SILICON LABS

AN141

SMBuUs COMMUNICATION FOR SMALL FORM FACTOR DEVICE FAMILIES

RELEVANT DEVICES
This application note applies to the following devices:

C8051F300, CB8051F301, C8051F302, CB8051F303,
C8051F304, CB8051F305, C8051F310, C8051F311,
C8051F312, CB8051F313, CB8051F314, CB8051F315,
C8051F316, C8051F317, C8051F320, CB8051F321,
C8051F330, CB8051F331, CB8051F332, CB8051F333,
C8051F334, CB8051F335, CB8051F340, CB8051F341,
C8051F342, CB8051F343, CB8051F344, CB8051F345,
C8051F346, C8051F347, C8051F350, CB8051F351,
C8051F352, CB8051F353, C8051F410, C8051F411,
C8051F412, C8051F413.

1. Introduction

C8051F3xx and C8051F41x devices are equipped with
an SMBus serial I/O peripheral that is compliant with
both the System Management Bus Specification and the
1°C-Bus Specification. The SMBus is a bi-directional, 2-
wire interface capable of communication with multiple
devices. A typical SMBus configuration is shown in
Figure 1. SMBus is a trademark of Intel; 1°C is a
trademark of Phillips Semiconductor.

This application note describes the SMBus
specification, how to configure and use the on-chip
SMBus interface, and SMBus debugging techniques.
Code examples written in C provide the general
framework for most SMBus Master and Slave
implementations. An example that interfaces to a 256-
byte EEPROM over a two-wire interface and supports
multi-byte transfers is also included at the end of this
note.

VDD =+5/+3V

Device 1

2. Overview of the SMBus
Specification

The SMBus Specification describes the electrical
characteristics, network control conventions and
communications protocols used by SMBus devices. The
SMBus Specification can be downloaded from
www.smbus.org. The 12C Specification can be
downloaded from www.philipslogic.com/i2c/.

2.1. SMBus Structure

An SMBus system is a 2-wire network in which each
device has a unique address and may be addressed by
any other device on the network. All transfers are
initiated by a “Master” device; if a device recognizes its
own address and responds, it becomes the “Slave”
device for that transfer. It is important to note that
assigning one specified Master device is not necessary.
Any device may assume the role of Master or Slave for
any particular transfer. In the case that two devices
attempt to initiate a transfer simultaneously, an
arbitration scheme forces one device to give up the bus.
This arbitration scheme is non-destructive (one device
wins and no information is lost). Arbitration is discussed
in depth in the Arbitration section of this note.

Two wires are used in SMBus communication: SDA
(serial data) and SCL (serial clock). Each line is bi-
directional, with the direction depending on which mode
each of the devices is in. The Master always drives
SCL,; either device may drive SDA. Both lines should be
connected to a positive power supply through a pull-up
circuit. All devices on the SMBus line should have open-
drain or open collector outputs, so that the lines may
remain high when the bus is free. A line is pulled low if
one or more devices attempts to output a LOW signal.
All devices must output a HIGH for the line to stay high.

Device 2 Device 3

SDA l
SCL

I |

Figure 1. Typical SMBus Configuration

Rev. 1.2 10/06

Copyright © 2006 by Silicon Laboratories

AN141

http://www.smbus.org/
http://www.philipslogic.com/i2c/

AN141

2.2. Handshaking

SMBus employs various line conditions as handshaking
between devices. Note that during a data transfer, SDA
is only allowed to change levels while SCL is low.
Figure 2 illustrates the handshaking signals. Changes
on SDA while SCL is high represent START and STOP
signals, as follows:

START: This initiates a transfer. It consists of a falling
edge on SDA while SCL is high.

STOP: This ends a transfer. It consists of a rising edge
on SDA while SCL is high.

ACKNOWLEDGE: Also referred to as an “ACK”, this
handshaking signal is transmitted by a receiving device
as a confirmation. For example, after device_X receives
a byte, it transmits an ACK to confirm the transfer. An
ACK consists of a low level on SDA sampled when SCL
is high.

NOT_ACKNOWLEDGE: Also referred to as a “NACK”,
this handshaking signal is a high level on SDA sampled
when SCL is high. When a receiving device fails to
ACK, the sending device sees a NACK. In typical
transfers, a received NACK indicates that the
addressed Slave is not ready for transfer, or is not
present on the bus. A receiving Master may transmit a
NACK to indicate the last byte of a transfer. Both of
these situations are discussed further in the next
section.

SLAVE ADDRESS + R/W: This handshaking signal is
sent after the START signal on a new transfer. The
signal is sent in an 8-bit transfer by the Master; 7
address bits and 1 Read/Write (R/W) bit. The addressed
Slave should decode the (R/W) bit to determine the type
of the current transfer. The (R/W) bit is set to logic 1 to
indicate a “READ” operation and cleared to logic 0 to
indicate a “WRITE” operation.

2.3. Transfer Modes

Two types of transfers are possible: a WRITE (transfer
from Master to Slave) and a READ (transfer from Slave
to Master). During a transfer, any device may assume
one of four roles: Master Transmitter, Master Receiver,
Slave Receiver, or Slave Transmitter.

2.3.1. Master Transmitter

In this role, the device transmits serial data on SDA and
drives the clock on SCL. The device initiates the
transfer with a START, sends the Slave Address + W,
and waits for an ACK from the Slave. After the ACK is
received, the device transmits one or more bytes of
data, with each byte ACK’ed by the Slave. After the last
byte, the device transmits a STOP.

2.3.2. Master Receiver

In this role, the device receives serial data on SDA while
driving the clock on SCL. The device initiates the
transfer with a START followed by the Slave Address +
R. After the Slave ACK’s its address, the device will
output the clock on SCL and receive data on SDA. After
receiving the last byte, the device will issue a NACK
followed by a STOP.

2.3.3. Slave Transmitter

In this role, the device outputs serial data on SDA and
receives the clock on SCL. The device receives a
START followed by its own Slave Address + R, then
ACK’s its address and enters Slave Transmitter mode.
The device transmits serial data on SDA and receives
an ACK after each byte. After the last byte has been
sent, the Master will issue a NACK followed by a STOP.

2.3.4. Slave Receiver

In this role, the device receives serial data on SDA and
the clock on SCL. The device receives a START
followed by its own Slave Address + W from a Master,
then ACK’s its address and enters Slave Receiver
mode. The device receives serial data on SDA and the
clock on SCL. The device ACK’s each byte received
and exits Slave mode after the Master issues a STOP.

- / /7 \

SDA

SLA6 SLA5-0 >< R/W D7 >< D6-0
START Slave Address + R/W ACK Data Byte NACK STOP
Figure 2. SMBus Timing
®
2 Rev. 1.2 @

SILICON LABS

AN141

2.4, Typical WRITE Scenarios
Example (1) in Figure 3 shows a successful transfer when the device is operating as a Master Transmitter.

2.4.1. Slave Address NACK’ed

In Example (2), the Master receives a NACK after sending the Slave Address + W. This occurs when a Slave is
‘off line’, meaning it is not responding to its own address. The Master has the option of transmitting a STOP and to
give up the transfer or a repeated START to retry the transfer. To send a repeated START, the Master sends a
STOP followed by a START and Slave Address + W. The Master will repeat the cycle until it receives an ACK. This
is referred to as “acknowledge polling”.

2.4.2. Reserving the Bus with a Repeated START

In Example (3), the Master issues a repeated START after an ACK. This process allows the Master to initiate a new
transfer without giving up the bus (to switch from a WRITE to a READ, for example). The repeated START is
commonly used in EEPROM memory access applications, where a memory READ must be directly preceded by a
WRITE indicating the desired memory location. The repeated START is demonstrated in the EEPROM code
example at the end of this note.

(1)Successful WRITE | S |SLA+W|A | Data |A| Data A P

(2) NACK received after SLA + W N P

(3) Repeat start issued after Acknowledge S|SLA+R|A
(4) NACK received after data N P
S = Start
From Master SLA = Slave Address (7 bits)
to Slave W = Write (1 bit)
R = Read (1 bit)
tFO“I’w”; St':r"e Data = Serial data (8 bits)
A = Acknowledge
“Data Any number of data N= Not-Acknowledge
— =27 bytes and acknowledges P = Stop

Figure 3. Typical WRITE Transfer Scenarios

®
@ Rev. 1.2 3

SILICON LABS

AN141

2.5. Data Byte NACK’ed

In Example (4), the master receives a NACK after sending a data byte. In typical SMBus systems, this is how the
receiving device indicates an error. The Master sends a STOP, and retries the transfer as in Example (2), or gives
up the transfer. Note that the use of NACKs is not restricted to error situations; the acknowledge level is a user-
definable characteristic, and may vary in different applications.

2.6. Typical READ Scenarios
Example (1) in Figure 4 shows a successful READ operation when the device is operating as a Master Receiver.

2.6.1. Slave Address NACK’ed

In Example (2), the Master receives a NACK after sending the Slave Address + R. This situation is handled in the
same fashion as in Example (2) of the WRITE discussion. The Master can use acknowledge polling to retry the
transfer, or can give up the transfer.

2.6.2. Changing Direction (Read/Write) with a Repeated START

Example (3) shows the Master sending a repeated START after sending a byte of data. This is the same repeated
START state as in the WRITE discussion. A Master may send a repeated START after any data byte, and may
initiate a READ or a WRITE following the repeated START. Generally a repeated START is used to change
direction (READ/WRITE) or to change addresses (Slave devices).

2.7. Other SMBus Scenarios

Note that the READ and WRITE diagrams show only the typical scenarios. Bus errors, timeouts, and arbitration are
also possible occurrences. Timeouts are used to detect when a transfer has stalled or when the bus is free. Any
device may hold SCL low until it is ready to continue a transfer. This process allows a slower Slave device to
communicate with a faster Master, since stalling the bus effectively reduces the SCL frequency. The SMBus
protocol specifies that all devices on the SMBus must declare any SCL signal held low for more than 25 ms a
“timeout”. When a timeout occurs, all devices on the bus must reset communication. A high SCL timeout is also
possible. If both SDA and SCL remain high for more than 50 psec, the bus is designated as free.

(1) Successful READ |S|SLA+R|A| Data |A| Data |N|P]

(2) NACK received after SLA + R N P

(3) Repeat start issued after ACK S|SLA+R A
S = Start
From Master SLA = Slave Address (7 bits)
to Slave W = Write (1 bit)
R = Read (1 bit)
E)r?\/ln;zfrve Data = Serial data (8 bits)
A = Acknowledge
"~ Dita | Any number of data N = Not-Acknowledge
— —>~ _ Dbytes and acknowledges P = Stop

Figure 4. Typical READ Scenarios

®
4 Rev. 1.2 @

SILICON LABS

AN141

2.8. Arbitration

If multiple Masters are configured on the same SMBus system, it is possible that two will attempt to initiate a
transfer at the same time. If this happens, an arbitration scheme is employed to force one device to give up the
bus.

The arbitration works as follows: both Masters continue to transmit until one attempts a HIGH “recessive bit” while
the other attempts a LOW “dominant bit”. Due to the open-drain bus, the device attempting a LOW will win the bus.
The device sending a HIGH gives up the bus, and the other device continues its transfer. Note that the collision is
non-destructive: one device always wins.

Figure 5 shows an example output sequence between two devices during arbitration. Assume Master Device X
and Master Device_Y contend for the bus. The winner, Device_X, is not affected at all by the arbitration. Since data
is shifted into the SMBus data register as it is shifted out, Device_Y does not miss any data. Note that Device Y
switches to Slave mode after losing arbitration and will respond to Device_X if addressed.

Device_X —

Device_Y
1\ 0 |/ 1 1 1

Seen on the Bus —

Device_Y
gives up
the bus

Figure 5. Arbitration Sequence

®
@ Rev. 1.2 5

SILICON LABS

AN141

3. Using the SMBus with the
C8051F3xx and C8051F41x

The SMBus peripheral can operate in both Master and
Slave modes and provides shifting control for the serial
transfers. Timing for baud rate generation and SCL Low
timeout is provided by the on-chip timers. All other
protocol requirements are implemented by interrupt-
driven user software.

3.1. SMBus Management Tasks

The following tasks should be implemented by any
device participating in an SMBus network. They are
performed using SMBus hardware and user software.

3.1.1. SCL Clock Generation

When configured as an SMBus Master, the hardware
generates the clock signal on SCL based on Timer 0,
Timer 1, Timer2 high byte, or Timer2 low byte
overflows. The maximum SCL frequency in Master
mode is approximately one third the overflow rate of the
selected timer. The SMBus baud rate selected should
not exceed 1/10 of the system clock frequency.

3.1.2. SCL Low Timeout (C8051F30x)

The SCL Low Timeout, when enabled, uses Timer 2 to
detect if SCL has been low for more than 25 ms. It is
important to keep SCL from staying low for long periods
of time because no other devices can use the bus
during this time. The SCL Low Timeout is only
applicable when operating as a Master.

The SCL Low Timeout logic works by forcing Timer 2 to
reload when SCL is high, and allowing it to count when
SCL is low. Timer 2 should be enabled and configured
to overflow after a 25 ms interval. The Timer 2 interrupt
service routine can be used to reset (disable and re-
enable) the SMBus in the event of an SCL Low Timeout.

3.1.3. SCL Low Timeout (All Other Devices)

The SCL Low Timeout on all devices other than the
C8051F30x uses Timer 3 instead of Timer 2, but
operates exactly as in the C8051F30x.

3.1.4. Arbitration Lost Detection

In the SMBus arbitration system, one master always
wins and no data is lost. However, arbitration can still be
lost for various reasons: another device on the bus
illegally tampers with SDA or SCL, or environmental
noise is enough to cause false rising or falling edges.
The automatic arbitration lost detection bit, ARBLOST,
in the SMBOCN register will be set if:

m A repeated START is detected as a MASTER when
the STA bit is set to '0' (unwanted repeated START).

m SCL is sensed low while attempting to generate a

STOP or repeated START condition (MASTER).

m SDA is sensed low while transmitting a ‘1’ (excluding

ACK bits) (SLAVE or MASTER).
The SMBus ISR should check for a set ARBLOST bit
and act accordingly. In the case of the example SMBus
Master and Slave programs discussed later, a set
ARBLOST bit is handled by resetting the SMBus
module, ignoring the erroneous data transmission, and
continuing with the next transmission. The ARBLOST
bit is automatically cleared by hardware when the
SMBus interrupt flag (SI) is cleared by software (end of
the ISR).

3.1.5. Serial Data Transfers

The hardware controls all shifting of data on the SDA
signal. Acknowledgments are managed by user
software, as explained in the register definitions below.

3.1.6. Slave Address Recognition

Slave Address recognition is handled by user software.
If the Slave inhibit bit (SMBOCF.6) is not set, the SMBus
interface issues an interrupt each time a Slave Address
is detected on the bus. The Slave Address appears in
the SMBODAT register and is decoded by the ISR. If the
device recognizes the address, it should acknowledge it
by setting the ACK bit. Otherwise, it should clear the
ACK bit to send a NACK.

3.2. Configuration and Control

The SMBus interface can operate as a Master or a
Slave. A device enters Master mode upon writing a ‘1’
to the STA (START) bit. A Master device is responsible
for generating the clock signal for the entire transfer.
When the device is not in Master mode, it is a Slave and
will receive interrupts from the SMBus interface when
traffic is detected on the bus. The Slave Inhibit bit
(SMBOCEF.6) allows the device to go “offline” to avoid
getting interrupted when network traffic is detected. In
“offline” mode, the hardware will automatically NACK all
transfers initiated by other devices on the bus. Master
mode transfers are not affected by the Slave Inhibit bit.

Below is a brief description of the SMBus registers and
how they affect device operation. For more detailed
information, see the SMBus chapter in the Silicon Labs
device data sheet.

SMBOCF. The SMBus configuration register is used to
enable the SMBus interface and select whether Slave
Mode is enabled or inhibited. It is also used to select the
SCK time base and enable the SCL Low Timeout.

SMBOCN. The SMBus control register is used as a
status indicator and to send SMBus START and STOP
signals. This register is also used to define the outgoing
ACK level and read incoming ACK levels. The ACK bit

6 Rev. 1.2

>

SILICON LABS

AN141

in this register should be written each time a byte is
received and read each time a byte is transmitted.

SMBODAT. The SMBus Data Register is used to hold
data and Slave Addresses. When transmitting or
receiving a 7-bit Slave Address, the least significant bit
of the SMBODAT register is used as a direction bit to
indicate whether the transfer is a read or a write. Data
read from this register is only valid while SI = 1. When
Sl is not set, software should not try to access the
register because the SMBus interface may be in the
process of shifting data. Note that in Master mode,
data will not be shifted in or out if the STA or STO
bits are set. Instead, START or STOP signals will be
generated, respectively.

3.3. SMBus Communication

All SMBus communication is handled by the SMBus
interrupt service routine (ISR). The SMBus ISR can be
implemented as a state machine that takes input
parameters from the SMBOCN register and from state
variables. The state definitions and typical response
options for the various states are located in Table 1 on
page 20 (C8051F30x) and Table 2 on page 22 (all other
supported devices). Note that in these tables, the upper
four bits of SMBOCN are referred to as the ‘status
vector’.

The implementation of the SMBus ISR will vary
according to application-specific needs. The following
examples provide the general framework necessary to
use the supported C8051F3xx and C8051F41x devices
in the following modes:

m Master Transmitter
m Master Receiver
m Slave Receiver
m Slave Transmitter

An additional EEPROM example that supports multi-
byte transfers is provided to demonstrate how the
general framework can be customized to suit an
application-specific need. The software for the 'F33x is
provided at the end of this application note. Additional
examples for all supported devices are available upon
request.

3.3.1. Writing Data to an SMBus Slave (Master
Transmitter)

An SMBus device in Master Transmitter mode may
write one or more bytes to a Slave. The following steps
and the flowchart in Figure 6 show how the example
software initiates a transfer to a to a Slave Receiver in
polled code:

1. Software Busy Flag? The <SMB_BUSY> flag is a

software managed flag that keeps another transfer from
starting before the current transfer is complete. This flag is
cleared by the SMBus ISR after a transfer is complete.

2. Claim SMBus. Set the <SMB_BUSY> flag. No other
transfers can be initiated while this flag is set to ‘1°.

3. Set global parameters. The global parameters include an
<SMB_RW-> flag specifying whether the transfer is a read
or a write. They also include the outgoing data byte
<SMB_DATA_OUT> and the target Slave Address
<TARGET>.

4. Send START Signal. A START signal is sent by writing a
‘1’ to the STA bit (SMBOCN.5). As soon as the SMBus
hardware sends the START signal, it sets the Sl bit
causing an SMBus interrupt. From this point, the SMBus
ISR finishes sending the data then clears the
<SMB_BUSY> flag.

A Master Transmitter services a minimum of three

interrupts for each transfer containing one data byte.

For each additional data byte sent in the same transfer,

the number of interrupts serviced increases by one.

Software
Busy Flag?

Yes

No

v

Claim SMBus
(Set "Software
Busy" Flag)

v

Set Global
Parameters

i

Send START
Signal

End

Figure 6. Master Transmitter Initiating an
SMBus Transfer to a Slave Receiver

>

SILICON LABS

Rev. 1.2 7

AN141

SMBus
Interrupt

Interrupt (0)
MTSTA

Master 1.Send slave

+ START Signal Yes—» address + WRITE
Detected? 2.Clear STA
No
Y No——»
See the "Reading
Slave Address Yes Data from an

SMBus Slave"
Example

or Data Byte
Acknoledged?

Finished
Sending Data?

No Interrupt (1)

No

Interrupt (n - 1) Interrupt (n)

MTSLA, MTDB MTDBFIN
1. TOP
1. Load data byte Sizrr]]gls (6]
2. Clear ACK 2. Set gobal
parameters

NACK: Abort or

Restart Transfer

A J

1. Release SMBus (S| = 0)
2. Exit

Figure 7. SMBus ISR in a Master Transmitter
Role

The following steps outline how an SMBus Master
Transmitter completes a transfer to a Slave Receiver
using the SMBus ISR:

5.

Figure 7 shows how the SMBus ISR in the “SMBus
Master Framework” example code is structured to
handle the role of Master Transmitter. Figure 8 shows
the typical waveform on SDA when an SMBus Master
sends data to a Slave. Note that the example software
supports sending one data byte (n =2 in Figure 7 and

Figure 8), but can be modified to read a global array
and count if more than one byte needs to be sent during

each transfer.

Interrupt (0). MTSTA. The SMBus ISR decodes the
SMBOCN register and the state parameters to determine
the current state of the system. The first time the interrupt
is called, Interrupt (0), the status vector should indicate
that the device is a Master Transmitter and a Master
START has been transmitted.

Action Taken. The device loads the Slave Address in the
SMBODAT register and sets the R/W bit (SMBODAT.0) to
WRITE (0). Then it manually clears the STA bit. Note:
The STA (START) bit is not cleared by hardware and
must be cleared by software; not clearing the STA bit
will result in a repeated start condition.

Interrupt (1), ..., Interrupt (n - 1). MTSLA, MTDB. The
second time the interrupt is called and for the remaining
number of data bytes, the SMBus ISR should not detect a
start condition. It checks the ACK bit to see if the Slave
Address or data bytes were acknowledged.

Action Taken. If the Slave Address or data bytes were
acknowledged by the Slave, the Master loads the outgo-
ing data byte into the SMBODAT register and clears the
ACK bit. If the byte was not acknowledged, the Master
has the option of aborting or restarting the transfer.

Interrupt (n). MTDBFIN. The SMBus Master Transmitter
detects this state when it has successfully sent the last
data byte.

Action Taken. The SMBus ISR transmits a STOP signal
by setting the STO bit to ‘1’. The STO bit is automatically
cleared by hardware and does not need to be cleared by
software. The SMBus ISR also clears the <SMB_BUSY>
flag to indicate that the SMBus hardware is available for
other transfers.

Note that on every interrupt, the Sl flag (the
interrupt source) must be cleared by software for

proper operation. If the Sl flag is not cleared, SCL is
held low and the SMBus will be stalled.

S SLA w Data Byte A Data Byte A Data Byte AP
Interrupt (0) Interrupt (1) Interrupt (2) Interrupt (n-1) Interrupt (n)
MTSTA MTSLA MTDB MTDB MTDBFIN
Received by SMBus ~ MTSTA - Master Transmitter START Sent S =START

Interface MTSLA - Master Transmitter Slave Addr. Sent P =STOP
MTDB - Master Transmitter Data Byte Sent and A=ACK
Transmitted by W =WRITE

SMBus Interface

Acknowledged

MTDBFIN - Master Transmitter Final Data Byte

SLA = Slave Address

Sent and Acknowledged
Figure 8. Typical Master Transmitter Sequence

Rev. 1.2

>

SILICON LABS

AN141

3.3.2. Reading Data from an SMBus Slave (Master
Receiver)

During an SMBus Read, the Master starts out as a
Transmitter and the Slave starts out as a Receiver.
Once the Master transmits the 7-bit Slave Address and
sets the R/W bit to ‘1’ (READ), the Master becomes a
Receiver and the Slave becomes a Transmitter for the
remainder of the transfer. The Master continues to drive
the clock on SCK, but reads in data on SDA. The
Master notifies the Slave to stop sending data by
sending a NACK followed by a STOP after the last data
byte has been received. If the Master does not send a
NACK, it may not be able to send a STOP if the Slave is
driving SDA low.

The following steps and the flowchart in Figure 9 show
how an SMBus Master initiates a Read in polled code:

1. Software Busy Flag? The <SMB_BUSY> flag is a
software managed flag that keeps another transfer from
starting before the current transfer is complete. This flag is
cleared by the SMBus ISR after a transfer is complete.

2. Claim SMBus. Set the <SMB_BUSY> flag. No other
transfers can be initiated while this flag is set to ‘1°.

3. Set global parameters. The global parameters include
the <SMB_RW?> flag that specifies whether the transfer is
a Read or a Write. The target Slave Address is also loaded
in the global variable <TARGET>.

4. Send START Signal. A START signal is sent by writing a
‘1’ to the STA bit (SMBOCN.5). As soon as the SMBus
hardware sends the START signal, it sets the Sl bit
causing an SMBus interrupt. From this point, the SMBus
ISR finishes the transfer then clears the <SMB_BUSY>
flag.

5. Software Busy Flag? The polled code waits for the
SMBus ISR to finish the current transfer and clear the
<SMB_BUSY> flag.

6. Read Data. The SMBus ISR stores the incoming data in
the global variable <SMB_DATA_IN>. The data in this
variable remains valid until the next SMBus read.

Software
Busy Flag?

Yes ‘
No

v
Claim SMBus
(Set "Software

Busy" Flag)

v

Set Global
Parameters

y

Send START
Signal

Software
Busy Flag?

Yes

No

v

Read Data

A
End

Figure 9. Master Receiver Initiating an
SMBus transfer with a Slave Transmitter

>

SILICON LABS

Rev. 1.2

AN141

A device configured as Master Receiver services a
minimum of three interrupts for each transfer containing
one data byte. For each additional data byte read in the
same transfer, the number of interrupts serviced
increases by one. Figure 10 shows how the SMBus ISR
in the “SMBus Master Framework” example code is
structured to handle the role of Master Receiver.
Figure 11 shows the typical waveform on SDA when an
SMBus Master reads data from a Slave. Note that the
example software supports receiving one data byte
(n =2 in Figure 10 and Figure 11), but can be modified
to store incoming data in a global array if more than one
byte needs to be received during each transfer.

The following steps outline how an SMBus Master
Receiver completes a transfer from a Slave Transmitter
using the SMBus ISR:

7. Interrupt (0). MRSTA. The SMBus ISR decodes the
SMBOCN register and the state parameters to determine
the current state of the system. The first time the interrupt
is called, Interrupt (0), the status vector should indicate
that the device is in Master Transmitter mode and a
START was transmitted.

Action Taken. The device loads the Slave Address in the
SMBODAT register and sets the R/W bit (SMBODAT.0) to
READ (1). This indicates that the current transfer is a
read, Then it manually clears the STA bit. Note: The STA
(START) bit is not cleared by hardware and must be
cleared by software; not clearing the STA bit will
result in a repeated START condition.

8. Interrupt (1). MRSLA. The SMBus ISR enters this state
after the Slave Address has been transmitted on a read.
No action is necessary.

9. Interrupt (2), ..., Interrupt (n - 1). MRDB. The third time
the SMBus ISR is called and for the remaining number of
data bytes, it reads the incoming data byte from SMBOCN
and sets the ACK bit.

Interrupt (n). MRDBFIN. The SMBus Master Transmitter
detects this state when it has received the final data byte.
Action Taken. The SMBus ISR clears the ACK bit and
sets the STO bit to transmit a NACK followed by a STOP
signal. The STO bit is automatically cleared by hardware

10.

and does not need to be cleared by software. The NACK
tells the Slave Transmitter to stop sending data and the
STOP signal ends the current transfer. The SMBus ISR
also clears the <SMB_BUSY> flag to allow other transfers
to take place.

Note that on every interrupt, the Sl flag (the
interrupt source) must be cleared by software for
proper operation. If the Sl flag is not cleared, SCL is
held low and the SMBus will be stalled.

SMBus
Interrupt

Interrupt (0)
MRSTA
Master 1.Send slave
+ START Signal Yes—» address + READ
Detected? 2.Clear STA
';0 Yes———»
Yes See the "Writing
to an SMBus

Slave Address
or Data Byte
Acknoledged?

Slave" example

Interrupt (1)
No~1 MRsLA

No Action

\—P;

Finished

Receiving Data? Yes

Interrupt (n)l
No MRDBFIN

1. Clear ACK bit to
NACK: Abort or Interrupt (2) send NACK
Restart Transfer 2. Send STOP
MRDB Interrupt (n - 1) signal
1. Read data byte 3. (;Lesarflsacjgtware
2. Set ACK Y
A4
1. Release SMBus (Sl = 0)
2. Exit

Figure 10. SMBus ISR in a Master Receiver

Data Byte N|[P

S SLA R | A Data Byte A Data Byte
Interrupt (0) Interrupt (1) Interrupt (2)
MRSTA MRSLA MRDB

Interrupt (n-1)
MRDB

Interrupt (n)
MRDBFIN

Received by SMBus
Interface

Transmitted by
SMBus Interface

MRSTA - Master Receiver START Sent

MRSLA - Master Receiver Slave Addr. Sent

MTDB - Master Receiver Data Byte Received
MTDBFIN - Master Receiver Final Data Byte Received

S = START

P =STOP

A =ACK

N = NACK

R = READ

SLA = Slave Address

Figure 11. Typical Master Receiver Sequence

10

Rev. 1.2

>

SILICON LABS

AN141

3.3.3. Accepting Data From an SMBus Master (Slave
Receiver)

When a device is not transmitting, it is in Slave Mode. If
Slave interrupts are enabled, the SMBus interface will
issue an interrupt every time a
START + Slave address + R/W is detected on the bus.

In the “Slave Framework Example” code at the end of
this note, the device initializes the SMBus interface then
enters an infinite loop waiting for data to arrive on the
SMBus. Once data is received from a Master, the
SMBus ISR sets the <DATA_READY> flag. The SMBus
ISR stores the incoming data in the global variable
<SMB_DATA>. This data is valid until the next transfer
is initiated.

The flowchart in Figure 12 shows how the SMBus ISR
handles the role of Slave Receiver. Figure 13 shows a
typical waveform of a transfer from a Slave Receiver’s
perspective.

The following steps outline how an SMBus Slave
Receiver handles a transfer from a Master Transmitter
using the SMBus ISR:

1. Interrupt (0). SRSTAADR. This state occurs when the first
interrupt is received by a Slave on a new transfer and is
detected by the status vector.

Action Taken. The Slave should clear the STA bit then
check the 7-bit address in SMBOCN and set the ACK bit if
it recognizes its address. Otherwise, it should clear the
ACK bit.

2. Interrupt (1), ..., Interrupt (n - 1). SRDB. This state
indicates that a data byte has been received.

Action Taken. The device should store the incoming
data, set the ACK bit, and set the software managed
<DATA_READY> flag to ‘1’. In some applications, the
Slave is able to detect malformed data. If this is the case,
sending a NACK can signal the Master Transmitter to
stop sending or to resend the data.

3. Interrupt (n). SRSTO. This interrupt occurs after the

device detects a STOP on the bus.

Action Taken. The device should clear the STO bit.
Note: The STO bit must be cleared by software when
a STOP is detected as a Slave.

SMBus
Interrupt

START Signal
+ Slave Address
Detected?

Master
Write?

No——»

See the "Sending
Data to an SMBus
Master" example

Yes

Yes

Interrupt (0) SRSTAADR
No 1. Clear STA

2. Check Address
i 3. Set ACK or NACK

Interrupt (n) SRSTO

Slave
+ STOP Signal
Detected?

Yes—» 1. Clear STO

\ 4

No
SRDB
Interrupt (1), ... , (n-1)

1. Store Data Byte

2. Set ACK or NACK

3. Indicate Data
Ready

Data Byte
Received?

\ 4

No

Handle Error Condition

1. Release SMBus (Sl = 0)

2. Exit

Figure 12. The SMBus ISR in a Slave Receiver
Role

Interrupt (n) SRSTO |

S SLA W[A Data Byte A Data Byte AP
Interrupt (0) Interrupt (1) Interrupt (n-1)
SRSTAADR SRDB SRDB
Received by SMBus S = START
Interface SRSTAADR - Slave Receiver START + Slave P = STOP
Address + Write received A =ACK
R = READ

Transmitted by
SMBus Interface

SRDB - Slave Receiver Data Byte Received
SRSTO - Slave Receiver STOP Received

SLA = Slave Address

Figure 13. Typical Slave Receiver Waveform

>

SILICON LABS

Rev. 1.2 1

AN141

3.3.4. Sending Data To an SMBus Master with the C8051F30x (Slave Transmitter)

An SMBus Master can read data from a Slave by sending the Slave Address followed by a READ signal. Once the
Slave detects its Slave Address + READ, it should acknowledge it and switch to Slave Transmitter mode.

Switching from Slave Receiver to Slave Transmitter mode on C8051F30x devices requires software management.
Software should perform the steps in Figure 14 after a valid Slave Address and READ signal are received.

Figure 17 shows a typical waveform of the SDA signal when a Slave is transmitting data to a Master. Figure 15

shows how the SMBus ISR on the ‘F30x handles the role of Slave Transmitter.

Step 1. Set ACKto ‘1"

Step 2. Write outgoing data to SMBODAT.

Step 3. Check SMBODAT.7; if “1’, do not perform steps 4, 6 or 7.
Step 4. Set STO to ‘1°.

Step 5. Clear Slto ‘0.

Step 6. Poll for TXMODE => ‘1.

Step 7. Clear STO to ‘0.

Figure 14. Slave RX-to-TX Steps (C8051F30x Only)

SMBus
Interrupt

See the "Receiving
Data from an SMBus
Master" example

No——»

START Signal
+ Slave Address
Detected?

Yes

Interrupt (0) STSTAADR

1. Clear STA

2. Check Address

3. Perform RX-to-TX steps if
address is recognized,
otherwise NACK

No Yes

Data Byte
Transmitted? Yes STDBACK
Interrupt (1), ... , (n-2)

1. Load next data byte

Yes—15 Clear ACK bit

A 4

No STDBNACK
Interrupt (n-1)

1. Stop Sending

N 2. Clear ACK bit

A 4

SRSTO
Interrupt (n)

Yes—— »{1. Clear STO

Slave
+ STOP Signal
Detected?

\ 4

Handle Error 1. Release SMBus (S| = 0)

N Condition 2. Exit

Figure 15. SMBus ISR Structure for C8051F30x Slave Transmitter

12 Rev. 1.2

>

SILICON

AN141

The following steps outline how the SMBus ISR on a
Slave device handles the transfer of data to a Master
Receiver:

1. Interrupt (0). STSTA. This state occurs when START and
READ signals are detected on the bus.
Action Taken. The Slave should clear the STA bit then
check the 7-bit address in SMBOCN. If the Slave recog-
nizes its address, it should perform the RX-to-TX steps in
Figure 14. Otherwise, it should clear the ACK bit to send
a NACK.

2. Interrupt (1), ..., Interrupt (n - 2). STDBACK. This state
indicates that a data byte has been transmitted and
ACK’ed by the Master.

Action Taken. The device should load the next byte of
outgoing data in SMBODAT. If desired, the Slave may
check if the previous data byte was acknowledged.

3. Interrupt (n - 1). STDNBACK. This state indicates that a
data byte has been transmitted, but NACK’ed by the
Master.

Action Taken. The device should load the next byte of
outgoing data in SMBODAT. If desired, the Slave may
check if the previous data byte was acknowledged.

4. Interrupt (n). SRSTO. This interrupt occurs after the
device detects a STOP on the bus. Since the slave is no
longer transmitting or has data pending, the SRSTO state
is used instead of the STSTO state.

Action Taken. The device should clear the STO bit.
Note: STO must be cleared by software when a STOP
is detected as a Slave.

3.3.5. Sending Data To an SMBus Master with All
Other Supported Devices (Slave Receiver)

An SMBus Master can read data from a Slave by
sending a READ signal with the Slave Address. Once
the Slave detects the READ signal, it should
acknowledge it and switch from receive to transmit
mode.

Perform RX-to-TX
Steps Here

S SLA R[A

Data Byte A

Switching from Slave Receiver to Slave Transmitter
mode on all supported devices other than the
C8051F30x family does not require software
management and is handled automatically in
hardware.

Figure 16 shows how the SMBus ISR on all supported
devices except the ‘F30x handles the role of Slave
Transmitter. Figure 18 shows a typical waveform of the
SDA signal when a Slave is transmitting data to a
Master.

SMBus
Interrupt

See the "Receiving
Data from an SMBus

Ma r%%

Interrupt (0) STSTAADR

Slave Address
+ START Signal
Detected?

Master
Read?

No Yes 1. Clear STA
2. Check Address
3. Set ACK or NACK

4. Load outgoing data byte

Data Byte
Transmitted? Yes STDBACK

Interrupt (1), ... , (n-2)

1. Load next data byte

Yes—>15 Clear ACK bit

No STDBNACK
Interrupt (n-1)

1. Stop Sending

No »12. Clear ACK bit

A\

SRSTO

Interrupt (n
Ye 1. Clear STO
1. Release SMBus (SI = 0)
2. Exit

Figure 16. SMBus ISR Structure for Slave
Transmitter (All Devices Except C8051F30x)

Slave
+ STOP Signal
Detected?

Handle Error
Condition

| Interrupt (n) SRSTO |

Data Byte N|P

Interrupt (0) Interrupt (1) Interrupt (n-1)
STSTAADR STDBACK STDBNACK
Received by SMBus S = START
Interface STSTAADR - Slave Transmitter Slave Addr. Sent P =STOP
STDBACK - Slave Transmitter Data Byte ACK'ed N __NACK
Transmitted by STDBNACK - Slave Transmitter Data Byte NACK'ed W= YVRITE
SMBus Interface SRSTO - Slave Receiver STOP Received SLA = Slave Address

Figure 17. Typical Slave Transmitter Wavetorm (C8051F30x)

>

SILICON LABS

Rev. 1.2 13

AN141

The following steps outline how the SMBus ISR on a
Slave device handles the transfer of data to a Master
Receiver:

1.

Interrupt (0). STSTAADR. This state occurs when START
and READ signals are detected on the bus.

Action Taken. The Slave should clear the STA bit then
check the 7-bit address in SMBOCN. If the Slave recog-
nizes its address, it should set the ACK bit and load the
outgoing data byte into SMBODAT. Otherwise, it should
clear the ACK bit to send a NACK.

3.3.6. I>’C™ EEPROM Example (Master Transmitter/
Receiver)

This example interfaces all supported devices to a 256-
byte 12C Serial EEPROM. The SMBus ISR is a modified
version of the “SMBus Master Framework” example that
supports multi-byte transfers. The SMBus ISR behavior
is determined by the SMBOCN register and the following
global state parameters:

m SMB_RW. A boolean flag that indicates an SMBus
WRITE if set to ‘0’ and an SMBus READ if set to ‘1.

2. Interrupt (1), ..., Interrupt (n - 2). STDBACK. This state Note that a random read operation starts as a write
indicates that a data byte has been transmitted. and is changed to a read by the ISR after the
Action Taken. The device should load the next byte of repeated start is sent.
outgoing data in SMBODAT. If desired, the Slave may m SMB_SENDWORDADDR. A boolean flag indicating
check if the previous data byte was acknowledged. the ISR should send the 8-bit word address after
. o sending the Slave Address+R/W. This flag is cleared
3. Interrupt (n-1). STDNBACK This state lpdlcates that a by the ISR once the word address has been sent.
data byte has been transmitted, but NACK’ed by the L
Master. m SMB_RANDOMREAD. When set to ‘1’, this boolean
Action Taken. The device should load the next byte of flagt cslthes tI;e lSE toﬁsend adr.epeflr:[ed ste:jrt %Zd
outgoing data in SMBODAT. If desired, the Slave may switch to read mode ? er sending the word address.
check if the previous data byte was acknowledged. m SMB_ACKPOLL. This flag enables acknowledge
polling. When set to ‘1’, the ISR automatically
4. Interrupt (n). SRSTO. This interrupt occurs after the restarts the transfer if the Slave fails to acknowledge
device detects a STOP on the bus. Since the slave is no its device address.
longer transmitting or has data pending, the SRSTO state
is used instead of the STSTO state.
Action Taken. The device should clear the STO bit.
Note: STO must be cleared by software and is not
cleared by hardware when a STOP is detected as a
Slave.
| Interrupt (n) SRSTO |
S SLA R|A Data Byte Data Byte N | P
Interrupt (0) Interrupt (1) Interrupt (n-1)
STSTAADR STDBACK STDBNACK
Received by SMBus S =START
Interface STSTAADR - Slave Transmitter Slave Addr. Sent ~ P =STOP
STDBACK - Slave Transmitter Data Byte ACK'ed N =NACK
Transmitted by ~ STDBNACK - Slave Transmitter Data Byte NACK'ed W =WRITE
SMBus Interface SRSTO - Slave Receiver STOP Received SLA = Slave Address
Figure 18. Typical Slave Transmitter Waveform (All Devices Except C8051F30x)
®
14 Rev. 1.2 @

SILICON LABS

AN141

The following read and write routines are provided in the
example:

EEPROM_ByteWrite(). The byte write operation writes
a single byte to the EEPROM. Figure 19 shows that the
operation consists of a START signal followed by three
bytes: the EEPROM'’s device address +W (this address
can be found in the EEPROM data sheet), the 8-bit
word address in the EEPROM'’s internal memory space
specifying the memory location to be written, and the
data byte. The write to memory does not take place until
Address

the STOP signal is transmitted.

Jr

Figure 19. EEPROM Byte Write

The EEPROM does not acknowledge its device address
while a write to memory is in progress (this behavior is
identical to the Slave inhibit mode on all supported
devices). This feature can be used as an indicator to
determine when the write operation is complete. When
a new fransfer is initiated and the global

SMB_ACKPOLL flag is set, the SMBus ISR will
continuously poll the EEPROM until it comes “online”.

WORD

SLA WA A| Data Byte

EEPROM_ByteRead(). This function implements the
EEPROM’s random read operation. As Figure 20
shows, the host device is in Master Transmitter mode
until the word address is sent. After the word address is
acknowledged, Interrupt (2) sets the STA bit to send a
repeated start and changes the SMB_RW flag from
WRITE(0) to READ(1). From this point, the device takes
the role of Master Receiver until the end of the transfer.
When the data byte is received, it is NACK’ed to signal
the EEPROM to stop sending. The NACK is
immediately followed by a STOP.

The reason for transmitting a “write” for the first half of
the transfer is to set the EEPROM’s internal address
pointer. The “read” that takes place in the second half of
the transfer reads from the data stored at the
EEPROM'’s internal address pointer.

After each byte is read, the EEPROM'’s internal address
pointer is incremented. This allows up to 256 bytes of
data (the entire EEPROM contents) to be read in a
single transfer.

EEPROM_ReadArray(). This function makes use of the
multi-byte transfer capability of the EEPROM. Figure 22
shows a typical waveform of an EEPROM multi-byte
read.

S SLA WORD Address

SLA

Data Byte N [P

Interrupt (0)
MTSTA

Interrupt (1)
MTSLA

Interrupt (2)
MTDB

Interrupt (3)
MRSTA

Interrupt (4)
MRSLA

Interrupt (5)
MRDBFIN

Received by SMBus
Interface

Transmitted by
SMBus Interface

Received

Repeated

Start

MTSTA - Master Transmitter START Sent
MTSLA - Master Transmitter Slave Addr. Sent
MTDB - Master Transmitter Data Byte Sent
MRSTA - Master Receiver START Sent
MRSLA - Master Receiver Slave Addr. Sent
MTDBFIN - Master Receiver Final Data Byte

S = START

P =STOP

A =ACK

N = NACK

R = READ

SLA = Slave Address

Figure 20. EEPROM Single Byte Read

>

SILICON LABS

Rev. 1.2

15

AN141

4. SMBus Debugging Techniques

An SMBus network consists of at least one Master and
one Slave. Assuming a minimal network that is not
functioning properly, either the Master or the Slave may
be causing the failure.

The first step in debugging a minimal SMBus network is
isolating the problem to the Master or the Slave. This
involves observing the SCL and SDA traces on an
oscilloscope or logic analyzer. As an example, we will
debug a minimal SMBus network with a supported
device as the Master and an EEPROM as the Slave.
The example code needed to recreate this example is
included at the end of this note.

In this demonstration, we will be debugging the
EEPROM_ReadByte() routine. The goal is to verify the
individual stages (all interrupts and state changes) of
the transfer shown in Figure 20. We will assume that the
EEPROM word we are reading (word address 0x25)
contains the data (0xBB). The Slave Address of the
EEPROM is 0xAO.

4.1. IDLE state

When an SMBus network is idle, both the SCL and the
SDA signals are HIGH due to the required pull-up
resistors. When the Master issues a START signal, it
drives the SDA then the SCL signal LOW. This start
condition remains on the bus until the Master clears the
Sl bit or a timeout occurs. In this example, we have
disabled the SCL Low Timeout.

To capture the START signal, we have configured the
oscilloscope to trigger on the falling edge of SCL.
Program execution is now at the beginning of the
EEPROM_ReadByte() routine. We have placed a
breakpoint at the top of the SMBus ISR. We now click
the “go” button in the IDE.

4.2. MTSTA State — Master Transmitter
START Signal Sent — Interrupt (0)

Figure 21 shows the bus state as it changes from idle to
MTSTA, as seen on the oscilloscope. The Master is also
halted at the beginning of the SMBus ISR and the SI bit
has been set by the SMBus interface. The START
condition will remain on the bus until the SMBus ISR
clears the Sl bit.

MTek Stop | [i]
g g
L
4
DA 1 sCL

I ;
w
CRI 200V @i 2.00v IM2.00us A Chi v 1.96V

Figure 21. Start Signal

Following the waveform in Figure 20, we are now in the
MTSTA state. The ISR detects the START condition and
prepares the SMBus interface to send the Slave
Address + WRITE. The Slave address + WRITE will be
sent after the Sl bit is cleared. We now configure the
oscilloscope to trigger on the rising edge of SCL and
click the “go” button in the IDE.

S| SLA |[W| A | WORDAddress | A| S| SLA | R| A | DataByte | A DataByte | A | DataByte | N | P
Interrupt (0) Interrupt (1) Interrupt (2) Interrupt (3) || Interrupt (4) Interrupt (5) Interrupt (n-1) || Interrupt (n)
MTSTA MTSLA MTDB MRSTA MRSLA MTDB MTDB MTDBFIN
Repeated
Start
Received by SMBus ~ MTSTA - Master Transmitter START Sent S = START
Interface MTSLA - Master Transmitter Slave Addr. Sent P =STOP
MTDB - Master Transmitter Data Byte Sent A =ACK
_ MRSTA - Master Receiver START Sent N =NACK
Transmitted by R =READ

[]

SMBus Interface

MRSLA - Master Receiver Slave Addr. Sent
MTDB - Master Receiver Data Byte Received

SLA = Slave Address

MTDBFIN - Master Receiver Final Data Byte Received
Figure 22. EEPROM Multi-Byte Read

16 Rev. 1.2

>

SILICON LABS

AN141

4.3. MTSLA State — Master Transmitter 4.4. MTDB — Master Transmitter Data Byte
Slave Address Sent — Interrupt (1) Sent — Interrupt (2)
Figure 23 shows the bus state as the 7-bit Slave Figure 24 shows the EEPROM word address being sent

Address, the R/W signal, and the ACK signal are from the Master to the Slave.
transmitted across the bus.

el STop .. —
Tekstop | M — 1 e : :
T s » _
. | scL
| 'scL " . 1
' T ! | SDA

Chil 2.00v

WiF 2.00V

M[10.0us| A Chl & 1.96V|

SDA

Chi[_2.00V

&iF 2.00 v

M10.04s| A Chi 4 1.96V

Figure 23. Slave Address + WRITE

Keep in mind that SDA data is valid on the rising edge of
SCL and stays valid until the next falling edge of SCL.
During the first 7 cycles in Figure 23, the Slave Address
(OxAQ) is transmitted MSB-first from the Master to the
Slave. During cycle 7, the Master indicates that this
transfer is a WRITE (1). In the last cycle, the Slave
sends an ACK by holding the SDA signal LOW.

The SMBus ISR is now in the MTSLA state. It detects
that the Slave Address has been ACK’ed and prepares
the SMBus interface to send the first data byte. Since
we are communicating with an EEPROM, the first data
byte is the word address. We now click the “go” button
in the IDE to advance to the next state.

Figure 24. EEPROM Word Address

The SMBus ISR should now recognize that the 8-bit
EEPROM word address (0x25) has been sent and
acknowledged by the Slave. It should now set the STA
bit to generate a repeated START signal as soon as Sl
is cleared. While the interrupt is being executed (before
Sl is cleared), SCL is held LOW and the SMBus is
stalled. We now click the “go” button in the IDE.

4.5. MRSTA — Master Receiver Repeated
Start Sent — Interrupt (3)

Figure 25 shows SCL being released when Sl is cleared
then a repeated start being sent one clock cycle later.

Tek Stop | T - - .
f-«-—-—-—-'f-*—m g
| «

1 Se——

[2:1

Ch 1| PO P R X T X LTS =A\ chi r 132V

Figure 25. Repeated Start

The SMBus ISR prepares the interface to send the
Slave Address + READ. We now click the “go” button in
the IDE.

>

SILICON LABS

Rev. 1.2

17

AN141

4.6. MRSLA State — Master Receiver Slave

Figure 26 shows the Slave Address (0xAQ) + READ (1)
being sent from the Master to the Slave. During the last

Address Sent — Interrupt (4)

4.7. MRDBFIN State — Master Receiver

Final Data Byte Received — Interrupt(5)

SCK cycle, the Slave ACK’s the transfer and prepares
to drive the bus during the next 8 SCK cycles.

The SMBus interface prepares itself to receive data
during the next 8 SCK cycles. The transition from
Master Transmitter to Master Receiver is handled
automatically by hardware. The ISR only needs to clear
the Sl bit to advance to the next state. We now click the

Figure 27 shows the data byte (OxBB) being sent from
the Slave to the Master.

ek Stop | —)

Te]

Stop | ="

LT I

Chil_2.00V 2,00V

M[10.0us| Al Chl & 1.96 V)

SCL

SDA

| scL

. SDA

Chi| 200V @i 2.00V

M[T0.0ps| A Chl & 1.96V

Figure 26. Slave Address + READ

“go” button in the IDE.

Figure 27. Data Byte

The SMBus ISR reads the data byte from the SMBODAT

press the “go” button in

register and decides whether to acknowledge it or not.
Since we are only reading one byte, the ISR will NACK
this byte to signal the Slave to stop driving the bus. It
will also set the STA bit to end the transfer. We now

the IDE.

18

Rev. 1.2

>

SILICON LABS

AN141

4.8. Transfer Complete

Figure 28 shows that the Slave stops driving SDA on
the rising edge of the ACK cycle. On that same edge,
the Master starts driving SDA HIGH to indicate a NACK.
The bus is temporarily driven low after the ACK cycle to
facilitate the generation of the STOP signal. After the
STOP, the bus returns to an idle state.

Tekstop | [| —]

SCL

' SDA

@] 200V |ch2 2.00V M4.00ps A Chi S 1.32¥

Figure 28. NACK + STOP

Viewing the signals on the bus at every state change
during the transfer will help isolate if a problem is due to
the Master or Slave. The waveforms in Figure 8,
Figure 11, Figure 13, Figure 17, and Figure 18 can be
very helpful in identifying the number of interrupts and
state changes to expect when examining SMBus traffic
on an oscilloscope or logic analyzer.

5. SMBus Status Decoding

The current SMBus status can be easily decoded using
the SMBOCN register. In the table below, STATUS
VECTOR refers to the four upper bits of SMBOCN:
MASTER, TXMODE, STA, and STO. Note that the
shown response options are only the typical responses;
application-specific procedures are allowed as long as
they conform with the SMBus specification. Highlighted
responses are allowed but do not conform to the SMBus
specification.

®
@ Rev. 1.2

SILICON LABS

19

AN141

Table 1. SMBus Status Decoding (C8051F30x)

Values
Values Read Written
[}
3 o = |0 'u_a Current SMbus State Typical Response Options
s S 9 ([|O X < |0 | X
58 (%82 A
nS Q|
<
1110 | 0 | 0 | X |A master START was gener- Load slave address + R/W into 0] 0] X
ated. SMBODAT.
1100 | 0 | 0 | O |A master data or address byte |Set STA to restart transfer. 1 0| X
= was .transmltted; NACK Abort transfer. 0 1 X
£ received.
g 0 | 0 | 1 |Amaster data or address byte |Load next data byte into SMBODAT | 0 | 0 | X
4 . ,
E was transmitted; ACK received. End transfer with STOP 0 1 X
o End transfer with STOP and start 1 11 X
® another transfer.
= Send repeated START 110 | X
Switch to Master Receiver Mode 0 X
(clear Sl without writing new data to
SMBODAT).
1000 | 1 | 0 | X |A master data byte was Acknowledge received byte; Read 00 1
received; ACK requested. SMBODAT.
Send NACK to indicate last byte, 0| 1 0
and send STOP.
Send NACK to indicate last byte, 1 1 0
. and send STOP followed by
S START.
§ Send ACK followed by repeated 1 0 1
(12 START.
% Send NACK to indicate last byte, 1 010
g and send repeated START.
Send ACK and switch to Master 0|0 |1
Transmitter Mode (write to
SMBODAT before clearing Sl).
Send NACK and switch to Master 0| 0|0
Transmitter Mode (write to
SMBODAT before clearing Sl).
0100 | 0 | O | O |Aslave byte was transmitted; | No action required (expecting 00| X
5 NACK received. STOP condition).
= 0 | 0 | 1 |Aslave byte was transmitted; |Load SMBODAT with nextdatabyte | 0 | 0 | X
§, ACK received. to transmit.
E 0 | 1 | X |A Slave byte was transmitted; | No action required (expectingMas- | 0 | 0 | X
'; error detected. ter to end transfer).
E 0101 | 0 | X | X |Anillegal STOP or bus error Clear STO. 0] 0] X
0 was detected while a Slave
Transmission was in progress.

®
20 Rev. 1.2 @

SILICON LABS

AN141

Table 1. SMBus Status Decoding (C8051F30x) (Continued)

Values
Values Read Written
Q
o w = |C 'u_> Current SMbus State Typical Response Options
= 59 |g|O|Xx < |0 | X
558|882 5 | |
»S |2 |
<
0010 | 1 | 0 | X |Aslave address was received; |Acknowledge received address 0| O 1
ACK requested. (received slave address match, R/
W bit = READ).
Do not acknowledge received 0| 0] O
address.
Acknowledge received address, 00 1
and switch to transmitter mode
(received slave address match, R/
W bit = WRITE); see Figure 14 for
procedure.
1 | 1 | X |Lost arbitration as master; Acknowledge received address 0| O 1
slave address received; ACK | (received slave address match, R/
requested. W bit = READ).
Do not acknowledge received 0| 0] O
address.
Acknowledge received address, 0| o0 1
. and switch to transmitter mode
_ag’ (received slave address match, R/
8 W bit = WRITE); see Figure 14 for
& procedure.
g Reschedule failed transfer; do not 1 0| O
[} .
o acknowledge received address
0010 | 0 | 1 | X |Lost arbitration while attempt- | Abort failed transfer. 0 X
ing a repeated START. Reschedule failed transfer. X
0001 | 1 | 1 | X |Lost arbitration while attempt- | No action required (transfer com- 0 0
ing a STOP. plete/aborted).
0 | 0 | X |ASTOP was detected while Clear STO. 0] 0] X
addressed as a Slave Transmit-
ter or Slave Receiver.
0 | 1 | X |Lost arbitration due to a Abort transfer. 0 X
detected STOP. Reschedule failed transfer. 1 X
0000 | 1 | 0 | X |Aslave byte was received; Acknowledge received byte; Read 0 1
ACK requested. SMBODAT.
Do not acknowledge received byte.
1 | 1 | X |Lost arbitration while transmit- | Abort failed transfer.
ting a data byte as master. Reschedule failed transfer. 1

>

SILICON LABS

Rev. 1.2

21

AN141

Table 2. SMBus Status Decoding (All Supported Devices Except C8051F30x)

Values
Values Read Written
Q
o w = | O '5 Current SMbus State Typical Response Options
s S 9 | |O |X < |0 | X
52 %32 55 |8
» > |3 |
<
110 | 0 | 0 | X |A Master START was gener- Load Slave Address + R/W into 0] 0] X
ated. SMBODAT.
1100 | 0 | O | O |A Master data or address byte |Set STA to restart transfer. 1 0| X
o was .transmltted; NACK Abort transfer. 01| X
o] received.
g 0 | 0 | 1 |A Master data or address byte |Load next data byte into SMBODAT. 0| X
@ o .
E was transmitted; ACK received. End transfer with STOP. 1 X
oy End transfer with STOP and start 1 11 X
"g another transfer.
= Send repeated START. 1 X
Switch to Master Receiver Mode 0] 0] X
(clear Sl without writing new data to
SMBODAT).
1000 | 1 | 0 | X |A Master data byte was Acknowledge received byte; Read 00 1
received; ACK requested. SMBODAT.
Send NACK to indicate last byte, 01 0
and send STOP.
Send NACK to indicate last byte, 1 1 0
§ and send STOP followed by START.
'g Send ACK followed by repeated 1 0 1
2 START.
= Send NACK to indicate last byte, 1100
§ and send repeated START.
= Send ACK and switch to Master 0,01
Transmitter Mode (write to
SMBODAT before clearing Sl).
Send NACK and switch to Master 0 0|0
Transmitter Mode (write to
SMBODAT before clearing Sl).
0100 | 0 | 0 | O |A Slave byte was transmitted; |No action required (expecting 00| X
5 NACK received. STOP condition).
b= 0 | 0 | 1 |ASlave byte was transmitted; |Load SMBODAT with nextdatabyte | 0 | 0 | X
5 ACK received. to transmit.
§ 0 | 1 | X | A Slave byte was transmitted; |No action required (expectingMas- | 0 | 0 | X
'; error detected. ter to end transfer).
E 0101 | 0 | X | X |Anillegal STOP or bus error Clear STO. 00| X
0 was detected while a Slave
Transmission was in progress.

22

Rev. 1.2

>

SILICON LABS

AN141

Table 2. SMBus Status Decoding (All Supported Devices Except C8051F30x) (Continued)

Values
Values Read Written
Q
o w = | O '5 Current SMbus State Typical Response Options
s S 9 | |O |X < |0 | X
52 (% a9 55 |8
» > |3 |
<
0010 | 1 | 0 | X |A Slave Address was received; | Acknowledge received address. 1
ACK requested. Do not acknowledge received 0| 0] O
address.
1 | 1 | X |Lost arbitration as Master; Acknowledge received address. 0| 1
Slave Address received; ACK ,
Do not acknowledge received 0
requested.
address.
Reschedule failed transfer; do not 1 00
acknowledge received address.
0010 | 0 | 1 | X |Lost arbitration while attempt- | Abort failed transfer. 0 X
_g ing a repeated START. Reschedule failed transfer. 1 X
[}
c 0001 | 1 | 1 | X |Lost arbitration while attempt- | No action required 0 0
n; ing a STOP. (transfer complete/aborted).
E 0 | 0 | X |ASTOP was detected while Clear STO. 0] 0] X
(7)) addressed as a Slave Transmit-
ter or Slave Receiver.
0 | 1 | X |Lost arbitration due to a Abort transfer. 0 X
detected STOP. Reschedule failed transfer. 1 X
0000 | 1 | 0 | X | A Slave byte was received; Acknowledge received byte; Read 0| O 1
ACK requested. SMBODAT.
Do not acknowledge received byte. | 0 | 0 | O
1 | 1 | X |Lost arbitration while transmit- | Abort failed transfer.
ting a data byte as Master. Reschedule failed transfer. 1 0|0

>

SILICON LABS

Rev. 1.2

23

AN141

6.

Software Examples

This section contains SMBus Master, Slave, and EEPROM examples for the C8051F33x. Additional examples for
the 'F33x (Master Multibyte, Slave Multibyte, and Multimaster) and examples for other devices are available by
request. Please contact MCU Tools (mcutools@silabs.com) or MCU Apps (mcuapps@silabs.com) for more

information.
6.1. SMBus Master Framework
[m e -
// F33x_SMBus Master.c
/e
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// Example software to demonstrate the C8051F33x SMBus interface in
// Master mode.
// - Interrupt-driven SMBus implementation
// - Only master states defined (no slave or arbitration)
// - l-byte SMBus data holders used for each transmit and receive
// - Timerl used as SMBus clock source
// — Timer3 used by SMBus for SCL low timeout detection
// = SCL frequency defined by <SMB FREQUENCY> constant
// = ARBLOST support included
// - Pinout:
// P0.0 -> SDA (SMBus)
// PO.1 -> SCL (SMBus)
//
// P1.3 -> LED
//
// P2.0 -> C2D (debug interface)
//
// all other port pins unused
//
// How To Test:
//
// 1) Verify that J6 is not populated.
// 2) Download code to a ‘F33x device that is connected to a SMBus slave.
// 3) Run the code:
// a) The test will indicate proper communication with the slave by
// toggling the LED on and off each time a value is sent and
// received.
// b) The best method to view the proper functionality is to run to
// the indicated line of code in the TEST CODE section of main and
// view the SMB DATA IN and SMB DATA OUT variables in the Watch
// Window.
//
//
// FID: 33X000013
// Target: C8051F33x
// Tool chain: Keil C51 7.50 / Keil EVAL C51
// Command Line: None
//
// Release 1.0
// -Initial Revision (TP)
// -30 MAR 2006
//
®
24 Rev. 1.2 @

SILICON LABS

AN141

J e R R R
// Global CONSTANTS
e
#define SYSCLK 24500000 // System clock frequency in Hz

#define SMB_FREQUENCY 10000 // Target SCL clock rate
// This example supports between 10kHz

// and 100kHz

#define WRITE 0x00
#define READ 0x01

// SMBus WRITE command
// SMBus READ command

// Device addresses (7 bits, LSB is a don’t care)
#define SLAVE ADDR 0xFO // Device address for slave target

// Status vector - top 4 bits only

#define SMB MTSTA 0xEQ // (MT) start transmitted
#define SMB MTDB 0xCO // (MT) data byte transmitted
#define SMB_MRDB 0x80 // (MR) data byte received

// End status vector definition

unsigned char SMB_DATA IN; // Global holder for SMBus data

// All receive data is written here

// Global holder for SMBus data.
// All transmit data is read from here

unsigned char SMB DATA OUT;

unsigned char TARGET; // Target SMBus slave address

bit SMB BUSY; // Software flag to indicate when the
// SMB Read() or SMB Write() functions

// have claimed the SMBus

bit SMB RW; // Software flag to indicate the
// direction of the current transfer
unsigned long NUM ERRORS; // Counter for the number of errors.

// 16-bit SFR declarations

sfrlé TMR3RL = 0x92; // Timer3 reload registers
sfrlé TMR3 = 0x94; // Timer3 counter registers
sbit LED = P173; // LED on port P1.3

sbit SDA = P0"O0;
sbit SCL = P0"1;

// SMBus on P0.0
// and PO.1

SILICON LABS

Rev. 1.2 25

AN141

void
void
void
void

void
void

void
void
void

//

// Main routine performs all configuration tasks,

SMBus_Init (void)
Timerl Init (void
Timer3 Init (void
Port Init (void);

’

)
)
SMBus ISR (void);

Timer3 ISR (void);

SMB Write (void);
SMB_Read (void);

TO0 Wait ms (unsigned char ms);

// and receiving SMBus data to the slave <SLAVE ADDR>.

!/

void main (void)

{

volatile unsigned char dat;
unsigned char i;

PCAOMD &= ~0x40;

OSCICN |= 0x03;

//
//

//

//
//

// If slave is holding SDA low because
while (!SDA)

{

// Provide clock pulses to allow the slave to advance out
This will allow it to release SDA.

// of its current state.

XBR1 = 0x40;

SCL = 0;
for(i = 0; 1 < 255;
SCL = 1;

while (!SCL) ;

for(i = 0; 1 < 10;
XBR1 = 0x00;

Port Init ();

Timerl Init ();

Timer3 Init ();

SMBus_Init ();

EIE1 |= 0x01;

it++);

i++);

//
//
//
//
//
//
//
//

!/

//
//

!/
!/

//

//

Test counter

Dummy variable counters
WDTE = 0 (watchdog timer enable bit)

Set internal oscillator to highest

setting of 24500000

of an improper SMBus reset or error

Enable Crossbar
Drive the clock low
Hold the clock low
Release the clock
Wait for open-drain

clock output to rise

Hold the clock high
Disable Crossbar

Initialize Crossbar and GPIO

Configure Timerl for use as SMBus

clock source

Configure Timer3 for use with SMBus

low timeout detect

Configure and enable SMBus

Enable the SMBus interrupt

then loops forever

26

Rev. 1.2

SILICON LABS

AN141

//

//

//
//
//

!/
!/
1/
//
//
//

Global interrupt enable

TEST CODE— === == = = o o o o

LED = 0;

EA = 1;

dat = 0;

NUM ERRORS = 0;
while (1)

{
// SMBus Write Sequence
SMB_DATA OUT = dat;
TARGET = SLAVE ADDR;

SMB Write();

// SMBus Read Sequence
TARGET = SLAVE ADDR;

SMB Read () ;

// Check transfer data
if (SMB_DATA IN != SMB DATA OUT)
{

NUM_ ERRORS++;

// Indicate that an error has occurred

if (NUM_ERRORS > 0)
{
LED = 0;
}
else
{
LED = ~LED;
}
// Run
dat++;

TO Wait ms (1);

//
//
//
//

//
//

//

//

!/

Output data counter
Error counter

Define next outgoing byte

Target the F3xx/Si8250 Slave for next
SMBus transfer

Initiate SMBus write

Target the F3xx/S18250 Slave for next
SMBus transfer

Received data match transmit data?

Increment error counter if no match

(LED no longer 1lit)

to here to view the SMB DATA IN and SMB DATA OUT variables

Wait 1 ms until the next cycle

END TEST CODE—— === m = oo m oo o o o -

Initialization Routines
SMBus Init

Return Value None
Parameters None

SILICON LABS

Rev. 1.2

27

AN141

Use Timerl overflows as SMBus clock

Disable slave mode;
Enable setup & hold time

Enable SMBus Free timeout detect;
Enable SCL low timeout detect;

~1/3 the Timerl overflow rate

//
// SMBus configured as follows:
// - SMBus enabled
// - Slave mode inhibited
// - Timerl used as clock source. The maximum SCL frequency will be
// approximately 1/3 the Timerl overflow rate
// - Setup and hold time extensions enabled
// - Bus Free and SCL Low timeout detection enabled
//
void SMBus Init (void)
{
SMBOCF = 0x5D; //
// source;
//
//
// extensions;
//
//
SMBOCF |= 0x80; // Enable SMBus;
}
[
// Timerl Init
bt bttt
//
// Return Value : None
// Parameters : None
//
// Timerl configured as the SMBus clock source as follows:
// - Timerl in 8-bit auto-reload mode
// — SYSCLK or SYSCLK / 4 as Timerl clock source
// - Timerl overflow rate => 3 * SMB FREQUENCY
// - The resulting SCL clock rate will be
// - Timerl enabled
//
void Timerl Init (void)

// Make sure the Timer can produce the appropriate frequency in 8-bit mode

// Supported SMBus Frequencies range from 10kHz to 100kHz.

// settings may need to change for frequencies outside this range.

#i

f

((SYSCLK/SMB_FREQUENCY/3) < 255)

#define SCALE 1

CKCON |= 0x08; //

#elif ((SYSCLK/SMB_FREQUENCY/4/3) < 255)
#define SCALE 4

CKCON |= 0x01;
CKCON &= ~0xO0A; //
#endif
TMOD = 0x20; //

Timerl clock source = SYSCLK

Timerl clock source = SYSCLK / 4

Timerl in 8-bit auto-reload mode

// Timerl configured to overflow at 1/3 the rate defined by SMB FREQUENCY

TH1 = - (SYSCLK/SMB FREQUENCY/SCALE/3);
TL1 = TH1; //
TR1 = 1; //

Init Timerl

Timerl enabled

The CKCON register

28

Rev. 1.2

SILICON LABS

AN141

A e
// Timer3 Init
/mm e e -
//
// Return Value None
// Parameters None
//
// Timer3 configured for use by the SMBus low timeout detect feature as
// follows:
// - Timer3 in 16-bit auto-reload mode
// - SYSCLK/12 as Timer3 clock source
// — Timer3 reload registers loaded for a 25ms overflow period
// — Timer3 pre-loaded to overflow after 25ms
// - Timer3 enabled
//
void Timer3 Init (void)
{
TMR3CN = 0x00; // Timer3 configured for 16-bit auto-
// reload, low-byte interrupt disabled
CKCON &= ~0x40; // Timer3 uses SYSCLK/12
TMR3RL = - (SYSCLK/12/40); // Timer3 configured to overflow after
TMR3 = TMR3RL; // ~25ms (for SMBus low timeout detect):
// 1/.025 = 40
EIE1l |= 0x80; // Timer3 interrupt enable
TMR3CN |= 0x04; // Start Timer3
}
/e
// PORT_Init
et
//
// Return Value None
// Parameters None
//
// Configure the Crossbar and GPIO ports.
//
// P0.0O digital open-drain SMBus SDA
// PO.1 digital open-drain SMBus SCL
//
// P1.3 digital push-pull LED
//

// all other port pins unused

// Note: If the SMBus is moved, the SCL and SDA sbit declarations must also
// be adjusted.
//
void PORT Init (void)
{
POMDOUT = 0x00; // All PO pins open-drain output
P1IMDOUT |= 0x08; // Make the LED (P1.3) a push-pull
// output
XBRO = 0x04; // Enable SMBus pins
®

SILICON LABS

Rev. 1.2

29

AN141

//
//

//
!/
!/
//
//
//
//
!/
!/
vO

{

XBR1 = 0x40; // Enable crossbar and weak pull-ups

PO = OXFF;

SMBus ISR state machine
- Master only implementation - no slave or arbitration states defined

- All incoming data is written to global variable <SMB DATA IN>

- All outgoing data is read from global variable <SMB DATA OUT>

id SMBus ISR (void) interrupt 7

bit FAIL = 0; // Used by the ISR to flag failed
// transfers

static bit ADDR_SEND = 0; // Used by the ISR to flag byte

// transmissions as slave addresses

if (ARBLOST == 0) // Check for errors
{
// Normal operation
switch (SMBOCN & O0xFO0) // Status vector
{
// Master Transmitter/Receiver: START condition transmitted.
case SMB MTSTA:

SMBODAT = TARGET; // Load address of the target slave

SMBODAT &= OxFE; // Clear the LSB of the address for the
// R/W bit

SMBODAT |= SMB RW; // Load R/W bit

STA = 0; // Manually clear START bit

ADDR SEND = 1;

break;

// Master Transmitter: Data byte transmitted
case SMB MTDB:

if (ACK) // Slave ACK?
{
if (ADDR_SEND) // If the previous byte was a slave
{ // address,
ADDR SEND = 0; // Next byte is not a slave address
if (SMB_RW == WRITE) // If this transfer is a WRITE,

{
// send data byte
SMBODAT = SMB_DATA OUT;
}
else {} // If this transfer is a READ,
// proceed with transfer without
// writing to SMBODAT (switch
// to receive mode)

else // If previous byte was not a slave
{ // address,
®
30 Rev. 1.2

SILICON LABS

AN141

STO = 1;
SMB_BUSY = 0;

}

else

{
STO = 1;
STA = 1;

NUM ERRORS++;
}

break;

//
//

!/

//

//
//

Set STO to terminate transfer
And free SMBus interface

If slave NACK,

Send STOP condition, followed
By a START

Indicate error

// Master Receiver: byte received

case SMB MRDB:
SMB_DATA IN = SMBODAT;
SMB_BUSY = 0;

ACK = 0;
STO = 1;
break;
default:
FAIL = 1;
break;

} // end switch
}

else

{

// ARBLOST = 1, error occurred...

FAIL = 1;
} // end ARBLOST if

if (FAIL)
{
SMBOCF &= ~0x80;
SMBOCF |= 0x80;
STA = 0;
STO = 0;
ACK = 0

~

SMB BUSY = 0;

FAIL = O;
LED = 0;

NUM ERRORS++;

//
//
!/
!/

//

//
!/

Store received byte

Free SMBus interface

Send NACK to indicate last byte
of this transfer

Send STOP to terminate transfer

Indicate failed transfer
and handle at end of ISR

abort transmission

!/

//

//

!/

If the transfer failed,

Reset communication

Free SMBus

Indicate an error occurred

Clear interrupt flag

// A Timer3 interrupt indicates an SMBus SCL low timeout.

SILICON LABS

Rev. 1.2

31

AN141

//
//
Vo

{

The SMBus is disabled and re-enabled here

id Timer3 ISR (void) interrupt 14

SMBOCF &= ~0x80; // Disable SMBus

SMBOCF |= 0x80; // Re—enable SMBus

TMR3CN &= ~0x80; // Clear Timer3 interrupt-pending flag
STA = 0;

SMB_ BUSY = 0; // Free SMBus

[mm e e e -
// Support Functions
/e
[mm e
// SMB Write
[mm e -
//
// Return Value : None
// Parameters : None
//
// Writes a single byte to the slave with address specified by the <TARGET>
// variable.
// Calling sequence:
// 1) Write target slave address to the <TARGET> variable
// 2) Write outgoing data to the <SMB DATA OUT> variable
// 3) Call SMB Write ()
//
void SMB Write (void)
{

while (SMB_BUSY) ; // Wait for SMBus to be free.

SMB_BUSY = 1; // Claim SMBus (set to busy)

SMB RW = 0; // Mark this transfer as a WRITE

STA = 1; // Start transfer
}
et
// SMB Read
/e
//
// Return Value : None
// Parameters : None
//
// Reads a single byte from the slave with address specified by the <TARGET>
// variable.
// Calling sequence:
// 1) Write target slave address to the <TARGET> variable
// 2) Call SMB Write ()
// 3) Read input data from <SMB DATA IN> variable
//
void SMB Read (void)
{

while (SMB_BUSY); // Wait for bus to be free.

SMB BUSY = 1; // Claim SMBus (set to busy)

SMB RW = 1; // Mark this transfer as a READ

STA = 1; // Start transfer

®

32 Rev. 1.2

SILICON LABS

AN141

while (SMB_ BUSY); // Wait for transfer to complete
}
et
// TO Wait ms
e
//

// Return Value : None
// Parameters

// 1) unsigned char ms - number of milliseconds to wait
// range is full range of character: 0 to 255
//

// Configure Timer0O to wait for <ms> milliseconds using SYSCLK as its time
// base.

void TO Wait ms (unsigned char ms)

{

TCON &= ~0x30; // Stop Timer0O; Clear TFO
TMOD &= ~0x0f; // 16-bit free run mode
TMOD |= 0x01;

CKCON |= 0x04; // Timer(O counts SYSCLKs

{

while (ms)
TRO = 0

; // Stop TimerO
THO = - (SYSCLK/1000 >> 8); // Overflow in 1lms
TLO = - (SYSCLK/1000) ;
TFO = 0; // Clear overflow indicator
TRO = 1; // Start Timer0
while (!TFO); // Wait for overflow
ms--; // Update ms counter
}
TRO = 0; // Stop TimerO
}
/e e
// End Of File
[m e e

®
@ Rev. 1.2 33

SILICON LABS

AN141

6.2. SMBus Slave Framework

// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com

// Program Description:

// Example software to demonstrate the C8051F33x SMBus interface in Slave mode
// - Interrupt-driven SMBus implementation

// - Only slave states defined

// - l-byte SMBus data holder used for both transmit and receive

// - Timerl used as SMBus clock rate (used only for free timeout detection)

// — Timer3 used by SMBus for SCL low timeout detection

// — ARBLOST support included

// = Pinout:

// P0.0 -> SDA (SMBus)

// PO.1 -> SCL (SMBus)

//

// P1.3 -> LED

//

// P2.0 -> C2D (debug interface)
//

// all other port pins unused
//

// How To Test:

//

// 1) Verify that J6 is not populated.
// 2) Download code to a ‘F33x device that is connected to a SMBus master.

// 3) Run the code. The slave code will write data and read data from the

// same data byte, so a successive write and read will effectively echo the
// data written. To verify that the code is working properly, verify on the
// master that the data written is the same as the data received.

//

// FID: 33xX000010

// Target: C8051F33x

// Tool chain: Keil C51 7.50 / Keil EVAL C51

// Command Line: None

//

// Release 1.0

// -Initial Revision (TP)

// -30 MAR 2006

//
e
// Includes

[
#include <C8051F330.h> // SFR declarations

=
// Global Constants

[
#define SYSCLK 24500000 // System clock frequency in Hz

#define SMB_FREQUENCY 10000 // Target SMBus frequency

®
34 Rev. 1.2 @

SILICON LABS

AN141

#define WRITE 0x00
#define READ 0x01
#define SLAVE ADDR 0xF0

// Status vector - top 4 bits only

#define SMB_SRADD 0x20
#define SMB_SRSTO 0x10
#define SMB_SRDB 0x00
#define SMB_ STDB 0x40
#define SMB_STSTO 0x50

// End status vector definition
unsigned char SMB DATA;

bit DATA READY = 0;

// 1l6-bit SFR declarations
sfrle TMR3RL = 0x92;
sfrle TMR3 = 0x94;

sbit LED = P173;

void SMBus Init (void)
void Timerl Init (void
void Timer3 Init (void
void Port Init (void);

’

)
)

void SMBus ISR (void);
void Timer3 ISR (void);

//
//

//
!/

//
//

//
//
!/
//
//
//
!/
//
!/
//

//
//
//
//
!/

//
//
//

//
//

This example supports between 10kHz
and 100kHz

SMBus WRITE command
SMBus READ command

Device addresses (7 bits,
1lsb is a don’t care)

(SR) slave address received
(also could be a lost
arbitration)

(SR) STOP detected while SR or ST,
or lost arbitration

(SR) data byte received, or
lost arbitration

(ST) data byte transmitted

(ST) STOP detected during a
transaction; bus error

Global holder for SMBus data.
All receive data is written
here;

all transmit data is read
from here

Set to ‘1’ by the SMBus ISR

when a new data byte has been
received.

Timer3 reload registers
Timer3 counter registers

LED on port P1.3

// Main routine performs all configuration tasks, then waits for SMBus

SILICON LABS

Rev. 1.2

35

AN141

// communication.
//
void main (void)

{

PCAOMD &= ~0x40; // WDTE = 0 (Disable watchdog
// timer)
OSCICN |= 0x03; // Set internal oscillator to highest

// setting of 24500000

Port Init(); // Initialize Crossbar and GPIO
Timerl Init(); // Configure Timerl for use
// with SMBus baud rate

Timer3 Init(); // Configure Timer3 for use with
// SCL low timeout detect

SMBus_Init (); // Configure and enable SMBus
EIEl |= 0x01; // Enable the SMBus interrupt
LED = 0;
EA = 1; // Global interrupt enable
SMB DATA = OxFD; // Initialize SMBus data holder
while (1)
{

while (!DATA READY); // New SMBus data received?

DATA READY = O;
LED = ~LED;

// Initialization Routines

/= m

[
// SMBus_Init ()

[
//

// Return Value : None

// Parameters : None

//

// SMBus configured as follows:

// - SMBus enabled

// - Slave mode not inhibited

// — Timerl used as clock source. The maximum SCL frequency will be
// approximately 1/3 the Timerl overflow rate

// — Setup and hold time extensions enabled

// — Bus Free and SCL Low timeout detection enabled

//

void SMBus Init (void)
{
SMBOCF = 0x1D; // Use Timerl overflows as SMBus clock
// source;
// Enable slave mode;

36 Rev. 1.2

SILICON LABS

AN141

// Enable setup & hold time

// extensions;

// Enable SMBus Free timeout detect;
// Enable SCL low timeout detect;

SMBOCF |= 0x80; // Enable SMBus;

// Timerl Init

[e
//

// Return Value : None

// Parameters : None

//

// Timerl configured as the SMBus clock source as follows:

// - Timerl in 8-bit auto-reload mode

// = SYSCLK or SYSCLK / 4 as Timerl clock source

// - Timerl overflow rate => 3 * SMB FREQUENCY

// — The resulting SCL clock rate will be ~1/3 the Timerl overflow rate
// - Timerl enabled

//

void Timerl Init (void)

// Make sure the Timer can produce the appropriate frequency in 8-bit mode
// Supported SMBus Frequencies range from 10kHz to 100kHz. The CKCON register
// settings may need to change for frequencies outside this range.
#if ((SYSCLK/SMB_FREQUENCY/3) < 255)

#define SCALE 1

CKCON |= 0x08; // Timerl clock source = SYSCLK

#elif ((SYSCLK/SMB_FREQUENCY/4/3) < 255)

#define SCALE 4

CKCON |= 0x01;
CKCON &= ~0x0A; // Timerl clock source = SYSCLK / 4
#endif
TMOD = 0x20; // Timerl in 8-bit auto-reload mode

// Timerl configured to overflow at 1/3 the rate defined by SMB_ FREQUENCY

TH1 = - (SYSCLK/SMB FREQUENCY/SCALE/3) ;
TL1l = TH1; // Init Timerl
TR1 = 1; // Timerl enabled
}
[e
// Timer3 Init
/e
//
// Return Value : None
// Parameters : None
//

// Timer3 configured for use by the SMBus low timeout detect feature as
// follows:

// - Timer3 in 16-bit auto-reload mode

// - SYSCLK/12 as Timer3 clock source

// - Timer3 reload registers loaded for a 25ms overflow period
®

Rev. 1.2 37

SILICON LABS

AN141

// - Timer3 pre-loaded to overflow after 25ms

// - Timer3 enabled

//
void Timer3 Init
{

TMR3CN = 0x00;

CKCON &= ~0x40;

(void)

TMR3RL = - (SYSCLK/12/40);

TMR3 = TMR3RL;

EIE1 |= 0x80;
TMR3CN |= 0x04;

// Return Value

None
None

1/
//

//
//
//
//

//
//

// Configure the Crossbar and GPIO ports.

// Parameters

//

//

// P0.0O digital
// PO.1 digital
//

// P1.3 digital
//

open-drain
open-drain

push-pull

// all other port pins unused

void PORT Init
{
POMDOUT = 0x00;

(void)

Timer3 configured for 16-bit auto-
low-byte interrupt disabled

reload,

Timer3 uses SYSCLK/12

Timer3 configured to overflow after
(for SMBus low timeout detect):

~25ms
1/.025 = 40

Timer3 interrupt enable
Start Timer3

SMBus SDA

SMBus SCL

LED
// All PO pins open-drain output
// Make the LED (P1.3) a push-pull
// output
// Enable SMBus pins

!/

Enable crossbar and weak pull-ups

/= m

e

(ISR)

/==

P1MDOUT |= 0x08;
XBRO = 0x04;
XBR1 = 0x40;
PO = OxFF;
}
// Interrupt Service Routines
// SMBus Interrupt Service Routine
//

// SMBus ISR state machine
// - Slave only implementation - no master states defined

// - All incoming data is written to global variable <SMB_ DATA IN>
// - All outgoing data is read from global variable <SMB DATA OUT>

38

Rev. 1.2

>

SILICON LABS

AN141

//
void SMBus ISR (void) interrupt 7
{
if (ARBLOST == 0)
{
switch (SMBOCN & O0xFO) // Decode the SMBus status vector

{

// Slave Receiver: Start+Address received
case SMB_ SRADD:

//

STA = 0; // Clear STA bit
if ((SMBODAT&OxXFE) == (SLAVE ADDR&OxFE)) // Decode address
{ // If the received address matches,
ACK = 1; // ACK the received slave address
if ((SMBODAT&0x01) == READ) // If the transfer is a master READ,

{
SMBODAT = SMB DATA; // Prepare outgoing byte

}

else // 1If received slave address does not
{ // match,
ACK = 0; // NACK received address
}
break;

Slave Receiver: Data received

case SMB SRDB:

//
//

SMB_DATA = SMBODAT; // Store incoming data

DATA READY = 1; // Indicate new data received
ACK = 1; // ACK received data

break;

Slave Receiver: Stop received while either a Slave Receiver or
Slave Transmitter

case SMB SRSTO:

//

STO = 0; // STO must be cleared by software when
// a STOP is detected as a slave
break;

Slave Transmitter: Data byte transmitted

case SMB STDB:

//
//
//
//
//
//

// No action required;

// one-byte transfers

// only for this example
break;

Slave Transmitter: Arbitration lost, Stop detected

This state will only be entered on a bus error condition.

In normal operation, the slave is no longer sending data or has
data pending when a STOP is received from the master, so the TXMODE
bit is cleared and the slave goes to the SRSTO state.

case SMB STSTO:

STO = 0; // STO must be cleared by software when
// a STOP is detected as a slave

Rev. 1.2 39

SILICON LABS

AN141

break;

// Default: all other cases undefined

default:
SMBOCF &= ~0x80; // Reset communication
SMBOCF |= 0x80;
STA = 0;
STO = 0;
ACK = 0;
break;

}
// ARBLOST = 1, Abort failed transfer

else
{
STA = 0;
STO = 0;
ACK = 0;
}
SI = 0; // Clear SMBus interrupt flag
}
/==
// Timer3 Interrupt Service Routine (ISR)
e
//

// A Timer3 interrupt indicates an SMBus SCL low timeout.
// The SMBus is disabled and re-enabled here

//

void Timer3 ISR (void) interrupt 14

{

SMBOCF &= ~0x80; // Disable SMBus
SMBOCF |= 0x80; // Re—enable SMBus
TMR3CN &= ~0x80; // Clear Timer3 interrupt-pending flag
}
/e
// End Of File
[

®
40 Rev. 1.2 @

SILICON LABS

AN141

6.3. EEPROM Example

// F33x_SMBus_ EEPROM.c

/=
// Copyright 2006 Silicon Laboratories, Inc.

// http://www.silabs.com

//

// Program Description:

//

// This example demonstrates how the C8051F33x SMBus interface can communicate
// with a 256 byte I2C Serial EEPROM (Microchip 24LCO02B) .

// - Interrupt-driven SMBus implementation
// - Only master states defined (no slave or arbitration)
// - Timerl used as SMBus clock source

// — Timer2 used by SMBus for SCL low timeout detection
// - SCL frequency defined by <SMB FREQUENCY> constant
// - Pinout:

// P0.0 -> SDA (SMBus)

// PO.1 -> SCL (SMBus)

//

// P1.3 -> LED

//

// P2.0 -> C2D (debug interface)
//

// all other port pins unused
//

// How To Test:

//

// 1) Verify that J6 is not populated.
// 2) Download code to a ‘F33x device that is connected to a 24LCO02B serial

// EEPROM (see the EEPROM datasheet for the pinout information).

// 3) Run the code:

// a) the test will indicate proper communication with the EEPROM by

// turning on the LED at the end the end of the test

// b) the test can also be verified by running to the if statements

// in main and checking the sent and received values by adding

// the variables to the Watch Window

//

// FID: 33X000014

// Target: C8051F33x

// Tool chain: Keil C51 7.50 / Keil EVAL C51

// Command Line: None

//

// Release 1.0

// -Initial Revision (TP)

// -30 MAR 2006

//

[mm e
// Includes and Device-Specific Parameters

/=

®
@ Rev. 1.2

SILICON LABS

41

AN141

#define SYSCLK 24500000 //
#define SMB FREQUENCY 50000 //
//
//
#define WRITE 0x00 //
#define READ 0x01 //
// Device addresses (7 bits, lsb is a don’
#define EEPROM ADDR 0xA0 //
//
//
//
// SMBus Buffer Size
#define SMB BUFF SIZE 0x08 //

//
!/

// Status vector - top 4 bits only

#define SMB MTSTA 0xEOQ //
#define SMB MTDB 0xCO //
#define SMB_MRDB 0x80 //
// End status vector definition
NS
// Global VARIABLES
R S
unsigned char* pSMB DATA IN; //
//
unsigned char SMB SINGLEBYTE OUT; //
unsigned char* pSMB DATA OUT; //
//
unsigned char SMB DATA LEN; //
//
//
unsigned char WORD ADDR; //
//
//
unsigned char TARGET; //

//
//
//
//

bit SMB BUSY = 0;

bit SMB RW; //

//
bit SMB SENDWORDADDR; !/
//
//

System clock frequency in Hz

Target SCL clock rate
This example supports between 10kHz
and 100kHz

SMBus WRITE command
SMBus READ command

t care)

Device address for slave target
Note: This address is specified
in the Microchip 24LC02B
datasheet.

Defines the maximum number of bytes
that can be sent or received in a
single transfer

(MT) start transmitted
(MT) data byte transmitted
(MR) data byte received

Global pointer for SMBus data
All receive data is written here

Global holder for single byte writes.

Global pointer for SMBus data.
All transmit data is read from here

Global holder for number of bytes
to send or receive in the current
SMBus transfer.

Global holder for the EEPROM word
address that will be accessed in
the next transfer

Target SMBus slave address

Software flag to indicate when the
EEPROM ByteRead() or
EEPROM_ByteWrite()

functions have claimed the SMBus

Software flag to indicate the
direction of the current transfer

When set, this flag causes the ISR
to send the 8-bit <WORD_ ADDR>
after sending the slave address.

42

Rev. 1.2

SILICON LABS

AN141

bit SMB RANDOMREAD; // When set, this flag causes the ISR
// to send a START signal after sending
// the word address.
// For the 24LC02B EEPROM, a random read
// (a read from a particular address in
// memory) starts as a write then
// changes to a read after the repeated
// start is sent. The ISR handles this
// switchover if the <SMB_RANDOMREAD>
// bit is set.

bit SMB ACKPOLL; // When set, this flag causes the ISR
// to send a repeated START until the

// slave has acknowledged its address

// 16-bit SFR declarations

sfrle TMR3RL = 0x92;
sfrl6 TMR3 = 0x94;

sbit LED = P1"3;

//
!/

//

Timer3 reload registers
Timer3 counter registers

LED on port P1.3

sbit SDA = P0"0; // SMBus on P0.0

sbit SCL = P0"1; // and P0.1
et
// Function PROTOTYPES

[

void SMBus_ Init (void);
void Timerl Init(void);
void Timer3 Init (void)
void Port Init(void);

’

void SMBus ISR (void);
void Timer3 ISR(void);

void EEPROM ByteWrite (unsigned char addr, unsigned char dat);

void EEPROM WriteArray (unsigned char dest addr, unsigned char* src_ addr,
unsigned char len);

unsigned char EEPROM ByteRead(unsigned char addr);

void EEPROM ReadArray(unsigned char* dest addr, unsigned char src_ addr,
unsigned char len);

!/

// Main routine performs all configuration tasks, then loops forever sending
// and receiving SMBus data to the slave EEPROM.

void main (void)

{

char in buff[8] = {0}; // Incoming data buffer
char out buff[8] = “ABCDEFG”; // Outgoing data buffer
unsigned char temp char; // Temporary variable
bit error flag = 0; // Flag for checking EEPROM contents
unsigned char 1i; // Temporary counter variable
®
Rev. 1.2 43

SILICON LABS

AN141

PCAOMD &= ~0x40; // WDTE = 0 (disable watchdog timer)

// Set internal oscillator to highest
// setting of 24500000 (or 12000000 for ‘F320)
OSCICN |= 0x03;

// If slave is holding SDA low because of an improper SMBus reset or error
while (!SDA)
{

// Provide clock pulses to allow the slave to advance out

// of its current state. This will allow it to release SDA.

XBR1 = 0x40; // Enable Crossbar
SCL = 0; // Drive the clock low
for(i = 0; 1 < 255; i++4); // Hold the clock low
SCL = 1; // Release the clock
while (!SCL) ; // Wait for open-drain
// clock output to rise
for(i = 0; i < 10; i++); // Hold the clock high
XBR1 = 0x00; // Disable Crossbar
}
Port Init (); // Initialize Crossbar and GPIO
LED = 0; // Turn off the LED before the test
// starts
Timerl Init (); // Configure Timerl for use as SMBus

// clock source

Timer3 Init (); // Configure Timer3 for use with SMBus
// low timeout detect

SMBus_Init (); // Configure and enable SMBus
EIEl |= 0x01; // Enable the SMBus interrupt
EA = 1; // Global interrupt enable

// Read and write some bytes to the EEPROM and check for proper
// communication

// Write the value OxAA to location 0x25 in the EEPROM
EEPROM ByteWrite (0x25, OxAA);

// Read the value at location 0x25 in the EEPROM
temp char = EEPROM ByteRead (0x25);

// Check that the data was read properly
if (temp char != 0OxAA)
{

error flag = 1;

44

Rev. 1.2

SILICON LABS

AN141

// Write the value O0xBB to location 0x25 in the EEPROM
EEPROM_ByteWrite(OX25, 0xBB) ;

// Write the value 0xCC to location 0x38 in the EEPROM
EEPROM ByteWrite (0x38, 0xCC);

// Read the value at location 0x25 in the EEPROM
temp char = EEPROM ByteRead (0x25);

// Check that the data was read properly
if (temp char != 0xBB)
{

error flag = 1;

// Read the value at location 0x38 in the EEPROM
temp char = EEPROM ByteRead (0x38);

// Check that the data was read properly
if (temp char != 0xCC)
{

error flag = 1;
// Store the outgoing data buffer at EEPROM address 0x50
EEPROM WriteArray(0x50, out buff, sizeof (out buff));

// Fill the incoming data buffer with data starting at EEPROM address 0x50
EEPROM ReadArray(in buff, 0x50, sizeof (in buff));

// Check that the data that came from the EEPROM is the same as what was

// sent
for (i = 0; i < sizeof(in buff); i++)
{
if (in buff([i] != out buff[i])
{
error flag = 1;

// Indicate communication is good
if (error flag == 0)
{
// LED = ON indicates that the test passed

LED = 1;

}

while (1) ;
}
[
// Initialization Routines
[
e et
// SMBus_Init ()
[
//

Rev. 1.2

SILICON LABS

45

AN141

// Return Value : None

// Parameters : None

//

// The SMBus peripheral is configured as follows:
// - SMBus enabled

// - Slave mode disabled

// - Timerl used as clock source. The maximum SCL frequency will be
// approximately 1/3 the Timerl overflow rate

// — Setup and hold time extensions enabled

// - Free and SCL low timeout detection enabled

//

void SMBus Init (void)
{
SMBOCF = 0x5D; // Use Timerl overflows as SMBus clock

// source;
// Disable slave mode;
// Enable setup & hold time extensions;
// Enable SMBus Free timeout detect;
// Enable SCL low timeout detect;

SMBOCF |= 0x80; // Enable SMBus;
}
[
// Timerl Init ()
=
//
// Return Value : None
// Parameters : None
//
// Timerl is configured as the SMBus clock source as follows:
// - Timerl in 8-bit auto-reload mode

// — SYSCLK / 12 as Timerl clock source
// - Timerl overflow rate => 3 * SMB FREQUENCY

// - The maximum SCL clock rate will be ~1/3 the Timerl overflow rate
// - Timerl enabled
//

void Timerl Init (void)
{
// Make sure the Timer can produce the appropriate frequency in 8-bit mode
// Supported SMBus Frequencies range from 10kHz to 100kHz. The CKCON register
// settings may need to change for frequencies outside this range.
#if ((SYSCLK/SMB FREQUENCY/3) < 255)

#define SCALE 1

CKCON |= 0x08; // Timerl clock source = SYSCLK

#elif ((SYSCLK/SMB_FREQUENCY/4/3) < 255)

#define SCALE 4

CKCON |= 0x01;
CKCON &= ~0x0A; // Timerl clock source = SYSCLK / 4
#endif
TMOD = 0x20; // Timerl in 8-bit auto-reload mode
TH1 = -(SYSCLK/SMB FREQUENCY/12/3); // Timerl configured to overflow at 1/3

// the rate defined by SMB FREQUENCY

TL1 = THI; // Init Timerl
TR1 = 1; // Timerl enabled
®
46 Rev. 1.2

SILICON LABS

AN141

//
!/
1/
//
//
//
//
!/
!/
1/
//
//
//
!/
VO

{

//
//
!/
!/
1/
//
//
//
!/
!/
1/
//
//
//
!/
!/
//
//
VO

{

Timer3 Init ()

Return Value None

Parameters None

Timer3 configured for use by the SMBus low timeout detect feature as
follows:

- Timer3 in 16-bit auto-reload mode

- SYSCLK/12 as Timer3 clock source

- Timer3 reload registers loaded for a 25ms overflow period

- Timer3 pre-loaded to overflow after 25ms

- Timer3 enabled
id Timer3 Init (void)

TMR3CN = 0x00; // Timer3 configured for 16-bit auto-

// reload, low-byte interrupt disabled

CKCON &= ~0x40; // Timer3 uses SYSCLK/12

TMR3RL = - (SYSCLK/12/40); // Timer3 configured to overflow after
TMR3 = TMR3RL; // ~25ms (for SMBus low timeout detect)
EIEl1 |= 0x80; // Timer3 interrupt enable

TMR3CN |= 0x04; // Start Timer3

PORT Init

Return Value None

Parameters None

Configure the Crossbar and GPIO ports.

P0.0 digital open-drain SMBus SDA

PO.1 digital open-drain SMBus SCL

P1.3 digital push-pull LED

all other port pins unused

Note: If the SMBus is moved, the SCL and SDA sbit declarations must also
be adjusted.
id PORT Init (void)

POMDOUT = 0x00; // All PO pins open-drain output
P1IMDOUT |= 0x08; // Make the LED (P1.3) a push-pull
// output
XBRO = 0x04; // Enable SMBus pins
XBR1 = 0x40; // Enable crossbar and weak pull-ups

>

S|

LICON LABS

Rev. 1.2

47

PO = OxFF;
}
[e
// SMBus Interrupt Service Routine (ISR)
/e e
//

// SMBus ISR state machine
// - Master only implementation - no slave or arbitration states defined
// - All incoming data is written starting at the global pointer <pSMB DATA IN>
// - All outgoing data is read from the global pointer <pSMB DATA OUT>
//
void SMBus ISR (void) interrupt 7
{

bit FAIL = 0; // Used by the ISR to flag failed

// transfers

static char i; // Used by the ISR to count the
// number of data bytes sent or
// received

static bit SEND_START = 0; // Send a start

switch (SMBOCN & OxFO0) // Status vector

{
// Master Transmitter/Receiver: START condition transmitted.
case SMB MTSTA:

SMBODAT = TARGET; // Load address of the target slave
SMBODAT &= OxFE; // Clear the LSB of the address for the
// R/W bit

SMBODAT |= SMB_RW; // Load R/W bit

STA = 0; // Manually clear START bit
i=0; // Reset data byte counter
break;

// Master Transmitter: Data byte (or Slave Address) transmitted
case SMB MTDB:
if (ACK) // Slave Address or Data Byte
{ // Acknowledged?
if (SEND_START)
{

STA = 1;
SEND START = 0;
break;
}
if (SMB_ SENDWORDADDR) // Are we sending the word address?

{
SMB_SENDWORDADDR = 0; // Clear flag
SMBODAT = WORD_ADDR; // Send word address

if (SMB_RANDOMREAD)

{
SEND START = 1; // Send a START after the next ACK cycle
SMB RW = READ;

break;

48 Rev. 1.2

SILICON LABS

AN141

if (SMB_RW==WRITE) // Is this transfer a WRITE?
{

if (i < SMB DATA LEN) // Is there data to send?

{
// send data byte
SMBODAT = *pSMB_ DATA OUT;

// increment data out pointer
PSMB_DATA OUT++;

// increment number of bytes sent

i++;
}
else
{
STO = 1; // Set STO to terminte transfer
SMB_BUSY = 0; // Clear software busy flag
}
}
else {} // If this transfer is a READ,
// then take no action. Slave
// address was transmitted. A
// separate ‘case’ 1is defined
// for data byte recieved.
}
else // If slave NACK,

{
if (SMB_ACKPOLL)

{

STA = 1; // Restart transfer
}
else
{
FAIL = 1; // Indicate failed transfer

} // and handle at end of ISR
}

break;

// Master Receiver: byte received
case SMB MRDB:

if (i < SMB DATA LEN) // Is there any data remaining?
{
*pSMB_DATA IN = SMBODAT; // Store received byte
PSMB_DATA IN++; // Increment data in pointer
i++; // Increment number of bytes received
ACK = 1; // Set ACK bit (may be cleared later

// in the code)

if (i == SMB_DATA LEN) // This is the last byte
{

SMB BUSY = 0; // Free SMBus interface

ACK = 0; // Send NACK to indicate last byte

// of this transfer

STO = 1; // Send STOP to terminate transfer

}
®
Rev. 1.2 49

SILICON LABS

AN141

break;
default:
FAIL = 1; // Indicate failed transfer
// and handle at end of ISR
break;
}
if (FAIL) // If the transfer failed,
{
SMBOCF &= ~0x80; // Reset communication
SMBOCF |= 0x80;
STA = 0;
STO = 0;
ACK = 0;
SMB BUSY = 0; // Free SMBus
FAIL = 0;
}
SI = 0; // Clear interrupt flag
}
[m e
// Timer3 Interrupt Service Routine (ISR)
[
//

// A Timer3 interrupt indicates an SMBus SCL low timeout.

// The SMBus is disabled and re-enabled if a timeout occurs.
//

void Timer3 ISR (void) interrupt 14

{

SMBOCF &= ~0x80; // Disable SMBus

SMBOCF |= 0x80; // Re—enable SMBus

TMR3CN &= ~0x80; // Clear Timer3 interrupt-pending flag

SMB_BUSY = 0; // Free bus
}
et
// Support Functions
et
e
// EEPROM ByteWrite ()
et
//

// Return Value : None
// Parameters
// 1) unsigned char addr - address to write in the EEPROM

// range is full range of character: 0 to 255

//

// 2) unsigned char dat - data to write to the address <addr> in the EEPROM
// range is full range of character: 0 to 255

//

// This function writes the value in <dat> to location <addr> in the EEPROM
// then polls the EEPROM until the write is complete.
//

50 Rev. 1.2

SILICON LABS

AN141

void EEPROM ByteWrite (unsigned char addr,
{

while (SMB_BUSY); //
SMB_BUSY = 1; //
// Set SMBus ISR parameters
TARGET = EEPROM ADDR; //
SMB_RW = WRITE; //
SMB_SENDWORDADDR = 1; //
SMB_RANDOMREAD = 0; //
//
SMB_ACKPOLL = 1; //
//
//
//
// Specify the Outgoing Data
WORD_ADDR = addr; //
//
SMB_SINGLEBYTE OUT = dat; //
//

//

// The outgoing data pointer points to
pSMB_DATA OUT = &SMB_ SINGLEBYTE OUT;
SMB_DATA LEN =

1; //

!/

// Initiate SMBus Transfer
STA = 1;

Return Value None
Parameters

1) unsigned char dest addr
2)
3)

unsigned char len - length of the

//
//
//

constant.

range is full range of character:

range is full range of character:

unsigned char dat)

Wait for SMBus to be free.
Claim SMBus (set to busy)

Set target slave address

Mark next transfer as a write

Send Word Address after Slave Address
Do not send a START signal after

the word address

Enable Acknowledge Polling
will automatically restart
transfer if the slave does
acknoledge its address.

(The ISR
the
not

Set the target address in the
EEPROM’s internal memory space

Store <dat> (local variable) in a

global variable so the ISR can read
it after this function exits
the <dat> variable

Specify to ISR that the next transfer
will contain one data byte

- beginning address to write to in the EEPROM

0 to 255

unsigned char* src_addr - pointer to the array of data to be written
range is full range of character:

0 to 255

array to be written to the EEPROM
0 to 255

Writes <len> data bytes to the EEPROM slave specified by the <EEPROM ADDR>

void EEPROM WriteArray (unsigned char dest addr, unsigned char* src addr,

unsigned char len)
{
unsigned char i;
unsigned char* pData =

(unsigned char*)

src_addr;

SILICON LABS

Rev. 1.2 51

AN141

//
//
//
!/
!/
!/
//
//
//
!/
!/
!/
//
//

for(i = 0; 1 < len; 1i++){
EEPROM ByteWrite (dest addr++,

Return Value
1)

Parameters
1)

*pData+t+) ;

unsigned char data - data read from address <addr> in the EEPROM
range is full range of character:

0 to 255

unsigned char addr - address to read data from the EEPROM
range is full range of character:

0 to 255

This function returns a single byte from location <addr> in the EEPROM then
polls the <SMB BUSY> flag until the read is complete.

unsigned char EEPROM ByteRead (unsigned char addr)

{

//

unsigned char retval;

while (SMB_BUSY); //
SMB_BUSY = 1; //
// Set SMBus ISR parameters
TARGET = EEPROM ADDR; //
SMB RW = WRITE; //
//
//
//
//
SMB_SENDWORDADDR = 1; //
SMB_RANDOMREAD = 1; !/
SMB_ACKPOLL = 1; //

// Specify the Incoming Data
WORD_ADDR = addr; //

!/

pSMB DATA IN = g&retval; //
//
SMB DATA LEN = 1; //

!/

// Initiate SMBus Transfer
STA = 1;
while (SMB_BUSY) ; //

return retval;

Holds the return value

Wait for SMBus to be free.
Claim SMBus (set to busy)

Set target slave address

A random read starts as a write

then changes to a read after

the repeated start is sent. The

ISR handles this switchover if

the <SMB_RANDOMREAD> bit is set.

Send Word Address after Slave Address
Send a START after the word address
Enable Acknowledge Polling

Set the target address in the
EEPROM’s internal memory space

The incoming data pointer points to
the <retval> variable.

Specify to ISR that the next transfer
will contain one data byte

Wait until data is read

52

Rev. 1.2

SILICON LABS

AN141

//
//
//
//
1/
//
1/
//
//
//
!/
!/
//
//
//
//
!/
!/

vO

EEPROM ReadArray ()

Return Value : None
Parameters
1) unsigned char* dest addr - pointer to the array that will be filled
with the data from the EEPROM
range is full range of character: 0 to 255

2) unsigned char src_addr - beginning address to read data from the EEPROM
range is full range of character: 0 to 255

3) unsigned char len - length of the array to be read from the EEPROM
range is full range of character: 0 to 255

Reads up to 256 data bytes from the EEPROM slave specified by the
<EEPROM ADDR> constant.

id EEPROM ReadArray (unsigned char* dest addr, unsigned char src_addr,
unsigned char len)

while (SMB_BUSY); // Wait for SMBus to be free.
SMB_BUSY = 1; // Claim SMBus (set to busy)

// Set SMBus ISR parameters

TARGET = EEPROM ADDR; // Set target slave address
SMB_RW = WRITE; // A random read starts as a write

// then changes to a read after

// the repeated start is sent. The

// ISR handles this switchover if

// the <SMB RANDOMREAD> bit is set.
SMB_SENDWORDADDR = 1; // Send Word Address after Slave Address
SMB_RANDOMREAD = 1; // Send a START after the word address
SMB_ACKPOLL = 1; // Enable Acknowledge Polling

// Specify the Incoming Data
WORD ADDR = src_ addr; // Set the target address in the
// EEPROM’s internal memory space

// Set the the incoming data pointer

pSMB DATA IN = (unsigned char*) dest addr;

SMB DATA LEN = len; // Specify to ISR that the next transfer
// will contain <len> data bytes

// Initiate SMBus Transfer
STA = 1;
while (SMB_BUSY) ; // Wait until data is read

Rev. 1.2

SILICON LABS

53

AN141

DOCUMENT CHANGE LIST SECTION:

Revision 1.1 to Revision 1.2

m Added support for 'F32x, 'F33x, ‘F34x, 'F35x%, and ‘F41x devices.
m Fixed various errors in the software examples.
m Added arbitration lost handling.

54 Rev. 1.2

>

SILICON LABS

AN141

NOTES:

>

SILICON LABS

Rev. 1.2

55

AN141

CONTACT INFORMATION

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: productinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

®
56 Rev. 1.2 @

SILICON LABS

	Relevant Devices
	1. Introduction
	2. Overview of the SMBus Specification
	2.1. SMBus Structure
	Figure 1. Typical SMBus Configuration

	2.2. Handshaking
	2.3. Transfer Modes
	2.3.1. Master Transmitter
	2.3.2. Master Receiver
	2.3.3. Slave Transmitter
	2.3.4. Slave Receiver
	Figure 2. SMBus Timing

	2.4. Typical WRITE Scenarios
	2.4.1. Slave Address NACK’ed
	2.4.2. Reserving the Bus with a Repeated START
	Figure 3. Typical WRITE Transfer Scenarios

	2.5. Data Byte NACK’ed
	2.6. Typical READ Scenarios
	2.6.1. Slave Address NACK’ed
	2.6.2. Changing Direction (Read/Write) with a Repeated START

	2.7. Other SMBus Scenarios
	Figure 4. Typical READ Scenarios

	2.8. Arbitration
	Figure 5. Arbitration Sequence

	3. Using the SMBus with the C8051F3xx and C8051F41x
	3.1. SMBus Management Tasks
	3.1.1. SCL Clock Generation
	3.1.2. SCL Low Timeout (C8051F30x)
	3.1.3. SCL Low Timeout (All Other Devices)
	3.1.4. Arbitration Lost Detection
	3.1.5. Serial Data Transfers
	3.1.6. Slave Address Recognition

	3.2. Configuration and Control
	3.3. SMBus Communication
	3.3.1. Writing Data to an SMBus Slave (Master Transmitter)
	Figure 6. Master Transmitter Initiating an SMBus Transfer to a Slave Receiver
	Figure 7. SMBus ISR in a Master Transmitter Role
	Figure 8. Typical Master Transmitter Sequence
	3.3.2. Reading Data from an SMBus Slave (Master Receiver)
	Figure 9. Master Receiver Initiating an SMBus transfer with a Slave Transmitter
	Figure 10. SMBus ISR in a Master Receiver
	Figure 11. Typical Master Receiver Sequence
	3.3.3. Accepting Data From an SMBus Master (Slave Receiver)
	Figure 12. The SMBus ISR in a Slave Receiver Role
	Figure 13. Typical Slave Receiver Waveform
	3.3.4. Sending Data To an SMBus Master with the C8051F30x (Slave Transmitter)
	Figure 14. Slave RX-to-TX Steps (C8051F30x Only)
	Figure 15. SMBus ISR Structure for C8051F30x Slave Transmitter
	3.3.5. Sending Data To an SMBus Master with All Other Supported Devices (Slave Receiver)
	Figure 16. SMBus ISR Structure for Slave Transmitter (All Devices Except C8051F30x)
	Figure 17. Typical Slave Transmitter Waveform (C8051F30x)
	3.3.6. I2C™ EEPROM Example (Master Transmitter/ Receiver)
	Figure 18. Typical Slave Transmitter Waveform (All Devices Except C8051F30x)
	Figure 19. EEPROM Byte Write
	Figure 20. EEPROM Single Byte Read

	4. SMBus Debugging Techniques
	4.1. IDLE state
	4.2. MTSTA State - Master Transmitter START Signal Sent - Interrupt (0)
	Figure 21. Start Signal
	Figure 22. EEPROM Multi-Byte Read

	4.3. MTSLA State - Master Transmitter Slave Address Sent - Interrupt (1)
	Figure 23. Slave Address + WRITE

	4.4. MTDB - Master Transmitter Data Byte Sent - Interrupt (2)
	Figure 24. EEPROM Word Address

	4.5. MRSTA - Master Receiver Repeated Start Sent - Interrupt (3)
	Figure 25. Repeated Start

	4.6. MRSLA State - Master Receiver Slave Address Sent - Interrupt (4)
	Figure 26. Slave Address + READ

	4.7. MRDBFIN State - Master Receiver Final Data Byte Received - Interrupt(5)
	Figure 27. Data Byte

	4.8. Transfer Complete
	Figure 28. NACK + STOP

	5. SMBus Status Decoding
	Table 1. SMBus Status Decoding (C8051F30x)
	Table 2. SMBus Status Decoding (All Supported Devices Except C8051F30x)

	6. Software Examples
	6.1. SMBus Master Framework
	6.2. SMBus Slave Framework
	6.3. EEPROM Example

	Document Change List section:
	Contact Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

