
Rev. 1.2 10/06 Copyright © 2006 by Silicon Laboratories AN141

AN141

SMBUS COMMUNICATION FOR SMALL FORM FACTOR DEVICE FAMILIES

RELEVANT DEVICES
This application note applies to the following devices:
C8051F300, C8051F301, C8051F302, C8051F303,
C8051F304, C8051F305, C8051F310, C8051F311,
C8051F312, C8051F313, C8051F314, C8051F315,
C8051F316, C8051F317, C8051F320, C8051F321,
C8051F330, C8051F331, C8051F332, C8051F333,
C8051F334, C8051F335, C8051F340, C8051F341,
C8051F342, C8051F343, C8051F344, C8051F345,
C8051F346, C8051F347, C8051F350, C8051F351,
C8051F352, C8051F353, C8051F410, C8051F411,
C8051F412, C8051F413.

1. Introduction
C8051F3xx and C8051F41x devices are equipped with
an SMBus serial I/O peripheral that is compliant with
both the System Management Bus Specification and the
I2C-Bus Specification. The SMBus is a bi-directional, 2-
wire interface capable of communication with multiple
devices. A typical SMBus configuration is shown in
Figure 1. SMBus is a trademark of Intel; I2C is a
trademark of Phillips Semiconductor.
This application note describes the SMBus
specification, how to configure and use the on-chip
SMBus interface, and SMBus debugging techniques.
Code examples written in C provide the general
framework for most SMBus Master and Slave
implementations. An example that interfaces to a 256-
byte EEPROM over a two-wire interface and supports
multi-byte transfers is also included at the end of this
note.

2. Overview of the SMBus
Specification

The SMBus Specification describes the electrical
characteristics, network control conventions and
communications protocols used by SMBus devices. The
SMBus Specification can be downloaded from
www.smbus.org. The I2C Specification can be
downloaded from www.philipslogic.com/i2c/.

2.1. SMBus Structure
An SMBus system is a 2-wire network in which each
device has a unique address and may be addressed by
any other device on the network. All transfers are
initiated by a “Master” device; if a device recognizes its
own address and responds, it becomes the “Slave”
device for that transfer. It is important to note that
assigning one specified Master device is not necessary.
Any device may assume the role of Master or Slave for
any particular transfer. In the case that two devices
attempt to initiate a transfer simultaneously, an
arbitration scheme forces one device to give up the bus.
This arbitration scheme is non-destructive (one device
wins and no information is lost). Arbitration is discussed
in depth in the Arbitration section of this note.
Two wires are used in SMBus communication: SDA
(serial data) and SCL (serial clock). Each line is bi-
directional, with the direction depending on which mode
each of the devices is in. The Master always drives
SCL; either device may drive SDA. Both lines should be
connected to a positive power supply through a pull-up
circuit. All devices on the SMBus line should have open-
drain or open collector outputs, so that the lines may
remain high when the bus is free. A line is pulled low if
one or more devices attempts to output a LOW signal.
All devices must output a HIGH for the line to stay high.

Figure 1. Typical SMBus Configuration

VDD = +5/+3 V

Device 1 Device 2 Device 3

SDA

SCL

http://www.smbus.org/
http://www.philipslogic.com/i2c/

AN141

2 Rev. 1.2

2.2. Handshaking
SMBus employs various line conditions as handshaking
between devices. Note that during a data transfer, SDA
is only allowed to change levels while SCL is low.
Figure 2 illustrates the handshaking signals. Changes
on SDA while SCL is high represent START and STOP
signals, as follows:
START: This initiates a transfer. It consists of a falling
edge on SDA while SCL is high.
STOP: This ends a transfer. It consists of a rising edge
on SDA while SCL is high.
ACKNOWLEDGE: Also referred to as an “ACK”, this
handshaking signal is transmitted by a receiving device
as a confirmation. For example, after device_X receives
a byte, it transmits an ACK to confirm the transfer. An
ACK consists of a low level on SDA sampled when SCL
is high.
NOT_ACKNOWLEDGE: Also referred to as a “NACK”,
this handshaking signal is a high level on SDA sampled
when SCL is high. When a receiving device fails to
ACK, the sending device sees a NACK. In typical
transfers, a received NACK indicates that the
addressed Slave is not ready for transfer, or is not
present on the bus. A receiving Master may transmit a
NACK to indicate the last byte of a transfer. Both of
these situations are discussed further in the next
section.
SLAVE ADDRESS + R/W: This handshaking signal is
sent after the START signal on a new transfer. The
signal is sent in an 8-bit transfer by the Master; 7
address bits and 1 Read/Write (R/W) bit. The addressed
Slave should decode the (R/W) bit to determine the type
of the current transfer. The (R/W) bit is set to logic 1 to
indicate a “READ” operation and cleared to logic 0 to
indicate a “WRITE” operation.

2.3. Transfer Modes
Two types of transfers are possible: a WRITE (transfer
from Master to Slave) and a READ (transfer from Slave
to Master). During a transfer, any device may assume
one of four roles: Master Transmitter, Master Receiver,
Slave Receiver, or Slave Transmitter.

2.3.1. Master Transmitter
In this role, the device transmits serial data on SDA and
drives the clock on SCL. The device initiates the
transfer with a START, sends the Slave Address + W,
and waits for an ACK from the Slave. After the ACK is
received, the device transmits one or more bytes of
data, with each byte ACK’ed by the Slave. After the last
byte, the device transmits a STOP.

2.3.2. Master Receiver
In this role, the device receives serial data on SDA while
driving the clock on SCL. The device initiates the
transfer with a START followed by the Slave Address +
R. After the Slave ACK’s its address, the device will
output the clock on SCL and receive data on SDA. After
receiving the last byte, the device will issue a NACK
followed by a STOP.

2.3.3. Slave Transmitter
In this role, the device outputs serial data on SDA and
receives the clock on SCL. The device receives a
START followed by its own Slave Address + R, then
ACK’s its address and enters Slave Transmitter mode.
The device transmits serial data on SDA and receives
an ACK after each byte. After the last byte has been
sent, the Master will issue a NACK followed by a STOP.

2.3.4. Slave Receiver
In this role, the device receives serial data on SDA and
the clock on SCL. The device receives a START
followed by its own Slave Address + W from a Master,
then ACK’s its address and enters Slave Receiver
mode. The device receives serial data on SDA and the
clock on SCL. The device ACK’s each byte received
and exits Slave mode after the Master issues a STOP.

Figure 2. SMBus Timing

SLA6
SDA

SLA5-0 R/W D7 D6-0

SCL

Slave Address + R/W Data ByteSTART ACK NACK STOP

AN141

Rev. 1.2 3

2.4. Typical WRITE Scenarios
Example (1) in Figure 3 shows a successful transfer when the device is operating as a Master Transmitter.

2.4.1. Slave Address NACK’ed
In Example (2), the Master receives a NACK after sending the Slave Address + W. This occurs when a Slave is
‘off line’, meaning it is not responding to its own address. The Master has the option of transmitting a STOP and to
give up the transfer or a repeated START to retry the transfer. To send a repeated START, the Master sends a
STOP followed by a START and Slave Address + W. The Master will repeat the cycle until it receives an ACK. This
is referred to as “acknowledge polling”.

2.4.2. Reserving the Bus with a Repeated START
In Example (3), the Master issues a repeated START after an ACK. This process allows the Master to initiate a new
transfer without giving up the bus (to switch from a WRITE to a READ, for example). The repeated START is
commonly used in EEPROM memory access applications, where a memory READ must be directly preceded by a
WRITE indicating the desired memory location. The repeated START is demonstrated in the EEPROM code
example at the end of this note.

Figure 3. Typical WRITE Transfer Scenarios

From Slave
to Master

NACK received after SLA + W PN(2)

(3) Repeat start issued after Acknowledge ASLA + RS

(4) NACK received after data PN

S = Start
SLA = Slave Address (7 bits)
W = Write (1 bit)
R = Read (1 bit)
Data = Serial data (8 bits)
A = Acknowledge
N= Not-Acknowledge
P = Stop

Successful WRITE S SLA + W A Data PA AData(1)

Any number of data
bytes and acknowledges

From Master
to Slave

Data

AN141

4 Rev. 1.2

2.5. Data Byte NACK’ed
In Example (4), the master receives a NACK after sending a data byte. In typical SMBus systems, this is how the
receiving device indicates an error. The Master sends a STOP, and retries the transfer as in Example (2), or gives
up the transfer. Note that the use of NACKs is not restricted to error situations; the acknowledge level is a user-
definable characteristic, and may vary in different applications.

2.6. Typical READ Scenarios
Example (1) in Figure 4 shows a successful READ operation when the device is operating as a Master Receiver.

2.6.1. Slave Address NACK’ed
In Example (2), the Master receives a NACK after sending the Slave Address + R. This situation is handled in the
same fashion as in Example (2) of the WRITE discussion. The Master can use acknowledge polling to retry the
transfer, or can give up the transfer.

2.6.2. Changing Direction (Read/Write) with a Repeated START
Example (3) shows the Master sending a repeated START after sending a byte of data. This is the same repeated
START state as in the WRITE discussion. A Master may send a repeated START after any data byte, and may
initiate a READ or a WRITE following the repeated START. Generally a repeated START is used to change
direction (READ/WRITE) or to change addresses (Slave devices).

2.7. Other SMBus Scenarios
Note that the READ and WRITE diagrams show only the typical scenarios. Bus errors, timeouts, and arbitration are
also possible occurrences. Timeouts are used to detect when a transfer has stalled or when the bus is free. Any
device may hold SCL low until it is ready to continue a transfer. This process allows a slower Slave device to
communicate with a faster Master, since stalling the bus effectively reduces the SCL frequency. The SMBus
protocol specifies that all devices on the SMBus must declare any SCL signal held low for more than 25 ms a
“timeout”. When a timeout occurs, all devices on the bus must reset communication. A high SCL timeout is also
possible. If both SDA and SCL remain high for more than 50 µsec, the bus is designated as free.

Figure 4. Typical READ Scenarios

S = Start
SLA = Slave Address (7 bits)
W = Write (1 bit)
R = Read (1 bit)
Data = Serial data (8 bits)
A = Acknowledge
N = Not-Acknowledge
P = Stop

From Slave
to Master

Any number of data
bytes and acknowledges

From Master
to Slave

Data

NACK received after SLA + R PN(2)

(3) Repeat start issued after ACK ASLA + RS

Successful READ(1) S SLA + R A Data PA NData

AN141

Rev. 1.2 5

2.8. Arbitration
If multiple Masters are configured on the same SMBus system, it is possible that two will attempt to initiate a
transfer at the same time. If this happens, an arbitration scheme is employed to force one device to give up the
bus.
The arbitration works as follows: both Masters continue to transmit until one attempts a HIGH “recessive bit” while
the other attempts a LOW “dominant bit”. Due to the open-drain bus, the device attempting a LOW will win the bus.
The device sending a HIGH gives up the bus, and the other device continues its transfer. Note that the collision is
non-destructive: one device always wins.
Figure 5 shows an example output sequence between two devices during arbitration. Assume Master Device_X
and Master Device_Y contend for the bus. The winner, Device_X, is not affected at all by the arbitration. Since data
is shifted into the SMBus data register as it is shifted out, Device_Y does not miss any data. Note that Device_Y
switches to Slave mode after losing arbitration and will respond to Device_X if addressed.

Figure 5. Arbitration Sequence

Device_Y

Device_X
01 1 1 0 1 1 0

01 1 1 1

01 1 1 0 1 1 0
Seen on the Bus

Device_Y
gives up
the bus

AN141

6 Rev. 1.2

3. Using the SMBus with the
C8051F3xx and C8051F41x

The SMBus peripheral can operate in both Master and
Slave modes and provides shifting control for the serial
transfers. Timing for baud rate generation and SCL Low
timeout is provided by the on-chip timers. All other
protocol requirements are implemented by interrupt-
driven user software.

3.1. SMBus Management Tasks
The following tasks should be implemented by any
device participating in an SMBus network. They are
performed using SMBus hardware and user software.

3.1.1. SCL Clock Generation
When configured as an SMBus Master, the hardware
generates the clock signal on SCL based on Timer 0,
Timer 1, Timer 2 high byte, or Timer 2 low byte
overflows. The maximum SCL frequency in Master
mode is approximately one third the overflow rate of the
selected timer. The SMBus baud rate selected should
not exceed 1/10 of the system clock frequency.

3.1.2. SCL Low Timeout (C8051F30x)
The SCL Low Timeout, when enabled, uses Timer 2 to
detect if SCL has been low for more than 25 ms. It is
important to keep SCL from staying low for long periods
of time because no other devices can use the bus
during this time. The SCL Low Timeout is only
applicable when operating as a Master.
The SCL Low Timeout logic works by forcing Timer 2 to
reload when SCL is high, and allowing it to count when
SCL is low. Timer 2 should be enabled and configured
to overflow after a 25 ms interval. The Timer 2 interrupt
service routine can be used to reset (disable and re-
enable) the SMBus in the event of an SCL Low Timeout.

3.1.3. SCL Low Timeout (All Other Devices)
The SCL Low Timeout on all devices other than the
C8051F30x uses Timer 3 instead of Timer 2, but
operates exactly as in the C8051F30x.

3.1.4. Arbitration Lost Detection
In the SMBus arbitration system, one master always
wins and no data is lost. However, arbitration can still be
lost for various reasons: another device on the bus
illegally tampers with SDA or SCL, or environmental
noise is enough to cause false rising or falling edges.
The automatic arbitration lost detection bit, ARBLOST,
in the SMB0CN register will be set if:

A repeated START is detected as a MASTER when
the STA bit is set to '0' (unwanted repeated START).
SCL is sensed low while attempting to generate a

STOP or repeated START condition (MASTER).
SDA is sensed low while transmitting a ‘1’ (excluding
ACK bits) (SLAVE or MASTER).

The SMBus ISR should check for a set ARBLOST bit
and act accordingly. In the case of the example SMBus
Master and Slave programs discussed later, a set
ARBLOST bit is handled by resetting the SMBus
module, ignoring the erroneous data transmission, and
continuing with the next transmission. The ARBLOST
bit is automatically cleared by hardware when the
SMBus interrupt flag (SI) is cleared by software (end of
the ISR).

3.1.5. Serial Data Transfers
The hardware controls all shifting of data on the SDA
signal. Acknowledgments are managed by user
software, as explained in the register definitions below.

3.1.6. Slave Address Recognition
Slave Address recognition is handled by user software.
If the Slave inhibit bit (SMB0CF.6) is not set, the SMBus
interface issues an interrupt each time a Slave Address
is detected on the bus. The Slave Address appears in
the SMB0DAT register and is decoded by the ISR. If the
device recognizes the address, it should acknowledge it
by setting the ACK bit. Otherwise, it should clear the
ACK bit to send a NACK.

3.2. Configuration and Control
The SMBus interface can operate as a Master or a
Slave. A device enters Master mode upon writing a ‘1’
to the STA (START) bit. A Master device is responsible
for generating the clock signal for the entire transfer.
When the device is not in Master mode, it is a Slave and
will receive interrupts from the SMBus interface when
traffic is detected on the bus. The Slave Inhibit bit
(SMB0CF.6) allows the device to go “offline” to avoid
getting interrupted when network traffic is detected. In
“offline” mode, the hardware will automatically NACK all
transfers initiated by other devices on the bus. Master
mode transfers are not affected by the Slave Inhibit bit.
Below is a brief description of the SMBus registers and
how they affect device operation. For more detailed
information, see the SMBus chapter in the Silicon Labs
device data sheet.
SMB0CF. The SMBus configuration register is used to
enable the SMBus interface and select whether Slave
Mode is enabled or inhibited. It is also used to select the
SCK time base and enable the SCL Low Timeout.
SMB0CN. The SMBus control register is used as a
status indicator and to send SMBus START and STOP
signals. This register is also used to define the outgoing
ACK level and read incoming ACK levels. The ACK bit

AN141

Rev. 1.2 7

in this register should be written each time a byte is
received and read each time a byte is transmitted.
SMB0DAT. The SMBus Data Register is used to hold
data and Slave Addresses. When transmitting or
receiving a 7-bit Slave Address, the least significant bit
of the SMB0DAT register is used as a direction bit to
indicate whether the transfer is a read or a write. Data
read from this register is only valid while SI = 1. When
SI is not set, software should not try to access the
register because the SMBus interface may be in the
process of shifting data. Note that in Master mode,
data will not be shifted in or out if the STA or STO
bits are set. Instead, START or STOP signals will be
generated, respectively.

3.3. SMBus Communication
All SMBus communication is handled by the SMBus
interrupt service routine (ISR). The SMBus ISR can be
implemented as a state machine that takes input
parameters from the SMB0CN register and from state
variables. The state definitions and typical response
options for the various states are located in Table 1 on
page 20 (C8051F30x) and Table 2 on page 22 (all other
supported devices). Note that in these tables, the upper
four bits of SMB0CN are referred to as the ‘status
vector’.
The implementation of the SMBus ISR will vary
according to application-specific needs. The following
examples provide the general framework necessary to
use the supported C8051F3xx and C8051F41x devices
in the following modes:

Master Transmitter
Master Receiver
Slave Receiver
Slave Transmitter

An additional EEPROM example that supports multi-
byte transfers is provided to demonstrate how the
general framework can be customized to suit an
application-specific need. The software for the 'F33x is
provided at the end of this application note. Additional
examples for all supported devices are available upon
request.

3.3.1. Writing Data to an SMBus Slave (Master
Transmitter)

An SMBus device in Master Transmitter mode may
write one or more bytes to a Slave. The following steps
and the flowchart in Figure 6 show how the example
software initiates a transfer to a to a Slave Receiver in
polled code:

1. Software Busy Flag? The <SMB_BUSY> flag is a

software managed flag that keeps another transfer from
starting before the current transfer is complete. This flag is
cleared by the SMBus ISR after a transfer is complete.

2. Claim SMBus. Set the <SMB_BUSY> flag. No other
transfers can be initiated while this flag is set to ‘1’.

3. Set global parameters. The global parameters include an
<SMB_RW> flag specifying whether the transfer is a read
or a write. They also include the outgoing data byte
<SMB_DATA_OUT> and the target Slave Address
<TARGET>.

4. Send START Signal. A START signal is sent by writing a
‘1’ to the STA bit (SMB0CN.5). As soon as the SMBus
hardware sends the START signal, it sets the SI bit
causing an SMBus interrupt. From this point, the SMBus
ISR finishes sending the data then clears the
<SMB_BUSY> flag.

A Master Transmitter services a minimum of three
interrupts for each transfer containing one data byte.
For each additional data byte sent in the same transfer,
the number of interrupts serviced increases by one.

Figure 6. Master Transmitter Initiating an
SMBus Transfer to a Slave Receiver

Send START
Signal

Begin

Set Global
Parameters

Software
Busy Flag?

Yes

No

End

Claim SMBus
(Set "Software

Busy" Flag)

AN141

8 Rev. 1.2

Figure 7. SMBus ISR in a Master Transmitter
Role

Figure 7 shows how the SMBus ISR in the “SMBus
Master Framework” example code is structured to
handle the role of Master Transmitter. Figure 8 shows
the typical waveform on SDA when an SMBus Master
sends data to a Slave. Note that the example software
supports sending one data byte (n = 2 in Figure 7 and
Figure 8), but can be modified to read a global array
and count if more than one byte needs to be sent during
each transfer.

The following steps outline how an SMBus Master
Transmitter completes a transfer to a Slave Receiver
using the SMBus ISR:
5. Interrupt (0). MTSTA. The SMBus ISR decodes the

SMB0CN register and the state parameters to determine
the current state of the system. The first time the interrupt
is called, Interrupt (0), the status vector should indicate
that the device is a Master Transmitter and a Master
START has been transmitted.
Action Taken. The device loads the Slave Address in the
SMB0DAT register and sets the R/W bit (SMB0DAT.0) to
WRITE (0). Then it manually clears the STA bit. Note:
The STA (START) bit is not cleared by hardware and
must be cleared by software; not clearing the STA bit
will result in a repeated start condition.

6. Interrupt (1), ... , Interrupt (n - 1). MTSLA, MTDB. The
second time the interrupt is called and for the remaining
number of data bytes, the SMBus ISR should not detect a
start condition. It checks the ACK bit to see if the Slave
Address or data bytes were acknowledged.
Action Taken. If the Slave Address or data bytes were
acknowledged by the Slave, the Master loads the outgo-
ing data byte into the SMB0DAT register and clears the
ACK bit. If the byte was not acknowledged, the Master
has the option of aborting or restarting the transfer.

7. Interrupt (n). MTDBFIN. The SMBus Master Transmitter
detects this state when it has successfully sent the last
data byte.
Action Taken. The SMBus ISR transmits a STOP signal
by setting the STO bit to ‘1’. The STO bit is automatically
cleared by hardware and does not need to be cleared by
software. The SMBus ISR also clears the <SMB_BUSY>
flag to indicate that the SMBus hardware is available for
other transfers.

Note that on every interrupt, the SI flag (the
interrupt source) must be cleared by software for
proper operation. If the SI flag is not cleared, SCL is
held low and the SMBus will be stalled.

Figure 8. Typical Master Transmitter Sequence

 1. Release SMBus (SI = 0)
 2. Exit

Master
+ START Signal

Detected?

SMBus
Interrupt

No

Yes
1.Send slave
 address + WRITE
2.Clear STA

Slave Address
 or Data Byte
Acknoledged?

Yes

1. Load data byte
2. Clear ACK

Finished
Sending Data?

1. Send STOP
 signal
2. Set global
 parameters

Yes

No
No

NACK: Abort or
Restart Transfer

Interrupt (n)

Interrupt (0)

Interrupt (1)

Interrupt (n - 1)
...

Write?

Yes

No

See the "Reading
Data from an

 SMBus Slave"
Example

MTSLA, MTDB

MTSTA

MTDBFIN

A AAS W PData Byte Data ByteSLA

S = START
P = STOP
A = ACK
W = WRITE
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupt (1)
MTSLA

Interrupt (2)
MTDB

Interrupt (n)
MTDBFIN

Interrupt (0)
MTSTA

...AData Byte

Interrupt (n-1)
MTDB

MTSTA - Master Transmitter START Sent
MTSLA - Master Transmitter Slave Addr. Sent
MTDB - Master Transmitter Data Byte Sent and
 Acknowledged
MTDBFIN - Master Transmitter Final Data Byte
 Sent and Acknowledged

AN141

Rev. 1.2 9

3.3.2. Reading Data from an SMBus Slave (Master
Receiver)

During an SMBus Read, the Master starts out as a
Transmitter and the Slave starts out as a Receiver.
Once the Master transmits the 7-bit Slave Address and
sets the R/W bit to ‘1’ (READ), the Master becomes a
Receiver and the Slave becomes a Transmitter for the
remainder of the transfer. The Master continues to drive
the clock on SCK, but reads in data on SDA. The
Master notifies the Slave to stop sending data by
sending a NACK followed by a STOP after the last data
byte has been received. If the Master does not send a
NACK, it may not be able to send a STOP if the Slave is
driving SDA low.
The following steps and the flowchart in Figure 9 show
how an SMBus Master initiates a Read in polled code:
1. Software Busy Flag? The <SMB_BUSY> flag is a

software managed flag that keeps another transfer from
starting before the current transfer is complete. This flag is
cleared by the SMBus ISR after a transfer is complete.

2. Claim SMBus. Set the <SMB_BUSY> flag. No other
transfers can be initiated while this flag is set to ‘1’.

3. Set global parameters. The global parameters include
the <SMB_RW> flag that specifies whether the transfer is
a Read or a Write. The target Slave Address is also loaded
in the global variable <TARGET>.

4. Send START Signal. A START signal is sent by writing a
‘1’ to the STA bit (SMB0CN.5). As soon as the SMBus
hardware sends the START signal, it sets the SI bit
causing an SMBus interrupt. From this point, the SMBus
ISR finishes the transfer then clears the <SMB_BUSY>
flag.

5. Software Busy Flag? The polled code waits for the
SMBus ISR to finish the current transfer and clear the
<SMB_BUSY> flag.

6. Read Data. The SMBus ISR stores the incoming data in
the global variable <SMB_DATA_IN>. The data in this
variable remains valid until the next SMBus read. Figure 9. Master Receiver Initiating an

SMBus transfer with a Slave Transmitter

Send START
Signal

Begin

Set Global
Parameters

Software
Busy Flag?

Yes

No

End

Claim SMBus
(Set "Software

Busy" Flag)

Software
Busy Flag?

Yes

No

Read Data

AN141

10 Rev. 1.2

A device configured as Master Receiver services a
minimum of three interrupts for each transfer containing
one data byte. For each additional data byte read in the
same transfer, the number of interrupts serviced
increases by one. Figure 10 shows how the SMBus ISR
in the “SMBus Master Framework” example code is
structured to handle the role of Master Receiver.
Figure 11 shows the typical waveform on SDA when an
SMBus Master reads data from a Slave. Note that the
example software supports receiving one data byte
(n = 2 in Figure 10 and Figure 11), but can be modified
to store incoming data in a global array if more than one
byte needs to be received during each transfer.
The following steps outline how an SMBus Master
Receiver completes a transfer from a Slave Transmitter
using the SMBus ISR:
7. Interrupt (0). MRSTA. The SMBus ISR decodes the

SMB0CN register and the state parameters to determine
the current state of the system. The first time the interrupt
is called, Interrupt (0), the status vector should indicate
that the device is in Master Transmitter mode and a
START was transmitted.
Action Taken. The device loads the Slave Address in the
SMB0DAT register and sets the R/W bit (SMB0DAT.0) to
READ (1). This indicates that the current transfer is a
read, Then it manually clears the STA bit. Note: The STA
(START) bit is not cleared by hardware and must be
cleared by software; not clearing the STA bit will
result in a repeated START condition.

8. Interrupt (1). MRSLA. The SMBus ISR enters this state
after the Slave Address has been transmitted on a read.
No action is necessary.

9. Interrupt (2), ... , Interrupt (n - 1). MRDB. The third time
the SMBus ISR is called and for the remaining number of
data bytes, it reads the incoming data byte from SMB0CN
and sets the ACK bit.

10. Interrupt (n). MRDBFIN. The SMBus Master Transmitter
detects this state when it has received the final data byte.
Action Taken. The SMBus ISR clears the ACK bit and
sets the STO bit to transmit a NACK followed by a STOP
signal. The STO bit is automatically cleared by hardware

and does not need to be cleared by software. The NACK
tells the Slave Transmitter to stop sending data and the
STOP signal ends the current transfer. The SMBus ISR
also clears the <SMB_BUSY> flag to allow other transfers
to take place.

Note that on every interrupt, the SI flag (the
interrupt source) must be cleared by software for
proper operation. If the SI flag is not cleared, SCL is
held low and the SMBus will be stalled.

Figure 10. SMBus ISR in a Master Receiver

Figure 11. Typical Master Receiver Sequence

 1. Release SMBus (SI = 0)
 2. Exit

Master
+ START Signal

Detected?

SMBus
Interrupt

No

Yes
1.Send slave
 address + READ
2.Clear STA

Slave Address
 or Data Byte
Acknoledged?

Yes

1. Read data byte
2. Set ACK

Finished
Receiving Data?

1. Clear ACK bit to
 send NACK
2. Send STOP
 signal
3. Clear software
 busy flag

Yes

No

No

NACK: Abort or
Restart Transfer

Interrupt (n)

Interrupt (0)
MRSTA

Interrupt (1)
MRSLA

Interrupt (2)

Interrupt (n - 1)
...

Write?

No

Yes
See the "Writing
to an SMBus
Slave" example

Data Byte
Received? No

Yes
No Action

MRDB

MRDBFIN

Data ByteData Byte A NAS R PSLA

S = START
P = STOP
A = ACK
N = NACK
R = READ
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupt (1)
MRSLA

Interrupt (2)
MRDB

Interrupt (n)
MRDBFIN

Interrupt (0)
MRSTA

Data ByteA

Interrupt (n-1)
MRDB

...

MRSTA - Master Receiver START Sent
MRSLA - Master Receiver Slave Addr. Sent
MTDB - Master Receiver Data Byte Received
MTDBFIN - Master Receiver Final Data Byte Received

AN141

Rev. 1.2 11

3.3.3. Accepting Data From an SMBus Master (Slave
Receiver)

When a device is not transmitting, it is in Slave Mode. If
Slave interrupts are enabled, the SMBus interface will
issue an interrupt every time a
START + Slave address + R/W is detected on the bus.
In the “Slave Framework Example” code at the end of
this note, the device initializes the SMBus interface then
enters an infinite loop waiting for data to arrive on the
SMBus. Once data is received from a Master, the
SMBus ISR sets the <DATA_READY> flag. The SMBus
ISR stores the incoming data in the global variable
<SMB_DATA>. This data is valid until the next transfer
is initiated.
The flowchart in Figure 12 shows how the SMBus ISR
handles the role of Slave Receiver. Figure 13 shows a
typical waveform of a transfer from a Slave Receiver’s
perspective.
The following steps outline how an SMBus Slave
Receiver handles a transfer from a Master Transmitter
using the SMBus ISR:
1. Interrupt (0). SRSTAADR. This state occurs when the first

interrupt is received by a Slave on a new transfer and is
detected by the status vector.
Action Taken. The Slave should clear the STA bit then
check the 7-bit address in SMB0CN and set the ACK bit if
it recognizes its address. Otherwise, it should clear the
ACK bit.

2. Interrupt (1), ... , Interrupt (n - 1). SRDB. This state
indicates that a data byte has been received.
Action Taken. The device should store the incoming
data, set the ACK bit, and set the software managed
<DATA_READY> flag to ‘1’. In some applications, the
Slave is able to detect malformed data. If this is the case,
sending a NACK can signal the Master Transmitter to
stop sending or to resend the data.

3. Interrupt (n). SRSTO. This interrupt occurs after the

device detects a STOP on the bus.
Action Taken. The device should clear the STO bit.
Note: The STO bit must be cleared by software when
a STOP is detected as a Slave.

Figure 12. The SMBus ISR in a Slave Receiver
Role

Figure 13. Typical Slave Receiver Waveform

 1. Release SMBus (SI = 0)
 2. Exit

 START Signal
+ Slave Address

Detected?

SMBus
Interrupt

No

Yes

1. Clear STA
2. Check Address
3. Set ACK or NACK

Interrupt (0) SRSTAADR

SRDB
Interrupt (1), ... , (n-1)

Slave
+ STOP Signal

Detected?
1. Clear STO

Interrupt (n) SRSTO

Yes

No

Data Byte
Received? Yes

1. Store Data Byte
2. Set ACK or NACK
3. Indicate Data
 Ready

No

Handle Error Condition

Master
Write?Yes No

See the "Sending
Data to an SMBus
Master" example

PWSLAS Data ByteData Byte A AA

S = START
P = STOP
A = ACK
R = READ
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupt (0)
SRSTAADR

Interrupt (1)
SRDB

Interrupt (n-1)
SRDB

Interrupt (n) SRSTO

...

SRSTAADR - Slave Receiver START + Slave
 Address + Write received
SRDB - Slave Receiver Data Byte Received
SRSTO - Slave Receiver STOP Received

AN141

12 Rev. 1.2

3.3.4. Sending Data To an SMBus Master with the C8051F30x (Slave Transmitter)
An SMBus Master can read data from a Slave by sending the Slave Address followed by a READ signal. Once the
Slave detects its Slave Address + READ, it should acknowledge it and switch to Slave Transmitter mode.
Switching from Slave Receiver to Slave Transmitter mode on C8051F30x devices requires software management.
Software should perform the steps in Figure 14 after a valid Slave Address and READ signal are received.
Figure 17 shows a typical waveform of the SDA signal when a Slave is transmitting data to a Master. Figure 15
shows how the SMBus ISR on the ‘F30x handles the role of Slave Transmitter.

Figure 14. Slave RX-to-TX Steps (C8051F30x Only)

Figure 15. SMBus ISR Structure for C8051F30x Slave Transmitter

Step 1. Set ACK to ‘1’.
Step 2. Write outgoing data to SMB0DAT.
Step 3. Check SMB0DAT.7; if ‘1’, do not perform steps 4, 6 or 7.
Step 4. Set STO to ‘1’.
Step 5. Clear SI to ‘0’.
Step 6. Poll for TXMODE => ‘1’.
Step 7. Clear STO to ‘0’.

 1. Release SMBus (SI = 0)
 2. Exit

START Signal
+ Slave Address

 Detected?

SMBus
Interrupt

No Yes 1. Clear STA
2. Check Address
3. Perform RX-to-TX steps if
 address is recognized,
 otherwise NACK

Interrupt (0) STSTAADR

STDBACK
Interrupt (1), ... , (n-2)

Slave
+ STOP Signal

Detected?
1. Clear STO

SRSTO
Interrupt (n)

Yes

No

Data Byte
Transmitted? Yes

1. Load next data byte
2. Clear ACK bit

No

Handle Error
Condition

Master
Read?Yes No

See the "Receiving
Data from an SMBus
Master" example

STDBNACK
Interrupt (n-1)

ACK

No 1. Stop Sending
2. Clear ACK bit

Yes

AN141

Rev. 1.2 13

The following steps outline how the SMBus ISR on a
Slave device handles the transfer of data to a Master
Receiver:
1. Interrupt (0). STSTA. This state occurs when START and

READ signals are detected on the bus.
Action Taken. The Slave should clear the STA bit then
check the 7-bit address in SMB0CN. If the Slave recog-
nizes its address, it should perform the RX-to-TX steps in
Figure 14. Otherwise, it should clear the ACK bit to send
a NACK.

2. Interrupt (1), ... , Interrupt (n - 2). STDBACK. This state
indicates that a data byte has been transmitted and
ACK’ed by the Master.
Action Taken. The device should load the next byte of
outgoing data in SMB0DAT. If desired, the Slave may
check if the previous data byte was acknowledged.

3. Interrupt (n - 1). STDNBACK. This state indicates that a
data byte has been transmitted, but NACK’ed by the
Master.
Action Taken. The device should load the next byte of
outgoing data in SMB0DAT. If desired, the Slave may
check if the previous data byte was acknowledged.

4. Interrupt (n). SRSTO. This interrupt occurs after the
device detects a STOP on the bus. Since the slave is no
longer transmitting or has data pending, the SRSTO state
is used instead of the STSTO state.
Action Taken. The device should clear the STO bit.
Note: STO must be cleared by software when a STOP
is detected as a Slave.

3.3.5. Sending Data To an SMBus Master with All
Other Supported Devices (Slave Receiver)

An SMBus Master can read data from a Slave by
sending a READ signal with the Slave Address. Once
the Slave detects the READ signal, it should
acknowledge it and switch from receive to transmit
mode.

Switching from Slave Receiver to Slave Transmitter
mode on all supported devices other than the
C8051F30x family does not require software
management and is handled automatically in
hardware.
Figure 16 shows how the SMBus ISR on all supported
devices except the ‘F30x handles the role of Slave
Transmitter. Figure 18 shows a typical waveform of the
SDA signal when a Slave is transmitting data to a
Master.

Figure 16. SMBus ISR Structure for Slave
Transmitter (All Devices Except C8051F30x)

Figure 17. Typical Slave Transmitter Waveform (C8051F30x)

 1. Release SMBus (SI = 0)
 2. Exit

Slave Address
+ START Signal

Detected?

SMBus
Interrupt

No Yes 1. Clear STA
2. Check Address
3. Set ACK or NACK
4. Load outgoing data byte

Interrupt (0) STSTAADR

STDBACK
Interrupt (1), ... , (n-2)

Slave
+ STOP Signal

Detected?
1. Clear STO

SRSTO
Interrupt (n)

Yes

No

Yes

1. Load next data byte
2. Clear ACK bit

No

Handle Error
Condition

Master
Read?Yes

No

See the "Receiving
Data from an SMBus
Master" example

STDBNACK
Interrupt (n-1)

ACK

No 1. Stop Sending
2. Clear ACK bit

Yes

Data Byte
Transmitted?

PRSLAS Data ByteData Byte A NA

S = START
P = STOP
N = NACK
W = WRITE
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupt (0)
STSTAADR

Interrupt (1)
STDBACK

Interrupt (n-1)
STDBNACK

Interrupt (n) SRSTO

Perform RX-to-TX
Steps Here

...

STSTAADR - Slave Transmitter Slave Addr. Sent
STDBACK - Slave Transmitter Data Byte ACK'ed
STDBNACK - Slave Transmitter Data Byte NACK'ed
SRSTO - Slave Receiver STOP Received

AN141

14 Rev. 1.2

The following steps outline how the SMBus ISR on a
Slave device handles the transfer of data to a Master
Receiver:
1. Interrupt (0). STSTAADR. This state occurs when START

and READ signals are detected on the bus.
Action Taken. The Slave should clear the STA bit then
check the 7-bit address in SMB0CN. If the Slave recog-
nizes its address, it should set the ACK bit and load the
outgoing data byte into SMB0DAT. Otherwise, it should
clear the ACK bit to send a NACK.

2. Interrupt (1), ... , Interrupt (n - 2). STDBACK. This state
indicates that a data byte has been transmitted.
Action Taken. The device should load the next byte of
outgoing data in SMB0DAT. If desired, the Slave may
check if the previous data byte was acknowledged.

3. Interrupt (n - 1). STDNBACK. This state indicates that a
data byte has been transmitted, but NACK’ed by the
Master.
Action Taken. The device should load the next byte of
outgoing data in SMB0DAT. If desired, the Slave may
check if the previous data byte was acknowledged.

4. Interrupt (n). SRSTO. This interrupt occurs after the
device detects a STOP on the bus. Since the slave is no
longer transmitting or has data pending, the SRSTO state
is used instead of the STSTO state.
Action Taken. The device should clear the STO bit.
Note: STO must be cleared by software and is not
cleared by hardware when a STOP is detected as a
Slave.

3.3.6. I2C™ EEPROM Example (Master Transmitter/
Receiver)

This example interfaces all supported devices to a 256-
byte I2C Serial EEPROM. The SMBus ISR is a modified
version of the “SMBus Master Framework” example that
supports multi-byte transfers. The SMBus ISR behavior
is determined by the SMB0CN register and the following
global state parameters:

SMB_RW. A boolean flag that indicates an SMBus
WRITE if set to ‘0’ and an SMBus READ if set to ‘1’.
Note that a random read operation starts as a write
and is changed to a read by the ISR after the
repeated start is sent.
SMB_SENDWORDADDR. A boolean flag indicating
the ISR should send the 8-bit word address after
sending the Slave Address+R/W. This flag is cleared
by the ISR once the word address has been sent.
SMB_RANDOMREAD. When set to ‘1’, this boolean
flag causes the ISR to send a repeated start and
switch to read mode after sending the word address.
SMB_ACKPOLL. This flag enables acknowledge
polling. When set to ‘1’, the ISR automatically
restarts the transfer if the Slave fails to acknowledge
its device address.

Figure 18. Typical Slave Transmitter Waveform (All Devices Except C8051F30x)

PRSLAS Data ByteData Byte A NA

S = START
P = STOP
N = NACK
W = WRITE
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupt (0)
STSTAADR

Interrupt (1)
STDBACK

Interrupt (n-1)
STDBNACK

Interrupt (n) SRSTO

...

STSTAADR - Slave Transmitter Slave Addr. Sent
STDBACK - Slave Transmitter Data Byte ACK'ed
STDBNACK - Slave Transmitter Data Byte NACK'ed
SRSTO - Slave Receiver STOP Received

AN141

Rev. 1.2 15

The following read and write routines are provided in the
example:
EEPROM_ByteWrite(). The byte write operation writes
a single byte to the EEPROM. Figure 19 shows that the
operation consists of a START signal followed by three
bytes: the EEPROM’s device address +W (this address
can be found in the EEPROM data sheet), the 8-bit
word address in the EEPROM’s internal memory space
specifying the memory location to be written, and the
data byte. The write to memory does not take place until
the STOP signal is transmitted.

Figure 19. EEPROM Byte Write
The EEPROM does not acknowledge its device address
while a write to memory is in progress (this behavior is
identical to the Slave inhibit mode on all supported
devices). This feature can be used as an indicator to
determine when the write operation is complete. When
a new transfer is initiated and the global
SMB_ACKPOLL flag is set, the SMBus ISR will
continuously poll the EEPROM until it comes “online”.

EEPROM_ByteRead(). This function implements the
EEPROM’s random read operation. As Figure 20
shows, the host device is in Master Transmitter mode
until the word address is sent. After the word address is
acknowledged, Interrupt (2) sets the STA bit to send a
repeated start and changes the SMB_RW flag from
WRITE(0) to READ(1). From this point, the device takes
the role of Master Receiver until the end of the transfer.
When the data byte is received, it is NACK’ed to signal
the EEPROM to stop sending. The NACK is
immediately followed by a STOP.
The reason for transmitting a “write” for the first half of
the transfer is to set the EEPROM’s internal address
pointer. The “read” that takes place in the second half of
the transfer reads from the data stored at the
EEPROM’s internal address pointer.
After each byte is read, the EEPROM’s internal address
pointer is incremented. This allows up to 256 bytes of
data (the entire EEPROM contents) to be read in a
single transfer.
EEPROM_ReadArray(). This function makes use of the
multi-byte transfer capability of the EEPROM. Figure 22
shows a typical waveform of an EEPROM multi-byte
read.

Figure 20. EEPROM Single Byte Read

S SLA W A A A PWORD
Address Data Byte

NAS W PSLA

S = START
P = STOP
A = ACK
N = NACK
R = READ
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupt (1)
MTSLA

Interrupt (2)
MTDB

Interrupt (0)
MTSTA

Data ByteAWORD Address

Repeated
Start

AS RSLA

Interrupt (3)
MRSTA

Interrupt (4)
MRSLA

Interrupt (5)
MRDBFIN

MTSTA - Master Transmitter START Sent
MTSLA - Master Transmitter Slave Addr. Sent
MTDB - Master Transmitter Data Byte Sent
MRSTA - Master Receiver START Sent
MRSLA - Master Receiver Slave Addr. Sent
MTDBFIN - Master Receiver Final Data Byte
 Received

AN141

16 Rev. 1.2

4. SMBus Debugging Techniques
An SMBus network consists of at least one Master and
one Slave. Assuming a minimal network that is not
functioning properly, either the Master or the Slave may
be causing the failure.
The first step in debugging a minimal SMBus network is
isolating the problem to the Master or the Slave. This
involves observing the SCL and SDA traces on an
oscilloscope or logic analyzer. As an example, we will
debug a minimal SMBus network with a supported
device as the Master and an EEPROM as the Slave.
The example code needed to recreate this example is
included at the end of this note.
In this demonstration, we will be debugging the
EEPROM_ReadByte() routine. The goal is to verify the
individual stages (all interrupts and state changes) of
the transfer shown in Figure 20. We will assume that the
EEPROM word we are reading (word address 0x25)
contains the data (0xBB). The Slave Address of the
EEPROM is 0xA0.

4.1. IDLE state
When an SMBus network is idle, both the SCL and the
SDA signals are HIGH due to the required pull-up
resistors. When the Master issues a START signal, it
drives the SDA then the SCL signal LOW. This start
condition remains on the bus until the Master clears the
SI bit or a timeout occurs. In this example, we have
disabled the SCL Low Timeout.
To capture the START signal, we have configured the
oscilloscope to trigger on the falling edge of SCL.
Program execution is now at the beginning of the
EEPROM_ReadByte() routine. We have placed a
breakpoint at the top of the SMBus ISR. We now click
the “go” button in the IDE.

4.2. MTSTA State – Master Transmitter
START Signal Sent – Interrupt (0)

Figure 21 shows the bus state as it changes from idle to
MTSTA, as seen on the oscilloscope. The Master is also
halted at the beginning of the SMBus ISR and the SI bit
has been set by the SMBus interface. The START
condition will remain on the bus until the SMBus ISR
clears the SI bit.

Figure 21. Start Signal
Following the waveform in Figure 20, we are now in the
MTSTA state. The ISR detects the START condition and
prepares the SMBus interface to send the Slave
Address + WRITE. The Slave address + WRITE will be
sent after the SI bit is cleared. We now configure the
oscilloscope to trigger on the rising edge of SCL and
click the “go” button in the IDE.

Figure 22. EEPROM Multi-Byte Read

SCL

SDA

Data ByteData Byte A NAS W PSLA

S = START
P = STOP
A = ACK
N = NACK
R = READ
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupt (1)
MTSLA

Interrupt (2)
MTDB

Interrupt (n)
MTDBFIN

Interrupt (0)
MTSTA

Data ByteA

Interrupt (n-1)
MTDB

...AWORD Address

Repeated
Start

AS RSLA

Interrupt (3)
MRSTA

Interrupt (4)
MRSLA

Interrupt (5)
MTDB

MTSTA - Master Transmitter START Sent
MTSLA - Master Transmitter Slave Addr. Sent
MTDB - Master Transmitter Data Byte Sent
MRSTA - Master Receiver START Sent
MRSLA - Master Receiver Slave Addr. Sent
MTDB - Master Receiver Data Byte Received
MTDBFIN - Master Receiver Final Data Byte Received

AN141

Rev. 1.2 17

4.3. MTSLA State – Master Transmitter
Slave Address Sent – Interrupt (1)

Figure 23 shows the bus state as the 7-bit Slave
Address, the R/W signal, and the ACK signal are
transmitted across the bus.

Figure 23. Slave Address + WRITE
Keep in mind that SDA data is valid on the rising edge of
SCL and stays valid until the next falling edge of SCL.
During the first 7 cycles in Figure 23, the Slave Address
(0xA0) is transmitted MSB-first from the Master to the
Slave. During cycle 7, the Master indicates that this
transfer is a WRITE (1). In the last cycle, the Slave
sends an ACK by holding the SDA signal LOW.
The SMBus ISR is now in the MTSLA state. It detects
that the Slave Address has been ACK’ed and prepares
the SMBus interface to send the first data byte. Since
we are communicating with an EEPROM, the first data
byte is the word address. We now click the “go” button
in the IDE to advance to the next state.

4.4. MTDB – Master Transmitter Data Byte
Sent – Interrupt (2)

Figure 24 shows the EEPROM word address being sent
from the Master to the Slave.

Figure 24. EEPROM Word Address
The SMBus ISR should now recognize that the 8-bit
EEPROM word address (0x25) has been sent and
acknowledged by the Slave. It should now set the STA
bit to generate a repeated START signal as soon as SI
is cleared. While the interrupt is being executed (before
SI is cleared), SCL is held LOW and the SMBus is
stalled. We now click the “go” button in the IDE.

4.5. MRSTA – Master Receiver Repeated
Start Sent – Interrupt (3)

Figure 25 shows SCL being released when SI is cleared
then a repeated start being sent one clock cycle later.

Figure 25. Repeated Start
The SMBus ISR prepares the interface to send the
Slave Address + READ. We now click the “go” button in
the IDE.

SCL

SDA1 0 1 0 0 0 0 W A

SCL

SDA1 0 1 0 0 1 0 1 A

SCL

SDA

AN141

18 Rev. 1.2

4.6. MRSLA State – Master Receiver Slave
Address Sent – Interrupt (4)

Figure 26 shows the Slave Address (0xA0) + READ (1)
being sent from the Master to the Slave. During the last
SCK cycle, the Slave ACK’s the transfer and prepares
to drive the bus during the next 8 SCK cycles.

Figure 26. Slave Address + READ
The SMBus interface prepares itself to receive data
during the next 8 SCK cycles. The transition from
Master Transmitter to Master Receiver is handled
automatically by hardware. The ISR only needs to clear
the SI bit to advance to the next state. We now click the
“go” button in the IDE.

4.7. MRDBFIN State – Master Receiver
Final Data Byte Received – Interrupt(5)

Figure 27 shows the data byte (0xBB) being sent from
the Slave to the Master.

Figure 27. Data Byte
The SMBus ISR reads the data byte from the SMB0DAT
register and decides whether to acknowledge it or not.
Since we are only reading one byte, the ISR will NACK
this byte to signal the Slave to stop driving the bus. It
will also set the STA bit to end the transfer. We now
press the “go” button in the IDE.

SCL

SDA1 0 1 0 0 0 0 R A

SCL

SDA

AN141

Rev. 1.2 19

4.8. Transfer Complete
Figure 28 shows that the Slave stops driving SDA on
the rising edge of the ACK cycle. On that same edge,
the Master starts driving SDA HIGH to indicate a NACK.
The bus is temporarily driven low after the ACK cycle to
facilitate the generation of the STOP signal. After the
STOP, the bus returns to an idle state.

Figure 28. NACK + STOP
Viewing the signals on the bus at every state change
during the transfer will help isolate if a problem is due to
the Master or Slave. The waveforms in Figure 8,
Figure 11, Figure 13, Figure 17, and Figure 18 can be
very helpful in identifying the number of interrupts and
state changes to expect when examining SMBus traffic
on an oscilloscope or logic analyzer.

5. SMBus Status Decoding
The current SMBus status can be easily decoded using
the SMB0CN register. In the table below, STATUS
VECTOR refers to the four upper bits of SMB0CN:
MASTER, TXMODE, STA, and STO. Note that the
shown response options are only the typical responses;
application-specific procedures are allowed as long as
they conform with the SMBus specification. Highlighted
responses are allowed but do not conform to the SMBus
specification.

SCL

SDA

AN141

20 Rev. 1.2

Table 1. SMBus Status Decoding (C8051F30x)
M

od
e

Values Read

Current SMbus State Typical Response Options

Values
Written

St
at

us

Ve
ct

or

A
C

K
R

Q

A
R

B
LO

ST

A
C

K

ST
A

ST
O

A
C

K

M
as

te
r T

ra
ns

m
itt

er

1110 0 0 X A master START was gener-
ated.

Load slave address + R/W into
SMB0DAT.

0 0 X

1100 0 0 0 A master data or address byte
was transmitted; NACK
received.

Set STA to restart transfer. 1 0 X

Abort transfer. 0 1 X

0 0 1 A master data or address byte
was transmitted; ACK received.

Load next data byte into SMB0DAT 0 0 X

End transfer with STOP 0 1 X

End transfer with STOP and start
another transfer.

1 1 X

Send repeated START 1 0 X

Switch to Master Receiver Mode
(clear SI without writing new data to
SMB0DAT).

0 0 X

M
as

te
r R

ec
ei

ve
r

1000 1 0 X A master data byte was
received; ACK requested.

Acknowledge received byte; Read
SMB0DAT.

0 0 1

Send NACK to indicate last byte,
and send STOP.

0 1 0

Send NACK to indicate last byte,
and send STOP followed by
START.

1 1 0

Send ACK followed by repeated
START.

1 0 1

Send NACK to indicate last byte,
and send repeated START.

1 0 0

Send ACK and switch to Master
Transmitter Mode (write to
SMB0DAT before clearing SI).

0 0 1

Send NACK and switch to Master
Transmitter Mode (write to
SMB0DAT before clearing SI).

0 0 0

Sl
av

e
Tr

an
sm

itt
er

0100 0 0 0 A slave byte was transmitted;
NACK received.

No action required (expecting
STOP condition).

0 0 X

0 0 1 A slave byte was transmitted;
ACK received.

Load SMB0DAT with next data byte
to transmit.

0 0 X

0 1 X A Slave byte was transmitted;
error detected.

No action required (expecting Mas-
ter to end transfer).

0 0 X

0101 0 X X An illegal STOP or bus error
was detected while a Slave
Transmission was in progress.

Clear STO. 0 0 X

AN141

Rev. 1.2 21

Sl
av

e
R

ec
ei

ve
r

0010 1 0 X A slave address was received;
ACK requested.

Acknowledge received address
(received slave address match, R/
W bit = READ).

0 0 1

Do not acknowledge received
address.

0 0 0

Acknowledge received address,
and switch to transmitter mode
(received slave address match, R/
W bit = WRITE); see Figure 14 for
procedure.

0 0 1

1 1 X Lost arbitration as master;
slave address received; ACK
requested.

Acknowledge received address
(received slave address match, R/
W bit = READ).

0 0 1

Do not acknowledge received
address.

0 0 0

Acknowledge received address,
and switch to transmitter mode
(received slave address match, R/
W bit = WRITE); see Figure 14 for
procedure.

0 0 1

Reschedule failed transfer; do not
acknowledge received address

1 0 0

0010 0 1 X Lost arbitration while attempt-
ing a repeated START.

Abort failed transfer. 0 0 X

Reschedule failed transfer. 1 0 X

0001 1 1 X Lost arbitration while attempt-
ing a STOP.

No action required (transfer com-
plete/aborted).

0 0 0

0 0 X A STOP was detected while
addressed as a Slave Transmit-
ter or Slave Receiver.

Clear STO. 0 0 X

0 1 X Lost arbitration due to a
detected STOP.

Abort transfer. 0 0 X

Reschedule failed transfer. 1 0 X

0000 1 0 X A slave byte was received;
ACK requested.

Acknowledge received byte; Read
SMB0DAT.

0 0 1

Do not acknowledge received byte. 0 0 0

1 1 X Lost arbitration while transmit-
ting a data byte as master.

Abort failed transfer. 0 0 0

Reschedule failed transfer. 1 0 0

Table 1. SMBus Status Decoding (C8051F30x) (Continued)
M

od
e

Values Read

Current SMbus State Typical Response Options

Values
Written

St
at

us

Ve
ct

or

A
C

K
R

Q

A
R

B
LO

ST

A
C

K

ST
A

ST
O

A
C

K

AN141

22 Rev. 1.2

Table 2. SMBus Status Decoding (All Supported Devices Except C8051F30x)
M

od
e

Values Read

Current SMbus State Typical Response Options

Values
Written

St
at

us

Ve
ct

or

A
C

K
R

Q

A
R

B
LO

ST

A
C

K

ST
A

ST
O

A
C

K

M
as

te
r T

ra
ns

m
itt

er

1110 0 0 X A Master START was gener-
ated.

Load Slave Address + R/W into
SMB0DAT.

0 0 X

1100 0 0 0 A Master data or address byte
was transmitted; NACK
received.

Set STA to restart transfer. 1 0 X

Abort transfer. 0 1 X

0 0 1 A Master data or address byte
was transmitted; ACK received.

Load next data byte into SMB0DAT. 0 0 X

End transfer with STOP. 0 1 X

End transfer with STOP and start
another transfer.

1 1 X

Send repeated START. 1 0 X

Switch to Master Receiver Mode
(clear SI without writing new data to
SMB0DAT).

0 0 X

M
as

te
r R

ec
ei

ve
r

1000 1 0 X A Master data byte was
received; ACK requested.

Acknowledge received byte; Read
SMB0DAT.

0 0 1

Send NACK to indicate last byte,
and send STOP.

0 1 0

Send NACK to indicate last byte,
and send STOP followed by START.

1 1 0

Send ACK followed by repeated
START.

1 0 1

Send NACK to indicate last byte,
and send repeated START.

1 0 0

Send ACK and switch to Master
Transmitter Mode (write to
SMB0DAT before clearing SI).

0 0 1

Send NACK and switch to Master
Transmitter Mode (write to
SMB0DAT before clearing SI).

0 0 0

Sl
av

e
Tr

an
sm

itt
er

0100 0 0 0 A Slave byte was transmitted;
NACK received.

No action required (expecting
STOP condition).

0 0 X

0 0 1 A Slave byte was transmitted;
ACK received.

Load SMB0DAT with next data byte
to transmit.

0 0 X

0 1 X A Slave byte was transmitted;
error detected.

No action required (expecting Mas-
ter to end transfer).

0 0 X

0101 0 X X An illegal STOP or bus error
was detected while a Slave
Transmission was in progress.

Clear STO. 0 0 X

AN141

Rev. 1.2 23

Sl
av

e
R

ec
ei

ve
r

0010 1 0 X A Slave Address was received;
ACK requested.

Acknowledge received address. 0 0 1

Do not acknowledge received
address.

0 0 0

1 1 X Lost arbitration as Master;
Slave Address received; ACK
requested.

Acknowledge received address. 0 0 1

Do not acknowledge received
address.

0 0 0

Reschedule failed transfer; do not
acknowledge received address.

1 0 0

0010 0 1 X Lost arbitration while attempt-
ing a repeated START.

Abort failed transfer. 0 0 X

Reschedule failed transfer. 1 0 X

0001 1 1 X Lost arbitration while attempt-
ing a STOP.

No action required
(transfer complete/aborted).

0 0 0

0 0 X A STOP was detected while
addressed as a Slave Transmit-
ter or Slave Receiver.

Clear STO. 0 0 X

0 1 X Lost arbitration due to a
detected STOP.

Abort transfer. 0 0 X

Reschedule failed transfer. 1 0 X

0000 1 0 X A Slave byte was received;
ACK requested.

Acknowledge received byte; Read
SMB0DAT.

0 0 1

Do not acknowledge received byte. 0 0 0

1 1 X Lost arbitration while transmit-
ting a data byte as Master.

Abort failed transfer. 0 0 0

Reschedule failed transfer. 1 0 0

Table 2. SMBus Status Decoding (All Supported Devices Except C8051F30x) (Continued)
M

od
e

Values Read

Current SMbus State Typical Response Options

Values
Written

St
at

us

Ve
ct

or

A
C

K
R

Q

A
R

B
LO

ST

A
C

K

ST
A

ST
O

A
C

K

AN141

24 Rev. 1.2

6. Software Examples
This section contains SMBus Master, Slave, and EEPROM examples for the C8051F33x. Additional examples for
the 'F33x (Master Multibyte, Slave Multibyte, and Multimaster) and examples for other devices are available by
request. Please contact MCU Tools (mcutools@silabs.com) or MCU Apps (mcuapps@silabs.com) for more
information.

6.1. SMBus Master Framework
//---
// F33x_SMBus_Master.c
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// Example software to demonstrate the C8051F33x SMBus interface in
// Master mode.
// - Interrupt-driven SMBus implementation
// - Only master states defined (no slave or arbitration)
// - 1-byte SMBus data holders used for each transmit and receive
// - Timer1 used as SMBus clock source
// - Timer3 used by SMBus for SCL low timeout detection
// - SCL frequency defined by <SMB_FREQUENCY> constant
// - ARBLOST support included
// - Pinout:
// P0.0 -> SDA (SMBus)
// P0.1 -> SCL (SMBus)
//
// P1.3 -> LED
//
// P2.0 -> C2D (debug interface)
//
// all other port pins unused
//
// How To Test:
//
// 1) Verify that J6 is not populated.
// 2) Download code to a ‘F33x device that is connected to a SMBus slave.
// 3) Run the code:
// a) The test will indicate proper communication with the slave by
// toggling the LED on and off each time a value is sent and
// received.
// b) The best method to view the proper functionality is to run to
// the indicated line of code in the TEST CODE section of main and
// view the SMB_DATA_IN and SMB_DATA_OUT variables in the Watch
// Window.
//
//
// FID: 33X000013
// Target: C8051F33x
// Tool chain: Keil C51 7.50 / Keil EVAL C51
// Command Line: None
//
// Release 1.0
// -Initial Revision (TP)
// -30 MAR 2006
//

AN141

Rev. 1.2 25

//---
// Includes
//---

#include <C8051F330.h> // SFR declarations

//---
// Global CONSTANTS
//---

#define SYSCLK 24500000 // System clock frequency in Hz

#define SMB_FREQUENCY 10000 // Target SCL clock rate
 // This example supports between 10kHz
 // and 100kHz

#define WRITE 0x00 // SMBus WRITE command
#define READ 0x01 // SMBus READ command

// Device addresses (7 bits, LSB is a don’t care)
#define SLAVE_ADDR 0xF0 // Device address for slave target

// Status vector - top 4 bits only
#define SMB_MTSTA 0xE0 // (MT) start transmitted
#define SMB_MTDB 0xC0 // (MT) data byte transmitted
#define SMB_MRDB 0x80 // (MR) data byte received
// End status vector definition

//---
// Global VARIABLES
//---
unsigned char SMB_DATA_IN; // Global holder for SMBus data
 // All receive data is written here

unsigned char SMB_DATA_OUT; // Global holder for SMBus data.
 // All transmit data is read from here

unsigned char TARGET; // Target SMBus slave address

bit SMB_BUSY; // Software flag to indicate when the
 // SMB_Read() or SMB_Write() functions
 // have claimed the SMBus

bit SMB_RW; // Software flag to indicate the
 // direction of the current transfer

unsigned long NUM_ERRORS; // Counter for the number of errors.

// 16-bit SFR declarations
sfr16 TMR3RL = 0x92; // Timer3 reload registers
sfr16 TMR3 = 0x94; // Timer3 counter registers

sbit LED = P1^3; // LED on port P1.3

sbit SDA = P0^0; // SMBus on P0.0
sbit SCL = P0^1; // and P0.1

AN141

26 Rev. 1.2

//---
// Function PROTOTYPES
//---

void SMBus_Init (void);
void Timer1_Init (void);
void Timer3_Init (void);
void Port_Init (void);

void SMBus_ISR (void);
void Timer3_ISR (void);

void SMB_Write (void);
void SMB_Read (void);
void T0_Wait_ms (unsigned char ms);

//---
// MAIN Routine
//---
//
// Main routine performs all configuration tasks, then loops forever sending
// and receiving SMBus data to the slave <SLAVE_ADDR>.
//
void main (void)
{
 volatile unsigned char dat; // Test counter
 unsigned char i; // Dummy variable counters

 PCA0MD &= ~0x40; // WDTE = 0 (watchdog timer enable bit)

 OSCICN |= 0x03; // Set internal oscillator to highest
 // setting of 24500000

 // If slave is holding SDA low because of an improper SMBus reset or error
 while(!SDA)
 {
 // Provide clock pulses to allow the slave to advance out
 // of its current state. This will allow it to release SDA.
 XBR1 = 0x40; // Enable Crossbar
 SCL = 0; // Drive the clock low
 for(i = 0; i < 255; i++); // Hold the clock low
 SCL = 1; // Release the clock
 while(!SCL); // Wait for open-drain
 // clock output to rise
 for(i = 0; i < 10; i++); // Hold the clock high
 XBR1 = 0x00; // Disable Crossbar
 }

 Port_Init (); // Initialize Crossbar and GPIO

 Timer1_Init (); // Configure Timer1 for use as SMBus
 // clock source

 Timer3_Init (); // Configure Timer3 for use with SMBus
 // low timeout detect

 SMBus_Init (); // Configure and enable SMBus

 EIE1 |= 0x01; // Enable the SMBus interrupt

AN141

Rev. 1.2 27

 LED = 0;

 EA = 1; // Global interrupt enable

// TEST CODE---

 dat = 0; // Output data counter
 NUM_ERRORS = 0; // Error counter
 while (1)
 {
 // SMBus Write Sequence
 SMB_DATA_OUT = dat; // Define next outgoing byte
 TARGET = SLAVE_ADDR; // Target the F3xx/Si8250 Slave for next
 // SMBus transfer
 SMB_Write(); // Initiate SMBus write

 // SMBus Read Sequence
 TARGET = SLAVE_ADDR; // Target the F3xx/Si8250 Slave for next
 // SMBus transfer
 SMB_Read();

 // Check transfer data
 if(SMB_DATA_IN != SMB_DATA_OUT) // Received data match transmit data?
 {
 NUM_ERRORS++; // Increment error counter if no match
 }

 // Indicate that an error has occurred (LED no longer lit)
 if (NUM_ERRORS > 0)
 {
 LED = 0;
 }
 else
 {
 LED = ~LED;
 }

 // Run to here to view the SMB_DATA_IN and SMB_DATA_OUT variables

 dat++;

 T0_Wait_ms (1); // Wait 1 ms until the next cycle
 }

// END TEST CODE---

}

//---
// Initialization Routines
//---

//---
// SMBus_Init
//---
//
// Return Value : None
// Parameters : None

AN141

28 Rev. 1.2

//
// SMBus configured as follows:
// - SMBus enabled
// - Slave mode inhibited
// - Timer1 used as clock source. The maximum SCL frequency will be
// approximately 1/3 the Timer1 overflow rate
// - Setup and hold time extensions enabled
// - Bus Free and SCL Low timeout detection enabled
//
void SMBus_Init (void)
{
 SMB0CF = 0x5D; // Use Timer1 overflows as SMBus clock
 // source;
 // Disable slave mode;
 // Enable setup & hold time
 // extensions;
 // Enable SMBus Free timeout detect;
 // Enable SCL low timeout detect;

 SMB0CF |= 0x80; // Enable SMBus;
}

//---
// Timer1_Init
//---
//
// Return Value : None
// Parameters : None
//
// Timer1 configured as the SMBus clock source as follows:
// - Timer1 in 8-bit auto-reload mode
// - SYSCLK or SYSCLK / 4 as Timer1 clock source
// - Timer1 overflow rate => 3 * SMB_FREQUENCY
// - The resulting SCL clock rate will be ~1/3 the Timer1 overflow rate
// - Timer1 enabled
//
void Timer1_Init (void)
{

// Make sure the Timer can produce the appropriate frequency in 8-bit mode
// Supported SMBus Frequencies range from 10kHz to 100kHz. The CKCON register
// settings may need to change for frequencies outside this range.
#if ((SYSCLK/SMB_FREQUENCY/3) < 255)
 #define SCALE 1
 CKCON |= 0x08; // Timer1 clock source = SYSCLK
#elif ((SYSCLK/SMB_FREQUENCY/4/3) < 255)
 #define SCALE 4
 CKCON |= 0x01;
 CKCON &= ~0x0A; // Timer1 clock source = SYSCLK / 4
#endif

 TMOD = 0x20; // Timer1 in 8-bit auto-reload mode

 // Timer1 configured to overflow at 1/3 the rate defined by SMB_FREQUENCY
 TH1 = -(SYSCLK/SMB_FREQUENCY/SCALE/3);

 TL1 = TH1; // Init Timer1

 TR1 = 1; // Timer1 enabled

AN141

Rev. 1.2 29

}

//---
// Timer3_Init
//---
//
// Return Value : None
// Parameters : None
//
// Timer3 configured for use by the SMBus low timeout detect feature as
// follows:
// - Timer3 in 16-bit auto-reload mode
// - SYSCLK/12 as Timer3 clock source
// - Timer3 reload registers loaded for a 25ms overflow period
// - Timer3 pre-loaded to overflow after 25ms
// - Timer3 enabled
//
void Timer3_Init (void)
{
 TMR3CN = 0x00; // Timer3 configured for 16-bit auto-
 // reload, low-byte interrupt disabled

 CKCON &= ~0x40; // Timer3 uses SYSCLK/12

 TMR3RL = -(SYSCLK/12/40); // Timer3 configured to overflow after
 TMR3 = TMR3RL; // ~25ms (for SMBus low timeout detect):
 // 1/.025 = 40

 EIE1 |= 0x80; // Timer3 interrupt enable
 TMR3CN |= 0x04; // Start Timer3
}

//---
// PORT_Init
//---
//
// Return Value : None
// Parameters : None
//
// Configure the Crossbar and GPIO ports.
//
// P0.0 digital open-drain SMBus SDA
// P0.1 digital open-drain SMBus SCL
//
// P1.3 digital push-pull LED
//
// all other port pins unused
//
// Note: If the SMBus is moved, the SCL and SDA sbit declarations must also
// be adjusted.
//
void PORT_Init (void)
{
 P0MDOUT = 0x00; // All P0 pins open-drain output

 P1MDOUT |= 0x08; // Make the LED (P1.3) a push-pull
 // output

 XBR0 = 0x04; // Enable SMBus pins

AN141

30 Rev. 1.2

 XBR1 = 0x40; // Enable crossbar and weak pull-ups

 P0 = 0xFF;
}

//---
// Interrupt Service Routines
//---

//---
// SMBus Interrupt Service Routine (ISR)
//---
//
// SMBus ISR state machine
// - Master only implementation - no slave or arbitration states defined
// - All incoming data is written to global variable <SMB_DATA_IN>
// - All outgoing data is read from global variable <SMB_DATA_OUT>
//
void SMBus_ISR (void) interrupt 7
{
 bit FAIL = 0; // Used by the ISR to flag failed
 // transfers
 static bit ADDR_SEND = 0; // Used by the ISR to flag byte
 // transmissions as slave addresses

 if (ARBLOST == 0) // Check for errors
 {
 // Normal operation
 switch (SMB0CN & 0xF0) // Status vector
 {
 // Master Transmitter/Receiver: START condition transmitted.
 case SMB_MTSTA:
 SMB0DAT = TARGET; // Load address of the target slave
 SMB0DAT &= 0xFE; // Clear the LSB of the address for the
 // R/W bit
 SMB0DAT |= SMB_RW; // Load R/W bit
 STA = 0; // Manually clear START bit
 ADDR_SEND = 1;
 break;

 // Master Transmitter: Data byte transmitted
 case SMB_MTDB:
 if (ACK) // Slave ACK?
 {
 if (ADDR_SEND) // If the previous byte was a slave
 { // address,
 ADDR_SEND = 0; // Next byte is not a slave address
 if (SMB_RW == WRITE) // If this transfer is a WRITE,
 {
 // send data byte
 SMB0DAT = SMB_DATA_OUT;
 }
 else {} // If this transfer is a READ,
 // proceed with transfer without
 // writing to SMB0DAT (switch
 // to receive mode)
 }
 else // If previous byte was not a slave
 { // address,

AN141

Rev. 1.2 31

 STO = 1; // Set STO to terminate transfer
 SMB_BUSY = 0; // And free SMBus interface
 }
 }
 else // If slave NACK,
 {
 STO = 1; // Send STOP condition, followed
 STA = 1; // By a START
 NUM_ERRORS++; // Indicate error
 }
 break;

 // Master Receiver: byte received
 case SMB_MRDB:
 SMB_DATA_IN = SMB0DAT; // Store received byte
 SMB_BUSY = 0; // Free SMBus interface
 ACK = 0; // Send NACK to indicate last byte
 // of this transfer

 STO = 1; // Send STOP to terminate transfer
 break;

 default:
 FAIL = 1; // Indicate failed transfer
 // and handle at end of ISR
 break;

 } // end switch
 }
 else
 {
 // ARBLOST = 1, error occurred... abort transmission
 FAIL = 1;
 } // end ARBLOST if

 if (FAIL) // If the transfer failed,
 {
 SMB0CF &= ~0x80; // Reset communication
 SMB0CF |= 0x80;
 STA = 0;
 STO = 0;
 ACK = 0;

 SMB_BUSY = 0; // Free SMBus

 FAIL = 0;
 LED = 0;

 NUM_ERRORS++; // Indicate an error occurred
 }

 SI = 0; // Clear interrupt flag
}

//---
// Timer3 Interrupt Service Routine (ISR)
//---
//
// A Timer3 interrupt indicates an SMBus SCL low timeout.

AN141

32 Rev. 1.2

// The SMBus is disabled and re-enabled here
//
void Timer3_ISR (void) interrupt 14
{
 SMB0CF &= ~0x80; // Disable SMBus
 SMB0CF |= 0x80; // Re-enable SMBus
 TMR3CN &= ~0x80; // Clear Timer3 interrupt-pending flag
 STA = 0;
 SMB_BUSY = 0; // Free SMBus
}

//---
// Support Functions
//---

//---
// SMB_Write
//---
//
// Return Value : None
// Parameters : None
//
// Writes a single byte to the slave with address specified by the <TARGET>
// variable.
// Calling sequence:
// 1) Write target slave address to the <TARGET> variable
// 2) Write outgoing data to the <SMB_DATA_OUT> variable
// 3) Call SMB_Write()
//
void SMB_Write (void)
{
 while (SMB_BUSY); // Wait for SMBus to be free.
 SMB_BUSY = 1; // Claim SMBus (set to busy)
 SMB_RW = 0; // Mark this transfer as a WRITE
 STA = 1; // Start transfer
}

//---
// SMB_Read
//---
//
// Return Value : None
// Parameters : None
//
// Reads a single byte from the slave with address specified by the <TARGET>
// variable.
// Calling sequence:
// 1) Write target slave address to the <TARGET> variable
// 2) Call SMB_Write()
// 3) Read input data from <SMB_DATA_IN> variable
//
void SMB_Read (void)
{
 while (SMB_BUSY); // Wait for bus to be free.
 SMB_BUSY = 1; // Claim SMBus (set to busy)
 SMB_RW = 1; // Mark this transfer as a READ

 STA = 1; // Start transfer

AN141

Rev. 1.2 33

 while (SMB_BUSY); // Wait for transfer to complete
}

//---
// T0_Wait_ms
//---
//
// Return Value : None
// Parameters :
// 1) unsigned char ms - number of milliseconds to wait
// range is full range of character: 0 to 255
//
// Configure Timer0 to wait for <ms> milliseconds using SYSCLK as its time
// base.
//
void T0_Wait_ms (unsigned char ms)
{
 TCON &= ~0x30; // Stop Timer0; Clear TF0
 TMOD &= ~0x0f; // 16-bit free run mode
 TMOD |= 0x01;

 CKCON |= 0x04; // Timer0 counts SYSCLKs

 while (ms) {
 TR0 = 0; // Stop Timer0
 TH0 = -(SYSCLK/1000 >> 8); // Overflow in 1ms
 TL0 = -(SYSCLK/1000);
 TF0 = 0; // Clear overflow indicator
 TR0 = 1; // Start Timer0
 while (!TF0); // Wait for overflow
 ms--; // Update ms counter
 }

 TR0 = 0; // Stop Timer0
}

//---
// End Of File
//---

AN141

34 Rev. 1.2

6.2. SMBus Slave Framework
//---
// F33x_SMBus_Slave.c
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// Example software to demonstrate the C8051F33x SMBus interface in Slave mode
// - Interrupt-driven SMBus implementation
// - Only slave states defined
// - 1-byte SMBus data holder used for both transmit and receive
// - Timer1 used as SMBus clock rate (used only for free timeout detection)
// - Timer3 used by SMBus for SCL low timeout detection
// - ARBLOST support included
// - Pinout:
// P0.0 -> SDA (SMBus)
// P0.1 -> SCL (SMBus)
//
// P1.3 -> LED
//
// P2.0 -> C2D (debug interface)
//
// all other port pins unused
//
// How To Test:
//
// 1) Verify that J6 is not populated.
// 2) Download code to a ‘F33x device that is connected to a SMBus master.
// 3) Run the code. The slave code will write data and read data from the
// same data byte, so a successive write and read will effectively echo the
// data written. To verify that the code is working properly, verify on the
// master that the data written is the same as the data received.
//
// FID: 33X000010
// Target: C8051F33x
// Tool chain: Keil C51 7.50 / Keil EVAL C51
// Command Line: None
//
// Release 1.0
// -Initial Revision (TP)
// -30 MAR 2006
//

//---
// Includes
//---

#include <C8051F330.h> // SFR declarations

//---
// Global Constants
//---

#define SYSCLK 24500000 // System clock frequency in Hz

#define SMB_FREQUENCY 10000 // Target SMBus frequency

AN141

Rev. 1.2 35

 // This example supports between 10kHz
 // and 100kHz

#define WRITE 0x00 // SMBus WRITE command
#define READ 0x01 // SMBus READ command

#define SLAVE_ADDR 0xF0 // Device addresses (7 bits,
 // lsb is a don’t care)

// Status vector - top 4 bits only
#define SMB_SRADD 0x20 // (SR) slave address received
 // (also could be a lost
 // arbitration)
#define SMB_SRSTO 0x10 // (SR) STOP detected while SR or ST,
 // or lost arbitration
#define SMB_SRDB 0x00 // (SR) data byte received, or
 // lost arbitration
#define SMB_STDB 0x40 // (ST) data byte transmitted
#define SMB_STSTO 0x50 // (ST) STOP detected during a
 // transaction; bus error
// End status vector definition

//---
// Global VARIABLES
//---

unsigned char SMB_DATA; // Global holder for SMBus data.
 // All receive data is written
 // here;
 // all transmit data is read
 // from here

bit DATA_READY = 0; // Set to ‘1’ by the SMBus ISR
 // when a new data byte has been
 // received.

// 16-bit SFR declarations
sfr16 TMR3RL = 0x92; // Timer3 reload registers
sfr16 TMR3 = 0x94; // Timer3 counter registers

sbit LED = P1^3; // LED on port P1.3

//---
// Function PROTOTYPES
//---

void SMBus_Init (void);
void Timer1_Init (void);
void Timer3_Init (void);
void Port_Init (void);

void SMBus_ISR (void);
void Timer3_ISR (void);

//---
// MAIN Routine
//---
//
// Main routine performs all configuration tasks, then waits for SMBus

AN141

36 Rev. 1.2

// communication.
//
void main (void)
{
 PCA0MD &= ~0x40; // WDTE = 0 (Disable watchdog
 // timer)

 OSCICN |= 0x03; // Set internal oscillator to highest
 // setting of 24500000

 Port_Init(); // Initialize Crossbar and GPIO
 Timer1_Init(); // Configure Timer1 for use
 // with SMBus baud rate

 Timer3_Init(); // Configure Timer3 for use with
 // SCL low timeout detect

 SMBus_Init (); // Configure and enable SMBus

 EIE1 |= 0x01; // Enable the SMBus interrupt

 LED = 0;

 EA = 1; // Global interrupt enable

 SMB_DATA = 0xFD; // Initialize SMBus data holder

 while(1)
 {
 while(!DATA_READY); // New SMBus data received?
 DATA_READY = 0;
 LED = ~LED;
 }
}

//---
// Initialization Routines
//---

//---
// SMBus_Init()
//---
//
// Return Value : None
// Parameters : None
//
// SMBus configured as follows:
// - SMBus enabled
// - Slave mode not inhibited
// - Timer1 used as clock source. The maximum SCL frequency will be
// approximately 1/3 the Timer1 overflow rate
// - Setup and hold time extensions enabled
// - Bus Free and SCL Low timeout detection enabled
//
void SMBus_Init (void)
{
 SMB0CF = 0x1D; // Use Timer1 overflows as SMBus clock
 // source;
 // Enable slave mode;

AN141

Rev. 1.2 37

 // Enable setup & hold time
 // extensions;
 // Enable SMBus Free timeout detect;
 // Enable SCL low timeout detect;

 SMB0CF |= 0x80; // Enable SMBus;
}

//---
// Timer1_Init
//---
//
// Return Value : None
// Parameters : None
//
// Timer1 configured as the SMBus clock source as follows:
// - Timer1 in 8-bit auto-reload mode
// - SYSCLK or SYSCLK / 4 as Timer1 clock source
// - Timer1 overflow rate => 3 * SMB_FREQUENCY
// - The resulting SCL clock rate will be ~1/3 the Timer1 overflow rate
// - Timer1 enabled
//
void Timer1_Init (void)
{

// Make sure the Timer can produce the appropriate frequency in 8-bit mode
// Supported SMBus Frequencies range from 10kHz to 100kHz. The CKCON register
// settings may need to change for frequencies outside this range.
#if ((SYSCLK/SMB_FREQUENCY/3) < 255)
 #define SCALE 1
 CKCON |= 0x08; // Timer1 clock source = SYSCLK
#elif ((SYSCLK/SMB_FREQUENCY/4/3) < 255)
 #define SCALE 4
 CKCON |= 0x01;
 CKCON &= ~0x0A; // Timer1 clock source = SYSCLK / 4
#endif

 TMOD = 0x20; // Timer1 in 8-bit auto-reload mode

 // Timer1 configured to overflow at 1/3 the rate defined by SMB_FREQUENCY
 TH1 = -(SYSCLK/SMB_FREQUENCY/SCALE/3);

 TL1 = TH1; // Init Timer1

 TR1 = 1; // Timer1 enabled
}

//---
// Timer3_Init
//---
//
// Return Value : None
// Parameters : None
//
// Timer3 configured for use by the SMBus low timeout detect feature as
// follows:
// - Timer3 in 16-bit auto-reload mode
// - SYSCLK/12 as Timer3 clock source
// - Timer3 reload registers loaded for a 25ms overflow period

AN141

38 Rev. 1.2

// - Timer3 pre-loaded to overflow after 25ms
// - Timer3 enabled
//
void Timer3_Init (void)
{
 TMR3CN = 0x00; // Timer3 configured for 16-bit auto-
 // reload, low-byte interrupt disabled

 CKCON &= ~0x40; // Timer3 uses SYSCLK/12

 TMR3RL = -(SYSCLK/12/40); // Timer3 configured to overflow after
 TMR3 = TMR3RL; // ~25ms (for SMBus low timeout detect):
 // 1/.025 = 40

 EIE1 |= 0x80; // Timer3 interrupt enable
 TMR3CN |= 0x04; // Start Timer3
}

//---
// PORT_Init
//---
//
// Return Value : None
// Parameters : None
//
// Configure the Crossbar and GPIO ports.
//
// P0.0 digital open-drain SMBus SDA
// P0.1 digital open-drain SMBus SCL
//
// P1.3 digital push-pull LED
//
// all other port pins unused
//
void PORT_Init (void)
{
 P0MDOUT = 0x00; // All P0 pins open-drain output

 P1MDOUT |= 0x08; // Make the LED (P1.3) a push-pull
 // output

 XBR0 = 0x04; // Enable SMBus pins
 XBR1 = 0x40; // Enable crossbar and weak pull-ups

 P0 = 0xFF;
}

//---
// Interrupt Service Routines
//---

//---
// SMBus Interrupt Service Routine (ISR)
//---
//
// SMBus ISR state machine
// - Slave only implementation - no master states defined
// - All incoming data is written to global variable <SMB_DATA_IN>
// - All outgoing data is read from global variable <SMB_DATA_OUT>

AN141

Rev. 1.2 39

//
void SMBus_ISR (void) interrupt 7
{
 if (ARBLOST == 0)
 {
 switch (SMB0CN & 0xF0) // Decode the SMBus status vector
 {
 // Slave Receiver: Start+Address received
 case SMB_SRADD:

 STA = 0; // Clear STA bit
 if((SMB0DAT&0xFE) == (SLAVE_ADDR&0xFE)) // Decode address
 { // If the received address matches,
 ACK = 1; // ACK the received slave address
 if((SMB0DAT&0x01) == READ) // If the transfer is a master READ,
 {
 SMB0DAT = SMB_DATA; // Prepare outgoing byte
 }
 }
 else // If received slave address does not
 { // match,
 ACK = 0; // NACK received address
 }
 break;

 // Slave Receiver: Data received
 case SMB_SRDB:

 SMB_DATA = SMB0DAT; // Store incoming data
 DATA_READY = 1; // Indicate new data received
 ACK = 1; // ACK received data

 break;

 // Slave Receiver: Stop received while either a Slave Receiver or
 // Slave Transmitter
 case SMB_SRSTO:

 STO = 0; // STO must be cleared by software when
 // a STOP is detected as a slave
 break;

 // Slave Transmitter: Data byte transmitted
 case SMB_STDB:
 // No action required;
 // one-byte transfers
 // only for this example
 break;

 // Slave Transmitter: Arbitration lost, Stop detected
 //
 // This state will only be entered on a bus error condition.
 // In normal operation, the slave is no longer sending data or has
 // data pending when a STOP is received from the master, so the TXMODE
 // bit is cleared and the slave goes to the SRSTO state.
 case SMB_STSTO:

 STO = 0; // STO must be cleared by software when
 // a STOP is detected as a slave

AN141

40 Rev. 1.2

 break;

 // Default: all other cases undefined
 default:

 SMB0CF &= ~0x80; // Reset communication
 SMB0CF |= 0x80;
 STA = 0;
 STO = 0;
 ACK = 0;
 break;
 }
 }
 // ARBLOST = 1, Abort failed transfer
 else
 {
 STA = 0;
 STO = 0;
 ACK = 0;
 }

 SI = 0; // Clear SMBus interrupt flag
}

//---
// Timer3 Interrupt Service Routine (ISR)
//---
//
// A Timer3 interrupt indicates an SMBus SCL low timeout.
// The SMBus is disabled and re-enabled here
//
void Timer3_ISR (void) interrupt 14
{
 SMB0CF &= ~0x80; // Disable SMBus
 SMB0CF |= 0x80; // Re-enable SMBus
 TMR3CN &= ~0x80; // Clear Timer3 interrupt-pending flag
}

//---
// End Of File
//---

AN141

Rev. 1.2 41

6.3. EEPROM Example
//---
// F33x_SMBus_EEPROM.c
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This example demonstrates how the C8051F33x SMBus interface can communicate
// with a 256 byte I2C Serial EEPROM (Microchip 24LC02B).
// - Interrupt-driven SMBus implementation
// - Only master states defined (no slave or arbitration)
// - Timer1 used as SMBus clock source
// - Timer2 used by SMBus for SCL low timeout detection
// - SCL frequency defined by <SMB_FREQUENCY> constant
// - Pinout:
// P0.0 -> SDA (SMBus)
// P0.1 -> SCL (SMBus)
//
// P1.3 -> LED
//
// P2.0 -> C2D (debug interface)
//
// all other port pins unused
//
// How To Test:
//
// 1) Verify that J6 is not populated.
// 2) Download code to a ‘F33x device that is connected to a 24LC02B serial
// EEPROM (see the EEPROM datasheet for the pinout information).
// 3) Run the code:
// a) the test will indicate proper communication with the EEPROM by
// turning on the LED at the end the end of the test
// b) the test can also be verified by running to the if statements
// in main and checking the sent and received values by adding
// the variables to the Watch Window
//
// FID: 33X000014
// Target: C8051F33x
// Tool chain: Keil C51 7.50 / Keil EVAL C51
// Command Line: None
//
// Release 1.0
// -Initial Revision (TP)
// -30 MAR 2006
//

//---
// Includes and Device-Specific Parameters
//---

#include <C8051F330.h>

//---
// Global CONSTANTS
//---

AN141

42 Rev. 1.2

#define SYSCLK 24500000 // System clock frequency in Hz

#define SMB_FREQUENCY 50000 // Target SCL clock rate
 // This example supports between 10kHz
 // and 100kHz

#define WRITE 0x00 // SMBus WRITE command
#define READ 0x01 // SMBus READ command

// Device addresses (7 bits, lsb is a don’t care)
#define EEPROM_ADDR 0xA0 // Device address for slave target
 // Note: This address is specified
 // in the Microchip 24LC02B
 // datasheet.
// SMBus Buffer Size
#define SMB_BUFF_SIZE 0x08 // Defines the maximum number of bytes
 // that can be sent or received in a
 // single transfer

// Status vector - top 4 bits only
#define SMB_MTSTA 0xE0 // (MT) start transmitted
#define SMB_MTDB 0xC0 // (MT) data byte transmitted
#define SMB_MRDB 0x80 // (MR) data byte received
// End status vector definition

//---
// Global VARIABLES
//---
unsigned char* pSMB_DATA_IN; // Global pointer for SMBus data
 // All receive data is written here

unsigned char SMB_SINGLEBYTE_OUT; // Global holder for single byte writes.

unsigned char* pSMB_DATA_OUT; // Global pointer for SMBus data.
 // All transmit data is read from here

unsigned char SMB_DATA_LEN; // Global holder for number of bytes
 // to send or receive in the current
 // SMBus transfer.

unsigned char WORD_ADDR; // Global holder for the EEPROM word
 // address that will be accessed in
 // the next transfer

unsigned char TARGET; // Target SMBus slave address

bit SMB_BUSY = 0; // Software flag to indicate when the
 // EEPROM_ByteRead() or
 // EEPROM_ByteWrite()
 // functions have claimed the SMBus

bit SMB_RW; // Software flag to indicate the
 // direction of the current transfer

bit SMB_SENDWORDADDR; // When set, this flag causes the ISR
 // to send the 8-bit <WORD_ADDR>
 // after sending the slave address.

AN141

Rev. 1.2 43

bit SMB_RANDOMREAD; // When set, this flag causes the ISR
 // to send a START signal after sending
 // the word address.
 // For the 24LC02B EEPROM, a random read
 // (a read from a particular address in
 // memory) starts as a write then
 // changes to a read after the repeated
 // start is sent. The ISR handles this
 // switchover if the <SMB_RANDOMREAD>
 // bit is set.

bit SMB_ACKPOLL; // When set, this flag causes the ISR
 // to send a repeated START until the
 // slave has acknowledged its address

// 16-bit SFR declarations
sfr16 TMR3RL = 0x92; // Timer3 reload registers
sfr16 TMR3 = 0x94; // Timer3 counter registers

sbit LED = P1^3; // LED on port P1.3

sbit SDA = P0^0; // SMBus on P0.0
sbit SCL = P0^1; // and P0.1

//---
// Function PROTOTYPES
//---

void SMBus_Init(void);
void Timer1_Init(void);
void Timer3_Init(void);
void Port_Init(void);

void SMBus_ISR(void);
void Timer3_ISR(void);

void EEPROM_ByteWrite(unsigned char addr, unsigned char dat);
void EEPROM_WriteArray(unsigned char dest_addr, unsigned char* src_addr,
 unsigned char len);
unsigned char EEPROM_ByteRead(unsigned char addr);
void EEPROM_ReadArray(unsigned char* dest_addr, unsigned char src_addr,
 unsigned char len);

//---
// MAIN Routine
//---
//
// Main routine performs all configuration tasks, then loops forever sending
// and receiving SMBus data to the slave EEPROM.

void main (void)
{
 char in_buff[8] = {0}; // Incoming data buffer
 char out_buff[8] = “ABCDEFG”; // Outgoing data buffer

 unsigned char temp_char; // Temporary variable
 bit error_flag = 0; // Flag for checking EEPROM contents
 unsigned char i; // Temporary counter variable

AN141

44 Rev. 1.2

 PCA0MD &= ~0x40; // WDTE = 0 (disable watchdog timer)

 // Set internal oscillator to highest
 // setting of 24500000 (or 12000000 for ‘F320)
 OSCICN |= 0x03;

 // If slave is holding SDA low because of an improper SMBus reset or error
 while(!SDA)
 {
 // Provide clock pulses to allow the slave to advance out
 // of its current state. This will allow it to release SDA.
 XBR1 = 0x40; // Enable Crossbar
 SCL = 0; // Drive the clock low
 for(i = 0; i < 255; i++); // Hold the clock low
 SCL = 1; // Release the clock
 while(!SCL); // Wait for open-drain
 // clock output to rise
 for(i = 0; i < 10; i++); // Hold the clock high
 XBR1 = 0x00; // Disable Crossbar
 }

 Port_Init (); // Initialize Crossbar and GPIO

 LED = 0; // Turn off the LED before the test
 // starts

 Timer1_Init (); // Configure Timer1 for use as SMBus
 // clock source

 Timer3_Init (); // Configure Timer3 for use with SMBus
 // low timeout detect

 SMBus_Init (); // Configure and enable SMBus

 EIE1 |= 0x01; // Enable the SMBus interrupt

 EA = 1; // Global interrupt enable

 // Read and write some bytes to the EEPROM and check for proper
 // communication

 // Write the value 0xAA to location 0x25 in the EEPROM
 EEPROM_ByteWrite(0x25, 0xAA);

 // Read the value at location 0x25 in the EEPROM
 temp_char = EEPROM_ByteRead(0x25);

 // Check that the data was read properly
 if (temp_char != 0xAA)
 {
 error_flag = 1;
 }

AN141

Rev. 1.2 45

 // Write the value 0xBB to location 0x25 in the EEPROM
 EEPROM_ByteWrite(0x25, 0xBB);

 // Write the value 0xCC to location 0x38 in the EEPROM
 EEPROM_ByteWrite(0x38, 0xCC);

 // Read the value at location 0x25 in the EEPROM
 temp_char = EEPROM_ByteRead(0x25);

 // Check that the data was read properly
 if (temp_char != 0xBB)
 {
 error_flag = 1;
 }

 // Read the value at location 0x38 in the EEPROM
 temp_char = EEPROM_ByteRead(0x38);

 // Check that the data was read properly
 if (temp_char != 0xCC)
 {
 error_flag = 1;
 }

 // Store the outgoing data buffer at EEPROM address 0x50
 EEPROM_WriteArray(0x50, out_buff, sizeof(out_buff));

 // Fill the incoming data buffer with data starting at EEPROM address 0x50
 EEPROM_ReadArray(in_buff, 0x50, sizeof(in_buff));

 // Check that the data that came from the EEPROM is the same as what was
 // sent
 for (i = 0; i < sizeof(in_buff); i++)
 {
 if (in_buff[i] != out_buff[i])
 {
 error_flag = 1;
 }
 }

 // Indicate communication is good
 if (error_flag == 0)
 {
 // LED = ON indicates that the test passed
 LED = 1;
 }

 while(1);

}

//---
// Initialization Routines
//---

//---
// SMBus_Init()
//---
//

AN141

46 Rev. 1.2

// Return Value : None
// Parameters : None
//
// The SMBus peripheral is configured as follows:
// - SMBus enabled
// - Slave mode disabled
// - Timer1 used as clock source. The maximum SCL frequency will be
// approximately 1/3 the Timer1 overflow rate
// - Setup and hold time extensions enabled
// - Free and SCL low timeout detection enabled
//
void SMBus_Init (void)
{
 SMB0CF = 0x5D; // Use Timer1 overflows as SMBus clock
 // source;
 // Disable slave mode;
 // Enable setup & hold time extensions;
 // Enable SMBus Free timeout detect;
 // Enable SCL low timeout detect;

 SMB0CF |= 0x80; // Enable SMBus;
}

//---
// Timer1_Init()
//---
//
// Return Value : None
// Parameters : None
//
// Timer1 is configured as the SMBus clock source as follows:
// - Timer1 in 8-bit auto-reload mode
// - SYSCLK / 12 as Timer1 clock source
// - Timer1 overflow rate => 3 * SMB_FREQUENCY
// - The maximum SCL clock rate will be ~1/3 the Timer1 overflow rate
// - Timer1 enabled
//
void Timer1_Init (void)
{
// Make sure the Timer can produce the appropriate frequency in 8-bit mode
// Supported SMBus Frequencies range from 10kHz to 100kHz. The CKCON register
// settings may need to change for frequencies outside this range.
#if ((SYSCLK/SMB_FREQUENCY/3) < 255)
 #define SCALE 1
 CKCON |= 0x08; // Timer1 clock source = SYSCLK
#elif ((SYSCLK/SMB_FREQUENCY/4/3) < 255)
 #define SCALE 4
 CKCON |= 0x01;
 CKCON &= ~0x0A; // Timer1 clock source = SYSCLK / 4
#endif

 TMOD = 0x20; // Timer1 in 8-bit auto-reload mode

 TH1 = -(SYSCLK/SMB_FREQUENCY/12/3); // Timer1 configured to overflow at 1/3
 // the rate defined by SMB_FREQUENCY

 TL1 = TH1; // Init Timer1

 TR1 = 1; // Timer1 enabled

AN141

Rev. 1.2 47

}

//---
// Timer3_Init()
//---
//
// Return Value : None
// Parameters : None
//
// Timer3 configured for use by the SMBus low timeout detect feature as
// follows:
// - Timer3 in 16-bit auto-reload mode
// - SYSCLK/12 as Timer3 clock source
// - Timer3 reload registers loaded for a 25ms overflow period
// - Timer3 pre-loaded to overflow after 25ms
// - Timer3 enabled
//
void Timer3_Init (void)
{
 TMR3CN = 0x00; // Timer3 configured for 16-bit auto-
 // reload, low-byte interrupt disabled

 CKCON &= ~0x40; // Timer3 uses SYSCLK/12

 TMR3RL = -(SYSCLK/12/40); // Timer3 configured to overflow after
 TMR3 = TMR3RL; // ~25ms (for SMBus low timeout detect)

 EIE1 |= 0x80; // Timer3 interrupt enable
 TMR3CN |= 0x04; // Start Timer3
}

//---
// PORT_Init
//---
//
// Return Value : None
// Parameters : None
//
// Configure the Crossbar and GPIO ports.
//
// P0.0 digital open-drain SMBus SDA
// P0.1 digital open-drain SMBus SCL
//
// P1.3 digital push-pull LED
//
// all other port pins unused
//
// Note: If the SMBus is moved, the SCL and SDA sbit declarations must also
// be adjusted.
//
void PORT_Init (void)
{
 P0MDOUT = 0x00; // All P0 pins open-drain output

 P1MDOUT |= 0x08; // Make the LED (P1.3) a push-pull
 // output

 XBR0 = 0x04; // Enable SMBus pins
 XBR1 = 0x40; // Enable crossbar and weak pull-ups

AN141

48 Rev. 1.2

 P0 = 0xFF;
}

//---
// SMBus Interrupt Service Routine (ISR)
//---
//
// SMBus ISR state machine
// - Master only implementation - no slave or arbitration states defined
// - All incoming data is written starting at the global pointer <pSMB_DATA_IN>
// - All outgoing data is read from the global pointer <pSMB_DATA_OUT>
//
void SMBus_ISR (void) interrupt 7
{
 bit FAIL = 0; // Used by the ISR to flag failed
 // transfers

 static char i; // Used by the ISR to count the
 // number of data bytes sent or
 // received

 static bit SEND_START = 0; // Send a start

 switch (SMB0CN & 0xF0) // Status vector
 {
 // Master Transmitter/Receiver: START condition transmitted.
 case SMB_MTSTA:
 SMB0DAT = TARGET; // Load address of the target slave
 SMB0DAT &= 0xFE; // Clear the LSB of the address for the
 // R/W bit
 SMB0DAT |= SMB_RW; // Load R/W bit
 STA = 0; // Manually clear START bit
 i = 0; // Reset data byte counter
 break;

 // Master Transmitter: Data byte (or Slave Address) transmitted
 case SMB_MTDB:
 if (ACK) // Slave Address or Data Byte
 { // Acknowledged?
 if (SEND_START)
 {
 STA = 1;
 SEND_START = 0;
 break;
 }
 if(SMB_SENDWORDADDR) // Are we sending the word address?
 {
 SMB_SENDWORDADDR = 0; // Clear flag
 SMB0DAT = WORD_ADDR; // Send word address

 if (SMB_RANDOMREAD)
 {
 SEND_START = 1; // Send a START after the next ACK cycle
 SMB_RW = READ;
 }

 break;
 }

AN141

Rev. 1.2 49

 if (SMB_RW==WRITE) // Is this transfer a WRITE?
 {

 if (i < SMB_DATA_LEN) // Is there data to send?
 {
 // send data byte
 SMB0DAT = *pSMB_DATA_OUT;

 // increment data out pointer
 pSMB_DATA_OUT++;

 // increment number of bytes sent
 i++;
 }
 else
 {
 STO = 1; // Set STO to terminte transfer
 SMB_BUSY = 0; // Clear software busy flag
 }
 }
 else {} // If this transfer is a READ,
 // then take no action. Slave
 // address was transmitted. A
 // separate ‘case’ is defined
 // for data byte recieved.
 }
 else // If slave NACK,
 {
 if(SMB_ACKPOLL)
 {
 STA = 1; // Restart transfer
 }
 else
 {
 FAIL = 1; // Indicate failed transfer
 } // and handle at end of ISR
 }
 break;

 // Master Receiver: byte received
 case SMB_MRDB:
 if (i < SMB_DATA_LEN) // Is there any data remaining?
 {
 *pSMB_DATA_IN = SMB0DAT; // Store received byte
 pSMB_DATA_IN++; // Increment data in pointer
 i++; // Increment number of bytes received
 ACK = 1; // Set ACK bit (may be cleared later
 // in the code)

 }

 if (i == SMB_DATA_LEN) // This is the last byte
 {
 SMB_BUSY = 0; // Free SMBus interface
 ACK = 0; // Send NACK to indicate last byte
 // of this transfer
 STO = 1; // Send STOP to terminate transfer
 }

AN141

50 Rev. 1.2

 break;

 default:
 FAIL = 1; // Indicate failed transfer
 // and handle at end of ISR
 break;
 }

 if (FAIL) // If the transfer failed,
 {
 SMB0CF &= ~0x80; // Reset communication
 SMB0CF |= 0x80;
 STA = 0;
 STO = 0;
 ACK = 0;

 SMB_BUSY = 0; // Free SMBus

 FAIL = 0;
 }

 SI = 0; // Clear interrupt flag
}

//---
// Timer3 Interrupt Service Routine (ISR)
//---
//
// A Timer3 interrupt indicates an SMBus SCL low timeout.
// The SMBus is disabled and re-enabled if a timeout occurs.
//
void Timer3_ISR (void) interrupt 14
{
 SMB0CF &= ~0x80; // Disable SMBus
 SMB0CF |= 0x80; // Re-enable SMBus
 TMR3CN &= ~0x80; // Clear Timer3 interrupt-pending flag
 SMB_BUSY = 0; // Free bus
}

//---
// Support Functions
//---

//---
// EEPROM_ByteWrite ()
//---
//
// Return Value : None
// Parameters :
// 1) unsigned char addr - address to write in the EEPROM
// range is full range of character: 0 to 255
//
// 2) unsigned char dat - data to write to the address <addr> in the EEPROM
// range is full range of character: 0 to 255
//
// This function writes the value in <dat> to location <addr> in the EEPROM
// then polls the EEPROM until the write is complete.
//

AN141

Rev. 1.2 51

void EEPROM_ByteWrite(unsigned char addr, unsigned char dat)
{
 while (SMB_BUSY); // Wait for SMBus to be free.
 SMB_BUSY = 1; // Claim SMBus (set to busy)

 // Set SMBus ISR parameters
 TARGET = EEPROM_ADDR; // Set target slave address
 SMB_RW = WRITE; // Mark next transfer as a write
 SMB_SENDWORDADDR = 1; // Send Word Address after Slave Address
 SMB_RANDOMREAD = 0; // Do not send a START signal after
 // the word address
 SMB_ACKPOLL = 1; // Enable Acknowledge Polling (The ISR
 // will automatically restart the
 // transfer if the slave does not
 // acknoledge its address.

 // Specify the Outgoing Data
 WORD_ADDR = addr; // Set the target address in the
 // EEPROM’s internal memory space

 SMB_SINGLEBYTE_OUT = dat; // Store <dat> (local variable) in a
 // global variable so the ISR can read
 // it after this function exits

 // The outgoing data pointer points to the <dat> variable
 pSMB_DATA_OUT = &SMB_SINGLEBYTE_OUT;

 SMB_DATA_LEN = 1; // Specify to ISR that the next transfer
 // will contain one data byte

 // Initiate SMBus Transfer
 STA = 1;

}

//---
// EEPROM_WriteArray ()
//---
//
// Return Value : None
// Parameters :
// 1) unsigned char dest_addr - beginning address to write to in the EEPROM
// range is full range of character: 0 to 255
//
// 2) unsigned char* src_addr - pointer to the array of data to be written
// range is full range of character: 0 to 255
//
// 3) unsigned char len - length of the array to be written to the EEPROM
// range is full range of character: 0 to 255
//
// Writes <len> data bytes to the EEPROM slave specified by the <EEPROM_ADDR>
// constant.
//
void EEPROM_WriteArray(unsigned char dest_addr, unsigned char* src_addr,
 unsigned char len)
{
 unsigned char i;
 unsigned char* pData = (unsigned char*) src_addr;

AN141

52 Rev. 1.2

 for(i = 0; i < len; i++){
 EEPROM_ByteWrite(dest_addr++, *pData++);
 }

}

//---
// EEPROM_ByteRead ()
//---
//
// Return Value :
// 1) unsigned char data - data read from address <addr> in the EEPROM
// range is full range of character: 0 to 255
//
// Parameters :
// 1) unsigned char addr - address to read data from the EEPROM
// range is full range of character: 0 to 255
//
// This function returns a single byte from location <addr> in the EEPROM then
// polls the <SMB_BUSY> flag until the read is complete.
//
unsigned char EEPROM_ByteRead(unsigned char addr)
{
 unsigned char retval; // Holds the return value

 while (SMB_BUSY); // Wait for SMBus to be free.
 SMB_BUSY = 1; // Claim SMBus (set to busy)

 // Set SMBus ISR parameters
 TARGET = EEPROM_ADDR; // Set target slave address
 SMB_RW = WRITE; // A random read starts as a write
 // then changes to a read after
 // the repeated start is sent. The
 // ISR handles this switchover if
 // the <SMB_RANDOMREAD> bit is set.
 SMB_SENDWORDADDR = 1; // Send Word Address after Slave Address
 SMB_RANDOMREAD = 1; // Send a START after the word address
 SMB_ACKPOLL = 1; // Enable Acknowledge Polling

 // Specify the Incoming Data
 WORD_ADDR = addr; // Set the target address in the
 // EEPROM’s internal memory space

 pSMB_DATA_IN = &retval; // The incoming data pointer points to
 // the <retval> variable.

 SMB_DATA_LEN = 1; // Specify to ISR that the next transfer
 // will contain one data byte

 // Initiate SMBus Transfer
 STA = 1;
 while(SMB_BUSY); // Wait until data is read

 return retval;

}

//---

AN141

Rev. 1.2 53

// EEPROM_ReadArray ()
//---
//
// Return Value : None
// Parameters :
// 1) unsigned char* dest_addr - pointer to the array that will be filled
// with the data from the EEPROM
// range is full range of character: 0 to 255
//
// 2) unsigned char src_addr - beginning address to read data from the EEPROM
// range is full range of character: 0 to 255
//
// 3) unsigned char len - length of the array to be read from the EEPROM
// range is full range of character: 0 to 255
//
// Reads up to 256 data bytes from the EEPROM slave specified by the
// <EEPROM_ADDR> constant.
//
void EEPROM_ReadArray (unsigned char* dest_addr, unsigned char src_addr,
 unsigned char len)
{
 while (SMB_BUSY); // Wait for SMBus to be free.
 SMB_BUSY = 1; // Claim SMBus (set to busy)

 // Set SMBus ISR parameters
 TARGET = EEPROM_ADDR; // Set target slave address
 SMB_RW = WRITE; // A random read starts as a write
 // then changes to a read after
 // the repeated start is sent. The
 // ISR handles this switchover if
 // the <SMB_RANDOMREAD> bit is set.
 SMB_SENDWORDADDR = 1; // Send Word Address after Slave Address
 SMB_RANDOMREAD = 1; // Send a START after the word address
 SMB_ACKPOLL = 1; // Enable Acknowledge Polling

 // Specify the Incoming Data
 WORD_ADDR = src_addr; // Set the target address in the
 // EEPROM’s internal memory space

 // Set the the incoming data pointer
 pSMB_DATA_IN = (unsigned char*) dest_addr;

 SMB_DATA_LEN = len; // Specify to ISR that the next transfer
 // will contain <len> data bytes

 // Initiate SMBus Transfer
 STA = 1;
 while(SMB_BUSY); // Wait until data is read

}

//---
// End Of File
//---

AN141

54 Rev. 1.2

DOCUMENT CHANGE LIST SECTION:
Revision 1.1 to Revision 1.2

Added support for 'F32x, 'F33x, ‘F34x, 'F35x, and ‘F41x devices.
Fixed various errors in the software examples.
Added arbitration lost handling.

AN141

Rev. 1.2 55

NOTES:

AN141

56 Rev. 1.2

CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: productinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

	Relevant Devices
	1. Introduction
	2. Overview of the SMBus Specification
	2.1. SMBus Structure
	Figure 1. Typical SMBus Configuration

	2.2. Handshaking
	2.3. Transfer Modes
	2.3.1. Master Transmitter
	2.3.2. Master Receiver
	2.3.3. Slave Transmitter
	2.3.4. Slave Receiver
	Figure 2. SMBus Timing

	2.4. Typical WRITE Scenarios
	2.4.1. Slave Address NACK’ed
	2.4.2. Reserving the Bus with a Repeated START
	Figure 3. Typical WRITE Transfer Scenarios

	2.5. Data Byte NACK’ed
	2.6. Typical READ Scenarios
	2.6.1. Slave Address NACK’ed
	2.6.2. Changing Direction (Read/Write) with a Repeated START

	2.7. Other SMBus Scenarios
	Figure 4. Typical READ Scenarios

	2.8. Arbitration
	Figure 5. Arbitration Sequence

	3. Using the SMBus with the C8051F3xx and C8051F41x
	3.1. SMBus Management Tasks
	3.1.1. SCL Clock Generation
	3.1.2. SCL Low Timeout (C8051F30x)
	3.1.3. SCL Low Timeout (All Other Devices)
	3.1.4. Arbitration Lost Detection
	3.1.5. Serial Data Transfers
	3.1.6. Slave Address Recognition

	3.2. Configuration and Control
	3.3. SMBus Communication
	3.3.1. Writing Data to an SMBus Slave (Master Transmitter)
	Figure 6. Master Transmitter Initiating an SMBus Transfer to a Slave Receiver
	Figure 7. SMBus ISR in a Master Transmitter Role
	Figure 8. Typical Master Transmitter Sequence
	3.3.2. Reading Data from an SMBus Slave (Master Receiver)
	Figure 9. Master Receiver Initiating an SMBus transfer with a Slave Transmitter
	Figure 10. SMBus ISR in a Master Receiver
	Figure 11. Typical Master Receiver Sequence
	3.3.3. Accepting Data From an SMBus Master (Slave Receiver)
	Figure 12. The SMBus ISR in a Slave Receiver Role
	Figure 13. Typical Slave Receiver Waveform
	3.3.4. Sending Data To an SMBus Master with the C8051F30x (Slave Transmitter)
	Figure 14. Slave RX-to-TX Steps (C8051F30x Only)
	Figure 15. SMBus ISR Structure for C8051F30x Slave Transmitter
	3.3.5. Sending Data To an SMBus Master with All Other Supported Devices (Slave Receiver)
	Figure 16. SMBus ISR Structure for Slave Transmitter (All Devices Except C8051F30x)
	Figure 17. Typical Slave Transmitter Waveform (C8051F30x)
	3.3.6. I2C™ EEPROM Example (Master Transmitter/ Receiver)
	Figure 18. Typical Slave Transmitter Waveform (All Devices Except C8051F30x)
	Figure 19. EEPROM Byte Write
	Figure 20. EEPROM Single Byte Read

	4. SMBus Debugging Techniques
	4.1. IDLE state
	4.2. MTSTA State - Master Transmitter START Signal Sent - Interrupt (0)
	Figure 21. Start Signal
	Figure 22. EEPROM Multi-Byte Read

	4.3. MTSLA State - Master Transmitter Slave Address Sent - Interrupt (1)
	Figure 23. Slave Address + WRITE

	4.4. MTDB - Master Transmitter Data Byte Sent - Interrupt (2)
	Figure 24. EEPROM Word Address

	4.5. MRSTA - Master Receiver Repeated Start Sent - Interrupt (3)
	Figure 25. Repeated Start

	4.6. MRSLA State - Master Receiver Slave Address Sent - Interrupt (4)
	Figure 26. Slave Address + READ

	4.7. MRDBFIN State - Master Receiver Final Data Byte Received - Interrupt(5)
	Figure 27. Data Byte

	4.8. Transfer Complete
	Figure 28. NACK + STOP

	5. SMBus Status Decoding
	Table 1. SMBus Status Decoding (C8051F30x)
	Table 2. SMBus Status Decoding (All Supported Devices Except C8051F30x)

	6. Software Examples
	6.1. SMBus Master Framework
	6.2. SMBus Slave Framework
	6.3. EEPROM Example

	Document Change List section:
	Contact Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

