&~

SILICON LABODORATORIES

AN145

THREE-CHANNEL POWER SEQUENCER

Relevant Devices

This application note applies to the following devices:
C8051F330.

Introduction

The CB8051F330 can provide low-cost power
sequencing and supervision in systems with up to
three power supply rails. During power ramp up, it
controls in-rush current by limiting the output slew
rate and performs real-time tracking to minimize
the voltage difference between supply rails. Once
ramping is complete, it monitors the outputs and
shuts down all supply rails if an over-voltage,
under-voltage, over-current, or single-rail failure
condition is detected.

This reference design includes:

* Background and theory of operation.

» Hardware and software description including
how to customize and use the firmware.

* Typical performance examples.

* A schematic, bill of materials, and PCB area
estimate for a three rail solution.

* Complete firmware (source and object code
included) that can be used as-is for a three rail
solution. A two rail solution can be achieved by
turning off the third rail.

Background

An increasing number of devices such as FPGAs,
DSPs, RISC-CPUs, and communications ICs oper-
ate at two or more supply voltages. The core logic
commonly operates from 1.3V to 2.5V in order to
save power while the I/O supply operates from 3.3
to 5 V to interface with other devices.

A common requirement for these ICs is that supply
rails should track while ramping and stabilize at
their target voltages 100 ms or more before the
device is brought out of reset. Also, these devices
often require large decoupling capacitors. Control-
ling in-rush current by limiting the slew rate on
power up can prevent damage to the decoupling
capacitors.

Many systems with multiple supplies require sys-
tem health monitoring and protection. The health
monitor checks for overvoltage, undervoltage, or
overcurrent on any of the supply rails. It provides
protection by putting the system into reset and
shutting down all supply rails if abnormal condi-
tions are detected on any of the supply rails.

The Silicon Labs Power Sequencing Solution is
ideal for multi-supply systems where the reliability
requirements or IC replacement cost are key issues.

Figure 1. Multi-Supply IC that Requires Power Sequencing and Management

3.3V LDO 3.3V > - 3.3V
Cygnal
1.8V LDO 1.8V » Power - 1.8V
1.5V Sequencer 1.5V
1.5V LDO - >
A

+12V v v
Main Multi-Supply IC
4 S

Rev. 1.4 12/03

Copyright © 2003 by Silicon Laboratories

AN145-DS14

AN145

The C8051F330 MCU is available in a 20-pin MLP with a 4x4mm footprint. The entire solution includ-
ing power MOSFETs can be implemented in less than 1 square inch of PCB space.

Theory of Operation

The Silicon Labs power sequencer uses its on-chip ADC and PWM output capabilities to implement a
state-machine-based feedback control loop. This control loop performs real-time voltage tracking during
ramp up and provides power supply monitoring and protection once ramping is complete. It also manages
the “system reset” (S_RESET) and “power good” (POWER QG) signals.

The power sequencer controls the output voltages by varying the source-drain resistance of a power
MOSFET placed between the input and output terminal. The MOSFET resistance can vary from being an
open circuit to a virtual short circuit, based on the gate voltage. The power sequencer controls the MOS-
FET resistance using a low-pass filtered PWM signal at the gate, as shown in Figure 2.

Using its on-chip ADC, the power sequencer measures the input and output voltages for each channel.

This allows it to perform real-time voltage tracking on power up and provide protection from over-volt-
age, under-voltage, over-current, or single-rail failure conditions after all channels have stabilized.

Figure 2. Single Channel Model

INPUT OUTPUT
T L[T

i Attenuator H2v Attenuator i

C8051F330

Y|
/1

Analog Input —

PWM Output

A
<

Analog Input

®
2 Rev. 1.4 @

SILICON LABORATORIES

AN145

System States

The power sequencer has four states of normal operation, shown in Figure 3. On reset, the system starts
normal operation unless the calibrate/shutdown (CAL/SD) switch is pressed. If the CAL/SD switch is
pressed, the system enters Configuration mode as shown in Figure 4.

Input Validation

The VALIDATE state monitors the channel input voltages until they are within specified operating
ranges. It also checks if the 12V supply is powered. Once all supply rails are “on”, it waits a programma-
ble wait time (10 ms - 30 sec with a default of 100 ms) for the supplies to stabilize. At the end of the wait
time, the system measures and records the actual supply voltages at the channel inputs. This measurement
is used by the RAMP state to determine when ramping is complete.

Ramping Algorithm

While ramping, the outputs rise at a programmable monotonic slew rate until each of the channel outputs
reaches its target voltage. The slew rate can be programmed to any value from 250 V/s to 500 V/s.

Figure 3. System State Definitions

POWER_G Signal

: 10 ms - 30
S_RESET Signal | Default 100 ms

CH1
CH2
CH3
Outputs

10 ms - 30 sec
Default 100 ms

i

Max time: 100 ms

VALIDATE RAMP MONITOR POWER DOWN
State State State State

®
@ Rev. 1.4 3

SILICON LABORATORIES

AN145

Figure 4. System State Flow Diagram

Switch S2
Pressed or
First Run?

No

v

-

Validate and Wait

v

RAMP

v

MONITOR

Supply
Shutdown Failure

vy

User

| Supply Failure |
or Timeout

POWER DOWN

User
Shutdown

while(1);

Enter
Yes——» Configuration
Mode
10 sec. UART
Timeout? Activity?
UART ! Disable
Not 10 sec.
Enabled | Timeout
100 ms 4
Timeout Configuration
Menu
) J
Calibrate
\ 4

Rev. 1.4

SILICON LABORATORIES

AN145

The ramping algorithm keeps the output voltages
as close as possible to a calculated “ideal” line, as
shown in Figure 5. At each sampling point, the
algorithm compares the output voltage to the
“ideal” line and decides whether to hold or incre-
ment the output voltage and the ideal line. Figure 5
shows that the output voltage for a single channel
can be much lower, slightly lower, or higher than
the “ideal” line.

The three cases are discussed below:

Case 1. The output voltage is much lower than the
“ideal” line (see Point 1 in Figure 5). Action
Taken. Increase output voltage and hold the ideal
line.

Case 2. The output voltage is slightly lower than
the “ideal” line (see Point 2 in Figure 5).

Action Taken. Increase output voltage and
increase the ideal line.

Case 3. The output voltage is higher than the
“ideal” line (see Point 3 in Figure 5).

Action Taken. Hold output voltage and increase
the ideal line.

Figure 5. Example RAMP State Decisions

The ramping algorithm also checks the differential
voltage between each channel and the other chan-
nel(s). As shown in Figure 6, if a channel starts lag-
ging (i.e. the differential voltage between the
channel and another channel has exceeded the
tracking threshold), the remaining channel(s) (and
their ideal lines) are held at their current values
until the slower channel “catches up”.

Once ramping is complete, the power good
(POWER Q) signal is driven HIGH and the system
moves to the MONITOR state. If the system does
not finish ramping before the 100 ms timeout, all

outputs are shut down and the inputs are re-vali-
dated.

System Monitoring and
Protection

In the MONITOR state, channel inputs and outputs
are monitored to provide protection from overvolt-
age, undervoltage, overcurrent, and single rail fail-
ure conditions.

The system reset (S _RESET) signal is driven
HIGH a programmable wait time after the system

Figure 6. Example Tracking Decision

SILICON LABORATORIES

v/
v/
&
&
3 7
4
4
V4
V4
4
V4
4
’
&
I,’ 2
v/
/ . o Tracking
, ~ Ideal" Line ----------- S Threshold
R/ 1 Channel Output
Rev. 1.4 5

AN145

has entered the MONITOR state (10 ms to 30 sec
with a default wait time of 100 ms).

Overvoltage and undervoltage conditions are
detected when the output voltage for a channel has
exceeded or fallen below 8% of the channel voltage
(3.3V, 1.8V, or 1.5V). Overcurrent is detected when
the input and output voltages vary by greater than
400 mV on any channel.

If any of the above conditions is detected on any
rail, the S RESET and POWER G signals are
driven LOW and the system powers down and re-
validates the inputs. A 100 mV hysteresis on re-
validation prevents the system from continuously
ramping up and down if a supply voltage is hover-
ing near the overvoltage or undervoltage threshold.

While in the MONITOR state, the user can issue a
User Shutdown by pressing the CAL/SD switch. A
User Shutdown initiates a soft ramp down on all
outputs and puts the CPU in a low power Stop
mode until the next reset or power-on event.

Soft Power Down

The Power Down State is entered when the 100 ms
ramp timeout has expired, a power failure is
detected, or a User Shutdown has occurred.

In this state, the POWER G and S RESET signals
are driven LOW. The channel outputs are ramped
down to provide a “soft” shutdown. The outputs
track based on stored calibration data.

Hardware Description

In this design, PCAO is used to generate the PWM
signals that control the power MOSFET resistance.
ADCO is used to measure the voltages at the inputs
and outputs.

A complete schematic for a 3 channel system using
the C8051F330 is shown in Appendix A on page
20. A bill of materials for this system is shown in
Appendix B.

PWM Generation

The Program Counter Array (PCA) in 8-bit PWM
mode generates three PWM signals used to control
the output voltages. These signals are named
CEXO0, CEX1, and CEX2. The frequency of the
PWM signals is configured to 95.7 kHz, or 256
SYSCLK cycles between falling edges. The
SYSCLK frequency is 24.5 MHz, derived from the
calibrated internal oscillator.

The duty cycle of the PWM signal is set by writing
an 8-bit PWM code to the high byte of a PCA Cap-
ture Module Register (PCAOCPHO, PCAOCPHI,
or PCAOCPH2), as described in the PCA chapter of
the C8051F33x Datasheet.

Power MOSFET Control

The power MOSFET resistance decreases as the
gate voltage increases. When the gate voltage is 0V,
the MOSFET is an open circuit. As the gate voltage
moves closer to 12V, the MOSFET resistance
decreases until it becomes a virtual short.

The NPN Transistor and +12V pull-up resistor
translate the OV to 3.3V PWM signal to a 0V to
12V PWM signal. This signal is low pass filtered
before reaching the MOSFET gate. This reduces
ripple on the output voltage during the ramp phase.
Once ramping is complete, the MOSFET is turned
completely on.

ADC Sampling

The on-chip 10-bit ADCO is configured to sample
at a rate of 47.85 kHz, exactly twice the PWM fre-
quency. Synchronizing the ADC sampling with the
PWM signal reduces digital noise in the ADC sam-
ples.

ADCO starts conversions on Timer 2 overflow.
During device initialization, Timer 2 and the PCA
counter are started together so that ADC samples
are always aligned with the falling edge of the
PWM signal.

6 Rev. 1.4

SILICON LABORATORIES

AN145

The ADC positive input MUX determines which
analog input is currently being sampled. The MUX
can be changed on-the-fly and is managed by the
Timer2 ISR during the RAMP and MONITOR
states. In all other states, MUX switching is han-
dled by polled code.

Software Description

The main power sequencing and monitoring con-
trol loop in this design is implemented in software.
Figure 7 shows an overview of program flow start-
ing from a device reset.

Device Calibration

On first run, the Silicon Labs power sequencer goes
through a calibration sequence to characterize the
external circuitry. During calibration, the output
voltage is measured at each PWM code and a cali-
bration table is built in FLASH mapping PWM
codes to output voltages. This allows the output
waveform to be controlled in 50 mV steps regard-
less of MOSFET device-to-device variations or dif-
ferences in channel loading.

The initial calibration ramp rises slower than a a
typical ramp in normal operation. After all chan-
nels reach their target value and the calibration
table is complete, the CAL_DONE flag is cleared
to indicate a successful calibration and a software
reset is issued. Throughout the calibration
sequence, the S RESET and POWER G signals
are held LOW.

After device initialization, the C8051F330 verifies
the calibration data stored in non-volatile FLASH
memory. If the CAL DONE byte reads 0xFF, the
value of uninitialized FLASH memory, verification
will fail and the device will re-enter the calibration
sequence.

Variable Initialization

Global variables are used to share data and system
state information between polled code and interrupt

code. The initializations are performed each time
the system enters the VALIDATE state.

VALIDATE State

The VALIDATE state is implemented in polled
code by the Validatelnput() routine. It first verifies
that the 12V supply is turned on. Next, it monitors
the channel inputs until they are all within their
overvoltage and undervoltage thresholds.

After validation, the system pauses for a program-
mable wait time <VAL WAITTIME> using the
wait_ms() support routine to allow the inputs to set-
tle. The wait ms() routine uses Timer 3 to pause
polled code for a given number of milliseconds.
Interrupts can be serviced while polled code is
paused.

After all channel inputs have settled, the Vali-
datelnput() routine records the ADC code mea-
sured from each channel in its corresponding
<CHx_TARGET CODE> variable. These vari-
ables are used during the RAMP state to determine
when ramping is complete.

RAMP State

The RAMP state is implemented in interrupt driven
code wusing Timer2 ISR and ADCO _ISR.
Timer2 ISR cycles the ADC positive input MUX
through the channel outputs on Timer 2 overflows.
Note that the Timer 2 overflow event also starts a
new ADC conversion before the ADC MUX is
changed.

Figure 8 shows program flow in the ADCO ISR
when the system is in the RAMP state. The
ADCO ISR handles tracking and ramping deci-
sions made while the outputs are rising. These deci-
sions are shown in Figure 5 and Figure 6 and
explained on page 5.

Once ramping is complete, the PWM signals are
parked LOW, making the MOSFET a virtual short.
The system state is changed to MONITOR.

SILICON LABORATORIES

Rev. 1.4 7

AN145

MONITOR State

Figure 7. Software Flow Diagram

Main()

4
Initialze System
Clock, Port I/O and
PCA

v

Start ADC
Sampling
at 47.85 kHz

Switch S2

Initialize UART for
115200 Baud

Pressed? Yes i S_N-1 ;
Communication
(optional)
N*o v
Device Configure and

Verify Calibration Data ——
\

Device
Calibrated

'

Initialize Global
Variables

!

Validate and Wait

Uncalibrated

\J

/

Calibrate

A J

Reset

Power
Failure Enter RAMP State Timer 2_ISR
and Enable Interrupts > Manages ADC MUX
Switching
ADCO_ISR
y » Manages PWM output and
State Monitoring Channel Monitoring
Polled Code
User
Shutdown
while(1);
®
8 Rev. 1.4 @

SILICON LABORATORIES

AN145

In the MONITOR state, Timer2 ISR cycles the ADC positive input MUX through the channel outputs

Figure 8. RAMP State of ADCO0_ISR

Ramping
all Channels?

RAMP
1. STATE = POWER DOWN
ves 2. Return From Interrupt
Channel 1
Noe @SS """ —"—-"—-"—-"—-"—-"—-"—-"¥—-"¥—-"¥“-"¥“-"¥“-"¥“"¥“"-"¥“"“"¥“"“"¥”"-"¥"-"¥"/"¥"/"¥"-—"/—¥/7 777/ 7—77—7—7——— 1
' !
! |
' |
' !
|
. - . 1. Hold Vout |
CHANNEL 12 >— Yes omished No TraoKing " No- 2. Ideal Line = Vout + Delta | |
| PINg? ’ 3. Return From Interrupt :
|
| |
| Yes |
| \ 4 |
' Yes 1. Compare current ADC reading with the expected ADC |
| ¢ reading (ie. the "ideal" line). Three cases are possible. :
|
. . . |
| . " "
| Turn off PWM Cas_e 1 Vout is much lower than "ideal |I'Te. . |
| signal. Action: Increase output voltage and hold "ideal" line. :
|
| Case 2: Vout is slightly lower than "ideal" line. :
: Action: Increase output voltage and increase "ideal" line. |
No |
|
| Case 3: Vout is higher than "ideal" line. :
: Action: Hold output voltage and increase "ideal" line. |
|
|
| 2. Return From Interrupt :
- 4 __ |
Y >
T | Y
CHANNEL 2? Yes—— :
|
Channel 2 | Finished
|
|
|

[
|
B
|
|
|
|
|
|
|
|
A 4

| | No ——— Yes
No 4>: : 1
| I
: Channel 3 | STATE =
| | MONITOR
Lo
|_ Return From

Y

Interrupt

Rev. 1.4 9

SILICON LABORATORIES

AN145

and inputs. This allows ADCO_ISR to detect over-
voltage, undervoltage, overcurrent, and single rail
failure conditions.

A programmable wait time <MON_ WAITTIME>
after the system has entered the MONITOR state,
the S RESET signal is de-asserted by state-moni-
toring polled code executing in the main() routine.

Figure 9 shows program flow in ADCO0 ISR when
the system is in the MONITOR state. If a power
failure or User Shutdown is detected, ADCO ISR
sets the system state to POWER DOWN.

POWER DOWN State

In the POWER DOWN State, the outputs ramp
down at a rate of approximately 250 V/s, managed
by the ADCO_ISR.

The 3.3V channel starts ramping down first. Once
it has fallen to 1.8V, both the 3.3V and 1.8V ramp
down until they reach 1.5V. From this point, all
three channels ramp down until all outputs are
turned off.

Once all outputs are turned off, state-monitoring
code executing in the main() routine restarts the
validation process or puts the CPU in Stop mode
until the next reset.

10 Rev. 1.4

SILICON LABORATORIES

AN145

How to Configure the Firmware

Figure 9. MONITOR State of ADCO_ISR

MONITOR

Channel 1

STATE = POWER DOWN

Is output
Yes —p within
tolerance?

No .
| I
|
|
|
CHANNEL 2? Yes—»{ Channel 2
|
|
l_ ———————————
No :
|
|
|
e —
|

;
|
|
|
|
e E——
|
|
|
;
|
|
|
Channel 3 ! >
|
|
|

/

Return From
Interrupt

®
@ Rev. 1.4

SILICON LABORATORIES

11

AN145

The firmware provided in APPENDIX A is ready for use, as-is, in an end system. The firmware consists
of two files: PS V1.3.h and PS V1.3.c, and can be built using the KEIL C51 development tools. The
object code for the C8051F330 in HEX format is included in the file PS F330 V1.3.0.hex.

Table 1 describes system-level parameters located in PS V1.3.h that can be modified to customize the
firmware.

Table 1. System Parameters Defined in the PS V1.3.h Header File

Factory

Constant Setting Description
F330 1 Specifies that the Target MCU is a C8051F330.
UART_ENABLE 0 Enables ‘1’ or disables ‘0’ configuration over

UART. When disabled, the system parameters are
specified at compile time.

THREE_CHANNEL 1 Enables ‘1’ or disables ‘0’ the third channel. When
the third channel is disabled, it is not validated and
its output remains at OV.

DEFAULT _RAMP_RATE 500 Default maximum slew rate (in V/s) on power up.

DEFAULT_VAL_WAITTIME 100 Default time (in ms) between inputs validated and
the start of ramping.

DEFAULT_MON_WAITTIM 100 Default time (in ms) between outputs valid

E (POWER_G rising) and the S_RESET rising edge.
OVERVOLTAGE_PROTEC 1 Enables ‘1’ or disables ‘0’ overvoltage protection.
TION

OVERCURRENT_PROTEC 1 Enables ‘1’ or disables ‘0’ overcurrent protection.
TION

RAMP_TIMEOUT_ENABLE 1 Enables ‘1’ or disables ‘0’ the ramp timeout. When

the ramp timeout is enabled, the outputs will shut
down if all channels have not reached their target
voltage before the timeout occurs.

RAMP_TIMEOUT 100 Maximum time (in ms) allowed for ramping.

NUM_RETRIES 3 Maximum number of power up attempts allowed
after the first power failure.

®
12 Rev. 1.4 @

SILICON LABORATORIES

AN145

Table 1. System Parameters Defined in the PS V1.3.h Header File

Factory e
Constant Setting Description

CH1_VTARGET_MIN 3036L | Determines the undervoltage threshold (in mV) for
CH2_VTARGET_MIN 1656L | a channel. These constants must end in the letter
CH3_VTARGET_MIN 1380L | ‘L.

ex. 3036L for a 3036 mV undervoltage threshold
CH1_VTARGET_MAX 3564L | Determines the overvoltage threshold (in mV) for a
CH2 VTARGET_MAX 19441 | channel. These constants must end in the letter ‘L.
CH3_VTARGET_MAX 1620L | These constants are ignored if overvoltage

protection is disabled.
OVERCURRENT_VTH 400L Determines the overcurrent threshold in mV.

If the voltage drop between the input and output
side of the MOSFET on any channel exceeds this
threshold after ramping is complete, an
overcurrent condition will be detected. This
constant must end in the letter ‘L.

STRICT_VAL_DELTA 100L Determines the Power-Fail Hysteresis.
Overvoltage threshold is decreased and
undervoltage threshold in increased by this
amount (in mV) after a power failure. This constant
must end in the letter ‘L.

R10 2800L | The value of resistors R10 and R11 (3.3V channel
R11 5360L | input and output voltage attenuators and corre-
sponding output resistors) in Ohms.

These constants must end in the letter ‘L.

Performance Examples

Features

* Low cost 25 MIPS FLASH MCU in a 4x4 mm 20-pin MLP. PCB area requires less than 1 square inch
for entire design, including power MOSFETs.

» Two or three channel power supply sequencer/supervisor with real-time voltage tracking on ramp up
and soft shut down.

* Adjustable monotonic slew rate from 250 V/s to 500 V/s.

+ “System Reset” and “Power Good” signals with adjustable time-outs.

» Devices calibrate on first-run to compensate for MOSFET device-to-device variations and differences
in channel loading.

* UART Interface for optional reconfiguration.

®
@ Rev. 1.4 13

SILICON LABORATORIES

AN145

Power-up Example

Figure 10 shows the behavior of the outputs as the 3.3V supply is turned on. The C8051F330 is powered
from the input side of the 3.3V supply. The 1.5V, 1.8V, and 12V supplies are available prior to the 3.3V
supply in this example. Note that the system can tolerate the supplies rising in any order.

Figure 10. 3

.3V Supply Turning On

5
43
c
jm

] Trig?

3.3V Supply

3.3V Rail
1.8V Rail
1.5V Rail

Chi 1.00V Ch2[1.00V

M 100ms A Cha 7~ 1.32V

ch3[1.00V 1.00 V

201.400ms

20 Mar 2003
15:43:02

14

Rev. 1.4

SILICON LABORATORIES

AN145

Ramp Up and POWER_G Signal Example

Figure 10 shows typical system ramp up behavior and the POWER G signal rising after all outputs have
stabilized. The ramp rate is configured to 500 V/s.

Figure 11. Typical Ramp Up and POWER_G Signal

ek Run | f] Trig?
__ POWER G
Signal
Tt mspmmteimmtetapenis e it
..................................... P
€| 3.3vRail
- 1.8V Rail
... 1.5v Rail
100V Ch2 1.00v M2.00ms A Ch1 & 2.82V|
Ch3| 1.00V¥ Chd| 2.00V 26 Jun 2003
2.90000ms 10:27:18
®
@ Rev. 1.4 15

SILICON LABD

RATORIES

AN145

Ramp Up and S_RESET Signal Example
Figure 10 shows typical system ramp up behavior and the S RESET signal. The S RESET signal is con-
figured to rise 100 ms after the POWER G signal. The ramp rate is configured to 500 V/s.

Figure 12. Typical Ramp Up and S_RESET Signal

Tek PreVu | E] Trig?
e P P P : " S_RESET
) Signal
| It e]
ll-' : : I i I I : : . 3.3V Rail
.......... ,i 1.8V Rail
: } ' i Z T Z Z : : Z 1.5V Rail
D o ’ L
e
-
1.00 ¥V Ch2 1.00V¥ M20.0ms| A Ch1 & 2.82V
Ch3| 1.00V Ch4| 2.00V 26 Jun 2003
6R.0600ms 12:27:13

®
16 Rev. 1.4 @

SILICON LABORATORIES

AN145

User Shutdown and POWER_G Signal Example

Figure 10 shows typical system ramp down behavior and the POWER G signal falling when the user
presses the CAL/SD switch.

Figure 13. Typical User Shutdown and POWER_G Signal

Telkk Run | F] Trig?
e POWER G
. Signal
I T At - e e
__ 3.3V Rail
1| 1.8V Rail
___ «| 1SVRail
1.00V |Ch2| 1.00V M4.00ms A Chl %\ 1.10V|
Ch3[1.00v_|cha[2.00V 25 Jun 2003
232.000ps 14:27:06
@ Rev. 1.4 17

SILICON LABORATORIES

AN145

Power Failure and S_RESET Signal Example

Figure 10 shows system ramp down behavior and the S RESET signal falling when a failure is detected
on the 1.8V channel.

Figure 14. 1.8V Supply Failure and S_RESET Signal

Tek Run | F | Trig?
S_RESET
.. Signal
s P T s e
z - - - - i| 3.3V Rail
B S A U, il 1.8V Rail
- : : : : | 1.5V Rail
______________________ "
U100V [Ch2 1.00YV M4.00ms A Chl L 1.10V
Ch3[1.00v |ch4] 2.00V 25 Jun 2003
232.00015 14:27:49

®
18 Rev. 1.4 @

SILICON LABORATORIES

AN145

Configuration Using the Serial Port (Optional)

After the C8051F330 has been programmed, system parameters can be configured over a 115200 BAUD
8-N-1 UART link with a PC. Once configured, these parameters are stored in non-volatile FLASH mem-
ory. The interface is an ASCII based command line. This functionality could also be implemented using
the SMBus/I2C serial port.

The parameters that can be specified at run-time are:

» Slew Rate (V/s)
* Input Valid to Ramp Start Wait Time (ms)
* Output Valid to S RESET rising edge (ms)

The configuration menu can be accessed by holding down the CAL/SD switch during a reset, as shown in
Figure 4 on page 4.

Estimated Board
Real-Estate

The PCB area required for this design can be estimated by totaling the area required by the individual
components as shown in Table 2 . The total area requirement for this design is less than 1 square inch.

Table 2. Estimated Component PCB Area

Device (scﬁriiach) Quantity th;a:.?;;ea
C8051F330 4 x 4 mm 20-pin MLP 0.025 1 0.025
S14420DY Power MOSFET 0.056 3 0.168
MMBT2222A NPN Amplifier (BJT) 0.018 3 0.054
10uF Tantalum Capacitor (2 per channel) 0.023 6 0.138
0.1uF Decoupling Capacitor (0805) (2 per channel) 0.008 6 0.048
4.7uF Tantalum Capacitor at VREF pin 0.012 1 0.012
0.12uF Filtering Capacitor (0805) (1 per channel) 0.008 3 0.024
0.1uF Capacitor at VREF pin (0805) 0.008 1 0.008
0.1uF Capacitor at VDD (0805) 0.008 1 0.008
Resistor (0805) 0.008 27 0.216

Total Area | 0.701 sq. in

®
@ Rev. 1.4 19

SILICON LABORATORIES

/1 mwzw_ epZ:0E60 £0B2/21/9

13)eQ

®

u in3a] U/N T43QUNN 1Jeg

seg stisey 149outbuly

a50snbag 4enog BEE 11608

nry

*ONI “S1In00Yd Q3LYYOILNI TUNIAD

PEEISOBD WO

SILICON LABORATORIES

AN145

Appendix A - Schematic

g zna]
EREREIEES WNO11d0
_ . szHo
5 Al @D
ot 5 . ez
5 74 27> 2 T
5 T
022 + = aET
4 1 - k)
T ' 73
NEES v
i ¥
. E
“““““““ 530v3A 9830 ToND 10 nE“E+
- _ nZi+ _ net+
s v R eE 315080 mcu\
9EHD) 90
ﬂ% A0BZbYIS
EL
ro Jrve o] e aei] e ond P poecsess g o) e wo] Tevo
213 l_\:u 8] | o T B o3 H 31 = ST T »
oNg oNg
£H) w J — 11 w 3]
2+ 2 .EHESNIG 2l
|2 ; 2] wo
= 1
sLndlno S1NanT
R nEEr
r =
I
TYNDILHD!
= == Lo
LNON"EHD. O
® _ T1d e adon
o 2. [L £y S
ano G——+ or i -
9| @ = 3
o | @ o o
9783M0d [@ t £ ovrga] | 8 TWNDILAD eND1LdD I
118375 | @ o< AB0s] | 8| JamzE —nmznD | &
o 2°1d QOdON d
G P o
97¢3n0d 135375 g <ia 8
<{InonTtHo— NINT1HD>
£'ed AES WE'G Z'1d
€1 T

Rev. 1.4

20

AN145

Appendix B - Bill of Materials

Qty Part Value Package Manufacturer
1 | Ut C8051F330 MLP-20 Silicon Labs
3 | T1,T2, T3 S14420DY SO-8 Vishay
3 | T4,75T6 MMBT2222A | SOT-23 Fairchild
1 C16 4.7uF CP-3216
6 | C2,C4,C6,C8,C10,C12 10uF CP-3216
3 | C13,C14,C15 0.12uF CNP-0805
8 | C1,C3,C5,C7,C9 C11,C17,C18 0.1uF CNP-0805
6 | R7,R8, R9, R30, R31, R32 1.2K R-0805
10 | R1,R2, R3,R14,R16, R18, R20, R26, R28, 1K R-0805

R29
2 | R10,R12 2.8K R-0805
3 | R4,R5R6 2.87K R-0805
2 | R1,R13 5.36K R-0805
3 | R22,R23,R24 8.25K R-0805
1 R27 24K R-0805
Note: NOPOP and Optional Items are not shown.

SILICON LABORATORIES

Rev. 1.4

21

AN145

Appendix C - Firmware (Source File)

// PS V1.3.c

[m e -
//

// AUTH: FB

// DATE: 26 JUN 03

//

// VERSION: 1.3.0

//

// Two or Three Channel Power Sequencing Solution for the
// C8051F330 and C8051F300.

//

// Target: C8051F330 and C8051F300

// Tool chain: KEIL C51

//

[mm e
// Includes

#include “PS V1.3.h”

#1f (F330)
#include <c8051f330.h> // SFR declarations
#include <stdio.h>
#include <stdlib.h>

e

// 1l6-bit SFR Definitions for ‘F33x

[mm e

sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrlé IDAOD = 0x96; // IDACO data

sfrlé ADCO = Oxbd; // ADCO data

sfrl6 ADCOGT = 0xc3; // ADCO Greater-Than

sfrl6 ADCOLT = 0xcb5; // ADCO Less-Than

sfrle TMR2RL = Oxca; // Timer2 reload value

sfrle TMR2 = Oxcc; // Timer2 counter

sfrle PCAOCP1 = 0xe9; // PCAO Module 1 Capture/Compare

sfrl6e PCAOCP2 = 0Oxeb; // PCAO Module 2 Capture/Compare

sfrl6 PCAOQ = 0xf9; // PCAO counter

sfrl6 PCAOCPO = Oxfb; // PCAO Module 0 Capture/Compare
#else

#include <c8051F300.h>

[mm e
// 16-bit SFR Definitions for ‘F30x

Jmm e e
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR2RL = Oxca; // Timer2 reload value

sfrl6 TMR2 = Oxcc; // Timer2 counter

22 Rev. 1.4

SILICON LABORATORIES

AN145

sfrle PCAOCP1 = 0xe9;
sfrle PCAOCP2 = 0Oxeb;
sfrle PCAOQO = 0xf9;
sfrle PCAOCPO = Oxfb;

#endif // (F330)

void main (void);

// Initialization Routin
void VDM Init (void);
void SYSCLK_Init (void) ;
void PORT Init (void);
void EXO Init(void);
void ADCOiInitiADOBUSY (
void ADCO Init (void);
void PCA Init (void);
void UARTO Init (void);
void Timer2 Init (int co

// State Implementation
void ValidateInput (void
void GlobalVarInit (void

// Interrupt Service Rou
void EX0 ISR (void);
void Timer2 ISR (void);
void ADCO ISR (void);

// Support Routines
void wait ms (int ms);

void FLASH ErasePage (unsigned addr);
d dest, char *src,

void FLASH Write (unsigne
void Print Menu(void);

// Calibration Routines
void Calibrate (void):;
void CH1 Calibrate (int

void CH2 Calibrate (int
void CH3 Calibrate (int
// Global Constants
#1f (F330)

#define F300
#else

#define F300

#define UART ENABLE

#define THREE CHANNEL
fendif // (F330)

#1£(F330)

’
’
’

’

es

void) ;

unts) ;

Routines
);
);

tines

v_target);
v_target);
v_target);

[eNe]

// PCAO
// PCAO
// PCAO
// PCAO

unsigne

// Must
// Must

Module 1 Capture/Compare
Module 2 Capture/Compare
counter

Module 0 Capture/Compare

d num) ;

be ‘0’ for the ‘F300
be ‘0’ for the ‘F300

SILICON LABORATORIES

Rev. 1.4

23

AN145

sbit S2 = P0"7; // CAL/SD Switch on target board
sbit S _RESET = P1"7; // System Reset Signal
sbit POWER G = P0"2; // Power Good Signal

#else
sbit S2 = P0"0; // CAL/SD Switch on target board
sbit S RESET = P0"7; // System Reset Signal

#endif // (F330)

#define TRUE 1

#define FALSE 0

#define CHI1 0

#define CH2 1

#define CH3 2

// System Level Constants

#define SYSCLK 24500000 // SYSCLK frequency (Hz)

#define BAUDRATE 115200 // Baud rate of UART (bps)

#define SAMPLE RATE 15951 // ADCO sampling rate per channel (Hz)
#define NUMCHANNELS 3 // Number of channels

#define ADC SAMPLERATE 48 // ADC sampling rate (kHz)

// Define ADC Resolution and VREF

#1if (F330)

#define ADC RES 1024L // 10-bit ADC

#define VREF 2430L // ADC voltage reference (mV)
#else

#define ADC RES 256L // 8-bit ADC

#define VREF 3300L // ADC voltage reference (mV)

#endif // (F330)
enum { CAL, VAL, RAMP, MON, SHUTDOWN, OFF }; // System state definitions

// Addresses for user variables stored in FLASH

#define RAMP RATE ADDR 0x1A00 // Address for Ramp Rate

#define VAL WAITTIME ADDR O0x1A02 // Address vor Validate Wait Time
#define MON WAITTIME ADDR 0x1A04 // Address for Monitor Wait Time
#define CAL DONE_ADDR 0x1R06

#define CH1 DATA ADDR 0x1A07 // Starting address of CH1 cal data
#define CH2 DATA ADDR 0x1B0O // Starting address of CH2 cal data
#define CH3 DATA ADDR 0x1B80 // Starting address of CH3 cal data

// Constants used for calibration

#define VSTEP 50 // Voltage step size in mV

#define DETECT MV 300 // # of mV allowed for detecting a
// channel has reached its target
// voltage

#define DETECT_ERR ((DETECT_MV*ADC_RES) /VREF)
// # of codes allowed for detecting
// a channel has reached its target
// voltage

#define CAL_DETECT_ MV (DETECT_MV-50) // # of mV allowed for detecting a

24 Rev. 1.4

SILICON LABORATORIES

AN145

// channel has reached its target
// voltage

#define CAL DETECT ERR ((CAL_DETECT_MV*ADC_RES)/VREF)
// # of codes allowed for detecting
// a channel has reached its target
// voltage during calibration

#define TRACK ERR 52 // # of codes allowed for tracking error

#define OVERCURRENT_ERR ((OVERCURRENT_VTH*ADC_RES)/VREF)
// If the input and output differ by
// greater than this number of ADC
// codes (equivalent to 400mV) during
// the Monitor state, the system shuts
// down all outputs if overcurrent
// protection is enabled

#define STRICT VAL ERR ((STRICT_VAL_DELTA*ADC_RES)/VREF)
// Number of ADC codes to restrict the
// inputs for validation after a failure
// has been detected

// Type definition allowing access to any byte of a 32-bit variable

typedef union LONGS { // A variable of this type can
// be accessed as:
long Long; // (1) 32-bit long,
int Int[2]; // (2) 16-bit ints,
char Char[4]; // (4) 8-bit chars,
struct S { // or a Struct.
char High;
int Mid;
char Low;
}S;
} LONGS;
[
// Global Variables
[m e

// The current system state initialized to the Validate state
char STATE = VAL;

// The number of retries allowed before the system goes into an off state
char RETRY = NUM RETRIES;

// The currently selected channel initialized to Channel 1
char CH = CHI;

// The current ADCO ISR iteration while in the ramp state
// Used to determine a timeout

unsigned int ADCO ISR i;

// ADCO Positive MUX input channel selection.

Rev. 1.4

SILICON LABORATORIES

25

AN145

// When these constants are written to the AMXOP register, the corresponding

// channel is selected as the ADC input.

// The arrays are initialized as follows for the ‘F330:
// { CH1, CH2, CH3, CHI1 }

// and as follows for the ‘F300:

// { CHl1, CH2, X, CH1 }

// CH1 is repeated to simplify Timer2 ISR

#1if (F330)
char code VIN PIN[NUMCHANNELS + 1] = { 0x06, 0x09, 0x0C, 0x06 };
char code VOUT_ PIN[NUMCHANNELS + 1] = { 0x08, 0x0B, OxO0E, 0x08};
char code PWM PIN[NUMCHANNELS] = { 0x01, O0x0A, 0xOD };

#else
char code VIN PIN[NUMCHANNELS + 1] = { OxF2, OxFl, O0xFO, OxF2 };
char code VOUT_ PIN[NUMCHANNELS + 1] = { 0OxF5, OxF6, O0xF0, OxF5};
char code PWM PIN[NUMCHANNELS] = { OxF3, OxF4, OxFO0 };

#endif // (F330)

// User Shutdown Signal, set when user presses the S2 switch while the
// system is in the Monitor state
bit USER_ SHUTDOWN;

// Used by the MONITOR State to determine whether the system is currently
// sampling the input or the output side of the currently selected

// channel <CH>

bit MONITOR INPUT;

// Used to signal if at least one of the power supply rails is near the
// maximum or minimum cutoff points.

// This bit is set to 0 at reset and set to 1 in the Monitor state if
// a power supply failure occurs.

bit STRICT VALIDATION = 0;

// Boolean values used to determine system state
bit CH1 INPUT VALIDATED;

bit CHZ2 INPUT VALIDATED;

#1if (THREE CHANNEL)

bit CH3 INPUT VALIDATED;

#endif // THREE CHANNEL

// Boolean values used to determine system state
bit CHl_OUTPUT_VALIDATED;

bit CH2_OUTPUT_VALIDATED;

#if (THREE CHANNEL)

bit CH3 OUTPUT VALIDATED;

#endif // THREE CHANNEL

// ADC codes used to determine if outputs are meeting the tracking specification

int CH1 PREV VALUE;

int CH2 PREV VALUE;

#if (THREE CHANNEL)

int xdata CH3 PREV VALUE;
#endif // THREE CHANNEL

// PWM codes used to control the channel outputs;
unsigned char CH1 PWM;

unsigned char CH2 PWM;

#if(THREE_CHANNEL)

unsigned char CH3 PWM;

#endif // THREE CHANNEL

26 Rev. 1.4

SILICON LABORATORIES

AN145

// Variable declarations for user constants and calibration data stored in FLASH
// All variables in this section are stored in the same 512 byte FLASH sector

int code RAMP RATE

at_ RAMP RATE ADDR; /7

int code VAL WAITTIME at VAL WAITTIME ADDR; //
int code MON WAITTIME at MON WAITTIME ADDR; //

char code CAL DONE

at CAL _DONE_ADDR; //
//
//

#define USER DATA SIZE 7 //

// CH1 Calibration

Data

ramp rate in V/s

Input Valid to Ramp Start [ms]
Output Valid to S RESET rising
Calibration complete flag. This
byte is cleared after calibration
is complete.

Size of user defined varibles

// Since the entire 512 byte “calibration data” FLASH page is erased by software,
// it must not contain any program code. The CHl1 DATA array grows to fill all

// unused space on
unsigned char code
// CH2 Calibration
unsigned char code
// CH3 Calibration
unsigned char code

// Indices for the

the FLASH page.

CH1 DATA[256 - USER DATA SIZE] at

Data
CH2 DATA[128] at CH2 DATA ADDR;
Data
CH3 DATA[128] at CH3 DATA ADDR;

calibration data arrays

unsigned char CH1 i; // CH1 Array I
unsigned char CH2 i; // CH2 Array I
#if (THREE CHANNEL)

unsigned char CH3 i; // CH3 Array I

#endif // THREE CHANNEL

CH1 DATA ADDR;

ndex
ndex

ndex

// These variables are set to advance through the last few
// PWM codes before turning off the PWM signal

bit CH1 RAMP END;
bit CH2 RAMP END;
#if (THREE CHANNEL)
bit CH3 RAMP END;

#endif // THREE_CHANNEL

bit chl tracking disabled = 0;
bit ch2 tracking disabled = 0O;

#1f (THREE CHANNEL)

bit ch3 tracking disabled = 0;
#endif // THREE_CHANNEL

// Counter for Power Good signal
static int pgcounter = 0;

// Target ADC code
// These variables

for each channel
are set to by the ValidateInput ()

routine after all inputs

// have settled. They are used to determine when the output voltage has reached
// the input voltage.
int CH1 TARGET CODE;
int CH2 TARGET CODE;

#1f (THREE CHANNEL)

int xdata CH3 TARGET CODE;
#endif // THREE CHANNEL

// Minimum and Maximum specified ADC readings once the inputs or outputs have
// stabilized. Used in the VALIDATE and MONITOR states to determine if the
// rail voltages are within the specified limits.

Rev. 1.4

SILICON LABORATORIES

27

AN145

int CH1_ TARGET CODE_MIN;

int CH2_ TARGET CODE_ MIN;

#1if (THREE_CHANNEL)

int xdata CH3_TARGET_ CODE_MIN;
#endif // THREE_CHANNEL

int CH1 TARGET CODE_MAX;

int CH2_ TARGET CODE_ MAX;

#1if (THREE_CHANNEL)

int xdata CH3_TARGET_ CODE_MAX;
#endif // THREE_CHANNEL

LONGS CH1 DELTA CODE;

LONGS CH2_DELTA CODE;

#1f (THREE_CHANNEL)

LONGS =xdata CH3_DELTA_ CODE;
#endif // THREE_CHANNEL

LONGS CH1_EXPECTED CODE;

LONGS CH2_EXPECTED CODE;

#1if (THREE_CHANNEL)

LONGS =xdata CH3 EXPECTED CODE;
#endif // THREE_CHANNEL

void main (void) {
int temp int;

PCAOMD &= ~0x40;
S_RESET = 0;

#1if (F330)
POWER G = 0;
#endif // F330

VDM Init ();
SYSCLK Init ();
PORT Tnit ();
PCA Tnit();

EX0 Tnit();

//
//

//
//

/7

//

//

/7

//
//
/7
/7
//
/7

The ADC code used to set the
next expected code

This value is the ADC code
for an “ideal” curve

temporary int
disable Watchdog timer

Clear S RESET Signal

Clear POWER G Signal

initialize VDD Monitor
initialize System Clock
initialize Port I/O

initialize PCA

initialize External Interrupt O
and leave disabled

// Initialize the ADC to start conversions on Timer 3 overflows
// and to generate an End of Conversion Interrupt

ADCO_Init();

// Initialze Timer 2 to update at one half the the PWM frequency

Timer2 Init(512);

// Synchronize the PCA and Timer 3

// to its reload value)
CR = 0;
PCAO = 0x0000;

//

(Timer 3 is stopped and initialized

stop PCA

28

Rev. 1.4

SILICON LABORATORIES

AN145

CR = 1; // start PCA
TMR2CN = 0x04; // start Timer 2

// If the S2 switch is pressed, then enter configuration mode
if(!s2) {

while (!S2); // Wait until switch released

#1if (UART_ ENABLE)
// Initialize UARTO
UARTO Init ();
#endif // UART_ENABLE

// Print Configuration menu and store calibration data in FLASH
Calibrate ();

// Issue a software reset
RSTSRC = 0x12;

// Verify that the system level parameters stored in FLASH
// are initialized properly

// If RAMP RATE is not initialized, set it to its default value
if(RAMP_RATE == 0OxFFFF) {

temp int = DEFAULT RAMP RATE;

FLASH Write (RAMP RATE ADDR, (char*) &temp int, 2);
}
// If VAL WAITTIME is not initialized, set it to its default value
if(VAL WAITTIME == OxFFFF) {

temp_int = DEFAULT VAL WAITTIME;

FLASH_Write(VAL_WAITTIME_ADDR, (char*) &temp_int, 2);
}
// If MON WAITTIME is not initialized, set it to its default value
if (MON WAITTIME == OxFFFF) {

temp _int = DEFAULT MON WAITTIME;

FLASH Write (MON WAITTIME ADDR, (char*) &temp int, 2);

#if (THREE CHANNEL)
// If CH1, CH2, or CH3 data is not available, enter configuration mode.

if((CHliDATA[O]ZZOxFF) | (CH27DATA[O]:=OXFF) | (CH37DATA[O}==OXFF)
|| (CAL DONE != 0x00)) {

#else

// If CH1, or CH2 data is not available, enter configuration mode.

if ((CH1 DATA[O0]==0xFF) || (CH2 DATA[0]==0xFF) || (CAL DONE != 0x00)) {

#endif // THREE_ CHANNEL

#if (UART ENABLE)
// Initialize UARTO
UARTO Init ();
#endif // UART ENABLE

// Print Configuration menu and store calibration data in FLASH
Calibrate ();

// Issue a software reset
RSTSRC = 0x12;

Rev. 1.4 29

SILICON LABORATORIES

AN145

while (1) {
S _RESET = 0; // Assert S RESET Signal
#1£ (F330)
POWER G = 0; // De-Assert the POWER G signal

#endif // F330

// Disable Interrupts
EA = 0;

// Call the GlobalVarInit () routine to initialize global variables
GlobalVarInit();

// Sets the VTARGET for each channel to its Vin and verifies
// that Vin is within 8% of the channel values.
ValidateInput () ;

// If the output has passed strict validation, loosen the validation

// requirements and re-validate
if (STRICT VALIDATION) {
STRICT VALIDATION = O;
GlobalVarInit():;
ValidateInput () ;

// Set the system state to RAMP
STATE = RAMP;

// Set current channel to CH1
CH = CH1;

// Change ADC positive input MUX to CH1 and discard an ADC sample
#1f (F330)
AMXO0P = VOUT PIN[CH1];
#else
AMX0SL = VOUT PIN[CH1];
#endif // F330

// Discard the first ADC reading after the MUX change
ADOINT = 0; // clear conversion complete flag
while (!ADOINT) ; // wait for conversion to complete

// Clear Interrupt flags to avoid immediately servicing an

// interrupt

ADOINT = O; // clear conversion complete flag
TMR2CN &= ~0x80; // Clear Timer 2 Interrupt Flag

// Enable ADCO ISR and Timer 2 ISR

ET2 = 1; // enable Timer 2 interrupts
#if (F330)
EIE1 |= 0x08; // Enable ADCO End of Conversion
#else // Interrupts
EIE1L |= 0x04;
®
30 Rev. 1.4

SILICON LABORATORIES

AN145

#endif // F330

// Enable Global Interrupts to start ramping the output voltage
EA = 1;

while (STATE == RAMP); // Polled code does not perform any
// tasks in the ramp state

//

// After the RAMP state, the system can only be in the Monitor,
// Shutdown, Validate, or Off states.

//

// If the system has entered the Monitor state, assert the
// POWER G signal and start the S RESET timeout
if (STATE == MON) {

// assert the POWER G signal
#1f (F330)

POWER G = 1;
#endif

// start the Monitor state timeout
wait ms (MON WAITTIME) ;

// The Monitor state timeout has now expired.
// If the system is still in the Monitor state, de-assert S RESET
if (STATE == MON) {

S _RESET = 1;

while (STATE == MON) ; // wait in this loop until the state
// changes
i
// SHUTDOWN and OFF States
T

// After a successful shutdown, the state will change to
// OFF or VALIDATE.

//
while (STATE != VAL) {
if (STATE == OFF) {
while (1) {
RSTSRC = 0x02; // Disable missing clock detector
PCON |= 0x02; // Put CPU in Stop Mode

Rev. 1.4 31

SILICON LABORATORIES

AN145

// We have now entered the validate state after a power failure
if (RETRY) {

RETRY--;
} else {

while (1) {
RSTSRC = 0x02; // Disable missing clock detector
PCON |= 0x02; // Put CPU in Stop Mode

} // if (RETRY)
} // while(1)

} // main

//
// This function initializes global variables used by the ADCO ISR while
// the system is in the RAMP state.
//
void GlobalVarInit (void)
{
long temp long;

// Calculate <TARGET CODE MIN> and <TARGET CODE MAX> for all

// three channels

// <TARGET CODE MIN> is VTARGET MIN converted to an ADC code

// and <TARGET CODE MAX> is VTARGET MAX converted to an ADC code
// Equations:

// <TARGET CODE MIN> = <VTARGET MIN>/VREF *
// <TARGET CODE MAX> = <VTARGET MAX>/VREF *

10 (10-bit ADC)
~“8 (8-bit ADC)

// Calculate the <TARGET CODE MIN> for CH1 and translate down
CH1 TARGET CODE_MIN =
((((CHl_VTARGET_MIN * ADC_RES)/VREF) * R11) / (R10+R11));
if(STRICT_VALIDATION) {

CH1_TARGET CODE_MIN += ((STRICT VAL ERR * R11) / (R10+R11));

// Calculate the <TARGET CODE MIN> for CH2
CH2 TARGET CODE MIN = ((CH2 VTARGET MIN * ADC RES)/VREF);
if (STRICT VALIDATION) {

CH2 TARGET CODE MIN += STRICT VAL ERR;

32 Rev. 1.4

SILICON LABORATORIES

AN145

#1f (THREE CHANNEL)
// Calculate the <TARGET CODE MIN> for CH3
CH3 TARGET CODE MIN = ((CH3 VTARGET MIN * ADC RES)/VREF);
if (STRICT VALIDATION) {
CH3 TARGET CODE MIN += STRICT VAL ERR;
}
#endif // THREE CHANNEL

// Calculate the <TARGET CODE MAX> for CHl and translate down

CH1 TARGET CODE MAX =
((((CH1_VTARGET MAX * ADC RES)/VREF) * R11) / (R10+R11));
if (STRICT VALIDATION) ({

CH1 TARGET CODE MAX -= ((STRICT VAL ERR * R11) / (R10+R11));

// Calculate the <TARGET CODE MAX> for CH2

CH2_ TARGET CODE MAX = ((CH2 VTARGET MAX * ADC_RES)/VREF) ;
if (STRICT VALIDATION) {
CH2 TARGET CODE MAX -= STRICT VAL ERR;

#if (THREE CHANNEL)
// Calculate the <TARGET CODE MAX> for CH3

CH3_TARGET CODE MAX = ((CH3 VTARGET MAX * ADC_RES)/VREF) ;
if (STRICT VALIDATION) {
CH3 TARGET CODE MAX -= STRICT VAL ERR;

}
#endif // THREE_ CHANNEL

// Set the <INPUT VALIDATED> flags to FALSE
CH1 INPUT VALIDATED = FALSE;

CH2 INPUT VALIDATED = FALSE;

#1f (THREE CHANNEL)

CH3 INPUT VALIDATED = FALSE;

#endif // THREE_CHANNEL

[mm e
// RAMP State Initializations
[
//
//
// Initialize the indexes to the calibration data in FLASH
CHl1 i = 0;
CH2 1 = 0;
#if (THREE CHANNEL)
CH3 1 = 0;

#endif // THREE CHANNEL

// Set the initial PWM Codes to zero.
CH1 PWM = 0;

CH2 PWM = 0;

#1if (THREE_CHANNEL)

CH3 PWM = 0;

#endif // THREE CHANNEL

// Clear the Power Good Counter
pgcounter = 0;

Rev. 1.4

SILICON LABORATORIES

33

AN145

// Select Channel 1 as the current channel
CH = CH1;

// Calculate <DELTA CODE> for all three channels
// <DELTA CODE> is the number of ADC codes (multiplied by

// 256 to maintain precision) that should increment during each

// sampling period to achieve the desired ramp rate.
// Equation:

// <DELTA CODE> = (<RAMP_RATE/SAMPLE_RATE>/VREF * ADC_RES) * 256
// Calculate the <DELTA CODE> for all channels
temp long = RAMP RATE; // read the ramp rate from FLASH
// Multiply by ADC_RES
#i1f (ADC_RES == 1024L)
temp long <<= 10; // multiply by ADC RES = 2710
#elif (ADC_RES == 2561L)
temp long <<= 8; // multiply by ADC_RES = 2"8
#elif
#error (“Unsupported ADC Resolution”)
#endif // ADC _RES
// Shift ADC code to the two middle bytes of a long
temp long <<= 8; // multipy by 256
temp long /= VREF; // divide by VREF (mV)
// Divide by the sample rate (kHz)
temp long *= 1000; // multiply numerator by 1000 (Hz->kHz)

// equivalent to

// temp long/(SAMPLE RATE/1000)

temp long /= SAMPLE RATE; // divide by SAMPLE RATE

CH1 DELTA CODE.Long = temp long;
CH2 DELTA CODE.Long = temp long;
#if (THREE_ CHANNEL)

CH3 DELTA CODE.Long = temp long;
#endif // THREE CHANNEL

// Set the <EXPECTED CODE[ch]> one <DELTA CODE> below 0V
CH1 EXPECTED CODE.Long = - (CH1 DELTA CODE.Long) ;

CH2 EXPECTED CODE.Long = - (CH2 DELTA CODE.Long) ;

#if (THREE CHANNEL)
CH3_EXPECTED_CODE.Long
#endif // THREE CHANNEL

- (CH3 DELTA CODE.Long);

// Set the <OUTPUT VALIDATED[ch]> flag to FALSE
CH1 OUTPUT VALIDATED = FALSE;

CH2 OUTPUT VALIDATED = FALSE;

#if (THREE CHANNEL)

CH3 OUTPUT VALIDATED = FALSE;

#endif // THREE CHANNEL

// Set the <RAMP_END> flags to zero
CH1 _RAMP END = 0;

(Hz)

34

Rev. 1.4

SILICON LABORATORIES

AN145

CH2 RAMP END = 0;
#1f (THREE CHANNEL)
CH3 RAMP END = 0;
#endif // THREE CHANNEL

// Set PREV_VALUE to zero
CH1 PREV_VALUE = 0;
CH2_PREV_VALUE = 0;

#1if (THREE_CHANNEL)
CH3_PREV_VALUE = 0;
#endif // THREE_CHANNEL

// Clear Tracking disabled flags
chl tracking disabled = 0;

ch2 tracking disabled = 0;
#1f (THREE CHANNEL)
ch3 tracking disabled = 0;

#endif // THREE_CHANNEL

// Set Ramp State iteration counter to zero
ADCO ISR i = 0;

// Clear the user shutdown signal
USER SHUTDOWN = 0;

// Disable External Interrupt 0 interrupts
// They will be enabled after ramping is complete
EXO = 0;

// Initialize the monitoring bit for outputs.

// When this bit is set to 1, the ADC samples the currently
// selected channel’s input.

MONITOR INPUT = O;

// This routine exits when all inputs are at their target voltage.

//
void ValidateInput (void)

{

int target code min; // target ADC code

LONGS acc;

char ch = CHI; // currently selected channel
int 1i;

int target code;
int target code max;
bit supply ok = 0;

// Verify that the 12V supply is working properly

Rev. 1.4

SILICON LABORATORIES

35

AN145

// Disable PCA I/O and make (CH2 PWM) an analog input

#1f (F330)
XBR1 = ~0x40; // disable Crossbar
XBR1 &= ~0x03; // update Crossbar to disable PCA I/0O
PIMDIN &= ~0x04; // make CH2 PWM PIN an analog input
XBR1 |= 0x40; // re—-enable the Crossbar

#else
XBR2 &= ~0x40; // disable Crossbar
XBR1 &= ~0xCO; // update Crossbar to disable PCA I/O
POMDIN &= ~0x10; // make CH2 PWM PIN (P0O.4) an analog input
XBR2 |= 0x40; // re—-enable the Crossbar

#endif // F330

// Configure the ADC Positive MUX to CH2 PWM PIN
#1f (F330)
AMXO0P = PWM PIN[CH2];
#else
AMX0SL = PWM PIN[CH2];
#endif // F330

// Skip an ADC reading
ADOINT = 0; // clear conversion complete flag
while (!ADOINT) ; // wait for conversion to complete

while (!supply ok) {

// Take an ADC reading;
ADOINT = 0; // clear conversion complete flag
while (!ADOINT) ; // wait for conversion to complete

// The voltage at the CH3 PWM pin should be around 3.3V if the +12V
// supply is ok.

// Check if Voltage at CH3 PWM pin is greater than 1.5 volts (+12V
// supply is ok)

supply ok = (ADCO > ((1500L*ADC_RES) /VREF)) ;

} // while(!supply ok)

// Re-enable PCA I/0

#1f (F330)
XBR1 &= ~0x40; // disable Crossbar
#1f (THREE CHANNEL)
XBR1 |= 0x03; // update Crossbar to enable CEX 1, 2 and 3
#else
XBR1 |= 0x02; // update Crossbar to enable CEX 1 and 2
#endif // THREE_CHANNEL
PIMDIN |= 0x04; // configure CEX1 to digital mode
P1IMDOUT |= 0x04; // configure CEX1 to push-pull mode
XBR1 |= 0x40; // re—enable the Crossbar

#else
XBR2 &= ~0x40; // disable Crossbar
XBR1 |= 0x80; // update Crossbar to enable PCA I/0
POMDIN |= 0x10; // configure CEX1l to digital mode
POMDOUT |= 0x10; // configure CEX1 to push-pull mode
XBR2 |= 0x40; // re—-enable the Crossbar

#endif // F330

36 Rev. 1.4

SILICON LABORATORIES

AN145

// Stay in this loop until all input channels have reached their minimum
// specified target voltage
do{

// Configure the ADC Positive Input MUX to the input of the
// currently selected channel.
#1f (F330)
AMXOP = VIN PIN[ch];
felse
AMXO0SL = VIN_PIN[Ch];
#endif // F330

// Select a minimum target code based on the current channel
switch (ch) {
case CHl: target code min = CH1 TARGET CODE MIN;
target code max = CH1 TARGET CODE MAX;
break;
case CH2: target code min = CH2 TARGET CODE MIN;
target code max = CH2 TARGET CODE MAX;
break;
#if (THREE CHANNEL)
case CH3: target code min = CH3 TARGET CODE MIN;
target code max = CH3 TARGET CODE MAX;
break;
#endif // THREE CHANNEL

default: break;
} // switch(ch)

// Skip an ADC reading
ADOINT = O0; // clear conversion complete flag
while (!ADOINT) ; // wait for conversion to complete

// Take an ADC reading;
ADOINT = 0; // clear conversion complete flag
while (!ADOINT) ; // wait for conversion to complete

// Set the <INPUT VALIDATED> flag for this channel if the ADC
// reading is within the overvoltage and undervoltage spec.
switch (ch) {

case CH1: CH1 INPUT VALIDATED =

#if(OVERVOLTAGE_PROTECTION)

((ADCO >= target code min) && (ADCO <= target code max));
#else

(ADCO >= target code min);
#endif // OVERVOLTAGE_ PROTECTION

break;
case CH2: CHZ2 INPUT VALIDATED =

#if(OVERVOLTAGE_PROTECTION)

((ADCO >= target code min) && (ADCO <= target code max));
#else

(ADCO >= target code min);
#endif // OVERVOLTAGE PROTECTION

Rev. 1.4

SILICON LABORATORIES

37

AN145

break;
#if(THREE_CHANNEL)
case CH3: CH3_INPUT_VALIDATED =

#1f (OVERVOLTAGE PROTECTION)

((ADCO >= target code min) && (ADCO <= target code max));
#else

(ADCO >= target code min);
#endif // OVERVOLTAGE PROTECTION

break;
#endif

default: break;
} // switch(ch)
// Advance to the next channel. If past the last channel, set
// the current channel to CHI.

ch++;

#1f (THREE CHANNEL)
if(ch >= 3){

ch = CH1;
}
#else
if (ch >= 2){
ch = CH1;

}
#endif // THREE_CHANNEL

#if (THREE_ CHANNEL)

} while(!(CHl_INPUT_VALIDATED && CHZ_INPUT_VALIDATED && CH3_INPUT_VALIDATED))
felse

} while(! (CH1_INPUT VALIDATED && CH2 INPUT VALIDATED));

#endif

// Now all channel inputs are within their specified voltage range

// Wait for all inputs to settle to their steady state value.

// This timeout is user-defined and can be set from the configuration menu.
// The default timeout is 100 ms.

wait ms (VAL WAITTIME) ;

// Now all channel inputs have settled to their steady-state values.
// Record the ADC code measured at each input in the corresponding
// <CHx TARGET CODE>

// Repeat the following for all channels
#if(THREE_CHANNEL)

for(ch = 0; ch < 3; ch++) {

#else

for(ch = 0; ch < 2; ch++) {

#endif

// Configure the ADC Positive Input MUX to the input of the
// currently selected channel.
#1£f (F330)

38 Rev. 1.4

SILICON LABORATORIES

AN145

AMXOP = VIN PIN[ch];
#else

AMX0SL = VIN_PIN[Ch];
#endif // F330

// Discard the first ADC reading after the MUX change
ADOINT = 0; // clear conversion complete flag
while (!ADOINT) ; // wait for conversion to complete

// obtain 1024 samples
acc.Long = 0;
for(i = 0; 1 < 1024; i++){

// obtain one sample
ADOINT = O;
while (!ADOINT) ;

// add to accumulator
acc.Long += ADCO;

} // for(i = 0; i < 1024; i++)

// take the average (divide by 1024 = 2710)

target_code = acc.s.Mid >> 2; // Accessing the middle two
// bytes of the long variable
// is equivilant to an 8-bit
// shift or divide by 256

// Set the <CHx TARGET CODE> for the currenly selected channel
switch (ch) {
case CH1: CH1 TARGET CODE = target code;
break;
case CH2: CH2 TARGET CODE
break;
#if (THREE CHANNEL)
case CH3: CH3 TARGET CODE = target code;
break;
#endif // THREE CHANNEL

target code;

default: Dbreak;
} // switch(ch)
} // for(ch = 0; ch < 3; ch++)

} // ValidateInput

void EX0 ISR (void) interrupt O
{
USER SHUTDOWN = 1;
EX0 = 0; // Disable External Interrupt 0
// interrupts

Rev. 1.4

SILICON LABORATORIES

39

void Timer2 ISR (void)
{

if (STATE == RAMP) {

interrupt 5 using 2

// Change the ADC MUX to VOUT for the next channel

#1f (F330)

AMXOP = VOUT PIN[(CH+1)];
#else

AMX0OSL = VOUT_PIN[(CH+1)];

#endif // F330

} else

if (STATE == MON) {

// Change the ADC MUX to VOUT or VIN for the next channel
// The MONITOR INPUT bit is managed by the ADCO_ISR

if (MONITOR INPUT) {

#1f (F330)

AMXO0P = VIN_PIN[(CH+1)];
#else

AMX0SL = VIN_PIN[(CH+1)];

#endif // F330

} else {
#1f (F330)
AMX0P = VOUT_PIN[(CH+1)];
#else
AMXOSL = VOUT PIN[(CH+1)];

#endif // F330

} // 1f(MONITOR_INPUT)

TMR2CN &= ~0x80;

#1f (F330)

void ADCO ISR (void)
#else

void ADCO ISR (void)
#endif // F330
{

interrupt

interrupt

static int adc_ code;

// Clear Timer 2 Interrupt Flag

10 using 1

8 wusing 1

// The raw ADC reading for CHI,

CHZ,

CH3

40

Rev. 1.4

SILICON LABORATORIES

AN145

static LONGS chl adc code; // The scaled ADC reading for CH1l, valid until
// the end of the third channel.
static int ch2_ adc code; // Used to temporarily hold the CH2 ADC Code

// until the end of the third channel, when
// all three CHx PREV_VALUE variables are
// updated.

static bit pg bit = 0;

// Variables used during ramp end to increment the PWM code.
static char chl inc = 0;

static char ch2 inc 0;

#if (THREE CHANNEL)

static xdata char ch3 inc = 0;

#endif // THREE CHANNEL

bit shutdown = 0;

ADOINT = 0; // Clear ADC Conversion Complete Interrupt
// Flag

// read the current ADC code

adc_code = ADCO;

switch (STATE) {

// RAMP State

/m
//

// Increase and track the output voltages on all enabled channels at

// <RAMP_RATE> mA/sec until all channels have reached their target

// voltage.

//

// If Vout has not yet reached the target voltage and is within tracking
// requirements for the channel. There are the possible states that Vout
// can be in with respect to the ideal curve.

//

// Case 1: Vout is much less than ideal line.

// Action: Increment Vout and hold ideal line.

//

// Case 2: Vout is slightly below ideal line.

// Action: Increment Vout and increment ideal line.

//

// Case 3: Vout is slightly above the ideal line.

// Action: Hold Vout and increment ideal line.

//

case RAMP:

ADCO ISR i++; // increment iteration counter

// If the ISR stays in the RAMP state for more than 100ms, shutdown and
// go back to the VAL state.
// RAMP_TIMEOUT [ms] * sampling rate[kHz]
#if(RAMP_TIMEOUT_ENABLE)
if (ADCO_ISR i > (RAMP_TIMEOUT * ADC_ SAMPLERATE))
{
ADCO ISR i = 0;
STATE = SHUTDOWN;
STRICT VALIDATION = 1; // Set the Strict Validation Flag

Rev. 1.4

SILICON LABORATORIES

41

AN145

}
#endif

// CHANNEL 1
if (CH == CH1) {

// If Vout is not already at the target voltage for this channel
if (!CH1 OUTPUT VALIDATED) {

if (ICH1 RAMP END) {

// TRACKING REQUIREMENT:
// If Vout is (TRACK ERR ADC codes) greater than the
// other two channels, hold Vout and the Ideal line

// Multiply by (R10+R11)/R11 * 65536
chl adc code.Long = (long) (adc code * (((R10+R11) *65536) /R11)) ;

#if (THREE CHANNEL)

if((chl _adc code.Int[0])
(chl adc_code.Int[0])

#else

if((chl _adc code.Int[0]) > (CH2 PREV VALUE + TRACK ERR)) {

#endif // THREE_CHANNEL

(CH2 PREV_VALUE + TRACK ERR) |

>
> (CH3_PREV_VALUE + TRACK ERR)) {

// Hold Vout and the adjust ideal line to current ADC value + Delta Code
CH1 EXPECTED CODE.S.Mid =(chl adc code.Int[0] + CH1 DELTA CODE.Int[0]);
CH1 EXPECTED CODE.Char[0] = 0;

CHl_EXPECTED_CODE.Char[3] CHl_DELTA_CODE.Char[3];

} else

// CASE 1: Vout is much less than the ideal line
if (chl adc code.Int[0] <=
(CHl_EXPECTED_CODE.S.Mid - CHl_DELTA_CODE.S.Mid)){

// Increment Vout and hold the ideal line
CH1 PWM = CH1 DATA[CH1 i++];

// If end of table has been reached,
// Go to Ramp End
if (CH1 PWM == OxFF) {

CHliPWM = PCAQOCPHO;

CH1 RAMP END = 1;

} else

// CASE 2: Vout is slightly less than the ideal line
if (chl adc_code.Int[0] <= CH1 EXPECTED CODE.S.Mid) {

// Increment Vout to the next table entry
CH1 PWM = CH1 DATA[CH1 i++];

// If end of table has been reached,
// Go to Ramp End
if(CHl_PWM == 0xFF) {

CHl_PWM = PCAOQOCPHO;

CH1 RAMP END = 1;

42 Rev. 1.4

SILICON LABORATORIES

AN145

// Increment Ideal Line
CHl_EXPECTED_CODE.Long += CHl_DELTA_CODE.Long;

} else

// CASE 3: Vout is higher than the ideal line
{

// Hold Vout and increment the ideal line
CH1 EXPECTED CODE.Long += CH1 DELTA CODE.Long;

} // if (!CH1 _RAMP_ END)

// Check if Vout has reached the target voltage for the channel
if (adc_code >=
(CH1_TARGET CODE - DETECT ERR) || CH1 RAMP END) ({

// Set the Ramp End Flag to force execution of the following
// code until ramping has ended
if (!CH1_RAMP END) {

CH1 RAMP END = 1;

// Disable tracking if we are within the window
// set to maximum positive code minus tracking error
if ((adc_code >= (CH1 TARGET CODE - DETECT ERR))

&& !chl tracking disabled

)|

CH1 PREV VALUE = adc code;
chl tracking disabled = 1;

} else {

// For CH1, Tracking is not required if we have reached
// ramp end since this is only remaining channel

} // if(adc_code >= ...)

// If the PWM code is less than OxFF, then increment it

// by 1/5 codes until it is >= OxFF. Once it has reached OxFF,
// validate the output for the channel and output a

// 0% duty cycle.

if (CH1_PWM < OxFF) {

if(chl inc == 0){
CHl_PWM = PCAOCPHO + 1;
chl inc = 5;
pg bit = !pg bit;
} else {
chl inc--;

Rev. 1.4 43

SILICON LABORATORIES

AN145

if (chl tracking disabled) {

// Enter Loop every 620us
if ((chl inc == 1) && pg bit){

// Compare ADC code to previous value + 18mV (5 ADC Codes)
if (adc_code <= CHl1 PREV VALUE + 5) {

pgcounter++;
} // adc_code

// Update previous value for the MONITOR state
CH1 PREV VALUE = adc code;

// If output stablilizes for 8 iterations (min 4.96us) after
// CH1 has exceeded the ramp-end threshold, validate all

// channels.

if (pgcounter == 8) {

// clear the ECOM bit for this channel to produce a 0%
// duty cycle

PCAOCPMO &= ~0x40;

PCAOCPM1 &= ~0x40;

PCAOCPM2 &= ~0x40;

CH1 OUTPUT VALIDATED = TRUE;
CH2 OUTPUT VALIDATED TRUE;
CH3 OUTPUT VALIDATED TRUE;

// Update previous value for the MONITOR state
CHl_PREV_VALUE = 0x7FFF - TRACK ERR;

} // if (pgcounter == 8)
} // if((chl inc == 1) && pg bit)

} // if(chl tracking disabled)

} else {

// validate the output for this channnel
CHl_OUTPUT_VALIDATED = TRUE;

// Set CH1 PREV_VALUE for the Monitor State
CH1 PREV _VALUE = Ox7FFF - TRACK ERR;

// clear the ECOM bit for this channel to produce a 0%
// duty cycle
PCAOCPMO &= ~0x40;
} // CH1 PWM < OxFF
} else {
// Tracking variable <chl adc code> already updated above

} // if(adc code ... || chl ramp end)

} // (!CH1 _OUTPUT_ VALIDATED)

44 Rev. 1.4

SILICON LABORATORIES

AN145

} else

// CHANNEL 2
if (CH == CH2) {

// If Vout is not already at the target voltage for this channel

if (!CH2_ OUTPUT VALIDATED) {
if (!CH2 RAMP END) {

// TRACKING REQUIREMENT:
// If Vout is (TRACK_ERR ADC

codes) greater than the

// other two channels, hold Vout and the Ideal line

#if (THREE CHANNEL)

if ((adc_code) > (CH1 PREV VALUE + TRACK ERR) |
(adc_code) > (CH3 PREV VALUE + TRACK ERR)) {

#else

if((adc_code) > (CH1 PREV VALUE + TRACK ERR)) {

#endif // THREE_CHANNEL

// Hold Vout and the adjust ideal line to current ADC value + Delta Code

CH2 EXPECTED CODE.S.Mid =
CH2 EXPECTED CODE.Char[0]
CH2 EXPECTED CODE.Char[3]

} else
// CASE 1: Vout is much less

if (adc_code <=
(CH2 EXPECTED CODE.S.Mid -

(adc_code + CH2 DELTA CODE.Int[0]);
= 0;
= CH2 DELTA CODE.Char[3];

than the ideal line

CH2 DELTA CODE.S.Mid)) {

// Increment Vout and hold Ideal line
CH2 PWM = CH2 DATA[CH2 i++];

// If end of table has been reached,

// Go to Ramp End

if (CHZ2 PWM == OxFF) {
CHZ_PWM = PCAOCPH1;
CH2 RAMP END = 1;

} else

// CASE 2: Vout is slightly less than the ideal line
if (adc_code <= CH2 EXPECTED CODE.S.Mid) {

// Increment Vout to the next table entry
CH2 PWM = CH2 DATA[CH2 i++];

// If end of table has been reached,

// Go to Ramp End

if (CH2 PWM == OxFF) {
CHZiPWM = PCAOQOCPH1;
CH2 RAMP END = 1;

SILICON LABORATORIES

Rev. 1.4

45

AN145

// Increment the ideal line
CHZ_EXPECTED_CODE.Long += CH2_DELTA_CODE.Long;

} else

// CASE 3: Vout is higher than the ideal line

{
// Hold Vout and increment the ideal line
CH2_EXPECTED_CODE.Long += CH2_DELTA_CODE.Long;

} // if (!CH2 RAMP END)

// Check if Vout has reached the target voltage for the channel
if (adc_code >=
(CH2 TARGET CODE - DETECT ERR) || CH2 RAMP END) {

// Set the Ramp End Flag to force execution of the following
// code until ramping has ended
if (!CH2 RAMP_ END) {

CH2 RAMP END = 1;

// Disable tracking
// set to maximum positive code minus tracking error
if (adc_code >= (CH2 TARGET CODE - DETECT ERR)) {

CH2 PREV_VALUE = Ox7FFF - TRACK ERR;
ch2 tracking disabled = 1;

} else {

// Update Previous Value for tracking
ch2 adc _code = (adc_code);

// If the PWM code is less than OxFF, then increment it

// by 1/5 codes until it is >= OxFF. Once it has reached OxFF,
// validate the output for the channel and output a

// 0% duty cycle.

if (CH2 PWM < OxFF) {

if(ch2 inc == 0){
CH2_PWM = PCAOCPH1 + 1;
ch2 inc = 5;
} else {
ch2 inc--;
}
} else {

// validate the output for this channnel
CHZioUTPUT7VALIDATED = TRUE;

oe

// clear the ECOM bit for this channel to produce a 0
// duty cycle

46 Rev. 1.4

SILICON LABORATORIES

AN145

PCAOCPM1 &= ~0x40;

} else {

// Update Previous Value for tracking
ch2 adc_code = (adc_code);

} // if (!CH2_OUTPUT VALIDATED)
} else

// CHANNEL 3
{ // CH == CH3

#if (THREE CHANNEL)
// If Vout is not already at the target voltage for this channel
if (!CH3 OUTPUT VALIDATED) {

if (ICH3 RAMP END) {

// TRACKING REQUIREMENT:

// If Vout is (TRACK ERR ADC codes) greater than the

// other two channels, hold Vout and the Ideal line

if((adc_code) > (CH1 PREV_VALUE + TRACK ERR) |
(adc_code) > (CH2Z PREV _VALUE + TRACK ERR)) {

// Hold Vout and the adjust ideal line to current ADC value + Delta Code
CH3 EXPECTED CODE.S.Mid = (adc_code + CH3 DELTA CODE.Int[0]);

CH3 EXPECTED CODE.Char[0] = 0;

CH3 EXPECTED CODE.Char[3] CH3 DELTA CODE.Char[3];

} else

// CASE 1: Vout is much less than the ideal line
if (adc_code <=
(CH3_EXPECTED_CODE.S.Mid - CH3_DELTA_CODE.S.Mid)){

// Increment Vout and hold the ideal line
CH3 PWM = CH3 DATA[CH3 i++];

// If end of table has been reached,
// Go to Ramp End
if (CH3_PWM == OxFF) {

CH3_PWM = PCAQCPHZ;

CH3 RAMP END = 1;

} else
// CASE 2: Vout is slightly less than the ideal line

if (adc_code <= CH3 EXPECTED CODE.S.Mid) {

// Increment Vout to the next table entry
CH3 PWM = CH3 DATA[CH3 i++];

Rev. 1.4 47

SILICON LABORATORIES

AN145

// If end of table has been reached,
// Go to Ramp End
if(CH3_PWM == 0xFF) {

CH3_PWM = PCAQOCPHZ2;

CH3 RAMP END = 1;

// Increment the ideal line
CH3_EXPECTED_CODE.Long += CH3_DELTA_CODE.Long;

} else

// CASE 3: Vout is higher than the ideal line
{
// Hold Vout and increment the ideal line
CH3 EXPECTED CODE.Long += CH3 DELTA CODE.Long;

}// if (!CH3 RAMP END)

// Check if Vout has reached the target voltage for the channel
if (adc_code >=
(CHBiTARGET7CODE - DETECT ERR) [CH37RAMP7END) |

// Set the Ramp End Flag to force execution of the following
// code until ramping has ended
if (!CH3 RAMP END) {

CH3 RAMP END = 1;

// Disable tracking or update tracking variable
// set to maximum positive code minus tracking error
if (adc_code >= (CH3 TARGET CODE - DETECT ERR)) {

CH3 PREV_VALUE = Ox7FFF - TRACK ERR;

ch3 tracking disabled = 1;

} else {

// Update Previous Value for tracking
if (!ch3 tracking disabled) {
CH3 PREV_VALUE = (adc_code);

// If the PWM code is less than OxFF, then increment it

// by 1/5 codes until it is >= OxFF. Once it has reached OxFF,
// validate the output for the channel and output a

// 0% duty cycle.

if (CH3_PWM < OxFF) {

if (ch3 _inc == 0){
CH37PWM = PCAOCPH2 + 1;
ch3 inc = 5;

} else {
ch3 inc--;

48 Rev. 1.4

SILICON LABORATORIES

AN145

} else {

// validate the output
CH370UTPUT7VALIDATED =

for this channnel
TRUE;

// clear the ECOM bit for this channel to produce a

// 0% duty cycle
PCAOCPM2 &= ~0x40;

} else {

// Update Previous Value for tracking

CH3 PREV VALUE = (adc_ code)

’

} // end if (!CH3 OUTPUT VALIDATED)

#endif // THREE CHANNEL

// Make sure array index is less
CH1 i &= ~0x80;

CH2 i &= ~0x80;
#if(THREE_CHANNEL)

CH3 1 &= ~0x80;

#endif // THREE_ CHANNEL

// UPDATE THE PWM OUTPUT FOR CHI,
if (PCAOCPMO & 0x40) { PCAOCPHO =
if (PCAOCPM1 & 0x40) { PCAOCPH1
#if (THREE_CHANNEL)

if (PCAOCPM2 & 0x40) { PCAQCPH2
#endif // THREE_ CHANNEL

// UPDATE TRACKING VARIABLES

if (!chl tracking disabled) { CH1
if (!ch2 tracking disabled) { CHZ

// CH3 already updated above

than 128 (clear the MSB)

CH2, CH3
CH1 PWM; }
CH2 PWM; }
CH3_ PWM; }

PREV_VALUE = chl adc_code.Int[0];}
PREV_VALUE ch2 adc code;}

// If all channels have been validated, switch to the monitor state

#if (THREE CHANNEL)

if (CH1 OUTPUT VALIDATED && CH2 OUTPUT VALIDATED && CH3 OUTPUT VALIDATED)

#else

if (CH1 OUTPUT VALIDATED && CH2 OUTPUT VALIDATED) ({

#endif // THREE CHANNEL

STATE = MON;
EXO = 1;

// Change system state to Monitor
// Enable External Interrupt 0

// interrupts to set the

// USER_SHUTDOWN bit when the

// CAL/SD switch is pressed while
// in the Monitor State

{

SILICON LABORATORIES

Rev. 1.4

49

/o
//

// Monitor the output and input voltages on all enabled channels to ensure
// proper operation

//

// Note: Upon Entry into this state, all <CHx PREV_VALUE> variables should
// be set to a very large positive number (ex. O0x7FFF).

// This is required for overcurrent protection.

//

case MON:

shutdown = 0;
if (CH == CHI1) {

// Verify that the voltage on CH1 is within spec.
#if(OVERVOLTAGE_PROTECTION)
if (adc_code < CH1 TARGET CODE MIN ||
adc_code > CH1 TARGET CODE MAX) {
shutdown = 1;
}
#else
if (adc_code < CH1 TARGET CODE MIN) {
shutdown = 1;
}
#endif // OVERVOLTAGE PROTECTION

#if (OVERCURRENT PROTECTION)
if (MONITOR_ INPUT) {

if((adc_code - CH1 PREV VALUE) > ((OVERCURRENT ERR * R10) / (R10+R11))){
shutdown = 1;
} else {
CH1 PREV_VALUE = adc_code;

}
#endif // OVERCURRENT PROTECTION

} else
if (CH == CH2) {

// Verify that the voltage on CH2 is within spec.
#1f (OVERVOLTAGE PROTECTION)
if (adc_code < CH2 TARGET CODE MIN ||
adc_code > CH2 TARGET CODE MAX) {
shutdown 1;

}
felse
if (adc_code < CH2 TARGET CODE_MIN) {

50 Rev. 1.4

SILICON LABORATORIES

AN145

shutdown = 1;

}
#endif // OVERVOLTAGE PROTECTION

#if (OVERCURRENT PROTECTION)
if (MONITOR INPUT) {

if((adc_code - CH2 PREV VALUE) > (OVERCURRENT ERR)) {
shutdown = 1;

} else {
CH2 PREV_VALUE = adc_code;

}
#endif // OVERCURRENT PROTECTION

} else

// CH == CH3
{
#if (THREE CHANNEL)
// Verify that the voltage on CH3 is within spec.
#if(OVERVOLTAGEiPROTECTION)
if (adc_code < CH3 TARGET CODE MIN | |
adc_code > CH3 TARGET CODE_MAX) {
shutdown = 1;
}
#else
if (adc_code < CH3 TARGET CODE MIN) {
shutdown = 1;
}
fendif // OVERVOLTAGE PROTECTION

#if (OVERCURRENT PROTECTION)
if (MONITOR INPUT) {

if ((adc_code - CH3 PREV_VALUE) > (OVERCURRENT ERR)) {
shutdown = 1;

} else {
CH3 PREV_VALUE = adc_code;

}
#endif // OVERCURRENT PROTECTION
#endif // THREE CHANNEL

// If the system or the user requests a shutdown, assert the
// S_RESET signal, de-assert the POWER G signal, and switch
// to the SHUTDOWN state

if(shutdown || USER_SHUTDOWN) {

S _RESET = 0; // Assert the S RESET signal

Rev. 1.4 51

SILICON LABORATORIES

AN145

#1£ (F330)

POWER G = 0; // De-Assert the POWER G signal

#endif // F330

STRICT VALIDATION = 1; // Set the Strict Validation Flag

// to avoid oscillation

STATE = SHUTDOWN; // Switch to validate state
ADCO ISR i = 0; // Clear the ADCO_ ISR iteration counter
}

break;
/e
// SHUTDOWN State
f) mm e
//

// Shut down all outputs

//

case SHUTDOWN:

if (ADCO_TISR i >= 10) {

ADCO ISR i = 0;

// If all indexes are at table entry zero, change the state to VAL
// or OFF

#if (THREE CHANNEL)

if((CH1 i == 0) && (CH2 i == 0) && (CH3 i == 0)) {

#else

if((CH1 i == 0) && (CH2_i == 0)) {

#endif // THREE CHANNEL

//
//
//
//
1f(

// Force all outputs to 0V by setting duty cycle to 100%
CH1 PWM = O;

CH2 PWM = 0;

#if(THREE_CHANNEL)

CH3 PWM = 0;

#endif // THREE_CHANNEL

// If a user shutdown has been detected (CAL/SD switch pressed),
// then put the system in the OFF state. The OFF state puts the CPU
// in Stop Mode. Othewise re-validate the inputs and start
// ramping again. Assume a power failure has occured.
if (USER_SHUTDOWN) {
STATE = OFF;
} else {
STATE = VAL;

Start decrementing CH1 output. When the CH1 index reaches CH2 index,
then decrement both channels.

When CH1 and CH2 indexes fall to the CH3 index, decrement all three
channels.

CH1 1 > 0){

52

Rev. 1.4

SILICON LABORATORIES

AN145

CH1 PWM = CH1 DATA[CHl i--];

if((CH2_i > 0) && (CH2_i >= (CHL_i - 1))){
CH2 PWM = CH2 DATA[CH2 i--];

#1if (THREE_CHANNEL)

if((CH3 i > 0) && (CH3 i >= (CH1 i - 1))){
CH3 PWM = CH3 DATA[CH3 i--];

}
#endif // THREE CHANNEL

// UPDATE THE PWM OUTPUT FOR CH1, CH2, CH3
PCAOCPHO = CH1 PWM;

PCAOCPH1 = CH2 PWM;

#if (THREE CHANNEL)

PCAOCPH2 = CH3_ PWM;

#endif // THREE_ CHANNEL

} else {

ADCO ISR i++;

break;

} // end switch (STATE)

// switch to next channel

CH++;
if(CH >= 3){
CH = 0;
if (STATE == MON) {
MONITOR INPUT = !MONITOR INPUT; // Toggle monitoring between
} // inputs and outputs

}// end ADCO_ ISR

Rev. 1.4 53

SILICON LABORATORIES

AN145

// This routine inserts a delay of <ms> milliseconds.

//

{

void wait ms(int ms)
int ms_save = ms;
#1£f (F330)
TMR3CN = 0x00;
TMR3RL = - (SYSCLK/1000/12);

TMR3 = TMR3RL;

TMR3CN |= 0x04;

while (ms) {
TMR3CN = ~0x80;
while (! (TMR3CN & 0x80));
ms—-—;

}

TMR3CN &= ~0x04;

felse

// DELAY <MS> milliseconds using

TMOD = 0x02;
CKCON &= ~0xO0F;
CKCON |= 0x02;

THO

- (SYSCLK/3000/48) ;

TRO

1;

// repeat this loop three times,

while (ms) {
TEFO = 0;
while (!TFO) ;
ms—-;

ms = ms_save;

while (ms) {
TFO = 0;
while (! TFO) ;
ms——;

ms = ms_save;

while (ms) {

TFO = 0;
while (! TFO) ;
ms—-;

}

TRO = 0;

#endif // F330

//
//
//

//

//
//
//

/7

Timer
//
//
//

//

//

Configure Timer 3 as a 1l6-bit

timer counting SYSCLKs/12
Timer 3 overflows at 1 kHz

Start Timer 3

Clear overflow flag
walt until timer overflows
decrement ms

Stop Timer 3

0

Timer0 Mode 2

Clear Timer0O bits
TimerO counts SYSCLK/48

Timer 0 overflows at 3 kHz

Start Timer O

each loop taking 0.333 ms * <MS>

//
//
//

/7
/7
/7

/7
//
//

//

clear overflow flag
walt until timer overflows
decrement ms

clear overflow flag
wait until timer overflows
decrement ms

clear overflow flag
wait until timer overflows
decrement ms

Stop Timer O

54

Rev. 1.4

SILICON LABORATORIES

AN145

1/

// This routine erases the FLASH page at <addr>.

//
void FLASH ErasePage (unsigned addr)

{
bit EA_SAVE = EA;
char xdata * idata pwrite;
pwrite = (char xdata *) addr;

EA = 0;

FLKEY = OxA5;

FLKEY = O0xF1;
PSCTL |= 0x03;
*pwrite = 0;

PSCTL = 0x00;

EA = EA SAVE;

//
//

/7

//

/7
/7

//
//

//

/7

//

Save Interrupt State
FLASH write/erase pointer

initalize write/erase pointer
Disable Interrupts

Write first key code
Write second key code

MOVX writes target FLASH
Enable FLASH erasure

Initiate FLASH page erase
Disable FLASH writes/erases

Restore Interrupt State

// This routine writes a set of bytes to FLASH memory. The target address
// 1s given by <dest>, <src> points to the array to copy, and <num> is the

// size of the array.

void FLASH Write (unsigned dest, char *src, unsigned num)

{
unsigned idata i;
char xdata * idata pwrite;
char the data;
bit EA SAVE = EA;

pwrite = (char xdata*) dest;

for (1 0; i1 < num; i++) {
the data = *src++;

EA = 0;

FLKEY = 0xA5;
FLKEY 0xF1;

/7
/7
/7
//

//
//

//

//

/7
//

loop counter

FLASH write/erase pointer
holds data to write to FLASH
Save Interrupt State

initialize write/erase pointer
to target address in FLASH

read data byte
disable interrupts

Write first key code
Write second key code

SILICON LABORATORIES

Rev. 1.4

55

AN145

PSCTL |= 0x01;
*pwrite = the data;
PSCTL &= ~0x01;

EA = EA_SAVE;
pwrite++;

//

// PSWE = 1; MOVX writes target FLASH

// write the data

// PSWE = 0; MOVX writes target XRAM

// restore interrupts
// advance write pointer

// This routine prints the system menu to the UART

//
#if (UART ENABLE)

void Print Menu (void)

{
("\n\nConfig Menu:\n”);
(“1. Set Ramp Rate”);

puts (“2. Set VAL wait time”);
(“"3. Set MON wait time”)
(M4
(22

Print Menu”):;

Calibrate and Save Changes”);

// This Routine configures and calibrates the device.

1/

void Calibrate (void)

{

int RAMP RATE SAV = RAMP RATE;
int VAL WAITTIME SAV = VAL WAITTIME;
int MON WAITTIME SAV = MON WAITTIME;

char temp char;
int v_cal;
bit cal complete = 0;

#if (UART ENABLE)

int xdata timeout = 10000;

#define input_str len 10

// temporary char

// 10 second delay

// buffer to hold characters entered

56

Rev. 1.4

SILICON LABORATORIES

AN145

char xdata input str[input str len]; // at the command prompt
int xdata input int;

// Start 10 sec timeout and also poll for UART activity on RX
RIO = 0;
while (timeout > 0) {

if (RIO) {
break;
} else {

puts ("PRESS ANY KEY TO CONTINUE”) ;
wait ms(1000);
timeout -= 1000;

// timeout has passed or user pressed a key

// execute the following code if the user pressed a key,
// otherwise, skip this code and calibrate device
if (RIO) {

RIO = 0;
Print Menu() ;

while (1) {

puts ("\nEnter a command >");
gets (input str, input str len);

switch (input str[0]) {

case ‘1’: // Set Ramp Rate
puts (“"\nEnter the new Ramp Rate (250 - 500) [V/s]:”);
gets (input str, input str len);
input int = atoi(input str);

// validate
while (! (input int >= 250 && input int <= 500)) {

puts ("\nEnter a valid Ramp Rate between 250 and 500

gets (input str, input str len);
input int = atoi (input str);

RAMP RATE SAV = input int;
break;

case ‘2': // Set input settling time

puts ("\nEnter the new (Input Valid -> Ramp Start) wait time [ms]:

gets (input str, input str len);
input int = atoi (input str);

// validate
while (! (input int >= 10 && input int <= 30000)) {
puts ("\nEnter timeout between 10 and 30000ms:”);

Rev. 1.4

SILICON LABORATORIES

57

AN145

gets (input str, input str len);
input int = atoi (input str);

VAL WAITTIME SAV = input int;

break;

case ‘3': // Set S _RESET wait time

puts ("\nEnter the new (Output Valid -> S RESET Rising) wait time [ms]:”);

gets (input str, input str len);
input int = atoi (input str);

// validate

while (! (input_int >= 10 && input int <=
puts ("\nEnter timeout between 10 and 30000ms:”);

gets (input str, input str len);
input int = atoi (input str);

MON WAITTIME SAV = input int;

break;

case ‘4’:
break;

default:
puts (“** Invalid Input **\n”);
Print Menu() ;
break;

// If user selected calibrate and save
if (input str[0] == ‘47){

// exit the while loop
break;

#endif // UART ENABLE

#1if (UART_ENABLE)
puts ("\nVALIDATING INPUTS”);
#endif // UART_ENABLE

GlobalVarInit () ;
ValidateInput ();

#1if (UART ENABLE)
puts ("CALIBRATING”) ;
#endif // UART_ENABLE

// Erase the FLASH data page
FLASH ErasePage (CH1 DATA ADDR) ;

58

Rev. 1.4

SILICON LABORATORIES

AN145

// Write parameters to FLASH

FLASH Write (RAMP RATE_ADDR, (char*) &RAMP RATE SAV, sizeof (int));
FLASH Write (VAL WAITTIME ADDR, (char*) &VAL WAITTIME SAV, sizeof (int));
FLASH Write (MON WAITTIME ADDR, (char*) &MON WAITTIME SAV, sizeof (int));

// Set PWM codes to the minimum
PCAQCPHO = 0x00;

PCAOCPH1 = 0x00;

#1f (THREE CHANNEL)

PCAOCPH2 = 0x00;

#endif // THREE_ CHANNEL

// Start Calibration

v _cal = 0;

while (v_cal < 3500) {
CH1 Calibrate(v_cal);
CH2 Calibrate(v_cal);
#if (THREE CHANNEL)
CH3 Calibrate(v_cal);
#endif // THREE CHANNEL

if(v_cal > 50){
v_cal += VSTEP;
} else {

v_cal += VSTEP/16;

// Use the ADCO_ISR to ramp down all outputs
USER SHUTDOWN = 1;
STATE = SHUTDOWN;

// Enable ADCO End of Conversion Interrupts

#1f (F330)

ETIE1 |= 0x08;
felse

EIEL |= 0x04;

#endif // F330

EA = 1; // Enable Global Interrupts
while (STATE != OFF); // Wait until outputs shut down
EA = 0; // Disable Global Interrupts

// Set the CAL DONE flag to 0x00 to indicate that calibration is
// complete

temp char = 0x00;

FLASH_Write(CAL_DONE_ADDR, (char*) &temp char, 1);

#1if (UART ENABLE)
puts ("CALIBRATION COMPLETE\n\nCHANGES SAVED”) ;
#endif // UART_ENABLE

Rev. 1.4 59

SILICON LABORATORIES

AN145

// CH1 Calibrate

e

1/

// This routine increments CH1 output voltage until it reaches <v_target>.

// It then records the current PWM code in the calibration table.

//
void CH1 Calibrate(int v_target)
{

int 1i; // software loop counter

int adc_code;

int v = 0; // voltage measured at output

unsigned long acc; // accumulator for ADC integrate and dump
static int pData; // initialize data pointer

char temp char; // temporary char

bit done = 0; // completion flag

// Select CHl output as ADC mux input
#1f (F330)
AMXO0P = VOUT PIN[CHI];
#else
AMX0SL = VOUT_PIN[CHI];
#endif // F330

// wait for output to settle
wait ms(1);

// If the target voltage is 0V, initialize the pointer to the calibration

// table to the beginning of CH1 DATA
if (v_target == 0){

pData = CH1 DATA ADDR;

// Check the CH1 output voltage and keep increasing until v >= v_target

// Do not allow the PWM code to overflow
do{

// obtain 256 samples
acc = 0;
for(i = 0; 1 < 256; i++){

// obtain one sample
ADOINT = 0;

while (!ADOINT) ;

// add to accumulator

acc += ADCO;

// average the samples

60

Rev. 1.4

SILICON LABORATORIES

AN145

acc >>= 8; // divide by 256
adc_code = (int) acc;

// convert <acc> from a code to a voltage and translate up
// Vin = Vin ADC * (R10+4R11)/R11

acc *= VREF; // multiply by VREF
#if(ADC_RES == 1024L)

acc >>= 10; // divide by ADC_RES = 2710
#elif(ADC_RES == 256L)

acc >>= 8; // divide by ADC RES = 2"8
#elif

#error (“Unsupported ADC Resolution”)
#endif // ADC_RES
acc *= (R10+R11); // scale by attenuator ratio
acc /= R11;

// The accumululator now contains CH1 output voltage (mV)
v = (int) acc; // copy output voltage to <v>

// If output voltage has not yet reached the target and we have not
// yet reached the maximum PWM code, increment the PWM code
if((v < v_target) && (PCAOCPHO != OxXFF) &&
(adc _code <= (CH1 TARGET CODE- (CAL DETECT ERR)))
) {

PCAOCPHO++;
} else {
done = 1;

} while (!done);

// At this point (v >= v_target) or (PCACPOH == OxFF).
// The current output voltage is greater than the target voltage
// or we have reached the maximum PWM code.

// If we have not reached the maximum PWM code, record this code

// in FLASH. No action is required if the current PWM code is OxFF

if (PCAOCPHO != OxFF && (adc_code <= (CHl1 TARGET CODE- (CAL DETECT ERR)))) {
temp char PCAOCPHO;
FLASH Write (pData, &temp char, sizeof(char)); // Write to FLASH

pData++; // Increment FLASH write pointer
}
}
/=
// CH2 Calibrate
/e
//

// This routine increments CH2 output voltage until it reaches <v_target>.
// It then records the current PWM code in the calibration table.

//

void CH2 Calibrate(int v_target)

{

int 1i; // software loop counter

Rev. 1.4 61

SILICON LABORATORIES

AN145

char temp char; // temporary char
int adc_code;

int v = 0; // voltage measured at output

unsigned long acc; // accumulator for ADC integrate and dump
static int pData; // initialize data pointer

bit done = 0; // completion flag

// Select CH2 output as ADC mux input
#1if (F330)
AMXO0P = VOUT_PIN[CHZ};
#else
AMX0SL = VOUT_PIN[CHZ];
#endif // F330

// wait for output to settle
wait ms(1);

// If the target voltage is 0V, initialize the pointer to the calibration

// table to the beginning of CH2 DATA
if (v_target == 0){

pData = CH2 DATA ADDR;

// Check the CH2 output voltage and keep increasing until v >= v_target

// Do not allow the PWM code to overflow
do{

// obtain 256 samples
acc = 0;
for(i = 0; 1 < 256; i++){

// obtain one sample
ADOINT = 0;
while (!ADOINT) ;
// add to accumulator
acc += ADCO;
// average the samples for a 10-bit result
acc >>= 8; // divide by 256

adc_code = acc;

// convert <acc> from a code to a voltage
acc *= VREF; // multiply by VREF

#1f (ADC_RES == 1024L)

acc >>= 10; // divide by ADC RES
#elif (ADC_RES == 256L)

acc >>= 8; // divide by ADC RES
#elif

#error (“Unsupported ADC Resolution”)

62

Rev. 1.4

SILICON LABORATORIES

AN145

1/
//
//
//
!/
!/
#1
vO

{

#endif // ADC_RES

// The accumululator now contains CH2 output voltage

v = (int) acc;

(mV)

// copy output voltage to <v>

// If output voltage has not yet reached the target and we have not

// yet reached the maximum PWM code,

if((v < v_target) && (PCAOCPH1
(adc_code <=
)|
PCAQCPH1++;
} else {
done = 1;
}
} while (!done);

// At this point

(v >= v_target)

or

increment the PWM code
= OxFF) &&
(CH2 TARGET CODE-CAL DETECT ERR))

(PCACPOH == O0xFF).
// The current output voltage is greater than the target voltage
// or we have reached the maximum PWM code.

// If we have not reached the maximum PWM code,
// in FLASH. No action is required if the current PWM code is OxFF
(CH2 TARGET CODE-CAL DETECT ERR))) {

if (PCAOCPH1 != OxFF &&
temp char = PCAOCPHI;
FLASH Write (pData,
pData++;

&temp char,

(adc_code <=

sizeof (char));

record this code

// Write to FLASH
// Increment FLASH write pointer

This routine increments CH3 output voltage until it reaches <v_target>.
It then records the current PWM code in the calibration table.

f (THREE CHANNEL)
id CH3 Calibrate(int v_target)

int xdata 1i;

char xdata temp char;
int xdata adc code;

int xdata v = 0;
unsigned long xdata acc;

static int pData;

bit done = 0;

//

//

//

//

!/

1/

software loop counter
temporary char

voltage measured at output

(mV)

accumulator for ADC integrate and dump

initialize data pointer

completion flag

// Select CH3 output as ADC mux input

#1£(F330)

31

LICON LABORATORIES

Rev. 1.4

63

AN145

AMXOP = VOUT PIN[CH3];
#else

AMX0SL = VOUT_PIN[CH3];
#endif // F330

// wait for output to settle
wait ms(1);

// If the target voltage is 0V, initialize the pointer to the calibration
// table to the beginning of CH3 DATA
if (v_target == 0){

pData = CH3 DATA ADDR;

// Check the CH3 output voltage and keep increasing until v >= v _target
// Do not allow the PWM code to overflow
do{

// obtain 256 samples
acc = 0;
for(i = 0; 1 < 256; 1i++){

// obtain one sample
ADOINT = 0;

while (!ADOINT) ;

// add to accumulator

acc += ADCO;

// average the samples

acc >>= 8; // divide by 256
adc_code = acc;
// convert <acc> from a code to a voltage
acc *= VREF; // multiply by VREF
#1f (ADC_RES == 1024L)
acc >>= 10; // divide by ADC RES = 2°10
#elif (ADC_RES == 256L)
acc >>= 8; // divide by ADC_RES = 2”8
#elif

#error (“Unsupported ADC Resolution”)
#endif // ADC RES

// The accumululator now contains CH3 output voltage (mV)
v = (int) acc; // copy output voltage to <v>

// If output voltage has not yet reached the target and we have not
// yet reached the maximum PWM code, increment the PWM code
if((v < v_target) && (PCAOCPH2 != OxFF) &&
(adc_code <= (CH37TARGET7CODE—CALiDETECTiERR))
) {
PCAQOCPH2++;
} else {

64 Rev. 1.4

SILICON LABORATORIES

AN145

done = 1;

} while (!done);

// At this point (v >= v_target) or (PCACPOH == OxFF).
// The current output voltage is greater than the target voltage
// or we have reached the maximum PWM code.

// If we have not reached the maximum PWM code, record this code
// in FLASH. No action is required if the current PWM code is OxFF
if (PCAOCPH2 != OxFF && (adc code <= (CH3 TARGET CODE-CAL DETECT ERR))) {
temp char = PCAOCPH2;
FLASH Write(pData, &temp char, sizeof(char)); // Write to FLASH
pData++; // Increment FLASH write pointer

}
#endif

//

// Initialize VDD Monitor for the F330 and the F300

//

void VDM Init (void)

{
VDMOCN |= 0x80; // Enable VDD monitor
while (! (VDMOCN & 0x40)); // wait for VDD to stabilize

RSTSRC = 0x02; // Set VDD monitor as a reset source

//
// Initialize VDD Monitor for the F330 and the F300
//
void VDM Init (void)
{
RSTSRC = 0x02; // Set VDD monitor as a reset source

#endif // F330

Rev. 1.4 65

SILICON LABORATORIES

AN145

//

// Configure the system clock to use the internal 24.5MHz oscillator as its
// clock source and enable the missing clock detector.

1/

#1i

void SYSCLK Init

{

#e

void SYSCLK Init

{

£ (F330)

OSCICN

RSTSRC

1lse

OSCICN

RSTSRC

0x83;

= 0x06;

0x07;

= 0x06;

#endif // F330

!/
1/
//
//
//
!/
!/
1/
//
//
//
!/
!/
1/
//
//
//
//
!/
1/
1/
//
//
//

(void)

(void)

// set clock to 24.5 MHz

// enable missing clock detector
// and leave the VDD monitor enabled

// set clock to 24.5 MHz

// enable missing clock detector
// and leave the VDD monitor enabled

Configure the Crossbar and GPIO pins to the following pinout for the

Port 0
PO.
PO.
PO.
PO.
PO.
PO.
PO.
PO.

o 0w N O
|

Port 1
P1.
P1.
P1.
P1.
P1.
P1.
P1.
P1.

oUW N O
|

Port 2

GPIO
CEXO
GPIO
GPIO
UART TX
UART RX
Analog
GPIO

Analog
Analog
CEX1
Analog
Analog
CEX2
Analog
GPIO

Input

Input
Input

Input
Input

Input

(CH1 PWM Output)
(POWER G Signal)

(CH1 Vin)
(S2 Switch)

(CH1 Vout)
(CH2 Vin)
(CH2 PWM Output)
(CH2 Vout)
(CH3 Vin)
(CH3 PWM Output)
(CH3 Vout)
(S_RESET Signal)

‘F330:

66

Rev. 1.4

SILICON LABORATORIES

AN145

// P2.0 - C2D
//
#if (F330)

void PORT Init (void)
{

// Momentarily discharge the output capacitors

Pl &= ~0x49; // Write a ‘0’ to P1.0, P1.3 and Pl.6
// to discharge the capacitors on CH1 VOUT,
// CH2 VOUT, CH3 VOUT.

Pl |= 0x49; // Return the same port pins above to
// their reset state

// Make sure the CAL/SD switch has charged up after a reset
// to prevent calibrating the device when the S2 switch is not pressed.

// Momentarily drive the S2 (P0.7) signal high.

XBR1 = 0x40; // Enable Crossbar

POMDOUT |= 0x80; // Configure to push-pull
S2 = 1;

wait ms(1);

POMDOUT &= ~0x80; // Configure to open-drain
XBR1 = 0x00; // Disable Crossbar

// F330 Port 0 Initialization

POSKIP = ~0x32; // Skip all Port0 pins except for
// P0.1 (CH1 PWM output),
// P0.4 and P0.5 (UART pins)
// in the Crossbar

POMDIN = ~0x40; // Configure P0.6 (CH1l Vin) as an
// analog input

POMDOUT

0x16; // Enable UART TX, CEX0, and POWER G
// signal as push-pull

// F330 Port 1 Initialization

P1SKIP = ~0x24; // Skip all pins configured as analog
// inputs in Portl
PIMDIN = ~0x5B; // Configure P1.0, P1.1, P1.3, Pl.4, and

// Pl.6 as analog inputs
PIMDOUT = 0xA4; // PWM outputs and S _RESET is push-pull
// F330 Crossbar Initialization
XBRO = 0x01; // UART TX0,RX0 routed to P0.4 and P0.5

XBR1 = 0x43; // Enable crossbar and weak pullups

Rev. 1.4 67

SILICON LABORATORIES

// CEX0, CEX1, and
// P0.1, P1.2, and

CEX2 routed to
P1.5

Configure the Crossbar and GPIO pins to the following pinout for the ‘F300:

GPIO/VREF
Analog Input
Analog Input
CEXO

CEX1

Analog Input
Analog Input
GPIO

#else

//

// PORT Init
//

//

//

//

// Port 0
// P0.0 -
// PO.1 -
// PO0.2 -
// P0.3 -
// P0.4 -
// P0.5 -
// P0.6 -
// PO.7 -
//

void PORT Init (void)

{

CAL/SD switch)

(

(CH2
(CH1
(CH1
(CH2
(CH1
(CH2
(

Vin)
Vin)
PWM Output)
PWM Output)
Vout)
Vout)

S RESET Signal)

// Momentarily discharge the output capacitors

PO &= ~O0

PO |= O

x60;

x60;

// Write a ‘0’ to P
// to discharge the
// and CH2 VOUT

// Return the same

// their reset stat

0.5 and P0O.6
capacitors on CH1 VOUT

port pins above to
e

// Make sure the CAL/SD switch has charged up after a reset
// to prevent calibrating the device when the S2 switch is not pressed.

// Momentarily drive the CAL/SD/VREF (P0.0) switch

XBR2 = 0

POMDOUT
S2 = 1;
wait ms(
POMDOUT

XBR2 = 0

x40;

|= 0x01;

1);
&= ~0x01;

x00;

// Enable Crossbar

// Configure to pus

// Configure to ope

// Disable Crossbar

// F300 Port 0 Initialization

XBRO = 0

POMDIN =

POMDOUT

x07;

~0x66;

= 0x98;

// Skip the first t
// in the Crossb

// Configure Vin an
// analog inputs

// Configure CEXO,
// to push-pull

h-pull

n-drain

hree pins in PO
ar

d Vout pins as

CEX1 and S RESET

68

Rev. 1.4

SILICON LABORATORIES

AN145

XBR1 = 0x80;

XBR2 = 0x40;

#endif // F330

!/

// Enable CEX0 and CEX1l in the Crossbar

// Enable Crossbar and Weak Pullups

// This routine initializes external interrupt 0 to monitor the CAL/SD switch.

//
#1£ (F330)

void EX0 Init (void)
{

ITOLICF &= ~0xO0F;

ITO1CF |= 0x07;
ITO1CF &= ~0x08;
ITO = 1;

IEO0O = 0;

#else

void EXO Init(void)
{

ITO1CF &= ~0x0F;

ITO1CF |= 0x00;
ITOICF &= ~0x08;
ITO0O = 1;
IEO = 0;

}

#endif // F330

//

// Configure ADCO to start conversions

//
#1if (F330)
void ADCO Init (void)

{
ADCOCN = 0x02;

// Configure ADC MUX input
AMXOP = VOUT PIN[CH1];
AMXON = 0x11;

// Configure SAR Clock frequency

on

//
//
!/

//
//

// Clear EX0 bits

// Monitor PO.7 (active low)
// active low

// Edge Triggered

// Clear Interrupt Flag

// Clear EX0 bits

// Monitor P0.0 (active low)
// active low

// Edge Triggered

// Clear Interrupt Flag

Timer 2 overflows.

ADCO disabled; normal tracking
mode; ADCO conversions are initiated
on Timer 2 overflows;

Select CH1 Output as ADCO input
select GND as negative mux input

SILICON LABORATORIES

Rev. 1.4

69

AN145

ADCOCF = (SYSCLK/3000000) << 3; // ADC conversion clock <= 3MHz
// Right Justified Data

// Configure Voltage Reference
// Turn on internal reference buffer and output to P0.0
REFOCN = 0x03; // VREF pin used as reference,
// Bias generator is on.
// Internal Reference Buffer Enabled

wait ms(2); // Wait 2 ms for VREF to settle
ADCOCN |= 0x80; // enable ADC

}

#else

void ADCO Init (void)
{
ADCOCN = 0x02; // ADCO disabled; normal tracking
// mode; ADCO conversions are initiated
// on Timer 2 overflows;
// Configure ADC MUX input
AMX0SL = VOUT PIN[CH1]; // Select CH1 Output as ADCO input
// and GND as negative mux input

// Configure SAR Clock frequency
ADCOCF = (SYSCLK/6000000) << 3; // ADC conversion clock <= 6MHz
// 8-bit data in ‘F300

// Configure PGA gain for ‘F300 (‘F330 gain always set to 1)
ADCOCF |= 0x01; // PGA gain = 1

// Configure Voltage Reference
REFOCN = O0xO0A; // VDD used as voltage reference
// Bias generator is on.

wait ms(2); // Wait 2 ms for VREF to settle

ADCOCN |= 0x80; // enable ADC
}
#endif
T
// PCA Init
/==
//
// Configure all PCA modules to PWM output mode, using SYSCLK as a timebase.
//

void PCA Init (void)
{
PCAOMD = 0x08; // Set PCA timebase to SYSCLK
// Disable PCA overflow interrupt

// Configure Capture/Compare Module 0 (Channel 1 PWM output)
PCAOCPMO = 0x42; // configure for 8-bit PWM

70 Rev. 1.4

SILICON LABORATORIES

AN145

// Configure Capture/Compare Module 1 (Channel 2 PWM output)
PCAOCPM1 = 0x42; // configure for 8-bit PWM

// Configure Capture/Compare Module 2 (Channel 3 PWM output)
#if (THREE CHANNEL)

PCAOCPM2 = 0x42; // configure for 8-bit PWM
#endif // THREE CHANNEL

PCAOCPHO 0x00;
PCAOCPH1 = 0x00;

#if (THREE CHANNEL)
PCAOCPH2 = 0x00;
#endif // THREE CHANNEL

CR = 1; // start PCA timer
}
[mm e
// UARTO Init
/e e
//

// Configure the UARTO using Timerl, for <BAUDRATE> and 8-N-1.
// The minimum standard baud rate supported by this function is 57600 when
// the system clock is running at 24.5 MHz.

#if (UART ENABLE)

void UARTO Init (void)
{

SCONO = 0x10; // SCONO: 8-bit variable bit rate
// level of STOP bit is ignored
// RX enabled
// ninth bits are zeros
// clear RIO and TIO bits
TH1 = - (SYSCLK/BAUDRATE/2) ;
CKCON |= 0x08; // TIM = 1; SCAl:0 = xx
TL1 = TH1; // init Timerl
TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
TMOD |= 0x20;
TR1 = 1; // START Timerl
TIO = 1; // Indicate TX0 ready

#endif // UART ENABLE

//

// Configure Timer2 to auto-reload at interval specified by <counts>
// using SYSCLK as its time base.

//

Rev. 1.4 71

SILICON LABORATORIES

AN145

//
//
#1f (F330)

void Timer2 Init (int counts)

{

TMR2CN = 0x00; // resets Timer 2, sets to 16 bit mode
CKCON |= 0x10; // use system clock
TMR2RL = -counts; // initialize reload value
TMR2 = TMR2RL; // initialize Timer 2
}
#else

void Timer2 Init (int counts)

{

TMR2CN = 0x00; // resets Timer 2, sets to 16 bit mode
CKCON |= 0x20; // use system clock

TMR2RL = -counts; // initialize reload value

TMR2 = TMR2RL; // initialize Timer 2

#endif // F330

72 Rev. 1.4

SILICON LABORATORIES

AN145

Appendix D - Firmware (Header File)

// AUTH: FB
// DATE: 26 JUN 03

// VERSION: 1.3.0

// Header file contianing configuration settings for Power Sequencing
// Software (PS V1.3.c).

// Target: C8051F330 and C8051F300
// Tool chain: KEIL C51

// Step 1 - Select a device
#define F330 1 // Select ‘1’ for the ‘F330 and
// select ‘0’ for the ‘F300

// Step 2 - Select features to enable on the ‘F330. Note that these features are
// not available for the ‘F300.

#if (F330)
#define UART ENABLE 0 // Enables configuration through UART
#define THREE CHANNEL 1 // Enables the third channel

#endif // F330

// Step 3 - Define System Parameters for the ‘F330 and the ‘F300

#define DEFAULT RAMP RATE 500 // Default ramp rate in V/s
#define DEFAULT VAL WAITTIME 100 // Default validation wait time in ms
#define DEFAULT MON WAITTIME 100 // Default time between POWER G and

// S_RESET rising edge in ms.

#define OVERVOLTAGE PROTECTION 1 // Enable or Disable Overvoltage Protection
#define OVERCURRENT PROTECTION 1 // Enable or Disable Overcurrent protection
#define RAMP TIMEOUT ENABLE 1 // Enables Ramp Timeout

#define RAMP TIMEOUT 100 // Maximum time allowed for ramping (ms)
#define NUM RETRIES 3 // The number of power-up retries the system

// will attempt after a power failure

// The minimum specified Target voltage for each channel (-8% of target voltage)
#define CH1 VTARGET MIN 3036L // Channel 1 min target voltage in mV
#define CH2 VTARGET MIN 1656L // Channel 2 min target voltage in mVv
#define CH3 VTARGET MIN 1380L // Channel 3 min target voltage in mVv

// The maximum specified Target voltage for each channel (+8% of target voltage)

#define CH1 VTARGET MAX 3564L // Channel 1 max target voltage in mV
#define CH2 VTARGET MAX 1944L // Channel 2 max target voltage in mv
#define CH3 VTARGET MAX 1620L // Channel 3 max target voltage in mv
#define OVERCURRENT VTH 400L // Overcurrent threshold in mv

Rev. 1.4 73

SILICON LABORATORIES

AN145

#define STRICT VAL DELTA 100L //
//
//

// Resistor values for the attenuator on CH1
#define R10 2800L //
#define R11 5360L //

Overvoltage threshold is decreased and
undervoltage threshold is increased by
this amount after a power failure

Resistance in Ohms
Resistance in Ohms

74 Rev. 1.4

SILICON LABORATORIES

AN145

Notes:

SILICON LABORATORIES

Rev. 1.4

75

AN145

Contact Information

Silicon Laboratories Inc.
4635 Boston Lane

Austin, TX 78735

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: productinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

76 Rev. 1.4

SILICON LABORATORIES

	Relevant Devices
	Introduction
	Background
	Theory of Operation
	System States
	Input Validation
	Ramping Algorithm

	System Monitoring and Protection
	Soft Power Down

	Hardware Description
	PWM Generation
	Power MOSFET Control
	ADC Sampling

	Software Description
	Device Calibration
	Variable Initialization
	VALIDATE State
	RAMP State
	MONITOR State
	POWER DOWN State

	How to Configure the Firmware
	Performance Examples
	Features
	Power-up Example
	Ramp Up and POWER_G Signal Example
	Ramp Up and S_RESET Signal Example
	User Shutdown and POWER_G Signal Example
	Power Failure and S_RESET Signal Example

	Configuration Using the Serial Port (Optional)
	Estimated Board Real-Estate
	Appendix A - Schematic
	Appendix B - Bill of Materials
	Appendix C - Firmware (Source File)
	Appendix D - Firmware (Header File)
	Notes:

