
Rev. 1.1 12/03 Copyright © 2003 by Silicon Laboratories AN143-DS11

AN143

CODE BANKING USING THE TASKING 8051 TOOLS

Relevant Devices
This application note applies to the following devices:
C8051F120, C8051F121, C8051F122, C8051F123,
C8051F124, C8051F125, C8051F126, and
C8051F127.

Introduction
The 8051 architecture supports a 64KB linear pro-
gram memory space. Devices that have more than
64KB of program memory implement a code bank-
ing scheme to surmount this 64KB limit. This
application note discusses software project man-
agement techniques and provides example applica-
tions that use code banking.

Key Points
• Projects requiring less than 64KB of FLASH

can leave the PSBANK register at its default
setting which provides a 64KB linear address
space.

• Source code is divided into segments, and each
code segment is assigned to a code bank by the
linker.

Code Banking Overview
The C8051F12x family of devices has 128KB of
on-chip FLASH, divided into 4 physical 32KB
banks. This program memory space can be used to

hold executable code or constant data. Figure 1
shows the code banking model implemented by
these devices. Instruction fetch operations (normal
code execution) are handled independently of con-
stant data operations (MOVC instructions, and
MOVX instructions when used for writing to
FLASH). Each type of operation has its own bank
select bits that may select any of the 4 banks as
shown in Figure 1. All code bank switching is han-
dled at the device level by writing to the PSBANK
register. The COBANK and IFBANK bits in this
register control switching for constant code
accesses and instruction fetches, respectively. For
more information on code bank switching, please
refer to the C8051F12x datasheet.

Constant Data
Bank Select
COBANK = 2

Common
Area

0x0000
through
0x7FFF

Bank 1

0x8000
through
0xFFFF

Bank 2

0x8000
through
0xFFFF

Bank 3

0x8000
through
0xFFFF

Instruction Fetch
Bank Select
IFBANK = 1

Bank 0

0x8000
through
0xFFFF

Default 64KB
Linear Address
Space When

COBANK = 1
IFBANK = 1
(reset value)

Figure 1. C8051F12x Code Banking
Model

AN143

2 Rev. 1.1

For projects that require more than 64KB of code
space or non-volatile data space, the user has the
option of manually handling the bank switching in
software or setting up a code- banked project. Both
methods are discussed in this note.

User-Managed Bank
Switching for Data Intensive
Projects
User-managed bank switching is useful for projects
that have less than 64KB of executable code but
need to store large amounts of data in FLASH. In
this situation, the Common area and Bank 1 are
used for program memory while Bank 2 and
Bank 3 are used for data storage. The project does
not need to be set up for code banking.

The following data logging example shows how
bank switching can be managed in application soft-
ware.

Example 1: Data Logging
Application
This application uses a 22.1184 MHz crystal oscil-
lator to implement a software real-time clock
(RTC). PCA0, configured to count Timer 0 over-
flows, generates an interrupt once every second.
The interrupt handler records the current time and
device temperature in a non-volatile log in FLASH.

The 112,640 byte log cycles through all 4 code
banks recording time and temperature. Each data
record has 6 fields as shown in Figure 2. The log is
capable of storing 14080 records over a time period
of 3.9 hours. Once the log is full, it continues log-

ging at the beginning of log, erasing the FLASH
page with the oldest data as it progresses.

Managing the Instruction Fetch Bank
Select

Since this application uses less than 32KB of
FLASH for program code, there will be no instruc-
tion fetches from the 0x8000 to 0xFFFF memory
space. This makes the value of IFBANK irrelevant.
However, if an application uses between 32KB and
64KB of FLASH for program code, IFBANK
should be left at its reset value, targeting Bank 1.

Advancing Through the Code Banks

This application reserves the first 16KB of FLASH
in the Common area for program code. The log
starts at address 0x4000 in the Common area and

Figure 2. Log Record Structure

":"
0x3A 0xFFADC READINGMINUTES SECONDSHOURS

AN143

Rev. 1.1 3

ends at location 0xF7FF in Bank 3 as shown in
Figure 3.

After storing a record in the log, the FLASH write
pointer is advanced to the next record and checked
for code bank boundaries. There are three possible
boundary conditions to consider when adjusting the

FLASH write pointer. These cases are outlined in
Table 1.

Preserving the PSBANK Register in
Functions and Interrupt Service
Routines

A program must preserve and restore the value of
the PSBANK register in every function and inter-
rupt service routine that switches code banks.

Choosing Log Record Size

Example 1 only writes entire records to FLASH. If
the record size is a power of 2 and the log starts at
the beginning of a FLASH page, then all records
will be contained within one of the code banks. If a
record can cross a bank boundary, then bounds
checking must be performed after every byte write.

Keeping Accurate Time

This application keeps track of time by implement-
ing an interrupt driven real-time clock. With
SYSCLK at 49.7664 MHZ, Timer 0 in mode 2
overflows exactly 4050 times every second when
clocked by SYSCLK/48. PCA Module 0 is config-
ured in “Software Timer Mode” to count Timer 0
overflows and generate an interrupt every second.

Common
Area

0x0000
through
0x7FFF

Bank 1

0x8000
through
0xFFFF

Bank 2

0x8000
through
0xFFFF

Bank 3

0x8000
through
0xFFFF

16KB reserved
for program code

0x4000

1KB FLASH, Lock
Bits, and

Reserved Area

0xF7FF

0x7FFF

0x8000

0xFFFF

0xFFFF

0x8000

0x8000

0xF800

14080 x 8

Non-Volatile
Time
and

Temperature
Log

112,640
bytes total

0x0000

Figure 3. FLASH Memory Map for
Example 1

Table 1. FLASH Write Pointer Boundary Conditions

Condition How to Detect Typical Action
FLASH write pointer
reaches the end of the
Common area.

FLASH write pointer will point to
location 0x8000.

No action is necessary if COBANK is
always set to Bank 1 whenever the
pointer is moved to the beginning of the
log.

FLASH write pointer
reaches the end of
Bank 1 or Bank 2.

FLASH write pointer will point to
location 0x0000.

FLASH write pointer should be set to
0x8000 and COBANK should be incre-
mented.

FLASH write pointer
reaches the end of the
log.

FLASH write pointer will point to
location 0xF800 and Bank 3 will
be selected by COBANK.

FLASH write pointer should be reset to
the first location in the log (0x4000) and
COBANK should select Bank 1.

AN143

4 Rev. 1.1

Step by Step Instructions on Config-
uring Example 1 Using the Silicon
Labs IDE

Example 1 consists of two source files, as listed in
Table 2. Data_Logger_RTC.c contains all of the
implementation code for Example 1. _iowrite.c
contains the _iowrite() function, which is called by
all standard input/output functions (printf(), puts(),
putchar(), etc.). The original version of _iowrite.c
is located at C:\cc51\lib\src. The version of
_iowrite.c included with AN043SW.zip has been
modified to output data through UART0.

The following steps show how to configure Exam-
ple 1 using the Silicon Labs IDE:

1. Start the Silicon Labs IDE and add the files
listed in Table 2 to a new project.

2. Open the Tool Chain Integration window from
the Project menu and select “Tasking” in the
Select Tool Vendor box. For each tab (Assem-
bler, Compiler, and Linker), select the correct
Tasking tool (asm51.exe, cc51.exe, and
link51.exe, respectively). For more information
on integrating Tasking tools into the Silicon
Labs IDE, see “Application Note 126: Integrat-
ing Tasking 8051 Tools into the Silicon Labs
IDE.” Select the Compiler tab as shown in
Figure 4.

Figure 4. Tool Chain Integration Window

3. Add the following option to the Command line
flags box:

-Ml

The -Ml option instructs the compiler to use the
large memory model, which stores data objects
in the on-chip external memory of the
C8051F12x device. The large memory model
must be used to allocate enough space for all
variables in the Example 1 code.

4. Select the Linker tab and change the following
Linker option in the Command line flags box:

Change -lc51s

to:

-lc51l

Table 2. Files needed by Example 1

Data_Logger_RTC.c

_iowrite.c

http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf

AN143

Rev. 1.1 5

This option instructs the linker to use the large
memory model version of the C51 library
(c51l.lib).

5. Under the ‘Project’ menu select ‘Target Build
Configuration’ to bring up the dialog box
shown in Figure 5 on the next page.

Figure 5. Target Build Configuration
Window

6. To customize an output file name or create a
new output file name, click the Browse button
next to the ‘Absolute OMF file name:’ edit box.
Select a path and enter a file name with “.omf”
as the file name extension. The output file must
have the “.omf” extension, because this exten-
sion ensures that the Tasking tools will convert
the output file to OMF format.

7. Click the ‘Customize’ button to bring up the
‘Project Build Definition’ window. This win-
dow allows selection of the files to be included
in the build process. Although default assem-
ble, compile, and link selections will be made,
ensure that all files have been correctly
included in the build process. Under each tab,
add files to compile or link by selecting the
desired file and clicking the ‘Add’ button. Files
are removed in the same manner. Table 3 illus-
trates which files should be compiled and
linked for Software Example 1. No files will be

assembled in this example.

8. Build the project by selecting ‘Build/Make
Project’ from the Project menu.

Project-Managed Bank
Switching for Code-
Intensive Applications
The Tasking 8051 development tools support code
banking. It is recommended to use the code bank-
ing capability of the tools for projects containing
more than 64KB of program code. The tools also
allow the user to expand 64KB projects to 128KB
without modifying existing modules.

To use the Tasking 8051 tools for code banking, the
project needs to be configured for code banking.
The configurations required for code banking are
supported in Version 1.83 and later of the Silicon
Labs IDE. Step-by-step instructions on how to con-
figure a Silicon Labs IDE project for code banking
are included in Example 2.

Tasking tools divide the source code into logical
pieces of code and data called segments. Each seg-
ment is assigned a name and a memory type. The
Linker implements code banking by assigning each
segment to a code bank. The user specifies code
bank assignments by means of Linker options and
controls.

The “-banks” option is used to specify the number
of code banks on the device. Silicon Labs
C8051F12x devices have four code banks (Com-
mon Area, Bank 1, Bank 2, and Bank 3), so the
user should add “-banks 4” to the Linker command

Table 3. Project Build Definition for Example 1

Files to Compile Files to Link

Data_Logger_RTC
.c

Data_Logger_RTC
.obj

_iowrite.c _iowrite.obj

AN143

6 Rev. 1.1

line. Additionally, the size of the Common area is
specified using the “-common” option. For Silicon
Labs C8051F12x devices, “-common 8000H”
should be added to the Linker command line to
designate a Common bank size of 32KB.

The COMMON and BANK Linker controls are used
to assign segments to code banks. The COMMON
control is written in the form:

COMMON(segment[(address)]),

where segment is placed in the common area. If
address is specified, then segment will be placed at
that absolute address. Otherwise, the linker will
automatically determine the location of segment.
The BANK control is invoked in the form:

BANK(bank, segment[(address)]).

BANK works in the same manner as COMMON,
except the bank in which segment will be placed
must be specified as bank.

Segment names can be found in the source (.src)
files generated by the compiler. They generally
take the form of:

module_segment_memoryspace.

Code banked projects must contain one or more
source files. In addition to source files, all projects
configured for code banking must include a code
banked version of ‘stub.asm,’ which is included
with the software examples for this application
note, AN043SW.zip.

Example 2: Project-Managed
Code Banking
This example shows how to set up a code banked
project using the Silicon Labs IDE and the Tasking
development tools. It uses Timer 3 and Timer 4
interrupts to blink the LED and output a 1 kHz sine
wave on DAC1, respectively. The code that blinks
the LED is located in Bank 3, and the code that out-

puts a sine wave is located in Bank 2. Since inter-
rupts must be located in the Common area, both
interrupts call a function in one of the banks to per-
form the desired task.

This example contains three source files and the
code banked version of stub.asm, as listed in
Table 4.

Step by Step Instructions on
Configuring Example 2 Using the
Silicon Labs IDE

The following steps show how to configure the
code banked example project using the Silicon
Labs IDE.

1. Start the Silicon Labs IDE and add the files
listed in Table 4 to a new project.

2. Open the Tool Chain Integration window from
the Project menu and select “Tasking” in the
Select Tool Vendor box. For each tab (Assem-
bler, Compiler, and Linker), select the correct
Tasking tool (asm51.exe, cc51.exe, and
link51.exe, respectively). For more information
on integrating Tasking tools into the Silicon
Labs IDE, see “Application Note 126: Integrat-
ing Tasking 8051 Tools into the Silicon Labs
IDE.” Select the Linker tab as shown in
Figure 6 on the next page.

Table 4. Files needed by Example 2

common.c

bank2.c

bank3.c

stub.asm

http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf
http://www.cygnal.com/appnotes/AN026.pdf

AN143

Rev. 1.1 7

Figure 6. Tool Chain Integration
Window

3. Add the following Linker options to the Com-
mand line flags box:

-banks 4 -common 8000H

This specifies a device with four code banks
and a Common area size of 32 KB.

4. Assign segments to their respective code banks.
Add the following Linker controls to the Com-
mand line flags box:

BANK(3, BANK3_TOGGLE_LED_PR)

BANK(2, BANK2_SET_DAC1_PR)

This places the Toggle_LED() function in Bank
3 and the Set_DAC1() function in Bank 2. All
segments whose code banks are not specified
by Linker controls are placed in the Common
area by default.

5. If you wish to generate a map file, add the
PRINT Linker control in the following format:

PRINT(example2.l51)

This control generates a map file called
example2.l51. The map file gives a memory
map of example2.omf, including information
regarding segment location.

6. The code segments in each module have been
placed in code banks according to Table 5.

NOTE: It is not mandatory that code be dev-
ided into separate modules according to code
bank assignment. It has been done this way in
this example for the sake of simplicity.

7. Under the ‘Project’ menu select ‘Target Build
Configuration’ to bring up the dialog box
shown in Figure 7.

Figure 7. Target Build Configuration Win-
dow

Table 5. Code Bank Selection for Example 2

Filename Code Bank

common.obj Common area

bank2.obj Bank 2

bank3.obj Bank 3

stub.asm Common area

AN143

8 Rev. 1.1

8. To customize an output file name or create a
new output file name, click the Browse button
next to the ‘Absolute OMF file name:’ edit box.
Select a path and enter a file name with “.omf”
as the file name extension. The output file must
have the “.omf” extension, because this exten-
sion ensures that the Tasking tools will convert
the output file to OMF format.

9. Click the ‘Customize’ button to bring up the
‘Project Build Definition’ window. This win-
dow allows selection of the files to be included
in the build process. Although default assem-
ble, compile, and link selections will be made,
ensure that all files have been correctly
included in the build process. Under each tab,
add files to assemble, compile, or link by
selecting the desired file and clicking the ‘Add’
button. Files are removed in the same manner.
Table 6 illustrates which files should be assem-
bled, compiled, and linked for Software Exam-
ple 2.

10. Build the project by selecting ‘Build/Make
Project’ from the Project menu.

11. If the project has been configured to generate a
map file, an ‘example2.l51’ map file will be
generated in the project folder. Inspect this file
to verify that functions have been located in the
proper bank. You should also notice that the
constant code variable sine table (which is
given the segment name C51_CO by default) in
‘bank2.c’ has been located in Bank 2. The
Tasking linker automatically puts C51_CO in

Bank 2 because the only segment that refer-
ences it, BANK2_SET_DAC1_PR, is located in
Bank 2. Refer to the Tasking linker manual for
a description of the L51 file.

Code Bank Assignment
Considerations
Assigning files to code banks is a straightforward
procedure; however, determining the best place-
ment of functions in code banks is largely depen-
dant on the nature of the project. This section
outlines some guidelines to follow when assigning
code banks.

The Common area is accessible by all code banks
at all times. It is important to keep all code that
must always be accessible in the Common area. For
example, reset and interrupt vectors, interrupt ser-
vice routines, code constants, bank switch code,
and library functions should always be located in
the Common area.

Assigning Code Banks for Maximum
Performance

Code bank switching does not significantly affect
the performance of most systems; however, to
achieve maximum performance in time critical
applications, programs should be structured so that
frequent bank switching is not necessary. Bank
switch code is not generated when the function
being called resides in the Common area or in the
same bank as its calling function. Placing fre-
quently accessed functions or functions called from
different banks in the Common area is essential to
achieve maximum performance in time critical
applications.

Code Constants

Code constants (strings, tables, etc.) should be
located in the Common area unless all of the seg-
ments that reference them are in the same code
bank. The Common area is the best location for

Table 6. Project Build Definition for Example 2

Files to
Assemble

Files to
Compile

Files to
Link

stub.asm common.c common.obj

bank2.c bank2.obj

bank3.c bank3.obj

stub.obj

AN143

Rev. 1.1 9

code constants in most applications, because they
can be accessed from any bank using the MOVC
instruction. If the Common area is not large enough
to accommodate all code constants, they may be
placed in one of the code banks. In this case, how-
ever, they may only be accessed from code execut-
ing in the same bank or the common area. They
may not be accessed from code executing in
another bank, because the linker sets the constant
code bank to the same bank as the instruction fetch
bank. Constant data in a code bank may be
accessed from the common area only if the bank in
which it resides is the currently selected bank.

Bank Switch Macro Details
The version of ‘stub.asm’ included with
AN043SW.zip implements code banking by writ-
ing to the PSBANK register. The PSBANK register
contains two bank selects, COBANK for constant
data, and IFBANK for instruction fetches. Using
‘stub.asm,’ the COBANK and IFBANK always
target the same code bank. This is why constant
code tables must be located in the Common area or
in the bank that accesses them.

The bank switch code in ‘stub.asm’ may be
changed to keep COBANK fixed regardless of the
value of IFBANK. This would allow the user to
dedicate one bank for constant data operations
while using the other two banks for instruction
fetches only. This dedicated bank would be avail-
able to code executing in any bank or the Common
area.

The Common area may always be used for both
instruction fetches and data storage regardless of
the PSBANK register settings. For more informa-
tion on bank switching, refer to the Tasking Assem-
bler/Linker manual.

AN143

10 Rev. 1.1

Example 1: User-Managed Code Banking (Data Logger with Real-
Time Clock)
//---
// Data_Logger_RTC.c
//---
// Copyright 2002 Cygnal Integrated Products, Inc.
//
// AUTH: FB, JM
// DATE: 03 SEP 03
//
//
// This application uses a 22.1184 MHz crystal oscillator to implement a
// software real-time clock (RTC). PCA Module 0, configured to count Timer 0
// overflows in software timer mode, generates an interrupt every second.
// The interrupt handler records the current time and device temperature
// in a non-volatile log in FLASH.
//
// With SYSCLK at 49.7664 MHZ, Timer 0 in mode 2 overflows exactly 4050 times
// every second when clocked by SYSCLK/48. PCA0, clocked by Timer 0 overflows,
// is programmed to generate an interrupt every 4050 Timer 0 overflows,
// or once every second.
//
// The 112,640 byte log cycles through all 4 code banks recording time and
// temperature. Each data record is 8 bytes long. The log is capable of storing
// 14080 records over a time period of 3.9 hours. Once the log is full, it
// continues logging at the beginning of log, erasing the FLASH page with
// the oldest data as it progresses.
//
// When this code is built, the linker generates two multiple call to segments
// warnings. These warnings are generated because the FLASH support routines
// are called from the main routine and from interrupts. These warnings have
// been accounted for in the code by disabling interrupts before calling any
// FLASH support routines.
//
//
// Target: C8051F12x
// Tool chain: TASKING CC51 7.0 / TASKING EVAL CC51
//

//---
// Includes
//---
#include "regc51f12x.sfr" // SFR declarations
#include <stdio.h> // printf() and getchar()

/* SFR PAGE DEFINITIONS */

#define CONFIG_PAGE 0x0F /* SYSTEM AND PORT CONFIGURATION PAGE */
#define LEGACY_PAGE 0x00 /* LEGACY SFR PAGE */
#define TIMER01_PAGE 0x00 /* TIMER 0 AND TIMER 1 */
#define CPT0_PAGE 0x01 /* COMPARATOR 0 */
#define CPT1_PAGE 0x02 /* COMPARATOR 1 */
#define UART0_PAGE 0x00 /* UART 0 */
#define UART1_PAGE 0x01 /* UART 1 */
#define SPI0_PAGE 0x00 /* SPI 0 */
#define EMI0_PAGE 0x00 /* EXTERNAL MEMORY INTERFACE */
#define ADC0_PAGE 0x00 /* ADC 0 */

AN143

Rev. 1.1 11

#define ADC2_PAGE 0x02 /* ADC 2 */
#define SMB0_PAGE 0x00 /* SMBUS 0 */
#define TMR2_PAGE 0x00 /* TIMER 2 */
#define TMR3_PAGE 0x01 /* TIMER 3 */
#define TMR4_PAGE 0x02 /* TIMER 4 */
#define DAC0_PAGE 0x00 /* DAC 0 */
#define DAC1_PAGE 0x01 /* DAC 1 */
#define PCA0_PAGE 0x00 /* PCA 0 */
#define PLL0_PAGE 0x0F /* PLL 0 */
#define MAC0_PAGE 0x03 /* MAC 0 */

typedef union UInt { // Byte addressable unsigned int
 unsigned int Int;
 unsigned char Char[2];
} UInt;

typedef union Long { // Byte addressable long
 long Long;
 unsigned int Int[2];
 unsigned char Char[4];
} Long;

typedef union ULong { // Byte addressable unsigned long
 unsigned long ULong;
 unsigned int Int[2];
 unsigned char Char[4];
} ULong;

typedef struct Record { // LOG record structure
 char start;
 unsigned int hours;
 unsigned char minutes;
 unsigned char seconds;
 unsigned int ADC_result;
 char end;
} Record;

//---
// Global CONSTANTS
//---
#define TRUE 1
#define FALSE 0

#define EXTCLK 22118400 // External oscillator frequency in Hz
#define SYSCLK 49766400 // Output of PLL derived from
 // (EXTCLK*9/4)

#define BAUDRATE 115200 // Baud rate of UART in bps
 // Note: The minimum standard baud rate
 // supported by the UART0_Init routine
 // in this file is 19,200 bps when
 // SYSCLK = 49.76MHz.

#define SAMPLERATE 2000 // The ADC sampling rate in Hz

_sfrbit LED _atbit(P1, 6); // LED='1' means ON
_sfrbit SW2 _atbit(P3, 7); // SW2='0' means switch pressed

AN143

12 Rev. 1.1

#define LOG_START 0x04000L // Starting address of LOG
#define LOG_END 0x1F800L // Last address in LOG + 1
#define RECORD_LEN 8 // Record length in bytes
#define START_OF_RECORD ':' // Start of Record symbol

#define FLASH_PAGESIZE 1024 // Number of bytes in each FLASH page

#define COBANK 0xF0 // Bit mask for the high nibble of PSBANK

#define COBANK0 0x00 // These macros define the bit mask values
#define COBANK1 0x10 // for the PSBANK register used for
#define COBANK2 0x20 // selecting COBANK. COBANK should always
#define COBANK3 0x30 // be cleared then OR-Equaled (|=) with
 // the proper bit mask to avoid changing
 // the other bits in the PSBANK register

//---
// Global VARIABLES
//---

unsigned char SECONDS = 0; // global RTC seconds counter
unsigned char MINUTES = 0; // global RTC minutes counter
unsigned int HOURS = 0; // global RTC hours counter

unsigned int ADC_RESULT = 0; // holds the oversampled and averaged
 // result from ADC0

bit LOG_FLAG = 0; // this flag is used to enable
 // and disable logging but does
 // not affect the real-time clock

bit LOG_ERASED = 0; // this flag indicates that the
 // LOG has been erased.
//---
// Function PROTOTYPES
//---

void main(void);
void RTC_update(void);
void print_menu(void);

// initialization routines
void SYSCLK_Init(void);
void PORT_Init(void);
void UART0_Init (void);
void ADC0_Init (void);
void Timer3_Init(int counts);
void RTC_Init (void);
_interrupt(9) void PCA0_ISR (void);

// FLASH support routines
void FLASH_PageErase (unsigned long addr);
void FLASH_Write (unsigned long dest, char* src, unsigned int numbytes);
void FLASH_ByteWrite (unsigned long dest, char dat);
void FLASH_Read (char* dest, unsigned long src, unsigned int numbytes);
unsigned char FLASH_ByteRead (unsigned long addr);

AN143

Rev. 1.1 13

// LOG support routines

void print_time(void);
void LOG_erase(void);
unsigned long find_current_record(void);
void LOG_print(char all_at_once);
void LOG_update(void);

// Get_Key function: Returns the keystroke
char Get_Key();

//---
// MAIN Routine
//---

void main (void)
{

 #define input_str_len 4 // buffer to hold characters entered
 char input_str[input_str_len]; // at the command prompt

 WDTCN = 0xde; // disable watchdog timer
 WDTCN = 0xad;

 PORT_Init (); // initialize crossbar and GPIO
 SYSCLK_Init (); // initialize oscillator
 UART0_Init (); // initialize UART0
 ADC0_Init(); // initialize ADC0
 RTC_Init (); // initializes Timer0 and the PCA
 Timer3_Init(SYSCLK/SAMPLERATE); // initialize Timer3 to overflow
 // and generate interrupts at
 // <SAMPLERATE> Hz

 // to implement a real-time clock

 EA = 1; // enable global interrupts

 print_menu(); // print the command menu

 while (1){

 SFRPAGE = UART0_PAGE;
 printf("\nEnter a command > ");
 input_str[0] = Get_Key();
 putchar(input_str[0]);// Echo keystroke
 putchar('\n');
 switch (input_str[0]){

 case '1': LOG_FLAG = 1;
 SFRPAGE = UART0_PAGE;
 printf("\nLogging has now started.\n");
 break;

 case '2': LOG_FLAG = 0;
 SFRPAGE = UART0_PAGE;
 printf("\nLogging has now stopped.\n");

AN143

14 Rev. 1.1

 break;

 case '3': LOG_FLAG = 0;
 LOG_erase();
 SFRPAGE = UART0_PAGE;
 printf("\nThe log has been erased and logging is stopped.\n");
 break;

 case '4': LOG_print(FALSE);
 print_menu();
 break;

 case '5': LOG_print(TRUE);
 print_menu();
 break;

 case '6': print_time();
 break;

 case '?': print_menu();
 break;

 default: if(input_str[0] != 0x03)
 printf("\nIllegal Command.\n");
 break;
 }

 } // end while

}

//---
// RTC_update
//---
//
//
void RTC_update(void)
{
 SECONDS++;
 if (SECONDS == 60) {
 SECONDS = 0;
 MINUTES++;
 if (MINUTES == 60) {
 MINUTES = 0;
 HOURS++;
 }
 }

}

//---
// FLASH Support Routines
//---

//---
// FLASH_PageErase
//---
//

AN143

Rev. 1.1 15

// This function erases the FLASH page containing <addr>.
//
void FLASH_PageErase (unsigned long addr)
{
 char SFRPAGE_SAVE = SFRPAGE; // Preserve current SFR page
 char PSBANK_SAVE = PSBANK; // Preserve current code bank
 bit EA_SAVE = EA; // Preserve interrupt state

 char _xdat * pwrite; // FLASH write/erase pointer

 ULong temp_addr; // Temporary ULong

 temp_addr.ULong = addr; // copy <addr> to a byte addressable
 // unsigned long

 // Extract address information from <addr>
 pwrite = (char _xdat *) temp_addr.Int[1];

 // Extract code bank information from <addr>
 PSBANK &= ~COBANK; // Clear the COBANK bits

 if(temp_addr.Char[1] == 0x00){ // If the address is less than
 // 0x10000, the Common area and
 PSBANK |= COBANK1; // Bank1 provide a 64KB linear
 // address space
 } else { // Else, Bank2 and Bank3 provide
 // a 64KB linear address space

 if (temp_addr.Char[2] & 0x80){ // If bit 15 of the address is
 // a '1', then the operation should
 PSBANK |= COBANK3; // target Bank3, else target Bank2

 } else {

 PSBANK |= COBANK2;
 temp_addr.Char[2] |= 0x80;
 pwrite = (char _xdat *) temp_addr.Int[1];
 }
 }

 SFRPAGE = LEGACY_PAGE;

 EA = 0; // Disable interrupts
 FLSCL |= 0x01; // Enable FLASH writes/erases
 PSCTL = 0x03; // MOVX erases FLASH page

 *pwrite = 0; // Initiate FLASH page erase

 FLSCL &= 0xFE; // Disable FLASH writes/erases
 PSCTL = 0x00; // MOVX targets XRAM

 EA = EA_SAVE; // Restore interrupt state
 PSBANK = PSBANK_SAVE; // Restore current code bank
 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// FLASH_Write

AN143

16 Rev. 1.1

//---
//
// This routine copies <numbytes> from <src> to the FLASH addressed by <dest>.
//
void FLASH_Write (unsigned long dest, char* src, unsigned int numbytes)
{

 unsigned int i; // Software Counter

 for (i = 0; i < numbytes; i++) {

 FLASH_ByteWrite(dest++, *src++);
 }
}

//---
// FLASH_ByteWrite
//---
//
// This routine writes <dat> to the FLASH byte addressed by <dest>.
//
void FLASH_ByteWrite (unsigned long dest, char dat)
{
 char SFRPAGE_SAVE = SFRPAGE; // Preserve current SFR page
 char PSBANK_SAVE = PSBANK; // Preserve current code bank
 bit EA_SAVE = EA; // Preserve interrupt state

 ULong temp_dest; // Temporary ULong

 char _xdat * pwrite; // FLASH write/erase pointer

 temp_dest.ULong = dest; // copy <dest> to a byte
 // addressable unsigned long

 // Check if data byte being written is 0xFF
 // There is no need to write 0xFF to FLASH since erased
 // FLASH defaults to 0xFF.
 if(dat != 0xFF){

 // Extract address information from <dest>
 pwrite = (char _xdat *) temp_dest.Int[1];

 // Extract code bank information from <addr>
 PSBANK &= ~COBANK; // Clear the COBANK bits

 if(temp_dest.Char[1] == 0x00){ // If the address is less than
 // 0x10000, the Common area and
 PSBANK |= COBANK1; // Bank1 provide a 64KB linear
 // address space
 } else { // Else, Bank2 and Bank3 provide
 // a 64KB linear address space

 if (temp_dest.Char[2] & 0x80){// If bit 15 of the address is
 // a '1', then the operation should
 PSBANK |= COBANK3; // target Bank3, else target Bank2

 } else {

AN143

Rev. 1.1 17

 PSBANK |= COBANK2;
 temp_dest.Char[2] |= 0x80;
 pwrite = (char _xdat *) temp_dest.Int[1];
 }
 }

 SFRPAGE = LEGACY_PAGE;

 EA = 0; // Disable interrupts
 FLSCL |= 0x01; // Enable FLASH writes/erases
 PSCTL = 0x01; // MOVX writes FLASH byte

 *pwrite = dat; // Write FLASH byte

 FLSCL &= 0xFE; // Disable FLASH writes/erases
 PSCTL = 0x00; // MOVX targets XRAM
 }

 EA = EA_SAVE; // Restore interrupt state
 PSBANK = PSBANK_SAVE; // Restore current code bank
 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// FLASH_Read
//---
//
// This routine copies <numbytes> from FLASH addressed by <src> to <dest>.
//
void FLASH_Read (char* dest, unsigned long src, unsigned int numbytes)
{

 unsigned int i; // Software Counter

 for (i = 0; i < numbytes; i++) {

 *dest++ = FLASH_ByteRead(src++);
 }
}

//---
// FLASH_ByteRead
//---
//
// This routine returns to the value of the FLASH byte addressed by <addr>.
//
unsigned char FLASH_ByteRead (unsigned long addr)
{
 char SFRPAGE_SAVE = SFRPAGE; // Preserve current SFR page
 char PSBANK_SAVE = PSBANK; // Preserve current code bank

 ULong temp_addr; // Temporary ULong
 char temp_char; // Temporary char

 char _rom * pread; // FLASH read pointer

 temp_addr.ULong = addr; // copy <addr> to a byte addressable
 // unsigned long

AN143

18 Rev. 1.1

 // Extract address information from <addr>
 pread = (char _rom *) temp_addr.Int[1];

 // Extract code bank information from <addr>
 PSBANK &= ~COBANK; // Clear the COBANK bits

 if(temp_addr.Char[1] == 0x00){ // If the address is less than
 // 0x10000, the Common area and
 PSBANK |= COBANK1; // Bank1 provide a 64KB linear
 // address space
 } else { // Else, Bank2 and Bank3 provide
 // a 64KB linear address space

 if (temp_addr.Char[2] & 0x80){ // If bit 15 of the address is
 // a '1', then the operation should
 PSBANK |= COBANK3; // target Bank3, else target Bank2

 } else {

 PSBANK |= COBANK2;
 temp_addr.Char[2] |= 0x80;
 pread = (char _rom *) temp_addr.Int[1];
 }
 }

 temp_char = *pread; // Read FLASH byte

 PSBANK = PSBANK_SAVE; // Restore current code bank
 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page

 return temp_char;
}

//---
// Support Routines
//---
//---
// print_menu
//---
//
// This routine uses prints the command menu to the UART.
//
void print_menu(void)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = UART0_PAGE;
 printf("\n\nC8051F12x Data Logging Example\n");
 printf("---------------------------------------\n");
 printf("1. Start Logging\n");
 printf("2. Stop Logging\n");
 printf("3. Erase Log\n");
 printf("4. Print Log (one page at a time - Press CTRL+C to stop)\n");
 printf("5. Print Log (all at once - Press CTRL+C to stop)\n");
 printf("6. Print Elapsed Time Since Last Reset\n");
 printf("?. Print Command List\n");

AN143

Rev. 1.1 19

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// print_time
//---
//
// This routine uses prints the elapsed time since the last reset to the UART.
//
void print_time(void)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page
 bit EA_SAVE = EA; // Preserve interrupt state

 SFRPAGE = UART0_PAGE;
 EA = 0;
 printf("%05u:", HOURS);
 printf("%02u:", MINUTES);
 printf("%02u", SECONDS);

 EA = EA_SAVE;
 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// find_current_record
//---
//
//
unsigned long find_current_record(void)
{

 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page
 bit EA_SAVE = EA; // Preserve interrupt state

 unsigned long pRead = LOG_START; // Pointer used to read from FLASH

 unsigned int i; // Software counter
 bit record_erased; // Temporary flag

 // Keep skipping records until an uninitialized record is found or
 // until the end of the log is reached
 while(pRead < LOG_END){

 EA = 0;
 // Skip all records that have been initialized
 if(FLASH_ByteRead(pRead) == START_OF_RECORD){

 // increment pRead to the next record
 pRead += RECORD_LEN;
 EA = EA_SAVE;
 continue;
 }

 // Verify that the Record is uninitialized, otherwise keep
 // searching for an uninitialized record
 record_erased = 1;
 for(i = 0; i < RECORD_LEN; i++){

AN143

20 Rev. 1.1

 if(FLASH_ByteRead(pRead+i) != 0xFF){
 record_erased = 0;
 }
 }
 if(!record_erased){
 // increment pRead to the next record
 pRead += RECORD_LEN;
 EA = EA_SAVE;
 continue;
 }

 EA = EA_SAVE;

 // When this code is reached, <pRead> should point to the beginning
 // of an uninitialized (erased) record;
 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
 return pRead;

 }

 // This code is reached only when there are no uninitialized records
 // in the LOG. Erase the first FLASH page in the log and return
 // a pointer to the first record in the log.
 EA = 0;
 FLASH_PageErase(LOG_START); // Erase the first page of the LOG
 EA = EA_SAVE;
 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
 return LOG_START;
}

//---
// LOG_erase
//---
//
//
void LOG_erase(void)
{
 unsigned long pWrite = LOG_START; // pointer used to write to FLASH
 bit EA_SAVE = EA; // save interrupt status

 // Keep erasing pages until <pWrite> reaches the end of the LOG.
 while(pWrite < LOG_END){

 EA = 0;
 FLASH_PageErase(pWrite);
 EA = EA_SAVE;

 pWrite += FLASH_PAGESIZE;

 }

 LOG_ERASED = 1; // flag that LOG has been erased
}

//---
// LOG_print
//---
//
//

AN143

Rev. 1.1 21

void LOG_print(char all_at_once)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page
 char user_command;
 bit EA_SAVE = EA; // save interrupt status

 unsigned long pRead = LOG_START; // Pointer used to read from FLASH

 Record temp_rec; // Temporary record

 // Keep printing records until the end of the log is reached
 while(pRead < LOG_END){

 // Copy a record from at <pRead> from the LOG into the local
 // Record structure <temp_rec>
 EA = 0;
 FLASH_Read((char*) &temp_rec, pRead, RECORD_LEN);
 EA = EA_SAVE;

 // Validate Record
 if(temp_rec.start != ':'){
 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
 return;
 }

 // Print the Record
 SFRPAGE = UART0_PAGE;

 RI0 = 0; // Clear UART Receive flag
 // to later check for the
 // user pressing CTRL+C

 EA = 0; // disable interrupts

 printf("%05u:", temp_rec.hours);
 printf("%02u:", temp_rec.minutes);
 printf("%02u:", temp_rec.seconds);
 printf(" ADC = 0x%04X\n", temp_rec.ADC_result);

 EA = EA_SAVE; // restore interrupts
 // any pending interrupts will
 // be handled immediatly
 // check if we need to continue

 // if printing all data at once do not stop printing unless
 // the user presses CTRL+C, otherwise print 16 records and
 // then prompt user to press any key

 if(all_at_once){
 // Check if user has pressed CTRL+C
 if(RI0 && SBUF0 == 0x03){
 RI0 = 0;
 printf("\nLog print terminated.\n");
 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
 return;
 }

 // pause every 16 lines
 } else if((pRead & ((RECORD_LEN*16)-1)) == 0 &&

AN143

22 Rev. 1.1

 pRead > (LOG_START + RECORD_LEN)) {

 // wait for a key to be pressed then check if user has
 // pressed CTRL+C (0x03)
 printf("\npress any key to continue\n");
 user_command = Get_Key();
 if(user_command == 0x03) {
 printf("\nLog print terminated.\n");
 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
 return;
 }
 }

 // increment pRead to the next record
 pRead += RECORD_LEN;

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page

 }

}

//---
// LOG_update
//---
//
//
void LOG_update(void)
{
 bit EA_SAVE = EA; // Preserve interrupt state
 Record temp_record; // local LOG record structure

 static unsigned long pWrite = LOG_START;
 // pointer used to write to the LOG
 bit record_erased; // temporary flag
 unsigned int i; // temporary integer

 // record the time and ADC reading in the LOG if logging is enabled
 if(LOG_FLAG){

 if(LOG_ERASED){
 pWrite = LOG_START;
 LOG_ERASED = 0;

 } else {

 // find the current record if the record at pWrite is not erased
 record_erased = 1;
 for(i = 0; i < RECORD_LEN; i++){
 EA = 0;
 if(FLASH_ByteRead(pWrite+i) != 0xFF){
 record_erased = 0;
 }
 EA = EA_SAVE;
 }
 if(!record_erased){
 pWrite = find_current_record();

AN143

Rev. 1.1 23

 }

 // build the temporary record
 temp_record.start = START_OF_RECORD;
 temp_record.hours = HOURS;
 temp_record.minutes = MINUTES;
 temp_record.seconds = SECONDS;
 temp_record.ADC_result = ADC_RESULT;

 // write the temporary record to FLASH
 EA = 0;
 FLASH_Write(pWrite, (char*) &temp_record, RECORD_LEN);
 EA = EA_SAVE;

 // increment record pointer
 pWrite += RECORD_LEN;

 // if <pWrite> is past the end of the LOG, reset to the top
 if(pWrite >= LOG_END){
 pWrite = LOG_START;
 }
 } // end else
 } // end if(LOG_FLAG)

}

//---
// Get_Key()
//---
//
// This routine returns the keystroke as a char
//

char Get_Key()
{
 char c;

 while (!RI0);
 c = SBUF0;
 RI0 = 0;

 return (c);
}

//---
// Initialization Routines
//---

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use an external 22.1184 MHz
// crystal oscillator multiplied by a factor of 9/4 using the PLL as its
// clock source. The resulting frequency is 22.1184 MHz * 9/4 = 49.7664 MHz
//

AN143

24 Rev. 1.1

void SYSCLK_Init (void)
{
 int i; // delay counter

 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = CONFIG_PAGE; // set SFR page

 OSCXCN = 0x67; // start external oscillator with
 // 22.1184MHz crystal

 for (i=0; i < 256; i++) ; // Wait for osc. to start up

 while (!(OSCXCN & 0x80)) ; // Wait for crystal osc. to settle

 CLKSEL = 0x01; // Select the external osc. as
 // the SYSCLK source

 OSCICN = 0x00; // Disable the internal osc.

 //Turn on the PLL and increase the system clock by a factor of M/N = 9/4
 SFRPAGE = CONFIG_PAGE;

 PLL0CN = 0x04; // Set PLL source as external osc.
 SFRPAGE = LEGACY_PAGE;
 FLSCL = 0x10; // Set FLASH read time for 50MHz clk
 // or less
 SFRPAGE = CONFIG_PAGE;
 PLL0CN |= 0x01; // Enable Power to PLL
 PLL0DIV = 0x04; // Set Pre-divide value to N (N = 4)
 PLL0FLT = 0x01; // Set the PLL filter register for
 // a reference clock from 19 - 30 MHz
 // and an output clock from 45 - 80 MHz
 PLL0MUL = 0x09; // Multiply SYSCLK by M (M = 9)

 for (i=0; i < 256; i++) ; // Wait at least 5us
 PLL0CN |= 0x02; // Enable the PLL
 while(!(PLL0CN & 0x10)); // Wait until PLL frequency is locked
 CLKSEL = 0x02; // Select PLL as SYSCLK source

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// PORT_Init
//---
//
// This routine configures the Crossbar and GPIO ports.
//
void PORT_Init (void)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = CONFIG_PAGE; // set SFR page

 XBR0 = 0x04; // Enable UART0
 XBR1 = 0x00;
 XBR2 = 0x40; // Enable crossbar and weak pull-up

AN143

Rev. 1.1 25

 P0MDOUT |= 0x01; // Set TX0 pin to push-pull
 P1MDOUT |= 0x40; // Set P1.6(LED) to push-pull

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// UART0_Init
//---
//
// Configure the UART0 using Timer1, for <baudrate> and 8-N-1. In order to
// increase the clocking flexibility of Timer0, Timer1 is configured to count
// SYSCLKs.
//
// To use this routine SYSCLK/BAUDRATE/16 must be less than 256. For example,
// if SYSCLK = 50 MHz, the lowest standard baud rate supported by this
// routine is 19,200 bps.
//
void UART0_Init (void)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = UART0_PAGE;

 SCON0 = 0x50; // SCON0: mode 0, 8-bit UART, enable RX
 SSTA0 = 0x10; // Timer 1 generates UART0 baud rate and
 // UART0 baud rate divide by two disabled
 SFRPAGE = TIMER01_PAGE;
 TMOD &= ~0xF0;
 TMOD |= 0x20; // TMOD: timer 1, mode 2, 8-bit reload

 TH1 = -(SYSCLK/BAUDRATE/16); // Set the Timer1 reload value
 // When using a low baud rate, this equation
 // should be checked to ensure that the
 // reload value will fit in 8-bits.

 CKCON |= 0x10; // T1M = 1; SCA1:0 = xx

 TL1 = TH1; // initialize Timer1
 TR1 = 1; // start Timer1

 SFRPAGE = UART0_PAGE;
 TI0 = 1; // Indicate TX0 ready

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// ADC0_Init
//---
//
// Configure ADC0 to start conversions on Timer3 Overflows and to
// use left-justified output mode.
//
void ADC0_Init (void)
{

AN143

26 Rev. 1.1

 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = ADC0_PAGE;

 ADC0CN = 0x85; // ADC0 enabled; normal tracking
 // mode; ADC0 conversions are initiated
 // on Timer3 overflows; ADC0 data is
 // left-justified

 REF0CN = 0x07; // enable temp sensor, on-chip VREF,
 // and VREF output buffer
 AMX0SL = 0x0F; // Select TEMP sens as ADC mux output

 ADC0CF = ((SYSCLK/2500000) << 3);// ADC conversion clock = 2.5MHz

 ADC0CF |= 0x01; // PGA gain = 2

 EIE2 |= 0x02; // Enable ADC0 End-of-conversion
 // interrupts

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// Timer3_Init
//---
// This routine initializes Timer3 in auto-reload mode to overflow
// at intervals specified in <counts>.
//
void Timer3_Init (int counts)
{
 SFRPAGE = TMR3_PAGE;

 TMR3CN = 0; // STOP timer; set to auto-reload mode
 TMR3CF = 0x08; // Timer3 counts SYSCLKs
 RCAP3L = -counts;
 RCAP3H = (-counts) >> 8;// Set reload value
 TMR3L = RCAP3L;
 TMR3H = RCAP3H; // Initialize Timer to reload value
 TR3 = 1; // start Timer3

}

//---
// RTC_Init
//---
//
// This Routine initializes Timer0 and PCA0 to implement a real-time clock.
// Assuming <SYSCLK> is generated from a 22.1184 crystal oscillator, Timer0
// overflows exactly 1800 times per second when configured as an 8-bit timer
// that uses <SYSCLK>/48 as its timebase. PCA0 is configured to count
// Timer0 overflows and interrupt every 1800 Timer0 overflows, or every second.
// The PCA0 ISR updates a set of global RTC counters for seconds, minutes, hours,
// and days.
//
void RTC_Init(void)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

AN143

Rev. 1.1 27

 SFRPAGE = TIMER01_PAGE;

 // configure Timer0 in Mode2: 8-bit Timer with Auto-Reload
 TMOD &= 0xF0; // Clear Timer0 bits
 TMOD |= 0x02; // Mode2 Auto-Reload

 // configure Timer0 timebase to <SYSCLK>/48
 CKCON &= 0xF0; // Clear bits
 CKCON |= 0x02; // Set Timer0 timebase

 // configure PCA0 to count Timer0 overflows
 PCA0MD = 0x04;

 // configure capture/compare module 0 to generate an interrupt when
 // the value of PCA0 reaches 4050 (0x0FD2)
 //PCA0CP0 = 4050
 PCA0CPH0 = 0x0F;
 PCA0CPL0 = 0xD2;// Set the value to match

 PCA0CPM0 &= ~0xFF; // Clear bits
 PCA0CPM0 |= 0x49; // Generate an interrupt when the
 // PCA0 value matches PCA0CP0

 EIE1 |= 0x08; // Enable PCA0 interrupts

 TR0 = 1; // Start Timer0
 PCA0CN |= 0x40; // Enable PCA0

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// PCA0_ISR
//---
//
//
_interrupt(9) void PCA0_ISR (void)
{

 if (CCF0) {
 CCF0 = 0; // clear Module0 capture/compare flag

 PCA0L = 0x00;
 PCA0H = 0x00; // clear the PCA counter
 RTC_update(); // update RTC variables
 LOG_update(); // update LOG if logging is enabled

 } else

 if (CCF1) {
 CCF1 = 0; // clear Module1 capture/compare flag
 } else

 if (CCF2) {
 CCF2 = 0; // clear Module2 capture/compare flag
 } else

 if (CCF3) {

AN143

28 Rev. 1.1

 CCF3 = 0; // clear Module3 capture/compare flag
 } else

 if (CCF4) {
 CCF4 = 0; // clear Module4 capture/compare flag
 } else

 if (CCF5) {
 CCF5 = 0; // clear Module5 capture/compare flag
 } else

 if (CF) {
 CF = 0; // clear PCA counter overflow flag
 }

}

//---
// ADC0_ISR
//---
//
// This ISR is called on the end of an ADC0 conversion.
//
_interrupt(15) void ADC0_ISR (void)
{

 Long result = {0}; // byte addressable long variable
 int i;
 bit EA_SAVE = EA;
 //accumulate 256 temperature samples
 result.Long += ADC0H;
 result.Long += ADC0L;
 i++;

 if(i == 256) {

 i = 0;

 // take the average (Divide by 256 = shift right by 8)
 // Do this operation "result.Long >>= 8;" (170 SYSCLK cycles) using
 // three MOV instructions (9 SYSCLK cycles)
 // Assume Most Significant Byte only contains sign information

 result.Char[3] = result.Char[2];
 result.Char[2] = result.Char[1];
 result.Char[1] = result.Char[0];

 // update global <ADC_RESULT>
 ADC_RESULT = result.Int[1];
 }

}

/***
|*
|* File : _iowrite.c
|*
|* Version : 1.7
|*

AN143

Rev. 1.1 29

|* Description : Source file for _iowrite() routine
|* Low level output routine. Is used by all printing
|* routines.
|* This routine should be customised.
|* This file has been customised for Cygnal Application Note 043
|*
|* Copyright 1999-2003 Altium BV
|*
 ***/

#include <stdio.h>
#include <simio.h>
#include "regc51f12x.sfr"

#define XON 0x11
#define XOFF 0x13

_regparm int
_iowrite(int c, FILE *stream)
{
 // expands '\n' into CR LF and handles
 // XON/XOFF (Ctrl+S/Ctrl+Q) protocol

 if (c == '\n') {
 if (RI0) {
 if (SBUF0 == XOFF) {
 do {
 RI0 = 0;
 while (!RI0);
 }
 while (SBUF0 != XON);
 RI0 = 0;
 }
 }
 while (!TI0);
 TI0 = 0;
 SBUF0 = 0x0d; /* output CR */
 }
 if (RI0) {
 if (SBUF0 == XOFF) {
 do {
 RI0 = 0;
 while (!RI0);
 }
 while (SBUF0 != XON);
 RI0 = 0;
 }
 }
 while (!TI0);
 TI0 = 0;
 return (SBUF0 = c);
}

AN143

30 Rev. 1.1

Example 2: Project-Managed Code Banking
//---
// common.c
//---
// Copyright 2003 Cygnal Integrated Products, Inc.
//
// AUTH: FB, JM
// DATE: 19 AUG 03
//
// This example shows how to set up a code banking project using the Cygnal
// IDE and the TASKING 8051 development tools. It uses Timer3 and Timer4
// interrupts to blink the LED and output a 1 kHz sine wave on DAC1,
// respectively. The code that blinks the LED is located in Bank 3 and the
// code that outputs a sine wave based on a 256 entry sine table is located
// in Bank 2. Since interrupts must be located in the Common area, both
// interrupts call a function in one of the banks to perform the desired task.
//
// The project should be configured for code banking as shown in AN043 before
// this project is built.
//
// This program uses the the 24.5 MHz internal oscillator multiplied by two
// for an effective SYSCLK of 49 MHz.
//
// In "Project->Tool Chain Integration," the Command line flags under the
// Linker tab should read:
//
// -lc51s NOCASE RS(256) -banks 4 -common 8000H "BA(3, BANK3_TOGGLE_LED_PR)
// BA(2,BANK2_SET_DAC1_PR)"
//
// Target: C8051F12x
// Tool chain: TASKING CC51 7.0 / TASKING EVAL CC51
//

//---
// Includes
//---
#include "regc51f12x.sfr" // SFR declarations
#include <stdio.h> // printf() and getchar()

//---
// Global CONSTANTS
//---
#define TRUE 1
#define FALSE 0

#define SYSCLK 49000000 // Output of PLL derived from (INTCLK*2)
#define SAMPLE_RATE_DAC 100000L // DAC sampling rate in Hz
#define PHASE_PRECISION 65536 // range of phase accumulator
#define FREQUENCY 1000 // frequency of output waveform in Hz

 // <phase_add> is the change in phase
 // between DAC1 samples; It is used in
 // the set_DAC1 routine in bank2
unsigned int phase_add = FREQUENCY * PHASE_PRECISION / SAMPLE_RATE_DAC;

//---
// Function PROTOTYPES
//---

AN143

Rev. 1.1 31

// Common area functions
void main(void);
void SYSCLK_Init(void);
void PORT_Init(void);
void DAC1_Init (void);
void Timer3_Init(int counts);
void Timer4_Init(int counts);
_interrupt(14) void Timer3_ISR (void);
_interrupt(16) void Timer4_ISR (void);

// code bank 2 functions
extern void set_DAC1(void);

// code bank 3 functions
extern void toggle_LED(void);

//---
// MAIN Routine
//---
//
//Common area code;
//
void main (void)
{

 WDTCN = 0xde; // disable watchdog timer
 WDTCN = 0xad;
 PORT_Init (); // initialize crossbar and GPIO
 SYSCLK_Init (); // initialize oscillator
 DAC1_Init (); // initialize DAC1

 Timer3_Init(SYSCLK/12/1000); // initialize Timer3 to overflow
 // every millisecond

 Timer4_Init(SYSCLK/SAMPLE_RATE_DAC);// initialize Timer4 to overflow
 // <SAMPLE_RATE_DAC> times per
 // second
 EA = 1; // enable global interrupts
 while(1);

}

//---
// Interrupt Service Routines
//---
//---
// Timer3_ISR
//---
// This routine changes the state of the LED whenever Timer3 overflows 250 times.
//
// NOTE: The SFRPAGE register will automatically be switched to the Timer 3 Page
// When an interrupt occurs. SFRPAGE will return to its previous setting on exit
// from this routine.
//
_interrupt(14) void Timer3_ISR (void)
{
 static int i; // software interrupt counter

AN143

32 Rev. 1.1

 TF3 = 0; // clear Timer3 overflow flag
 i++; // increment software counter

 // toggle the LED every 250ms
 if (i >= 250) {
 toggle_LED(); // toggle the green LED

 i = 0; // clear software counter
 }
}
//---
// Timer4_ISR -- Wave Generator
//---
//
// This ISR is called on Timer4 overflows. Timer4 is set to auto-reload mode
// and is used to schedule the DAC output sample rate in this example.
// Note that the value that is written to DAC1 during this ISR call is
// actually transferred to DAC1 at the next Timer4 overflow.
//
_interrupt(16) void Timer4_ISR (void)
{
 TF4 = 0; // clear Timer4 overflow flag
 set_DAC1();
}

//---
// Initialization Routines
//---

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use the internal oscillator
// at 24.5 MHz multiplied by two using the PLL.
//
void SYSCLK_Init (void)
{
 int i; // software timer

 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = 0x0F;// set SFR page to CONFIG_PAGE

 OSCICN = 0x83; // set internal oscillator to run
 // at its maximum frequency

 CLKSEL = 0x00; // Select the internal osc. as
 // the SYSCLK source

 //Turn on the PLL and increase the system clock by a factor of M/N = 2
 SFRPAGE = 0x0F;// Set SFR page to CONFIG_PAGE

 PLL0CN = 0x00; // Set internal osc. as PLL source
 SFRPAGE = 0x00;// Set SFR page to LEGACY_PAGE
 FLSCL = 0x10; // Set FLASH read time for 50MHz clk
 // or less
 SFRPAGE = 0x0F;// Set SFR page to CONFIG_PAGE
 PLL0CN |= 0x01; // Enable Power to PLL

AN143

Rev. 1.1 33

 PLL0DIV = 0x01; // Set Pre-divide value to N (N = 1)
 PLL0FLT = 0x01; // Set the PLL filter register for
 // a reference clock from 19 - 30 MHz
 // and an output clock from 45 - 80 MHz
 PLL0MUL = 0x02; // Multiply SYSCLK by M (M = 2)

 for (i=0; i < 256; i++) ; // Wait at least 5us
 PLL0CN |= 0x02; // Enable the PLL
 while(!(PLL0CN & 0x10)); // Wait until PLL frequency is locked
 CLKSEL = 0x02; // Select PLL as SYSCLK source

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// PORT_Init
//---
//
// This routine configures the crossbar and GPIO ports.
//
void PORT_Init (void)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = 0x0F;// Set SFR page to CONFIG_PAGE

 XBR0 = 0x00;
 XBR1 = 0x00;
 XBR2 = 0x40; // Enable crossbar and weak pull-up

 P1MDOUT |= 0x40; // Set P1.6(LED) to push-pull

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// DAC1_Init
//---
//
// Configure DAC1 to update on Timer4 overflows and enable the the VREF buffer.
//
//
void DAC1_Init(void){

 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = 0x01;// Set SFR page to DAC1_PAGE

 DAC1CN = 0x94; // Enable DAC1 in left-justified mode
 // managed by Timer4 overflows
 SFRPAGE = 0x00;// Set SFR page to LEGACY_PAGE

 REF0CN |= 0x03; // Enable the internal VREF (2.4v) and
 // the Bias Generator

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page

}

AN143

34 Rev. 1.1

//---
// Timer3_Init
//---
//
// Configure Timer3 to auto-reload mode and to generate interrupts
// at intervals specified by <counts> using SYSCLK/12 as its time base.
//
//
void Timer3_Init (int counts)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = 0x01;// Set SFR page to TMR3_PAGE

 TMR3CN = 0x00; // Stop Timer; Clear overflow flag;
 // Set to Auto-Reload Mode

 TMR3CF = 0x00; // Configure Timer to increment;
 // Timer counts SYSCLKs/12

 RCAP3L = -counts;
 RCAP3H = (-counts) >> 8;// Set reload value
 TMR3L = RCAP3L;
 TMR3H = RCAP3H; // Initialize Timer to reload value

 EIE2 |= 0x01; // enable Timer3 interrupts
 TR3 = 1; // start Timer

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page

}

//---
// Timer4_Init
//---
// Configure Timer4 to auto-reload mode and to generate interrupts
// at intervals specified in <counts> using SYSCLK as its time base.
//
void Timer4_Init (int counts)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 SFRPAGE = 0x02;// Set SFR page to TMR4_PAGE

 TMR4CN = 0x00; // Stop Timer4; Clear overflow flag (TF4);
 // Set to Auto-Reload Mode

 TMR4CF = 0x08; // Configure Timer4 to increment;
 // Timer4 counts SYSCLKs

 RCAP4L = -counts;
 RCAP4H = (-counts) >> 8; // Set reload value
 TMR4L = RCAP4L;
 TMR4H = RCAP4H; // Initialzie Timer4 to reload value

 EIE2 |= 0x04; // enable Timer4 interrupts
 TR4 = 1; // start Timer4

AN143

Rev. 1.1 35

 SFRPAGE = SFRPAGE_SAVE; // Restore SFR page
}

//---
// bank2.c
//---
//
// AUTH: FB, JM
// DATE: 19 AUG 03
//
// Target: C8051F12x
// Tool chain: TASKING CC51 7.0 / TASKING EVAL CC51
//
// This file contains routines used by the code banking example in AN043.
// All routines in this file are located in Code Bank 2.
//

//---
// Includes
//---
#include "regc51f12x.sfr" // SFR declarations

//---
// Global VARIABLES
//---

extern int phase_add;

//---
// Global CONSTANTS
//---

unsigned int rom SINE_TABLE[256] = {

 0x0000, 0x0324, 0x0647, 0x096a, 0x0c8b, 0x0fab, 0x12c8, 0x15e2,
 0x18f8, 0x1c0b, 0x1f19, 0x2223, 0x2528, 0x2826, 0x2b1f, 0x2e11,
 0x30fb, 0x33de, 0x36ba, 0x398c, 0x3c56, 0x3f17, 0x41ce, 0x447a,
 0x471c, 0x49b4, 0x4c3f, 0x4ebf, 0x5133, 0x539b, 0x55f5, 0x5842,
 0x5a82, 0x5cb4, 0x5ed7, 0x60ec, 0x62f2, 0x64e8, 0x66cf, 0x68a6,
 0x6a6d, 0x6c24, 0x6dca, 0x6f5f, 0x70e2, 0x7255, 0x73b5, 0x7504,
 0x7641, 0x776c, 0x7884, 0x798a, 0x7a7d, 0x7b5d, 0x7c29, 0x7ce3,
 0x7d8a, 0x7e1d, 0x7e9d, 0x7f09, 0x7f62, 0x7fa7, 0x7fd8, 0x7ff6,
 0x7fff, 0x7ff6, 0x7fd8, 0x7fa7, 0x7f62, 0x7f09, 0x7e9d, 0x7e1d,
 0x7d8a, 0x7ce3, 0x7c29, 0x7b5d, 0x7a7d, 0x798a, 0x7884, 0x776c,
 0x7641, 0x7504, 0x73b5, 0x7255, 0x70e2, 0x6f5f, 0x6dca, 0x6c24,
 0x6a6d, 0x68a6, 0x66cf, 0x64e8, 0x62f2, 0x60ec, 0x5ed7, 0x5cb4,
 0x5a82, 0x5842, 0x55f5, 0x539b, 0x5133, 0x4ebf, 0x4c3f, 0x49b4,
 0x471c, 0x447a, 0x41ce, 0x3f17, 0x3c56, 0x398c, 0x36ba, 0x33de,
 0x30fb, 0x2e11, 0x2b1f, 0x2826, 0x2528, 0x2223, 0x1f19, 0x1c0b,
 0x18f8, 0x15e2, 0x12c8, 0x0fab, 0x0c8b, 0x096a, 0x0647, 0x0324,
 0x0000, 0xfcdc, 0xf9b9, 0xf696, 0xf375, 0xf055, 0xed38, 0xea1e,
 0xe708, 0xe3f5, 0xe0e7, 0xdddd, 0xdad8, 0xd7da, 0xd4e1, 0xd1ef,
 0xcf05, 0xcc22, 0xc946, 0xc674, 0xc3aa, 0xc0e9, 0xbe32, 0xbb86,
 0xb8e4, 0xb64c, 0xb3c1, 0xb141, 0xaecd, 0xac65, 0xaa0b, 0xa7be,
 0xa57e, 0xa34c, 0xa129, 0x9f14, 0x9d0e, 0x9b18, 0x9931, 0x975a,
 0x9593, 0x93dc, 0x9236, 0x90a1, 0x8f1e, 0x8dab, 0x8c4b, 0x8afc,
 0x89bf, 0x8894, 0x877c, 0x8676, 0x8583, 0x84a3, 0x83d7, 0x831d,
 0x8276, 0x81e3, 0x8163, 0x80f7, 0x809e, 0x8059, 0x8028, 0x800a,
 0x8000, 0x800a, 0x8028, 0x8059, 0x809e, 0x80f7, 0x8163, 0x81e3,

AN143

36 Rev. 1.1

 0x8276, 0x831d, 0x83d7, 0x84a3, 0x8583, 0x8676, 0x877c, 0x8894,
 0x89bf, 0x8afc, 0x8c4b, 0x8dab, 0x8f1e, 0x90a1, 0x9236, 0x93dc,
 0x9593, 0x975a, 0x9931, 0x9b18, 0x9d0e, 0x9f14, 0xa129, 0xa34c,
 0xa57e, 0xa7be, 0xaa0b, 0xac65, 0xaecd, 0xb141, 0xb3c1, 0xb64c,
 0xb8e4, 0xbb86, 0xbe32, 0xc0e9, 0xc3aa, 0xc674, 0xc946, 0xcc22,
 0xcf05, 0xd1ef, 0xd4e1, 0xd7da, 0xdad8, 0xdddd, 0xe0e7, 0xe3f5,
 0xe708, 0xea1e, 0xed38, 0xf055, 0xf375, 0xf696, 0xf9b9, 0xfcdc,
};

//---
// set_DAC1
//---

void set_DAC1(void)
{
 char SFRPAGE_SAVE = SFRPAGE; // Save Current SFR page

 static unsigned phase_acc = 0; // holds phase accumulator

 int temp1; // temporary 16-bit variable

 // increment phase accumulator
 phase_acc += phase_add;

 // read the table value
 temp1 = SINE_TABLE[phase_acc >> 8];

 // Add a DC bias to change the the rails from a bipolar (-32768 to 32767)
 // to unipolar (0 to 65535)
 // Note: the XOR with 0x8000 translates the bipolar quantity into
 // a unipolar quantity.

 SFRPAGE = 1; // set SFR_PAGE to DAC1_PAGE
 DAC1L = 0x8000 ^ temp1;
 DAC1H = (0x8000 ^ temp1) >> 8; // set new DAC value
 SFRPAGE = SFRPAGE_SAVE; // restore SFR page

}

//---
// bank3.c
//---
//
// AUTH: FB, JM
// DATE: 19 AUG 03
//
// Target: C8051F12x
// Tool chain: TASKING CC51 7.0 / TASKING EVAL CC51
//
// This file contains routines used by the code banking example in AN043.
// All routines in this file are located in Code Bank 3.
//

//---
// Includes
//---
#include "regc51f12x.sfr" // SFR declarations

AN143

Rev. 1.1 37

//---
// Global CONSTANTS
//---

_sfrbit LED _atbit(P1, 6); // LED='1' means ON

//---
// toggle_led
//---

void toggle_led(void)
{
 LED = ~LED;

//---
// stub.asm
//---
//
1 "stub.asm"
;
; Version:
;
; Copyright 1999-2002 Altium BV
;
; This file has been modified to allow for bank switching on Cygnal
; 8051 devices.
;
; EDIT: JM
; DATE: 19 AUG 03
;
$CASE

;
;
 NAME _STUB

 PUBLIC __LK_STUB_ENTRY

EXTRN CODE(__LK_FUNCTION_ADDRESS)
EXTRN DATA(__LK_FUNCTION_BANK)

20 "stub.asm"

 BANK_SFR EQU 0B1h ; PSBANK (on all SFR pages)

26 "stub.asm"

;**
; *
; __LK_STUB *
; *
; This routine is inserted for every CALL from one segment to a *

AN143

38 Rev. 1.1

; segment in another bank. The variable __LK_FUNCTION_ADDRESS *
; will be resolved with the 16-bit offset of the called label. *
; *
;**

__LK_STUB SEGMENT CODE
 RSEG __LK_STUB
__LK_STUB_ENTRY:
 MOV DPTR,#__LK_FUNCTION_ADDRESS
 JMP __LK_BANKSWITCH

;**
; *
; __BANKSW *
; *
; This routine takes care of the actual switching of code-banks. *
; This will depend on the hardware implementation. This example *
; uses the SFR PSBANK to select the code bank. This is the *
; method supported by the Cygnal 8051 devices. *
; *
;**

__BANKSW SEGMENT CODE
 RSEG __BANKSW
__LK_BANKSWITCH:
 PUSH BANK_SFR ; push current bank
 CALL _bankswitch
 POP BANK_SFR ; switch back to original bank
 RET

_bankswitch:
 PUSH ACC
 MOV A, #__LK_FUNCTION_BANK ; put new value in IFBANK
 RL A
 RL A
 RL A
 RL A
 ADD A, #__LK_FUNCTION_BANK ; put new value in COBANK

 MOV BANK_SFR, A ; switch to new instruction fetch bank

 POP ACC
 PUSH DPL
 PUSH DPH
 RET

 END

AN143

Rev. 1.1 39

Notes:

AN143

40 Rev. 1.1

Contact Information
Silicon Laboratories Inc.
4635 Boston Lane
Austin, TX 78735
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: productinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

	Relevant Devices
	Introduction
	Key Points
	Code Banking Overview
	User-Managed Bank Switching for Data Intensive Projects
	Example 1: Data Logging Application
	Managing the Instruction Fetch Bank Select
	Advancing Through the Code Banks
	Preserving the PSBANK Register in Functions and Interrupt Service Routines
	Choosing Log Record Size
	Keeping Accurate Time

	Project-Managed Bank Switching for Code- Intensive Applications
	Example 2: Project-Managed Code Banking
	Step by Step Instructions on Configuring Example 2 Using the Silicon Labs IDE

	Code Bank Assignment Considerations
	Assigning Code Banks for Maximum Performance
	Code Constants

	Bank Switch Macro Details
	Example 1: User-Managed Code Banking (Data Logger with Real- Time Clock)
	Example 2: Project-Managed Code Banking

	Notes:

