&~

SILICON LABODORATORIES

AN143

CODE BANKING USING THE TASKING 8051 TooLsS

Relevant Devices

This application note applies to the following devices:

C8051F120, C8051F121, C8051F122, C8051F123,
C8051F124, C8051F125, C8051F126, and
C8051F127.

Introduction

The 8051 architecture supports a 64KB linear pro-
gram memory space. Devices that have more than
64KB of program memory implement a code bank-
ing scheme to surmount this 64KB limit. This
application note discusses software project man-
agement techniques and provides example applica-
tions that use code banking.

Key Points

* Projects requiring less than 64KB of FLASH
can leave the PSBANK register at its default
setting which provides a 64KB linear address
space.

» Source code is divided into segments, and each
code segment is assigned to a code bank by the
linker.

Code Banking Overview

The C8051F12x family of devices has 128KB of
on-chip FLASH, divided into 4 physical 32KB
banks. This program memory space can be used to

hold executable code or constant data. Figure 1
shows the code banking model implemented by
these devices. Instruction fetch operations (normal
code execution) are handled independently of con-
stant data operations (MOVC instructions, and
MOVX instructions when used for writing to
FLASH). Each type of operation has its own bank
select bits that may select any of the 4 banks as
shown in Figure 1. All code bank switching is han-
dled at the device level by writing to the PSBANK
register. The COBANK and IFBANK bits in this
register control switching for constant code
accesses and instruction fetches, respectively. For
more information on code bank switching, please
refer to the C8051F12x datasheet.

Figure 1. C8051F12x Code Banking

Model
Common Bank 0
Area
0x8000
Default 64KB 0x0000 through
, through OXFFFF
Linear Address Ox7FFF
Space When
COBANK =1
IFBANK =1 Bank 1
(reset value) Instruction Fetch
0x8000 Bank Select
through IFBANK =1
OxFFFF
Bank 2
Constant Data
Bank Select
0x8000
COBANK =2 through
OxFFFF
Bank 3
0x8000
through
OxFFFF

Rev. 1.1 12/03

Copyright © 2003 by Silicon Laboratories

AN143-DS11

AN143

For projects that require more than 64KB of code
space or non-volatile data space, the user has the
option of manually handling the bank switching in
software or setting up a code- banked project. Both
methods are discussed in this note.

User-Managed Bank
Switching for Data Intensive
Projects

User-managed bank switching is useful for projects
that have less than 64KB of executable code but
need to store large amounts of data in FLASH. In
this situation, the Common area and Bank 1 are
used for program memory while Bank 2 and
Bank 3 are used for data storage. The project does
not need to be set up for code banking.

The following data logging example shows how
bank switching can be managed in application soft-
ware.

Example 1: Data Logging
Application

This application uses a 22.1184 MHz crystal oscil-
lator to implement a software real-time clock
(RTC). PCAO, configured to count Timer O over-
flows, generates an interrupt once every second.
The interrupt handler records the current time and
device temperature in a non-volatile log in FLASH.

The 112,640 byte log cycles through all 4 code
banks recording time and temperature. Each data
record has 6 fields as shown in Figure 2. The log is
capable of storing 14080 records over a time period
of 3.9 hours. Once the log is full, it continues log-

ging at the beginning of log, erasing the FLASH
page with the oldest data as it progresses.

Managing the Instruction Fetch Bank
Select

Since this application uses less than 32KB of
FLASH for program code, there will be no instruc-
tion fetches from the 0x8000 to OxFFFF memory
space. This makes the value of IFBANK irrelevant.
However, if an application uses between 32KB and
64KB of FLASH for program code, IFBANK
should be left at its reset value, targeting Bank 1.

Advancing Through the Code Banks

This application reserves the first 16KB of FLASH
in the Common area for program code. The log
starts at address 0x4000 in the Common area and

Figure 2. Log Record Structure

HOURS MINUTES

O0x3A

SECONDS

\
ADC READING

OxFF

2 Rev. 1.1

SILICON LABORATORIES

AN143

ends at location OxF7FF in Bank 3 as shown in
Figure 3.

After storing a record in the log, the FLASH write
pointer is advanced to the next record and checked
for code bank boundaries. There are three possible
boundary conditions to consider when adjusting the

Figure 3. FLASH Memory Map for

Example 1
—
0x0000
Common 16KB reserved
Area for program code
0x4000 0x0000
through
0x7FFF
O0x7FFF
0x8000
Bank 1
0x8000 14080 x 8
through
OxFFFF Non-Volatile
OXFFFF Time
> and
0x8000 Temperature
Bank 2 Log
0x8000
through 112,640
O0xFFFF bytes total
OXFFFF
0x8000
Bank 3
OXF7FF 0x8000
through
0xF800 OXFFFF 1KB FLASH, Lock
Bits, and
Reserved Area

FLASH write pointer. These cases are outlined in
Table 1.

Preserving the PSBANK Register in
Functions and Interrupt Service
Routines

A program must preserve and restore the value of
the PSBANK register in every function and inter-
rupt service routine that switches code banks.

Choosing Log Record Size

Example 1 only writes entire records to FLASH. If
the record size is a power of 2 and the log starts at
the beginning of a FLASH page, then all records
will be contained within one of the code banks. If a
record can cross a bank boundary, then bounds
checking must be performed after every byte write.

Keeping Accurate Time

This application keeps track of time by implement-
ing an interrupt driven real-time clock. With
SYSCLK at 49.7664 MHZ, Timer O in mode 2
overflows exactly 4050 times every second when
clocked by SYSCLK/48. PCA Module 0 is config-
ured in “Software Timer Mode” to count Timer 0
overflows and generate an interrupt every second.

Table 1. FLASH Write Pointer Boundary Conditions

Condition How to Detect

FLASH write pointer
reaches the end of the
Common area.

location 0x8000.

FLASH write pointer will point to

Typical Action

No action is necessary if COBANK is
always set to Bank 1 whenever the
pointer is moved to the beginning of the

log.

FLASH write pointer
reaches the end of
Bank 1 or Bank 2.

location 0x0000.

FLASH write pointer will point to

FLASH write pointer should be set to
0x8000 and COBANK should be incre-
mented.

FLASH write pointer
reaches the end of the

log. be selected by COBANK.

FLASH write pointer will point to
location 0xF800 and Bank 3 will

FLASH write pointer should be reset to
the first location in the log (0x4000) and
COBANK should select Bank 1.

SILICON LABORATORIES

Rev. 1.1 3

AN143

Step by Step Instructions on Config-
uring Example 1 Using the Silicon
Labs IDE

Example 1 consists of two source files, as listed in
Table 2. Data Logger RTC.c contains all of the
implementation code for Example 1. iowrite.c
contains the _iowrite() function, which is called by
all standard input/output functions (printf(), puts(),
putchar(), etc.). The original version of _iowrite.c

Figure 4. Tool Chain Integration Window

Tool Chain Integration ' x|

r— Tool Definition

Select Tool Yendor: ITasking j

Assembler Compiler I Linker I

Executable: |c:\cc51 \binhcohl exe

Browse |

Command line flags:
fa1e00

Help | Cancel | 0K I

Fieset Defaults |

is located at C:\cc51\lib\src. The version of 3. Add the following option to the Command line
_iowrite.c included with AN043SW.zip has been flags box:
modified to output data through UARTO.
Table 2. Files needed by Example 1
Data_Logger_RTC.c -Ml
_iowrite.c
The following steps show how to configure Exam- The -MI option instructs the compiler to use the
ple 1 using the Silicon Labs IDE: large memory model, which stores data objects
in the on-chip external memory of the
1. Start the Silicon Labs IDE and add the files C8051F12x device. The large memory model
listed in Table 2 to a new project. must be used to allocate enough space for all
variables in the Example 1 code.
2. Open the Tool Chain Integration window from
the Project menu and select “Tasking” in the 4. Select the Linker tab and Change the fOllOWing
Select Tool Vendor box. For each tab (Assem- Linker option in the Command line flags box:
bler, Compiler, and Linker), select the correct
Tasking tool (asm5l.exe, cc5l.exe, and
link51.exe, respectively). For more information
on integrating Tasking tools into the Silicon Change -Ic51s
Labs IDE, see “Application Note 126: Integrat-
ing Tasking 8051 Tools into the Silicon Labs
IDE.” Select the Compiler tab as shown in
Figure 4. to:
-le511
4 Rev. 1.1 @

SILICON LABORATORIES

http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf

AN143

This option instructs the linker to use the large
memory model version of the C51 library
(c511.1ib).

5. Under the ‘Project’ menu select ‘Target Build
Configuration’ to bring up the dialog box
shown in Figure 5 on the next page.

Figure 5. Target Build Configuration
Window

Target Build Configuration x|

Abzolute OMF file name: IEode\E wample_1%Data_Logger_RTC.omf Browse |

% Define Build Process Customize |

7 Execute batch file on Build Cormmand

r— Download File Generation

Browse |

Batch file name: I

—Additional Option:
V¥ Enable automatic save for project files before build.

[T Enable automatic conmect/download after build,

o]

6. To customize an output file name or create a
new output file name, click the Browse button
next to the ‘Absolute OMF file name:’ edit box.
Select a path and enter a file name with “.omf”
as the file name extension. The output file must
have the “.omf” extension, because this exten-
sion ensures that the Tasking tools will convert
the output file to OMF format.

Help | Fieset Defaults | Cancel |

7. Click the ‘Customize’ button to bring up the
‘Project Build Definition” window. This win-
dow allows selection of the files to be included
in the build process. Although default assem-
ble, compile, and link selections will be made,
ensure that all files have been correctly
included in the build process. Under each tab,
add files to compile or link by selecting the
desired file and clicking the ‘Add’ button. Files
are removed in the same manner. Table 3 illus-
trates which files should be compiled and
linked for Software Example 1. No files will be

assembled in this example.

Table 3. Project Build Definition for Example 1

Files to Compile Files to Link

Data_Logger RTC | Data_Logger RTC
.C .0bj

_iowrite.c _iowrite.obj

8. Build the project by selecting ‘Build/Make
Project’ from the Project menu.

Project-Managed Bank
Switching for Code-
Intensive Applications

The Tasking 8051 development tools support code
banking. It is recommended to use the code bank-
ing capability of the tools for projects containing
more than 64KB of program code. The tools also
allow the user to expand 64KB projects to 128KB
without modifying existing modules.

To use the Tasking 8051 tools for code banking, the
project needs to be configured for code banking.
The configurations required for code banking are
supported in Version 1.83 and later of the Silicon
Labs IDE. Step-by-step instructions on how to con-
figure a Silicon Labs IDE project for code banking
are included in Example 2.

Tasking tools divide the source code into logical
pieces of code and data called segments. Each seg-
ment is assigned a name and a memory type. The
Linker implements code banking by assigning each
segment to a code bank. The user specifies code
bank assignments by means of Linker options and
controls.

The “-banks” option is used to specify the number
of code banks on the device. Silicon Labs
C8051F12x devices have four code banks (Com-
mon Area, Bank 1, Bank 2, and Bank 3), so the
user should add “-banks 4 to the Linker command

SILICON LABORATORIES

Rev. 1.1 5

AN143

line. Additionally, the size of the Common area is
specified using the “~-common” option. For Silicon
Labs C8051F12x devices, “-common 8000H”
should be added to the Linker command line to
designate a Common bank size of 32KB.

The COMMON and BANK Linker controls are used
to assign segments to code banks. The COMMON
control is written in the form:

COMMON(segment/[(address)]),

where segment is placed in the common area. If
addpress is specified, then segment will be placed at
that absolute address. Otherwise, the linker will
automatically determine the location of segment.
The BANK control is invoked in the form:

BANK (bank, segment/[(address)]).

BANK works in the same manner as COMMON,
except the bank in which segment will be placed
must be specified as bank.

Segment names can be found in the source (.src)
files generated by the compiler. They generally
take the form of:

module _segment _memoryspace.

Code banked projects must contain one or more
source files. In addition to source files, all projects
configured for code banking must include a code
banked version of ‘stub.asm,” which is included
with the software examples for this application
note, AN043SW.zip.

Example 2: Project-Managed
Code Banking

This example shows how to set up a code banked
project using the Silicon Labs IDE and the Tasking
development tools. It uses Timer 3 and Timer 4
interrupts to blink the LED and output a 1 kHz sine
wave on DACI, respectively. The code that blinks
the LED is located in Bank 3, and the code that out-

puts a sine wave is located in Bank 2. Since inter-
rupts must be located in the Common area, both
interrupts call a function in one of the banks to per-
form the desired task.

This example contains three source files and the
code banked version of stub.asm, as listed in
Table 4.

Table 4. Files needed by Example 2

common.c
bank2.c
bank3.c

stub.asm

Step by Step Instructions on
Configuring Example 2 Using the
Silicon Labs IDE

The following steps show how to configure the
code banked example project using the Silicon
Labs IDE.

1. Start the Silicon Labs IDE and add the files
listed in Table 4 to a new project.

2. Open the Tool Chain Integration window from
the Project menu and select “Tasking” in the
Select Tool Vendor box. For each tab (Assem-
bler, Compiler, and Linker), select the correct
Tasking tool (asm5l.exe, cc5l.exe, and
link51.exe, respectively). For more information
on integrating Tasking tools into the Silicon
Labs IDE, see “Application Note 126: Integrat-
ing Tasking 8051 Tools into the Silicon Labs
IDE.” Select the Linker tab as shown in
Figure 6 on the next page.

6 Rev. 1.1

SILICON LABORATORIES

http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf

AN143

Figure 6. Tool Chain Integration
Window
Tool Chain Integration 1' PRINT(example2.15 1)

— Tool Definition

Select Tool Yendor: I Tasking j

Assemblerl Corpiler Linker |

E Hle: |C:hechlsbinklink51.exe] .

recuati | [oo | This control generates a map file called

C d line flags: :

e e example2.151. The map file gives a memory

| 40513 Rs(256)
map of example2.omf, including information

regarding segment location.

Help | Feset Defaults Cancel | ok I

6. The code segments in each module have been
placed in code banks according to Table 5.
3. Add the following Linker options to the Com-

mand line flags box: Table 5. Code Bank Selection for Example 2

Filename Code Bank

common.obj Common area
-banks 4 -common 8000H bank2.0bj Bank 2
bank3.0bj Bank 3

This specifies a device with four code banks stub.asm Common area

and a Common area size of 32 KB.
NOTE: It is not mandatory that code be dev-

4. Assign segments to their respective code banks. ided into separate modules according to code
Add the following Linker controls to the Com- bank assignment. It has been done this way in
mand line flags box: this example for the sake of simplicity.

7. Under the ‘Project’ menu select ‘Target Build
Configuration’ to bring up the dialog box
BANK(3, BANK3 TOGGLE LED PR) shown in Figure 7.

BANK(2, BANK2 SET DACI1_PR) Figure 7. Target Build Configuration Win-
dow

Target Build Configuration ﬂ

r~ Diownload File Generation

Absalute OMF file name: IC:\Appnotes\ANU43\Code\example2.omf Browse |

This places the Toggle LED() function in Bank
3 and the Set DACI1() function in Bank 2. All © Do BuidFroces | Cusence |

segments whose code banks are not specified ‘ E“ECB“:C:‘?:::;:”BI“"dE”mm"‘"d e |
by Linker controls are placed in the Common '

area by default. ~ Additional Options

V¥ Enable automatic save for project files before build.

[T Erable automatic connect/download after build.

5. If you wish to generate a map file, add the
PRINT Linker control in the following format: Hep | RiesstDefauls Cancel | K|

®
@ Rev. 1.1 7

SILICON LABORATORIES

AN143

8. To customize an output file name or create a
new output file name, click the Browse button
next to the ‘Absolute OMF file name:’ edit box.
Select a path and enter a file name with “.omf”
as the file name extension. The output file must
have the “.omf” extension, because this exten-
sion ensures that the Tasking tools will convert
the output file to OMF format.

9. Click the ‘Customize’ button to bring up the
‘Project Build Definition” window. This win-
dow allows selection of the files to be included
in the build process. Although default assem-
ble, compile, and link selections will be made,
ensure that all files have been correctly
included in the build process. Under each tab,
add files to assemble, compile, or link by
selecting the desired file and clicking the ‘Add’
button. Files are removed in the same manner.
Table 6 illustrates which files should be assem-
bled, compiled, and linked for Software Exam-
ple 2.

Table 6. Project Build Definition for Example 2

Files to Files to Files to
Assemble Compile Link
stub.asm | common.c | common.obj
bank2.c bank2.obj
bank3.c bank3.obj
stub.obj

10. Build the project by selecting ‘Build/Make
Project’ from the Project menu.

11. If the project has been configured to generate a
map file, an ‘example2.151° map file will be
generated in the project folder. Inspect this file
to verify that functions have been located in the
proper bank. You should also notice that the
constant code variable sine table (which is
given the segment name C5/ CO by default) in
‘bank2.c’ has been located in Bank 2. The
Tasking linker automatically puts C5/ CO in

Bank 2 because the only segment that refer-
ences it, BANK2 SET DACI PR, is located in
Bank 2. Refer to the Tasking linker manual for
a description of the L51 file.

Code Bank Assignment
Considerations

Assigning files to code banks is a straightforward
procedure; however, determining the best place-
ment of functions in code banks is largely depen-
dant on the nature of the project. This section
outlines some guidelines to follow when assigning
code banks.

The Common area is accessible by all code banks
at all times. It is important to keep all code that
must always be accessible in the Common area. For
example, reset and interrupt vectors, interrupt ser-
vice routines, code constants, bank switch code,
and library functions should always be located in
the Common area.

Assigning Code Banks for Maximum
Performance

Code bank switching does not significantly affect
the performance of most systems; however, to
achieve maximum performance in time critical
applications, programs should be structured so that
frequent bank switching is not necessary. Bank
switch code is not generated when the function
being called resides in the Common area or in the
same bank as its calling function. Placing fre-
quently accessed functions or functions called from
different banks in the Common area is essential to
achieve maximum performance in time critical
applications.

Code Constants

Code constants (strings, tables, etc.) should be
located in the Common area unless all of the seg-
ments that reference them are in the same code
bank. The Common area is the best location for

8 Rev. 1.1

SILICON LABORATORIES

AN143

code constants in most applications, because they
can be accessed from any bank using the MOVC
instruction. If the Common area is not large enough
to accommodate all code constants, they may be
placed in one of the code banks. In this case, how-
ever, they may only be accessed from code execut-
ing in the same bank or the common area. They
may not be accessed from code executing in
another bank, because the linker sets the constant
code bank to the same bank as the instruction fetch
bank. Constant data in a code bank may be
accessed from the common area only if the bank in
which it resides is the currently selected bank.

Bank Switch Macro Details

The version of ‘stub.asm’ included with
ANO043SW.zip implements code banking by writ-
ing to the PSBANK register. The PSBANK register
contains two bank selects, COBANK for constant
data, and IFBANK for instruction fetches. Using
‘stub.asm,” the COBANK and IFBANK always
target the same code bank. This is why constant
code tables must be located in the Common area or
in the bank that accesses them.

The bank switch code in ‘stub.asm’ may be
changed to keep COBANK fixed regardless of the
value of IFBANK. This would allow the user to
dedicate one bank for constant data operations
while using the other two banks for instruction
fetches only. This dedicated bank would be avail-
able to code executing in any bank or the Common
area.

The Common area may always be used for both
instruction fetches and data storage regardless of
the PSBANK register settings. For more informa-
tion on bank switching, refer to the Tasking Assem-
bler/Linker manual.

®
@ Rev. 1.1

SILICON LABORATORIES

AN143

Example 1: User-Managed Code Banking (Data Logger with Real-
Time Clock)

/e
// Data_Logger RTC.c

/mm e e
// Copyright 2002 Cygnal Integrated Products, Inc.

//

// AUTH: FB, JM

// DATE: 03 SEP 03

//

//

// This application uses a 22.1184 MHz crystal oscillator to implement a

// software real-time clock (RTC). PCA Module 0, configured to count Timer O
// overflows in software timer mode, generates an interrupt every second.

// The interrupt handler records the current time and device temperature

// in a non-volatile log in FLASH.

//

// With SYSCLK at 49.7664 MHZ, Timer 0 in mode 2 overflows exactly 4050 times
// every second when clocked by SYSCLK/48. PCAO, clocked by Timer 0 overflows,
// 1s programmed to generate an interrupt every 4050 Timer 0 overflows,

// or once every second.

//

// The 112,640 byte log cycles through all 4 code banks recording time and

// temperature. Each data record is 8 bytes long. The log is capable of storing
// 14080 records over a time period of 3.9 hours. Once the log is full, it

// continues logging at the beginning of log, erasing the FLASH page with

// the oldest data as it progresses.

//

// When this code is built, the linker generates two multiple call to segments
// warnings. These warnings are generated because the FLASH support routines
// are called from the main routine and from interrupts. These warnings have
// been accounted for in the code by disabling interrupts before calling any
// FLASH support routines.

//

//

// Target: C8051F12x

// Tool chain: TASKING CC51 7.0 / TASKING EVAL CC51

//
/-
// Includes
e et ittt bl
#include "regc51fl2x.sfr" // SFR declarations

#include <stdio.h> // printf () and getchar ()

/* SFR PAGE DEFINITIONS */

#define CONFIG_PAGE 0x0F /* SYSTEM AND PORT CONFIGURATION PAGE */
#define LEGACY PAGE 0x00 /* LEGACY SFR PAGE */

#define TIMERO1l PAGE 0x00 /* TIMER 0 AND TIMER 1 */

#define CPTO PAGE 0x01 /* COMPARATOR 0 */

#define CPT1 PAGE 0x02 /* COMPARATOR 1 */

#define UARTO PAGE 0x00 /* UART 0 */

#define UART1 PAGE 0x01 /* UART 1 */

#define SPIO PAGE 0x00 /* SPI 0 */

#define EMIO PAGE 0x00 /* EXTERNAL MEMORY INTERFACE */

#define ADCO_ PAGE 0x00 /* ADC 0 */

10 Rev. 1.1

SILICON LABORATORIES

AN143

#define ADC2 PAGE 0x02
#define SMBO_ PAGE 0x00
#define TMR2 PAGE 0x00
#define TMR3_PAGE 0x01
#define TMR4 PAGE 0x02
#define DACO_ PAGE 0x00
#define DACl1l PAGE 0x01
#define PCAO_PAGE 0x00
#define PLLO PAGE 0x0F
#define MACO_PAGE 0x03

typedef union UInt {
unsigned int Int;
unsigned char Char[2];
} UlInt;

typedef union Long {
long Long;
unsigned int Int[2];
unsigned char Char([4];
} Long;

typedef union ULong {
unsigned long ULong;
unsigned int Int[2];
unsigned char Char[4];
} ULong;

typedef struct Record {
char start;
unsigned int hours;
unsigned char minutes;
unsigned char seconds;
unsigned int ADC result;
char end;

} Record;

// Global CONSTANTS

#define TRUE 1
#define FALSE 0
#define EXTCLK 22118400
#define SYSCLK 49766400
#define BAUDRATE 115200
#define SAMPLERATE 2000
_sfrbit LED atbit(P1l, 6);
_sfrbit SW2 _atbit(P3, 7);

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

ADC

2 %/

SMBUS 0 */
TIMER 2 */
TIMER 3 */
TIMER 4 */

DAC
DAC
PCA
PLL
MAC

//

!/

!/

//

//
//
!/

//
//
//
//
//

!/

//
//

*/
*/
*/
*/
*/

O O O O

Byte addressable unsigned int

Byte addressable long

Byte addressable unsigned long

LOG record structure

External oscillator frequency in Hz
Output of PLL derived from
(EXTCLK*9/4)

Baud rate of UART in bps

Note: The minimum standard baud rate
supported by the UARTO Init routine
in this file is 19,200 bps when
SYSCLK = 49.76MHz.

The ADC sampling rate in Hz

LED="1"
SwW2="0"

means ON
means switch pressed

SILICON LABORATORIES

Rev. 1.1 11

AN143

#define LOG_START 0x04000L // Starting address of LOG

#define LOG_END 0x1F800L // Last address in LOG + 1

#define RECORD_LEN 8 // Record length in bytes

#define START OF RECORD ':' // Start of Record symbol

#define FLASH PAGESIZE 1024 // Number of bytes in each FLASH page
#define COBANK 0xFO // Bit mask for the high nibble of PSBANK
#define COBANKO 0x00 // These macros define the bit mask values
#define COBANK1 0x10 // for the PSBANK register used for
#define COBANK2 0x20 // selecting COBANK. COBANK should always
#define COBANK3 0x30 // be cleared then OR-Equaled (|=) with

// the proper bit mask to avoid changing
// the other bits in the PSBANK register

/)
// Global VARIABLES
J e R
unsigned char SECONDS = 0; // global RTC seconds counter
unsigned char MINUTES = 0; // global RTC minutes counter
unsigned int HOURS = 0; // global RTC hours counter
unsigned int ADC_RESULT = 0; // holds the oversampled and averaged
// result from ADCO
bit LOG FLAG = 0; // this flag is used to enable
// and disable logging but does
// not affect the real-time clock
bit LOG ERASED = 0; // this flag indicates that the

// LOG has been erased.

void main (void) ;
void RTC update(void) ;
void print menu(void);

// initialization routines

void SYSCLK_Init (void) ;

void PORT Init (void);

void UARTO Init (void);

void ADCO Init (void);

void Timer3 Init (int counts);

void RTC Init (void);

interrupt (9) void PCAO ISR (void);

// FLASH support routines

void FLASH PageErase (unsigned long addr);

void FLASH Write (unsigned long dest, char* src, unsigned int numbytes);
void FLASH ByteWrite (unsigned long dest, char dat);

void FLASH Read (char* dest, unsigned long src, unsigned int numbytes);
unsigned char FLASH ByteRead (unsigned long addr);

12 Rev. 1.1

SILICON LABORATORIES

AN143

// LOG support routines

void print time (void);

void LOG erase(void);

unsigned long find current record(void);
void LOG print(char all at once);

void LOG update (void) ;

// Get Key function: Returns the keystroke
char Get Key():

void main (void)

{

//
//

#define input str len 4
char input str[input str len];

WDTICN = Oxde; //
WDTCN = Oxad;
PORT Init (); //
SYSCLK Init (); //
UARTO Init (); //
ADCO Init(); //
RIC Init (); //
Timer3 Init (SYSCLK/SAMPLERATE); //
//

//
//

EA //

1;

//

print menu();

(1) {

while

SEFRPAGE UARTO_PAGE;
printf ("\nEnter a command > ");
input str[0] Get Key ()

buffer to hold characters entered
at the command prompt

disable watchdog timer

initialize
initialize
initialize
initialize

crossbar and GPIO
oscillator

UARTO

ADCO

initializes Timer0O and the PCA

initialize

Timer3 to overflow

and generate interrupts at
<SAMPLERATE> Hz

to implement a real-time clock

enable global interrupts

print the command menu

putchar (input str[0]);// Echo keystroke

putchar ('\n'");

switch (input str[0]){
case 'l': LOG FLAG = 1;
SFRPAGE = UARTO_ PAGE;
printf ("\nLogging has
break;
case '2': LOG _FLAG = 0;
SFRPAGE = UARTO_ PAGE;

printf ("\nLogging has

now started.\n");

now stopped.\n");

SILICON LABORATORIES

Rev. 1.1

13

AN143

break;

case '3': LOG FLAG = 0;
LOG erase();
SFRPAGE = UARTO_PAGE;
printf ("\nThe log has been erased and logging is stopped.\n");
break;

case '4': LOG print (FALSE);
print menu() ;
break;

case '5': LOG print (TRUE) ;
print menu();
break;

case '6': print time();
break;

case '?': print menu();
break;

default: if(input str[0] != 0x03)
printf ("\nIllegal Command.\n");
break;

} // end while

void RTC_update (void)
{
SECONDS++;
if (SECONDS == 60) {
SECONDS = 0;
MINUTES++;
if (MINUTES == 60) {
MINUTES = 0;
HOURS++;

14 Rev. 1.1

SILICON LABORATORIES

AN143

// This function erases the FLASH page containing <addr>.
//
void FLASH PageErase (unsigned long addr)

{

char SFRPAGE SAVE = SFRPAGE; // Preserve current SFR page

char PSBANK SAVE = PSBANK; // Preserve current code bank

bit EA SAVE = EA; // Preserve interrupt state

char xdat * pwrite; // FLASH write/erase pointer

ULong temp addr; // Temporary ULong

temp addr.ULong = addr; // copy <addr> to a byte addressable

// unsigned long

// Extract address information from <addr>
pwrite = (char xdat *) temp addr.Int[1];

// Extract code bank information from <addr>

PSBANK &= ~COBANK; // Clear the COBANK bits
if (temp addr.Char[l] == 0x00) { // If the address is less than
// 0x10000, the Common area and
PSBANK |= COBANK1; // Bankl provide a 64KB linear
// address space
} else { // Else, Bank2 and Bank3 provide

// a 64KB linear address space

if (temp addr.Char[2] & 0x80) { // If bit 15 of the address is
// a '1', then the operation should
PSBANK |= COBANK3; // target Bank3, else target Bank2
} else {
PSBANK |= COBANK2;
temp addr.Char([2] |= 0x80;
pwrite = (char xdat *) temp addr.Int[1l];

SFRPAGE = LEGACY PAGE;

EA = 0; // Disable interrupts

FLSCL |= 0x01; // Enable FLASH writes/erases
PSCTL = 0x03; // MOVX erases FLASH page
*pwrite = 0; // Initiate FLASH page erase
FLSCL &= OxFE; // Disable FLASH writes/erases
PSCTL = 0x00; // MOVX targets XRAM

EA = EA SAVE; // Restore interrupt state
PSBANK = PSBANK SAVE; // Restore current code bank
SFRPAGE = SFRPAGE SAVE; // Restore SFR page

// FLASH Write

Rev. 1.1

SILICON LABORATORIES

15

AN143

//

// This routine copies <numbytes> from <src> to the FLASH addressed by <dest>.

//

void FLASH Write (unsigned long dest, char* src, unsigned int numbytes)

{
unsigned int i; //
for (i = 0; i < numbytes; i++) {

FLASH ByteWrite(dest++, *src++);

//

// This routine writes <dat> to the FLASH
//

void FLASH ByteWrite (unsigned long dest,
{

char SFRPAGE SAVE = SFRPAGE; //
char PSBANK SAVE = PSBANK; !/
bit EA SAVE = EA; //

ULong temp dest; //
char xdat * pwrite;

temp dest.ULong = dest; //

Software Counter

byte addressed by <dest>.
char dat)

Preserve current SFR page
Preserve current code bank

Preserve interrupt state

Temporary ULong

// FLASH write/erase pointer

copy <dest> to a byte

// addressable unsigned long

// Check if data byte being written is OxFF

// There is no need to write OxFF to FLASH since erased
// FLASH defaults to OxFF.

if (dat != OxFF) {

// Extract address information from <dest>
pwrite = (char xdat *) temp dest.Int[1l];

// Extract code bank information from <addr>
PSBANK &= ~COBANK; // Clear the COBANK bits

if (temp dest.Char[l] == 0x00){ // If the address is less than
// 0x10000, the Common area and
PSBANK |= COBANK1; // Bankl provide a 64KB linear
// address space
} else { // Else, Bank2 and Bank3 provide

// a 64KB linear address space
if (temp dest.Char[2] & 0x80){// If bit 15 of the address is
// a '1', then the operation should
PSBANK |= COBANK3; // target Bank3, else target Bank2

} else {

16 Rev. 1.1

SILICON LABORATORIES

AN143

PSBANK |= COBANK2;
temp dest.Char[2] [|= 0x80;
pwrite = (char xdat *) temp dest.Int[1l];

SFRPAGE = LEGACY PAGE;

EA = 0; // Disable interrupts
FLSCL |= 0x01; // Enable FLASH writes/erases
PSCTL = 0x01; // MOVX writes FLASH byte
*pwrite = dat; // Write FLASH byte
FLSCL &= OXFE; // Disable FLASH writes/erases
PSCTL = 0x00; // MOVX targets XRAM
}
EA = EA SAVE; // Restore interrupt state
PSBANK = PSBANK SAVE; // Restore current code bank
SFRPAGE = SFRPAGE_ SAVE; // Restore SFR page
}
[m e -
// FLASH Read
/e
//

// This routine copies <numbytes> from FLASH addressed by <src> to <dest>.
//

void FLASH Read (char* dest, unsigned long src, unsigned int numbytes)

{
unsigned int i; // Software Counter
for (i = 0; i < numbytes; i++) {

*dest++ = FLASH ByteRead(src++);

//
// This routine returns to the value of the FLASH byte addressed by <addr>.

//
unsigned char FLASH ByteRead (unsigned long addr)

{

char SFRPAGE SAVE = SFRPAGE; // Preserve current SFR page

char PSBANK SAVE = PSBANK; // Preserve current code bank

ULong temp addr; // Temporary ULong

char temp char; // Temporary char

char rom * pread; // FLASH read pointer

temp addr.ULong = addr; // copy <addr> to a byte addressable

// unsigned long

Rev. 1.1 17

SILICON LABORATORIES

AN143

1/
//
Vo

{

// Extract address information from <addr>
pread = (char rom *) temp addr.Int[1l];

// Extract code bank information from <addr>

PSBANK &= ~COBANK; // Clear the COBANK bits
if (temp_addr.Char[l] == 0x00) { // If the address is less than
// 0x10000, the Common area and
PSBANK |= COBANKL1; // Bankl provide a 64KB linear
// address space
} else { // Else, Bank2 and Bank3 provide

// a 64KB linear address space

if (temp_addr.Char[2] & 0x80) { // If bit 15 of the address is
// a '1', then the operation should

PSBANK |= COBANK3; // target Bank3, else target Bank2
} else {
PSBANK |= COBANK2;
temp addr.Char[2] = 0x80;
pread = (char rom *) temp addr.Int[1];
}
}
temp char = *pread; // Read FLASH byte
PSBANK = PSBANK SAVE; // Restore current code bank
SFRPAGE = SFRPAGE SAVE; // Restore SFR page

return temp char;

This routine uses prints the command menu to the UART.
id print menu(void)
char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page

SFRPAGE = UARTOiPAGE;
printf ("\n\nC8051F12x Data Logging Example\n");

(
("1. Start Logging\n");

("2. Stop Logging\n");

("3. Erase Log\n");

printf ("4. Print Log (one page at a time - Press CTRL+C to stop)\n");
("5. Print Log (all at once - Press CTRL+C to stop)\n");

("6. Print Elapsed Time Since Last Reset\n");
("?. Print Command List\n");

18

Rev. 1.1

SILICON LABORATORIES

AN143

SFRPAGE = SFRPAGE SAVE; // Restore SFR page

//
// This routine uses prints the elapsed time since the last reset to the UART.
//
void print time (void)
{
char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page
bit EA SAVE = EA; // Preserve interrupt state

SFRPAGE = UARTO_PAGE;

EA = 0;

printf ("%05u:", HOURS) ;
printf ("%02u:", MINUTES) ;
printf ("%02u", SECONDS) ;

EA = EA SAVE;

SFRPAGE = SFRPAGE SAVE; // Restore SFR page
1
/== e
// find current record
/oo
//
//

unsigned long find current record(void)

{

char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page

bit EA _SAVE = EA; // Preserve interrupt state
unsigned long pRead = LOG_START; // Pointer used to read from FLASH
unsigned int i; // Software counter

bit record erased; // Temporary flag

// Keep skipping records until an uninitialized record is found or
// until the end of the log is reached
while (pRead < LOG END) {

EA = 0;
// Skip all records that have been initialized
if (FLASH ByteRead (pRead) == START OF RECORD) {

// increment pRead to the next record
pRead += RECORD LEN;

EA = EA SAVE;

continue;

// Verify that the Record is uninitialized, otherwise keep
// searching for an uninitialized record

record erased = 1;

for(i = 0; 1 < RECORD LEN; i++) {

Rev. 1.1 19

SILICON LABORATORIES

AN143

if (FLASH ByteRead(pRead+i) != OxFF) {
record erased = 0;
}
}
if (!record erased) {
// increment pRead to the next record
pRead += RECORD LEN;
EA = EA SAVE;
continue;

EA = EA SAVE;

// When this code is reached, <pRead> should point to the beginning
// of an uninitialized (erased) record;

SFRPAGE = SFRPAGE SAVE; // Restore SFR page

return pRead;

// This code is reached only when there are no uninitialized records
// in the LOG. Erase the first FLASH page in the log and return
// a pointer to the first record in the log.

EA = 0;

FLASH PageErase (LOG_START) ; // Erase the first page of the LOG
EA = EA SAVE;

SFRPAGE = SFRPAGE SAVE; // Restore SFR page

return LOG_START;

e e e
// LOG_erase
/-
//
//
void LOG erase (void)
{

unsigned long pWrite = LOG_START; // pointer used to write to FLASH

bit EA SAVE = EA; // save interrupt status

// Keep erasing pages until <pWrite> reaches the end of the LOG.
while (pWrite < LOG END) {

EA = 0;
FLASH PageErase (pWrite);
EA = EA SAVE;

pWrite += FLASH PAGESIZE;

LOG_ERASED = 1; // flag that LOG has been erased

20 Rev. 1.1

SILICON LABORATORIES

AN143

void LOG print(char all at once)
{

char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page

char user command;

bit EA SAVE = EA; // save interrupt status

unsigned long pRead = LOG_START; // Pointer used to read from FLASH
Record temp rec; // Temporary record

// Keep printing records until the end of the log is reached
while (pRead < LOG _END) {

// Copy a record from at <pRead> from the LOG into the local
// Record structure <temp rec>

EA = 0;

FLASH Read((char*) &temp rec, pRead, RECORD LEN) ;

EA = EA SAVE;

// Validate Record

if (temp_rec.start != ':"){
SFRPAGE = SFRPAGE SAVE; // Restore SFR page
return;

// Print the Record
SFRPAGE = UARTO_PAGE;

RIO = 0; // Clear UART Receive flag
// to later check for the
// user pressing CTRL+C

EA = 0; // disable interrupts
printf ("$05u:", temp rec.hours);

printf ("$02u:", temp rec.minutes);

printf ("%02u:", temp rec.seconds);

printf (" ADC = 0x%04X\n", temp rec.ADC result);

EA = EA SAVE; // restore interrupts

// any pending interrupts will
// be handled immediatly
// check if we need to continue

// if printing all data at once do not stop printing unless
// the user presses CTRL+C, otherwise print 16 records and
// then prompt user to press any key

if (all _at once) {
// Check if user has pressed CTRL+C

if(RIO && SBUFO == 0x03) {
RIO = 0;
printf ("\nLog print terminated.\n");
SFRPAGE = SFRPAGE SAVE; // Restore SFR page
return;

// pause every 16 lines
} else if((pRead & ((RECORD_LEN*16)-1)) == 0 &&

Rev. 1.1 21

SILICON LABORATORIES

AN143

pRead > (LOG START + RECORD LEN)) {

// wait for a key to be pressed then check if user has
// pressed CTRL+C (0x03)

printf ("\npress any key to continue\n");

user command = Get Key();

if (user command == 0x03) {
printf ("\nLog print terminated.\n");
SFRPAGE = SFRPAGE SAVE; // Restore SFR page
return;

// increment pRead to the next record
pRead += RECORD LEN;

SFRPAGE = SFRPAGE SAVE; // Restore SFR page

void LOG update (void)

{

bit EA SAVE = EA; // Preserve interrupt state
Record temp record; // local LOG record structure

static unsigned long pWrite = LOG_START;

// pointer used to write to the LOG
bit record erased; // temporary flag
unsigned int i; // temporary integer

// record the time and ADC reading in the LOG if logging is enabled
if (LOG_FLAG) {

if (LOG_ERASED) {
pWrite = LOG START;
LOG_ERASED = 0;

} else {

// find the current record if the record at pWrite is not erased
record erased = 1;
for(i = 0; 1 < RECORD_LEN; i++) {
EA = 0;
if (FLASH ByteRead(pWrite+i) != OxFF) {
record erased = 0;
}
EA = EA SAVE;
}
if (!record erased) {
pWrite = find current record();

22

Rev. 1.1

SILICON LABORATORIES

AN143

// build the temporary record

temp record.start = START OF RECORD;
temp record.hours = HOURS;

temp record.minutes = MINUTES;

temp record.seconds SECONDS;

temp record.ADC result = ADC RESULT;

// write the temporary record to FLASH

EA = 0;

FLASH Write(pWrite, (char*) &temp record, RECORD LEN) ;
EA = EA SAVE;

// increment record pointer
pWrite += RECORD LEN;

// if <pWrite> is past the end of the LOG, reset to the top
if (pWrite >= LOG_END) {
pWrite = LOG_START;
}
} // end else
} // end if (LOG_FLAG)

//

// This routine returns the keystroke as a char

//

char Get Key()
{

char c;

while (!RIO);
c = SBUFO;
RIO = 0;

return (c);

// This routine initializes the system clock to use an external 22.1184 MHz
// crystal oscillator multiplied by a factor of 9/4 using the PLL as its
// clock source. The resulting frequency is 22.1184 MHz * 9/4 = 49.7664 MHz

Rev. 1.1

SILICON LABORATORIES

23

AN143

void SYSCLK Init (void)

{

int i;
char SFRPAGE_SAVE = SFRPAGE;
SFRPAGE = CONFIG_ PAGE;

OSCXCN = 0x67;

for (i=0; 1 < 256; i++) ;
while (! (OSCXCN & 0x80)) ;

CLKSEL = 0x01;

OSCICN = 0x00;

//

/7

//

/7
//

//

/7

//
//

//

delay counter
Save Current SFR page
set SFR page

start external oscillator with
22.1184MHz crystal

Wait for osc. to start up
Wait for crystal osc. to settle

Select the external osc. as
the SYSCLK source

Disable the internal osc.

//Turn on the PLL and increase the system clock by a factor of M/N = 9/4

SFRPAGE = CONFIG_PAGE;

PLLOCN 0x04;
SFRPAGE = LEGACY PAGE;
FLSCL 0x10;

SFRPAGE = CONFIG_PAGE;
PLLOCN |= 0x01;
PLLODIV 0x04;
PLLOFLT = 0x01;

PLLOMUL

0x09;

for (i=0; 1 < 256; i++) ;

PLLOCN |= 0x02;
while (! (PLLOCN & 0x10));
CLKSEL = 0x02;

SFRPAGE = SFRPAGE SAVE;

//

/7
/7

//
//
//
/7
/7
//

/7
/7
/7
/7

//

Set PLL source as external osc.

Set FLASH read time for 50MHz clk
or less

Enable Power to PLL

Set Pre-divide value to N (N = 4)
Set the PLL filter register for

a reference clock from 19 - 30 MHz
and an output clock from 45 - 80 MHz
Multiply SYSCLK by M (M = 9)

Wait at least 5us

Enable the PLL

Wait until PLL frequency is locked
Select PLL as SYSCLK source

Restore SFR page

This routine configures the Crossbar and GPIO ports.

void PORT Init (void)

{

char SFRPAGE SAVE = SFRPAGE;

SFRPAGE = CONFIG_ PAGE;

XBRO = 0x04;
XBR1 = 0x00;
XBR2 = 0x40;

//

//

/7

//

Save Current SFR page
set SFR page
Enable UARTO

Enable crossbar and weak pull-up

24

Rev. 1.1

SILICON LABORATORIES

AN143

POMDOUT |= 0x01; // Set TX0 pin to push-pull

P1IMDOUT |= 0x40; // Set P1l.6(LED) to push-pull

SFRPAGE = SFRPAGE SAVE; // Restore SFR page
}
e
// UARTO Init
J e
//

// Configure the UARTO using Timerl, for <baudrate> and 8-N-1. In order to
// increase the clocking flexibility of Timer0O, Timerl is configured to count
// SYSCLKs.

// To use this routine SYSCLK/BAUDRATE/16 must be less than 256. For example,
// 1f SYSCLK = 50 MHz, the lowest standard baud rate supported by this
// routine is 19,200 bps.

void UARTO Init (void)

{
char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page

SFRPAGE = UARTOiPAGE;
SCONO 0x50; // SCONO: mode 0, 8-bit UART, enable RX

SSTAO0 = 0x10; // Timer 1 generates UARTO baud rate and
// UARTO baud rate divide by two disabled

SFRPAGE = TIMEROI_PAGE;
TMOD &= ~0xFO0;
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload

TH1 = - (SYSCLK/BAUDRATE/16) ; // Set the Timerl reload value
// When using a low baud rate, this equation
// should be checked to ensure that the
// reload value will fit in 8-bits.

CKCON |= 0x10; // TIM = 1; SCAl:0 = xx
TL1 = THI1; // initialize Timerl
TR1 = 1; // start Timerl

SFRPAGE = UARTO_ PAGE;

TIO = 1; // Indicate TX0 ready

SFRPAGE = SFRPAGE SAVE; // Restore SFR page
}
/e
// ADCO_Init
f e
//

// Configure ADCO to start conversions on Timer3 Overflows and to
// use left-justified output mode.

void ADCO Init (void)
{

Rev. 1.1 25

SILICON LABORATORIES

AN143

char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page
SFRPAGE = ADCO_PAGE;

ADCOCN

0x85; // ADCO enabled; normal tracking
// mode; ADCO conversions are initiated
// on Timer3 overflows; ADCO data is
// left-justified

REFOCN = 0x07; // enable temp sensor, on-chip VREF,
// and VREF output buffer

AMX0SL = 0xO0F; // Select TEMP sens as ADC mux output

ADCOCF = ((SYSCLK/2500000) << 3);// ADC conversion clock = 2.5MHz

ADCOCF |= 0x01; // PGA gain = 2

EIE2 |= 0x02; // Enable ADCO End-of-conversion
// interrupts

SFRPAGE = SFRPAGE SAVE; // Restore SFR page
}
/e
// Timer3 Init
J e

// This routine initializes Timer3 in auto-reload mode to overflow
// at intervals specified in <counts>.

//
void Timer3 Init (int counts)
{
SFRPAGE = TMR3_PAGE;
TMR3CN = 0; // STOP timer; set to auto-reload mode
TMR3CF = 0x08; // Timer3 counts SYSCLKs
RCAP3L = -counts;
RCAP3H = (-counts) >> 8;// Set reload value
TMR3L = RCAP3L;
TMR3H = RCAP3H; // Initialize Timer to reload value
TR3 = 1; // start Timer3
}
[mm e e
// RTC Init
[
//

// This Routine initializes TimerO and PCAO to implement a real-time clock.

// Assuming <SYSCLK> is generated from a 22.1184 crystal oscillator, TimerO

// overflows exactly 1800 times per second when configured as an 8-bit timer

// that uses <SYSCLK>/48 as its timebase. PCA0 is configured to count

// TimerO overflows and interrupt every 1800 TimerO overflows, or every second.
// The PCAO ISR updates a set of global RTC counters for seconds, minutes, hours,
// and days.

void RTC Init (void)

{
char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page

26 Rev. 1.1

SILICON LABORATORIES

AN143

SFRPAGE = T

// configur
TMOD &= OxF
TMOD |= 0x0

IMERO1 PAGE;

e TimerO in Mode2:
0;
2;

8-bit Timer with Auto-Reload
// Clear Timer0O bits

// Mode2 Auto-Reload

// configure Timer0O timebase to <SYSCLK>/48

CKCON &= Ox
CKCON |= 0Ox

FO;
02;

// Clear bits

// Set Timer0 timebase

// configure PCAO0 to count Timer0O overflows

PCAOMD = 0x

04;

!

{

// configure capture/compare module 0 to generate an interrupt when
(0x0FD2)

// the value of PCAQ reaches 4050

//PCAOCPO = 4050
PCAOQCPHO 0x0F;
PCAOCPLO

PCAOCPMO &= ~0xFF;

PCAOCPMO |= 0x49;
EIE1 |= 0x08;

TRO = 1;

PCAOCN |= 0x40;

SFRPAGE = SFRPAGE SAVE;

0xD2;// Set the value to

/7
/7
//
/7
/7
//

//

match

Clear bits
Generate an interrupt when the
PCAO value matches PCAOCPO

Enable PCAO interrupts

Start TimerO
Enable PCAO

Restore SFR page

nterrupt (9) void PCAO ISR (void)

if (CCFO0) {
CCFO = 0;

PCAOL = 0x00;
PCAOH = 0x00;
RTC update();
LOG_update () ;

} else

if (CCF1l) {
CCF1 = 0;

} else

if (CCF2) {
CCF2 = 0;

} else

if (CCF3) {

/7

/7
//
/7

//

//

clear Module0O capture/compare flag

clear the PCA counter
update RTC variables
update LOG if logging is enabled

clear Modulel capture/compare flag

clear Module2 capture/compare flag

31

LICON LABORATORIES

Rev. 1.1 27

AN143

//

CCF3 = 0; // clear Module3 capture/compare flag
} else
if (CCF4) {

CCF4 = 0; // clear Module4 capture/compare flag
} else
if (CCF5) {

CCF5 = 0; // clear Moduleb5 capture/compare flag
} else
if (CF) {

CF = 0; // clear PCA counter overflow flag
}

// This ISR is called on the end of an ADCO conversion.

!/

_interrupt (15) void ADCO ISR (void)

{

Long result

{0} // byte addressable long variable

int 1i;

bit EA SAVE = EA;

//accumulate 256 temperature samples
result.Long += ADCOH;

result.Long += ADCOL;

i++;

if(1 == 256) {

i=0;

// take the average (Divide by 256 = shift right by 8)

// Do this operation "result.Long >>= 8;" (170 SYSCLK cycles) using
// three MOV instructions (9 SYSCLK cycles)

// Assume Most Significant Byte only contains sign information

result.Char[3] result.Char[2];
result.Char[2] result.Char[1];
result.Char[1l] = result.Char[0];

// update global <ADC_ RESULT>
ADC RESULT = result.Int[1l];

/***

|*
|*
|*
|*

| *

File : _ilowrite.c

Version 1.7

28

Rev. 1.1

SILICON LABORATORIES

AN143

|*
|*
|*
|*
|*
|*
|*
|*

*

#1i
#1i
#i

Description : Source file for iowrite() routine
Low level output routine. Is used by all printing
routines.

This routine should be customised.
This file has been customised for Cygnal Application Note 043

Copyright 1999-2003 Altium BV

**/

nclude <stdio.h>
nclude <simio.h>
nclude "regcb5lfl2x.sfr"

#define XON O0Ox11
#define XOFF 0x13

r

i

{
/
/

egparm int
owrite(int ¢, FILE *stream)

/ expands '\n' into CR LF and handles
/ XON/XOFF (Ctrl+S/Ctrl+Q) protocol
if (¢ == '"\n'") {
if (RIO) {
if (SBUF0 == XOFF) {
do {
RIO = 0;

while (!RIO0);
}
while (SBUF0O != XON) ;
RIO = 0;

}
while (!TIO);
TIO = 0;
SBUF0 = 0x0d; /* output CR */
}
if (RIO) {
if (SBUF0 == XOFF) {
do {
RIO = 0;
while (!RIO);
}
while (SBUF0O != XON) ;
RIO = 0;

}

while (
TIO = 0;
return (SBUFO0 = c);

'TIO0);

Rev. 1.1

SILICON LABORATORIES

29

AN143

Example 2: Project-Managed Code Banking

// common.c

e e T
// Copyright 2003 Cygnal Integrated Products, Inc.

//

// AUTH: FB, JM

// DATE: 19 AUG 03

//

// This example shows how to set up a code banking project using the Cygnal
// IDE and the TASKING 8051 development tools. It uses Timer3 and Timer4

// interrupts to blink the LED and output a 1 kHz sine wave on DACI,

// respectively. The code that blinks the LED is located in Bank 3 and the

// code that outputs a sine wave based on a 256 entry sine table is located
// in Bank 2. Since interrupts must be located in the Common area, both

// interrupts call a function in one of the banks to perform the desired task.
//

// The project should be configured for code banking as shown in AN043 before
// this project is built.

//

// This program uses the the 24.5 MHz internal oscillator multiplied by two
// for an effective SYSCLK of 49 MHz.

//

// In "Project->Tool Chain Integration," the Command line flags under the

// Linker tab should read:

//

// -1lc51s NOCASE RS (256) -banks 4 -common 8000H "BA (3, BANK3 TOGGLE LED PR)
// BA(2,BANK2 SET DACl PR)"

//

// Target: C8051F12x

// Tool chain: TASKING CC51 7.0 / TASKING EVAL CC51

//
e ittt bt
// Includes
e R
#include "regc51fl2x.sfr" // SFR declarations

#include <stdio.h> // printf () and getchar ()
et Rt
// Global CONSTANTS

e R R R R NS
#define TRUE 1

#define FALSE 0

#define SYSCLK 49000000 // Output of PLL derived from (INTCLK*2)
#define SAMPLE RATE DAC 100000L // DAC sampling rate in Hz

#define PHASE PRECISION 65536 // range of phase accumulator

#define FREQUENCY 1000 // frequency of output waveform in Hz

// <phase_add> is the change in phase

// between DACl samples; It is used in

// the set DACl routine in bank2
unsigned int phase add = FREQUENCY * PHASE PRECISION / SAMPLE RATE DAC;

30 Rev. 1.1

SILICON LABORATORIES

AN143

//

Common area functions

void main (void) ;

void SYSCLK_Init(VOid);

void PORT Init (void);

void DACl Init (void);

void Timer3 Init (int counts);
void Timer4 Init (int counts);

!

nterrupt (14) void Timer3 ISR (void);

_interrupt(16) void Timer4 ISR (void);

!/

code bank 2 functions

extern void set DACI (void);

//

code bank 3 functions

extern void toggle LED(void);

//
//
!/

Common area code;

void main (void)

{

//
//
!/
!/
1/
//
//
//
//
!/
!/
1

{

WDTCN = Oxde; //
WDTCN = Oxad;
PORT Init (); //
SYSCLK Init (); //
DACL Init (); //
Timer3 Init (SYSCLK/12/1000); //
//
Timer4 Init (SYSCLK/SAMPLE RATE DAC);//
//
//

EA = 1; //
while (1) ;

This routine changes the state of the LED whenever Timer3 overflows 250 times.

NOTE: The SFRPAGE register will automatically be switched to the Timer 3 Page
SFRPAGE will return to its previous setting on exit

When an interrupt occurs.
from this routine.

nterrupt (14) void Timer3 ISR (void)

static int 1i; //

disable watchdog timer

initialize crossbar and GPIO
initialize oscillator
initialize DAC1

initialize Timer3 to overflow
every millisecond

initialize Timer4 to overflow
<SAMPLE RATE DAC> times per
second

enable global interrupts

software interrupt counter

SILICON LABORATORIES

Rev. 1.1

31

AN143

!/
!/
1/
//
//
//
!/
!/
i

{

//
//

!/
!/
//
//
//
!/
!/
VO

{

TF3 = 0; // clear Timer3 overflow flag
i++; // increment software counter

// toggle the LED every 250ms
if (i >= 250) {

toggle LED(); // toggle the green LED
i=0; // clear software counter
}
Timer4 ISR -- Wave Generator
This ISR is called on Timer4 overflows. Timerd4d is set to auto-reload mode

and is used to schedule the DAC output sample rate in this example.
Note that the wvalue that is written to DACl during this ISR call is

actually transferred to DACl at the next Timer4 overflow.

nterrupt (16) void Timer4 ISR (void)

TF4 = 0; // clear Timer4 overflow flag

set DAC1();

Initialization Routines

SYSCLK_ Init

This routine initializes the system clock to use the internal oscillator
at 24.5 MHz multiplied by two using the PLL.
id SYSCLK Init (void)

int i; // software timer

char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page

SFRPAGE = 0xO0F;// set SFR page to CONFIG PAGE

OSCICN = 0x83; // set internal oscillator to run
// at its maximum freguency

CLKSEL = 0x00; // Select the internal osc.

// the SYSCLK source

//Turn on the PLL and increase the system clock by a factor of M/N

SFRPAGE = 0xOF;// Set SFR page to CONFIG_PAGE

PLLOCN = 0x00; // Set internal osc. as PLL source
SFRPAGE = 0x00;// Set SFR page to LEGACY PAGE

FLSCL = 0x10;

// or less
SFRPAGE = 0x0F;// Set SFR page to CONFIG PAGE
PLLOCN |= 0x01; // Enable Power to PLL

as

// Set FLASH read time for 50MHz clk

2

32

Rev. 1.1

SILICON LABORATORIES

AN143

!/
//
//
VO

{

vO

PLLODIV = 0x01; // Set Pre-divide value to N (N = 1)
PLLOFLT = 0x01; // Set the PLL filter register for
// a reference clock from 19 - 30 MHz
// and an output clock from 45 - 80 MHz
PLLOMUL = 0x02; // Multiply SYSCLK by M (M = 2)
for (i=0; 1 < 256; i++) ; // Wait at least b5us
PLLOCN |= 0x02; // Enable the PLL
while (! (PLLOCN & 0x10)); // Wait until PLL frequency is locked
CLKSEL = 0x02; // Select PLL as SYSCLK source
SFRPAGE = SFRPAGE SAVE; // Restore SFR page
PORT Init

This routine configures the crossbar and GPIO ports.
id PORT Init (void)
char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page

SFRPAGE = 0xO0F;// Set SFR page to CONFIG_PAGE

XBRO = 0x00;

XBR1 = 0x00;

XBR2 = 0x40; // Enable crossbar and weak pull-up
P1MDOUT |= 0x40; // Set P1.6(LED) to push-pull
SFRPAGE = SFRPAGE SAVE; // Restore SFR page

DAC1 Init

Configure DAC1 to update on Timer4 overflows and enable the the VREF buffer.

id DACI Init (void) {
char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page
SFRPAGE = 0x01;// Set SFR page to DACl PAGE

DACICN = 0x94; // Enable DAC1 in left-justified mode
// managed by Timer4 overflows

SFRPAGE = 0x00;// Set SFR page to LEGACY PAGE

REFOCN |= 0x03; // Enable the internal VREF (2.4v) and
// the Bias Generator

SFRPAGE = SFRPAGE SAVE; // Restore SFR page

31

Rev. 1.1 33

LICON LABORATORIES

AN143

1/
//
1/
//
//

Configure Timer3 to auto-reload mode and to generate interrupts
at intervals specified by <counts> using SYSCLK/12 as its time base.

void Timer3 Init (int counts)

{

VO

{

char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page

SFRPAGE = 0x01;// Set SFR page to TMR3 PAGE

TMR3CN = 0x00; // Stop Timer; Clear overflow flag;
// Set to Auto-Reload Mode

TMR3CF = 0x00; // Configure Timer to increment;
// Timer counts SYSCLKs/12

RCAP3L = -counts;

RCAP3H = (-counts) >> 8;// Set reload value

TMR3L = RCAP3L;

TMR3H = RCAP3H; // Initialize Timer to reload value

EIE2 |= 0x01; // enable Timer3 interrupts

TR3 = 1; // start Timer

SFRPAGE = SFRPAGE SAVE; // Restore SFR page

Configure Timer4 to auto-reload mode and to generate interrupts
at intervals specified in <counts> using SYSCLK as its time base.

id Timer4 Init (int counts)
char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page
SFRPAGE = 0x02;// Set SFR page to TMR4 PAGE

TMR4CN = 0x00; // Stop Timer4; Clear overflow flag
// Set to Auto-Reload Mode

(TF4) ;

TMR4CF = 0x08; // Configure Timer4 to increment;
// Timerd4 counts SYSCLKs
RCAP4L = -counts;
RCAP4H = (-counts) >> 8; // Set reload value
TMR4L = RCAP4L;
TMR4H = RCAP4H; // Initialzie Timer4 to reload value
EIE2 |= 0x04; // enable Timer4 interrupts
TR4 = 1; // start Timer4

34

Rev. 1.1

SILICON LABORATORIES

AN143

SFRPAGE = SFRPAGE SAVE;

// AUTH: FB, JM
// DATE: 19 AUG 03

// Target: C8051F12x

// Tool chain: TASKING CC51 7.0 / TASKING EVAL CC51

// This file contains routines used by the code banking example in ANO043.

// Restore SFR page

// All routines in this file are located in Code Bank 2.

unsigned int rom SINE TABLE[256] =

0x0000, 0x0324, 0x0647,
0x18f8, 0Ox1cOb, 0x1f19,
0x30fb, 0x33de, 0x36ba,
0x471c, 0x49b4, 0x4c3f,
0x5a82, 0x5cb4, 0x5ed7,
0Ox6a6d, 0x6c24, 0x6dca,
0x7641, O0x776c, 0x7884,
0x7d8a, 0x7eld, 0x7e9d,
Ox7fff, Ox7ffe6, 0x7£ds,
0x7d8a, 0x7ce3, 0x7c29,
0x7641, 0x7504, 0x73b5,
0Ox6a6d, 0x68a6, 0x66ctf,
0x5a82, 0x5842, 0x55f5,
0x471c, O0x447a, 0x4lce,
0x30fb, 0x2ell, 0x2blf,
0x18f8, 0x15e2, 0x12c8,
0x0000, Oxfcdc, 0xf9b9,
0xe708, 0xe3f5, 0xele7,
0xcf05, 0xcc22, 0xc946,
Oxb8e4, Oxb64c, 0xb3cl,
Oxa57e, Oxa34c, 0xal29,
0x9593, 0x93dc, 0x9236,
0x89bf, 0x8894, 0x877c,
0x8276, 0x8le3, 0x8163,
0x8000, 0x800a, 0x8028,

0x096a,
0x2223,
0x398c,
Ox4ebf,
Ox60ec,
0x6f5f,
0x798a,
0x7£09,
Ox7fa7,
0x7b5d,
0x7255,
0x64e8,
0x539Db,
0x3f17,
0x2826,
Ox0fab,
0xf696,
0xdddd,
Oxco74,
0xbl41,
0x9f14,
0x90al,
0x8676,
0x80f7,
0x8059,

0x0c8b,
0x2528,
0x3ch6,
0x5133,
0x62f2,
0x70e2,
0x7a7d,
0x7f62,
0x7f62,
0Ox7a7d,
0x70e2,
0x62f2,
0x5133,
0x3c56,
0x2528,
0x0c8b,
0xf375,
Oxdads,
Oxc3aa,
Oxaecd,
0x9d0e,
0x8fle,
0x8583,
0x809e,
0x809e,

0x0fab,
0x2826,
0x3f17,
0x539Db,
0Ox64e8,
0x7255,
0x7b5d,
O0x7fa’7,
0x7f£09,
0x798a,
0x6f5f,
O0x60ec,
Ox4ebf,
0x398c¢c,
0x2223,
0x096a,
0xf055,
0xd7da,
Oxc0e?9,
Oxacé65,
0x9b18,
0Ox8dab,
0x84a3,
0x8059,
0x80f7,

0x12c8,
0x2blf,
Ox41ce,
0x55f5,
Ox66cCt,
0x73b5,
0x7c29,
0x7f£ds,
0x7e9d,
0x7884,
Oxb6bdca,
0x5ed7,
Ox4c3f,
0x36ba,
0x1f19,
0x0647,
0xed38,
Oxddel,
0xbe32,
Oxaalb,
0x9931,
0x8c4db,
0x83d7,
0x8028,
0x8163,

0x15e2,
0x2ell,
0x447a,
0x5842,
0x68a6,
0x7504,
Ox7ce3,
Ox7ffo,
0x7eld,
Ox776c¢c,
0x6c24,
0x5cb4,
0x49b4,
0x33de,
0x1cOb,
0x0324,
Oxeale,
Oxdlef,
0xbb86,
Oxa7be,
0x975a,
0x8afc,
0x831d,
0x800a,
0x81e3,

SILICON LABORATORIES

Rev. 1.1

35

AN143

VO

{

!/
!/
1/
//
//
//
!/
!/
//
//
//
//

!/
1/

#1i

0x8276, 0x831d, 0x83d7, 0x84a3, 0x8583, 0x8676, 0x877c, 0x8894,
0x89bf, Ox8afc, 0x8cdb, 0x8dab, O0x8fle, 0x90al, 0x9236, 0x93dc,
0x9593, 0x975a, 0x9931, 0x9b18, 0x9d0e, 0x9fl14, 0xal29, Oxa3dc,
O0xa57e, 0Oxa7be, Oxaalb, Oxac65, Oxaecd, 0xbl4l, Oxb3cl, 0xb64c,
O0xb8e4d, 0xbb86, 0xbe32, 0xc0e9, 0xc3aa, Oxc674, 0xc946, 0Oxcc22,
Oxcf05, Oxdlef, 0xd4el, 0Oxd7da, 0Oxdad8, 0Oxdddd, 0xele7, 0xe3f5,
O0xe708, Oxeale, 0xed38, 0xf055, 0xf375, 0xf696, 0xf99, Oxfcdc,

id set DACI (void)

char SFRPAGE SAVE = SFRPAGE; // Save Current SFR page
static unsigned phase acc = 0; // holds phase accumulator
int templ; // temporary 16-bit variable

// increment phase accumulator
phase acc += phase add;

// read the table value
templ = SINE TABLE[phase acc >> 8];

// Add a DC bias to change the the rails from a bipolar (-32768 to 32767)

// to unipolar (0 to 65535)
// Note: the XOR with 0x8000 translates the bipolar quantity into
// a unipolar quantity.

SFRPAGE = 1; // set SFR_PAGE to DAC1 PAGE

DAC1L = 0x8000 ~ templ;

DACIH = (0x8000 ~ templ) >> 8; // set new DAC value
SFRPAGE = SFRPAGE_ SAVE; // restore SFR page
bank3.c

AUTH: FB, JM
DATE: 19 AUG 03

Target: C8051F12x
Tool chain: TASKING CC51 7.0 / TASKING EVAL CC51

This file contains routines used by the code banking example in ANO043.

All routines in this file are located in Code Bank 3.

nclude "regc5lfl2x.sfr" // SFR declarations

36

Rev. 1.1

SILICON LABORATORIES

AN143

_sfrbit LED atbit(Pl, 6);

void toggle led(void)
{
LED = ~LED;

1 "stub.asm"
; Version:

; Copyright 1999-2002 Altium BV

// LED='1l' means ON

; This file has been modified to allow for bank switching on Cygnal

; 8051 devices.

; EDIT: JM
; DATE: 19 AUG 03

SCASE

NAME _STUB
PUBLIC _ LK STUB_ENTRY

EXTRN CODE(LK FUNCTION ADDRESS)
EXTRN DATA(LK FUNCTION BANK)

20 "stub.asm"

BANK SFR EQU OBlh ; PSBANK

26 "stub.asm"

(on all SFR pages)

;************‘k********************‘k**************‘k***********************

; LK _STUB

’

; This routine is inserted for every CALL from one segment to a

*

*
*
*

SILICON LABORATORIES

Rev. 1.1

37

AN143

; segment in another bank. The variable LK FUNCTION ADDRESS *
; will be resolved with the 16-bit offset of the called label. *

,-****‘k*‘k*‘k***

__LK_STUB SEGMENT CODE
RSEG __ LK STUB

__LK_STUB_ENTRY:
MOV DPTR,# LK FUNCTION ADDRESS
JMP LK BANKSWITCH

;**

’

; __ BANKSW

*
*
*
; This routine takes care of the actual switching of code-banks. *
; This will depend on the hardware implementation. This example *
; uses the SFR PSBANK to select the code bank. This is the *
; method supported by the Cygnal 8051 devices. *
. *
14
,-**

__BANKSW SEGMENT CODE
RSEG _ BANKSW
LK _BANKSWITCH:
PUSH BANK SFR ; push current bank
CALL bankswitch
POP BANK SFR ; switch back to original bank
RET

_bankswitch:

PUSH ACC

MOV A, # LK FUNCTION BANK ; put new value in IFBANK
RL A

RL A

RL A

RL A

ADD A, # LK FUNCTION_ BANK ; put new value in COBANK

MOV BANK SFR, A ; switch to new instruction fetch bank
POP ACC

PUSH DPL

PUSH DPH

RET

END

38 Rev. 1.1

SILICON LABORATORIES

AN143

Notes:

SILICON LABORATORIES

Rev. 1.1

39

AN143

Contact Information

Silicon Laboratories Inc.
4635 Boston Lane

Austin, TX 78735

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: productinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

40 Rev. 1.1

SILICON LABORATORIES

	Relevant Devices
	Introduction
	Key Points
	Code Banking Overview
	User-Managed Bank Switching for Data Intensive Projects
	Example 1: Data Logging Application
	Managing the Instruction Fetch Bank Select
	Advancing Through the Code Banks
	Preserving the PSBANK Register in Functions and Interrupt Service Routines
	Choosing Log Record Size
	Keeping Accurate Time

	Project-Managed Bank Switching for Code- Intensive Applications
	Example 2: Project-Managed Code Banking
	Step by Step Instructions on Configuring Example 2 Using the Silicon Labs IDE

	Code Bank Assignment Considerations
	Assigning Code Banks for Maximum Performance
	Code Constants

	Bank Switch Macro Details
	Example 1: User-Managed Code Banking (Data Logger with Real- Time Clock)
	Example 2: Project-Managed Code Banking

	Notes:

