
 #endif // UART_ENABLE

 // Erase the FLASH data page
 FLASH_ErasePage(CH1_DATA_ADDR);

AN145

Rev. 1.4 59

 // Write parameters to FLASH
 FLASH_Write(RAMP_RATE_ADDR, (char*) &RAMP_RATE_SAV, sizeof(int));
 FLASH_Write(VAL_WAITTIME_ADDR, (char*) &VAL_WAITTIME_SAV, sizeof(int));
 FLASH_Write(MON_WAITTIME_ADDR, (char*) &MON_WAITTIME_SAV, sizeof(int));

 // Set PWM codes to the minimum
 PCA0CPH0 = 0x00;
 PCA0CPH1 = 0x00;
 #if(THREE_CHANNEL)
 PCA0CPH2 = 0x00;
 #endif // THREE_CHANNEL

 // Start Calibration
 v_cal = 0;
 while (v_cal < 3500) {
 CH1_Calibrate(v_cal);
 CH2_Calibrate(v_cal);
 #if(THREE_CHANNEL)
 CH3_Calibrate(v_cal);
 #endif // THREE_CHANNEL

 if(v_cal > 50){

 v_cal += VSTEP;

 } else {

 v_cal += VSTEP/16;
 }

 }

 // Use the ADC0_ISR to ramp down all outputs
 USER_SHUTDOWN = 1;
 STATE = SHUTDOWN;

 // Enable ADC0 End of Conversion Interrupts
 #if(F330)
 EIE1 |= 0x08;
 #else
 EIE1 |= 0x04;
 #endif // F330

 EA = 1; // Enable Global Interrupts
 while(STATE != OFF); // Wait until outputs shut down
 EA = 0; // Disable Global Interrupts

 // Set the CAL_DONE flag to 0x00 to indicate that calibration is
 // complete
 temp_char = 0x00;
 FLASH_Write(CAL_DONE_ADDR, (char*) &temp_char, 1);

 #if(UART_ENABLE)
 puts(“CALIBRATION COMPLETE\n\nCHANGES SAVED”);
 #endif // UART_ENABLE

AN145

60 Rev. 1.4

}
//---
// CH1_Calibrate
//---
//
// This routine increments CH1 output voltage until it reaches <v_target>.
// It then records the current PWM code in the calibration table.
//
void CH1_Calibrate(int v_target)
{
 int i; // software loop counter
 int adc_code;

 int v = 0; // voltage measured at output (mV)

 unsigned long acc; // accumulator for ADC integrate and dump

 static int pData; // initialize data pointer

 char temp_char; // temporary char

 bit done = 0; // completion flag

 // Select CH1 output as ADC mux input
 #if(F330)
 AMX0P = VOUT_PIN[CH1];
 #else
 AMX0SL = VOUT_PIN[CH1];
 #endif // F330

 // wait for output to settle
 wait_ms(1);

 // If the target voltage is 0V, initialize the pointer to the calibration
 // table to the beginning of CH1_DATA
 if(v_target == 0){

 pData = CH1_DATA_ADDR;

 }

 // Check the CH1 output voltage and keep increasing until v >= v_target
 // Do not allow the PWM code to overflow
 do{

 // obtain 256 samples
 acc = 0;
 for(i = 0; i < 256; i++){

 // obtain one sample
 AD0INT = 0;
 while(!AD0INT);

 // add to accumulator
 acc += ADC0;
 }

 // average the samples

AN145

Rev. 1.4 61

 acc >>= 8; // divide by 256

 adc_code = (int) acc;

 // convert <acc> from a code to a voltage and translate up
 // Vin = Vin_ADC * (R10+R11)/R11
 acc *= VREF; // multiply by VREF
 #if(ADC_RES == 1024L)
 acc >>= 10; // divide by ADC_RES = 2^10
 #elif(ADC_RES == 256L)
 acc >>= 8; // divide by ADC_RES = 2^8
 #elif
 #error(“Unsupported ADC Resolution”)
 #endif // ADC_RES
 acc *= (R10+R11); // scale by attenuator ratio
 acc /= R11;

 // The accumululator now contains CH1 output voltage (mV)
 v = (int) acc; // copy output voltage to <v>

 // If output voltage has not yet reached the target and we have not
 // yet reached the maximum PWM code, increment the PWM code
 if((v < v_target) && (PCA0CPH0 != 0xFF) &&
 (adc_code <= (CH1_TARGET_CODE-(CAL_DETECT_ERR)))
){
 PCA0CPH0++;
 } else {

 done = 1;
 }

 } while (!done);

 // At this point (v >= v_target) or (PCACP0H == 0xFF).
 // The current output voltage is greater than the target voltage
 // or we have reached the maximum PWM code.

 // If we have not reached the maximum PWM code, record this code
 // in FLASH. No action is required if the current PWM code is 0xFF
 if(PCA0CPH0 != 0xFF && (adc_code <= (CH1_TARGET_CODE-(CAL_DETECT_ERR)))){
 temp_char = PCA0CPH0;
 FLASH_Write(pData, &temp_char, sizeof(char)); // Write to FLASH
 pData++; // Increment FLASH write pointer
 }

}

//---
// CH2_Calibrate
//---
//
// This routine increments CH2 output voltage until it reaches <v_target>.
// It then records the current PWM code in the calibration table.
//
void CH2_Calibrate(int v_target)
{
 int i; // software loop counter

AN145

62 Rev. 1.4

 char temp_char; // temporary char
 int adc_code;

 int v = 0; // voltage measured at output (mV)

 unsigned long acc; // accumulator for ADC integrate and dump

 static int pData; // initialize data pointer

 bit done = 0; // completion flag

 // Select CH2 output as ADC mux input
 #if(F330)
 AMX0P = VOUT_PIN[CH2];
 #else
 AMX0SL = VOUT_PIN[CH2];
 #endif // F330

 // wait for output to settle
 wait_ms(1);

 // If the target voltage is 0V, initialize the pointer to the calibration
 // table to the beginning of CH2_DATA
 if(v_target == 0){

 pData = CH2_DATA_ADDR;

 }

 // Check the CH2 output voltage and keep increasing until v >= v_target
 // Do not allow the PWM code to overflow
 do{

 // obtain 256 samples
 acc = 0;
 for(i = 0; i < 256; i++){

 // obtain one sample
 AD0INT = 0;
 while(!AD0INT);

 // add to accumulator
 acc += ADC0;
 }

 // average the samples for a 10-bit result
 acc >>= 8; // divide by 256

 adc_code = acc;

 // convert <acc> from a code to a voltage
 acc *= VREF; // multiply by VREF
 #if(ADC_RES == 1024L)
 acc >>= 10; // divide by ADC_RES = 2^10
 #elif(ADC_RES == 256L)
 acc >>= 8; // divide by ADC_RES = 2^8
 #elif
 #error(“Unsupported ADC Resolution”)

AN145

Rev. 1.4 63

 #endif // ADC_RES

 // The accumululator now contains CH2 output voltage (mV)
 v = (int) acc; // copy output voltage to <v>

 // If output voltage has not yet reached the target and we have not
 // yet reached the maximum PWM code, increment the PWM code
 if((v < v_target) && (PCA0CPH1 != 0xFF) &&
 (adc_code <= (CH2_TARGET_CODE-CAL_DETECT_ERR))
){
 PCA0CPH1++;
 } else {

 done = 1;
 }

 } while (!done);

 // At this point (v >= v_target) or (PCACP0H == 0xFF).
 // The current output voltage is greater than the target voltage
 // or we have reached the maximum PWM code.

 // If we have not reached the maximum PWM code, record this code
 // in FLASH. No action is required if the current PWM code is 0xFF
 if(PCA0CPH1 != 0xFF && (adc_code <= (CH2_TARGET_CODE-CAL_DETECT_ERR))){
 temp_char = PCA0CPH1;
 FLASH_Write(pData, &temp_char, sizeof(char)); // Write to FLASH
 pData++; // Increment FLASH write pointer
 }

}

//---
// CH3_Calibrate
//---
//
// This routine increments CH3 output voltage until it reaches <v_target>.
// It then records the current PWM code in the calibration table.
//
#if(THREE_CHANNEL)
void CH3_Calibrate(int v_target)
{
 int xdata i; // software loop counter
 char xdata temp_char; // temporary char
 int xdata adc_code;

 int xdata v = 0; // voltage measured at output (mV)

 unsigned long xdata acc; // accumulator for ADC integrate and dump

 static int pData; // initialize data pointer

 bit done = 0; // completion flag

 // Select CH3 output as ADC mux input
 #if(F330)

AN145

64 Rev. 1.4

 AMX0P = VOUT_PIN[CH3];
 #else
 AMX0SL = VOUT_PIN[CH3];
 #endif // F330

 // wait for output to settle
 wait_ms(1);

 // If the target voltage is 0V, initialize the pointer to the calibration
 // table to the beginning of CH3_DATA
 if(v_target == 0){

 pData = CH3_DATA_ADDR;

 }

 // Check the CH3 output voltage and keep increasing until v >= v_target
 // Do not allow the PWM code to overflow
 do{

 // obtain 256 samples
 acc = 0;
 for(i = 0; i < 256; i++){

 // obtain one sample
 AD0INT = 0;
 while(!AD0INT);

 // add to accumulator
 acc += ADC0;
 }

 // average the samples
 acc >>= 8; // divide by 256

 adc_code = acc;
 // convert <acc> from a code to a voltage
 acc *= VREF; // multiply by VREF

 #if(ADC_RES == 1024L)
 acc >>= 10; // divide by ADC_RES = 2^10
 #elif(ADC_RES == 256L)
 acc >>= 8; // divide by ADC_RES = 2^8
 #elif
 #error(“Unsupported ADC Resolution”)
 #endif // ADC_RES

 // The accumululator now contains CH3 output voltage (mV)
 v = (int) acc; // copy output voltage to <v>

 // If output voltage has not yet reached the target and we have not
 // yet reached the maximum PWM code, increment the PWM code
 if((v < v_target) && (PCA0CPH2 != 0xFF) &&
 (adc_code <= (CH3_TARGET_CODE-CAL_DETECT_ERR))
){
 PCA0CPH2++;
 } else {

AN145

Rev. 1.4 65

 done = 1;
 }

 } while (!done);

 // At this point (v >= v_target) or (PCACP0H == 0xFF).
 // The current output voltage is greater than the target voltage
 // or we have reached the maximum PWM code.

 // If we have not reached the maximum PWM code, record this code
 // in FLASH. No action is required if the current PWM code is 0xFF
 if(PCA0CPH2 != 0xFF && (adc_code <= (CH3_TARGET_CODE-CAL_DETECT_ERR))){
 temp_char = PCA0CPH2;
 FLASH_Write(pData, &temp_char, sizeof(char)); // Write to FLASH
 pData++; // Increment FLASH write pointer
 }

}
#endif

//---
// Initialization Routines
//---

#if(F330)
//---
// VDM_Init
//---
//
// Initialize VDD Monitor for the F330 and the F300
//
void VDM_Init (void)
{
 VDM0CN |= 0x80; // Enable VDD monitor
 while(!(VDM0CN & 0x40)); // wait for VDD to stabilize

 RSTSRC = 0x02; // Set VDD monitor as a reset source

}

#else

//---
// VDM_Init
//---
//
// Initialize VDD Monitor for the F330 and the F300
//
void VDM_Init (void)
{
 RSTSRC = 0x02; // Set VDD monitor as a reset source
}

#endif // F330

AN145

66 Rev. 1.4

//---
// SYSCLK_Init
//---
//
// Configure the system clock to use the internal 24.5MHz oscillator as its
// clock source and enable the missing clock detector.
//

#if(F330)

void SYSCLK_Init (void)
{
 OSCICN = 0x83; // set clock to 24.5 MHz

 RSTSRC = 0x06; // enable missing clock detector
 // and leave the VDD monitor enabled

}

#else

void SYSCLK_Init (void)
{
 OSCICN = 0x07; // set clock to 24.5 MHz

 RSTSRC = 0x06; // enable missing clock detector
 // and leave the VDD monitor enabled
}

#endif // F330

//---
// PORT_Init
//---
//
// Configure the Crossbar and GPIO pins to the following pinout for the ‘F330:
//
// Port 0
// P0.0 - GPIO
// P0.1 - CEX0 (CH1 PWM Output)
// P0.2 - GPIO (POWER_G Signal)
// P0.3 - GPIO
// P0.4 - UART TX
// P0.5 - UART RX
// P0.6 - Analog Input (CH1 Vin)
// P0.7 - GPIO (S2 Switch)
//
// Port 1
// P1.0 - Analog Input (CH1 Vout)
// P1.1 - Analog Input (CH2 Vin)
// P1.2 - CEX1 (CH2 PWM Output)
// P1.3 - Analog Input (CH2 Vout)
// P1.4 - Analog Input (CH3 Vin)
// P1.5 - CEX2 (CH3 PWM Output)
// P1.6 - Analog Input (CH3 Vout)
// P1.7 - GPIO (S_RESET Signal)
//
// Port 2

AN145

Rev. 1.4 67

// P2.0 - C2D
//
#if(F330)

void PORT_Init (void)
{
 // Momentarily discharge the output capacitors

 P1 &= ~0x49; // Write a ‘0’ to P1.0, P1.3 and P1.6
 // to discharge the capacitors on CH1_VOUT,
 // CH2_VOUT, CH3_VOUT.
 P1 |= 0x49; // Return the same port pins above to
 // their reset state

 // Make sure the CAL/SD switch has charged up after a reset
 // to prevent calibrating the device when the S2 switch is not pressed.

 // Momentarily drive the S2 (P0.7) signal high.
 XBR1 = 0x40; // Enable Crossbar

 P0MDOUT |= 0x80; // Configure to push-pull
 S2 = 1;
 wait_ms(1);
 P0MDOUT &= ~0x80; // Configure to open-drain

 XBR1 = 0x00; // Disable Crossbar

 // F330 Port 0 Initialization

 P0SKIP = ~0x32; // Skip all Port0 pins except for
 // P0.1 (CH1 PWM output),
 // P0.4 and P0.5 (UART pins)
 // in the Crossbar

 P0MDIN = ~0x40; // Configure P0.6 (CH1 Vin) as an
 // analog input

 P0MDOUT = 0x16; // Enable UART TX, CEX0, and POWER_G
 // signal as push-pull

 // F330 Port 1 Initialization

 P1SKIP = ~0x24; // Skip all pins configured as analog
 // inputs in Port1
 P1MDIN = ~0x5B; // Configure P1.0, P1.1, P1.3, P1.4, and
 // P1.6 as analog inputs

 P1MDOUT = 0xA4; // PWM outputs and S_RESET is push-pull

 // F330 Crossbar Initialization

 XBR0 = 0x01; // UART TX0,RX0 routed to P0.4 and P0.5

 XBR1 = 0x43; // Enable crossbar and weak pullups

AN145

68 Rev. 1.4

 // CEX0, CEX1, and CEX2 routed to
 // P0.1, P1.2, and P1.5
}

#else

//---
// PORT_Init
//---
//
// Configure the Crossbar and GPIO pins to the following pinout for the ‘F300:
//
// Port 0
// P0.0 - GPIO/VREF (CAL/SD switch)
// P0.1 - Analog Input (CH2 Vin)
// P0.2 - Analog Input (CH1 Vin)
// P0.3 - CEX0 (CH1 PWM Output)
// P0.4 - CEX1 (CH2 PWM Output)
// P0.5 - Analog Input (CH1 Vout)
// P0.6 - Analog Input (CH2 Vout)
// P0.7 - GPIO (S_RESET Signal)
//
void PORT_Init (void)
{
 // Momentarily discharge the output capacitors

 P0 &= ~0x60; // Write a ‘0’ to P0.5 and P0.6
 // to discharge the capacitors on CH1_VOUT
 // and CH2_VOUT
 P0 |= 0x60; // Return the same port pins above to
 // their reset state

 // Make sure the CAL/SD switch has charged up after a reset
 // to prevent calibrating the device when the S2 switch is not pressed.

 // Momentarily drive the CAL/SD/VREF (P0.0) switch

 XBR2 = 0x40; // Enable Crossbar

 P0MDOUT |= 0x01; // Configure to push-pull
 S2 = 1;
 wait_ms(1);
 P0MDOUT &= ~0x01; // Configure to open-drain

 XBR2 = 0x00; // Disable Crossbar

 // F300 Port 0 Initialization
 XBR0 = 0x07; // Skip the first three pins in P0
 // in the Crossbar

 P0MDIN = ~0x66; // Configure Vin and Vout pins as
 // analog inputs

 P0MDOUT = 0x98; // Configure CEX0, CEX1 and S_RESET
 // to push-pull

AN145

Rev. 1.4 69

 XBR1 = 0x80; // Enable CEX0 and CEX1 in the Crossbar

 XBR2 = 0x40; // Enable Crossbar and Weak Pullups
}

#endif // F330

//---
// EX0_Init
//---
//
// This routine initializes external interrupt 0 to monitor the CAL/SD switch.
//
#if(F330)

void EX0_Init(void)
{

 IT01CF &= ~0x0F; // Clear EX0 bits
 IT01CF |= 0x07; // Monitor P0.7 (active low)
 IT01CF &= ~0x08; // active low
 IT0 = 1; // Edge Triggered
 IE0 = 0; // Clear Interrupt Flag

}

#else

void EX0_Init(void)
{

 IT01CF &= ~0x0F; // Clear EX0 bits
 IT01CF |= 0x00; // Monitor P0.0 (active low)
 IT01CF &= ~0x08; // active low
 IT0 = 1; // Edge Triggered
 IE0 = 0; // Clear Interrupt Flag
}

#endif // F330

//---
// ADC0_Init
//---
//
// Configure ADC0 to start conversions on Timer 2 overflows.
//
#if(F330)

void ADC0_Init (void)
{
 ADC0CN = 0x02; // ADC0 disabled; normal tracking
 // mode; ADC0 conversions are initiated
 // on Timer 2 overflows;
 // Configure ADC MUX input
 AMX0P = VOUT_PIN[CH1]; // Select CH1 Output as ADC0 input
 AMX0N = 0x11; // select GND as negative mux input

 // Configure SAR Clock frequency

AN145

70 Rev. 1.4

 ADC0CF = (SYSCLK/3000000) << 3; // ADC conversion clock <= 3MHz
 // Right Justified Data

 // Configure Voltage Reference
 // Turn on internal reference buffer and output to P0.0
 REF0CN = 0x03; // VREF pin used as reference,
 // Bias generator is on.
 // Internal Reference Buffer Enabled

 wait_ms(2); // Wait 2 ms for VREF to settle

 ADC0CN |= 0x80; // enable ADC

}

#else

void ADC0_Init (void)
{
 ADC0CN = 0x02; // ADC0 disabled; normal tracking
 // mode; ADC0 conversions are initiated
 // on Timer 2 overflows;
 // Configure ADC MUX input
 AMX0SL = VOUT_PIN[CH1]; // Select CH1 Output as ADC0 input
 // and GND as negative mux input

 // Configure SAR Clock frequency
 ADC0CF = (SYSCLK/6000000) << 3; // ADC conversion clock <= 6MHz
 // 8-bit data in ‘F300

 // Configure PGA gain for ‘F300 (‘F330 gain always set to 1)
 ADC0CF |= 0x01; // PGA gain = 1

 // Configure Voltage Reference
 REF0CN = 0x0A; // VDD used as voltage reference
 // Bias generator is on.

 wait_ms(2); // Wait 2 ms for VREF to settle

 ADC0CN |= 0x80; // enable ADC
}

#endif

//---
// PCA_Init
//---
//
// Configure all PCA modules to PWM output mode, using SYSCLK as a timebase.
//
void PCA_Init(void)
{
 PCA0MD = 0x08; // Set PCA timebase to SYSCLK
 // Disable PCA overflow interrupt

 // Configure Capture/Compare Module 0 (Channel 1 PWM output)
 PCA0CPM0 = 0x42; // configure for 8-bit PWM

AN145

Rev. 1.4 71

 // Configure Capture/Compare Module 1 (Channel 2 PWM output)
 PCA0CPM1 = 0x42; // configure for 8-bit PWM

 // Configure Capture/Compare Module 2 (Channel 3 PWM output)
 #if(THREE_CHANNEL)
 PCA0CPM2 = 0x42; // configure for 8-bit PWM
 #endif // THREE_CHANNEL

 PCA0CPH0 = 0x00;
 PCA0CPH1 = 0x00;

 #if(THREE_CHANNEL)
 PCA0CPH2 = 0x00;
 #endif // THREE_CHANNEL

 CR = 1; // start PCA timer

}

//---
// UART0_Init
//---
//
// Configure the UART0 using Timer1, for <BAUDRATE> and 8-N-1.
// The minimum standard baud rate supported by this function is 57600 when
// the system clock is running at 24.5 MHz.
//

#if(UART_ENABLE)

void UART0_Init (void)
{
 SCON0 = 0x10; // SCON0: 8-bit variable bit rate
 // level of STOP bit is ignored
 // RX enabled
 // ninth bits are zeros
 // clear RI0 and TI0 bits

 TH1 = -(SYSCLK/BAUDRATE/2);
 CKCON |= 0x08; // T1M = 1; SCA1:0 = xx

 TL1 = TH1; // init Timer1
 TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
 TMOD |= 0x20;
 TR1 = 1; // START Timer1
 TI0 = 1; // Indicate TX0 ready
}

#endif // UART_ENABLE

//---
// Timer2_Init
//---
//
// Configure Timer2 to auto-reload at interval specified by <counts>
// using SYSCLK as its time base.
//

AN145

72 Rev. 1.4

//
//
#if(F330)

void Timer2_Init(int counts)
{
 TMR2CN = 0x00; // resets Timer 2, sets to 16 bit mode

 CKCON |= 0x10; // use system clock

 TMR2RL = -counts; // initialize reload value
 TMR2 = TMR2RL; // initialize Timer 2
}

#else

void Timer2_Init(int counts)
{
 TMR2CN = 0x00; // resets Timer 2, sets to 16 bit mode

 CKCON |= 0x20; // use system clock

 TMR2RL = -counts; // initialize reload value
 TMR2 = TMR2RL; // initialize Timer 2
}

#endif // F330

AN145

Rev. 1.4 73

Appendix D - Firmware (Header File)
//---
// PS_V1.3.h
//---
//
// AUTH: FB
// DATE: 26 JUN 03
//
// VERSION: 1.3.0
//
// Header file contianing configuration settings for Power Sequencing
// Software (PS_V1.3.c).
//
// Target: C8051F330 and C8051F300
// Tool chain: KEIL C51
//

// Step 1 - Select a device
#define F330 1 // Select ‘1’ for the ‘F330 and
 // select ‘0’ for the ‘F300

// Step 2 - Select features to enable on the ‘F330. Note that these features are
// not available for the ‘F300.
#if(F330)
 #define UART_ENABLE 0 // Enables configuration through UART
 #define THREE_CHANNEL 1 // Enables the third channel
#endif // F330

// Step 3 - Define System Parameters for the ‘F330 and the ‘F300

#define DEFAULT_RAMP_RATE 500 // Default ramp rate in V/s
#define DEFAULT_VAL_WAITTIME 100 // Default validation wait time in ms
#define DEFAULT_MON_WAITTIME 100 // Default time between POWER_G and
 // S_RESET rising edge in ms.

#define OVERVOLTAGE_PROTECTION 1 // Enable or Disable Overvoltage Protection
#define OVERCURRENT_PROTECTION 1 // Enable or Disable Overcurrent protection

#define RAMP_TIMEOUT_ENABLE 1 // Enables Ramp Timeout
#define RAMP_TIMEOUT 100 // Maximum time allowed for ramping (ms)

#define NUM_RETRIES 3 // The number of power-up retries the system
 // will attempt after a power failure

// The minimum specified Target voltage for each channel (-8% of target voltage)
#define CH1_VTARGET_MIN 3036L // Channel 1 min target voltage in mV
#define CH2_VTARGET_MIN 1656L // Channel 2 min target voltage in mV
#define CH3_VTARGET_MIN 1380L // Channel 3 min target voltage in mV

// The maximum specified Target voltage for each channel (+8% of target voltage)
#define CH1_VTARGET_MAX 3564L // Channel 1 max target voltage in mV
#define CH2_VTARGET_MAX 1944L // Channel 2 max target voltage in mV
#define CH3_VTARGET_MAX 1620L // Channel 3 max target voltage in mV

#define OVERCURRENT_VTH 400L // Overcurrent threshold in mV

AN145

74 Rev. 1.4

#define STRICT_VAL_DELTA 100L // Overvoltage threshold is decreased and
 // undervoltage threshold is increased by
 // this amount after a power failure

// Resistor values for the attenuator on CH1
#define R10 2800L // Resistance in Ohms
#define R11 5360L // Resistance in Ohms

AN145

Rev. 1.4 75

Notes:

AN145

76 Rev. 1.4

Contact Information
Silicon Laboratories Inc.
4635 Boston Lane
Austin, TX 78735
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: productinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

	Relevant Devices
	Introduction
	Background
	Theory of Operation
	System States
	Input Validation
	Ramping Algorithm

	System Monitoring and Protection
	Soft Power Down

	Hardware Description
	PWM Generation
	Power MOSFET Control
	ADC Sampling

	Software Description
	Device Calibration
	Variable Initialization
	VALIDATE State
	RAMP State
	MONITOR State
	POWER DOWN State

	How to Configure the Firmware
	Performance Examples
	Features
	Power-up Example
	Ramp Up and POWER_G Signal Example
	Ramp Up and S_RESET Signal Example
	User Shutdown and POWER_G Signal Example
	Power Failure and S_RESET Signal Example

	Configuration Using the Serial Port (Optional)
	Estimated Board Real-Estate
	Appendix A - Schematic
	Appendix B - Bill of Materials
	Appendix C - Firmware (Source File)
	Appendix D - Firmware (Header File)
	Notes:

