&~

SILICON LABODORATORIES

AN138

POWER MANAGEMENT TECHNIQUES FOR THE ‘F30X AND ‘F31X

Relevant Devices

This application note applies to the following devices:

C8051F300, C8051F301, C8051F302, C8051F303,
C8051F304, C8051F305, C8051F310, and C8051F311.

Introduction

The C8051F30x and C8051F31x are excellent
choices for low power applications. They provide
flexible clocking hardware and 3V operation which
significantly reduces power consumption. In addi-
tion, the pipelined core executes instructions at an
average rate of one system clock per opcode byte.

This application note discusses power calculation
techniques and power saving strategies for for
C8051F30x and C8051F31x devices. It discusses
how the internal and external oscillators, CPU
power management modes, system clock fre-
quency, and supply voltage play a role in the power
consumption of the device. This note also discusses
and gives examples of implementing a “sleep”
mode to reduce power consumption. Software
examples are included to demonstrate how the

techniques discussed in this note can be applied in
actual systems.

Key Points

* Flexible clocking hardware makes it easy to
switch between a high-performance mode and a
low-power mode.

* Managing power smartly can significantly
reduce the total power consumption of the sys-
tem.

* The missing clock detector will cause a device
reset if the operating frequency drops below
10 kHz.

Calculating Power
Consumption

When designing a system with a power budget,
being able to estimate the system’s power con-
sumption on paper can save time and resources by
allowing the designer to experiment with different
configurations before hardware is built. Since Sili-
con Labs devices often provide single-chip solu-
tions to many applications, the device power

Current | TIMEtotal

\/

A

TIME active

AREA = Charge

A

I active

1 avg

TIMEidie
P
Time
0

Rev. 1.1 12/03

Copyright © 2003 by Silicon Laboratories

AN138-DS11

AN138

consumption is often equivalent to the system
power consumption.

The device power consumption is calculated by
taking the sum of individual contributions. The
main contributors to power consumption include
the oscillators, digital power, analog peripherals,
and Port I/O.

The oscillator power consumption consists of con-
tributions from the internal and external oscillators.
The internal oscillator power consumption is dis-
cussed in the analog peripherals section.

Digital power consumption depends on CPU mode,
supply voltage, and system clock frequency. Tem-
perature and the digital peripherals themselves
have a minimal effect on digital power consump-
tion.

Analog peripheral power consumption is domi-
nated by the ADC, VREEF, temperature sensor, bias
generator, and internal oscillator. Comparators also
contribute a small amount to the total analog
peripheral power consumption.

All current sourced by a port pin is taken from the
device supply current. For example, if 10 mA are
being used to power an LED connected to a port
pin, the device power consumption will increase by
10 mA.

External Oscillator Power
Consumption

The external oscillator circuitry on these devices is
very flexible. It may derive its timebase from a
crystal or ceramic resonator, a capacitor, an RC net-

External CMOS Clock

When the External Oscillator is in CMOS Clock
mode, the external oscillator driver is turned off
and the circuitry consumes a negligible amount of
current. When a CMOS clock signal is present on
XTAL2, it may be used as a clocking source for the
CPU, Timers, PCA, or other peripherals. Note that
power consumption increases slightly when a high
frequency signal is applied to any port pin.

External Crystal

An external crystal provides the most accurate
timebase, but may consume more power at a given
frequency when compared with other clocking
methods discussed in this note. The external crystal
current depends on the crystal frequency and the
external oscillator drive current setting (XFCN).
Table 1 and Table 2 show typical current values
for the external oscillator circuitry when driving
various crystals.

Table 1. Typical External Oscillator Power
Consumption in Crystal Mode (C8051F30x)

XFCN Frii.‘[.fﬁiy (:;?(;I iiiﬂl)
1 32.768 kHz 3.7 uA
5 4.000 MHz 240 YA
7 11.0592 MHz 3.8 mA
7 25.000 MHz 4.1 mA

Table 2. Typical External Oscillator Power
Consumption in Crystal Mode (C8051F31x)

work, or an external CMOS clock. Each of these XECN Crystal Current
clocking methods has its advantages. Since the Frequency (3.0 Volts)
oscillator can change clocking modes from applica-

tion code, switching modes on the fly can signifi- 1 32.768 kHz 4.1 pA

cantly reduce power consumption. In C, RC, and | 5 4.000 MHz 280 pA

CMOS clock modes, it is possible to achieve very

low operating frequencies. 7 11.0592 MHz 4.4 mA

2 Rev. 1.1 @

SILICON LABORATORIES

AN138

Table 2. Typical External Oscillator Power
Consumption in Crystal Mode (C8051F31x)

Crystal Current

Frequency
7 25.000 MHz

XFCN

(3.0 Volts)
4.7 mA

External C Mode

External C mode can provide low-power clocking
to the device with a single capacitor connected to
XTAL2. A wide range of frequencies can be
achieved by varying the XFCN bits in the
OSCXCN register. Table 3 through Table 6 show
how frequency and current are affected by capaci-
tance and XFCN settings.

Since the frequency of the external oscillator in C
mode depends on capacitance, it will vary from
system to system due to capacitor tolerance and
stray capacitance. The tolerance of the internal cur-
rent source also plays a role in determining the
oscillation frequency. Once the capacitor starts
oscillation, the frequency remains relatively stable.

The external oscillator frequency may be measured
to 2% accuracy using the 24.5 MHz internal cali-
brated oscillator. For even greater accuracy, the

possible because of the ability to switch oscillator
modes on-the-fly.

Table 3. C mode Frequency Range and Typical
Oscillator Power Consumption with a 33 pF
Capacitor on XTAL2

(C8051F30x)
XFON Froqueny Saent
(3.0 Volts)
0 5 kHz 2 pA
1 15 kHz 4 UA
2 44 kHz 10 pA
3 130 kHz 26 pA
4 380 kHz 73 LA
5 1.0 MHz 220 uA
6 3.8 MHz 960 pA
7 9.5 MHz 4.0 mA

Table 4. C mode Frequency Range and Typical
Oscillator Power Consumption with a 10 pF
Capacitor on XTAL2

(C8051F30x)

Approximate

internal oscillator frequency may first be measured Current
using a 32.768 kHz watch crystal. Once the fre- [RARSUNERECEELUR (3.0 Volts)
quency of the internal oscillator is found, it may be (3.0 Volts)
used to more accurately measure the external oscil- | 9 kHz 2 pA
lator frequency in C mode. Having up to three
clock sources with one hardware configuration is | 1 27 kHz 4 pA
2 80 kHz 10 A
3 230 kHz 27 pA
4 650 kHz 78 pA
5 1.8 MHz 230 pA
6 5.8 MHz 990 pA
7 11.9 MHz 4.0 mA
@ Rev. 1.1 3

SILICON LABORATORIES

AN138

Table 5. C mode Frequency Range and Typical
Oscillator Power Consumption with a 100 pF
Capacitor on XTAL2 (C8051F30x)

Approximate

XFON Frequency (3.0 Volts)
0 2 kHz 2 A

1 7 kHz 4 pA

2 20 kHz 9 uA

3 56 kHz 24 pA

4 170 kHz 70 A

5 480 MHz 210 pA
6 2.0 MHz 930 pA
7 6.3 MHz 4.0 mA

Table 6. C mode Frequency Range and Typical
Oscillator Power Consumption with a 33 pF
Capacitor on XTAL2

capacitor connected to XTAL2. As Figure 1 shows,
the capacitor charges linearly from a constant cur-
rent source. When the voltage on the capacitor
reaches VDD/3, the comparator creates a path to
ground, discharging the capacitor. Once the capaci-
tor is discharged, the comparator opens the switch
and the cycle repeats. The resulting waveform is
shown in Figure 2. The output of the comparator, a
digital signal, is fed to a “divide-by-two” circuit
whose output can be selected as the system clock.

Figure 2. C Mode Waveform at XTAL2

Ve A

vDD T

VvDD/3

/]

Time

C8051F31
(X) External RC Mode

XECN AI|__oprOX|mate Current

requency (3.0 Volts) RC mode operates similarly to C mode with the
(3.0 Volts) exception that in RC mode the capacitor is charged

0 7 kHz 2 uA

1 21 kHz 4 pA

2 61 kHz 11 A Figure 1. C Mode Overview

3 170 kHz 29 pA

4 500 kHz 85 pA VDD

5 1.4 MHz 260 pA gg

6 5.0 MHz 1.1 mA

XTAL2
7 11.2 MHz 4.5 mA . +
Frequency Generation in C Mode C ¢ f
ve L / VDD/3
The external oscillator in C mode generates a clock
signal by constantly charging and discharging the .
7 7

4 Rev. 1.1 @

SILICON LABORATORIES

AN138

through an external resistor, as shown in Figure 3. modeled as a triangular waveform to simplify find-
Once the capacitor voltage reaches VDD/3, the ing the average, as shown in Figure 5.
comparator creates a path to ground, discharging

the capacitor. Figure 4 shows the waveform at Figure 5. RC Mode Resistor Voltage

XTAL2 generated by this cycle. v A
R
Figure 4. RC Mode Waveform at XTAL2 VOD t—F K-k v
5/6 VDD
A 4
Ve 2/3 VDD
VDD |-~~~ T T TTT T T Toome Actual Curve Triangle
T - (Exponential) Model
VDD/3 d Time

> With this simplification, Equation 1 can be used to

Time calculate the average voltage. The external oscilla-
. . tor average current and power are shown in
Calculating Power in RC Mode Equation 2 and Equation 3, respectively.
The average power consumption for the external Equation 1. Average Resistor Voltage
oscillator in RC mode is determined by the the
average current through the resistor. The voltage V ~ o <« VDD
drop across the resistor is exponential, but can be avg 6
Equation 2. Average Current
| _ Van
avg R
Figure 3. RC Mode Overview Equation 3. Average Power
VDD V2
P _ ‘avg
g R avg R
XTAL2 Note that the power consumption of the external
. + oscillator in RC mode depends on the resistor value

and not on the capacitor value.

Y — / W VDD/3

®
@ Rev. 1.1 5

SILICON LABORATORIES

AN138

Digital Power Consumption

Digital power consumption is dominated by CPU
current. The factors that play a major role in deter-
mining this current are CPU power management
mode, supply voltage, and system clock frequency.
Temperature and digital peripherals have a minimal
effect on digital power consumption.

CPU Power Management Modes

The CPU has three modes of operation: Normal,
Idle, and Stop. Figure 6 and Figure 7 show typical
supply current curves when the internal oscillator is
in divide by eight mode (3.0625 MHz) and is
selected as the system clock. The Idle mode current
is dominated by the internal oscillator. The Normal
mode current minus the Idle mode current is
approximately the amount of current needed by the
CPU to execute instructions at 3.0625 MHz.

The CPU is in Normal mode whenever it is execut-
ing instructions. On writing a ‘1’ to the IDLE bit
(PCON.0), the CPU finishes executing the current
instruction and enters a low-power mode until
awakened by an interrupt or device reset. In Idle
mode, all analog and digital peripherals, mem-
ory, and internal registers remain operational.
When awakened, the CPU resumes execution at the
instruction following the write to the IDLE bit.

Figure 6. Effect of CIP-51 Power Management Mode on Supply Current
(C8051F30x)

Typical Supply Current vs. VDD Voltage
SYSCLK = 3.0625 MHz (Internal Oscillator in Divide by 8 Mode)

2500
2200
2000 +
g 1500 —&— Normal Mode Current | _
- <>/ —m— Ildle Mode Current
§ 1300 —a— Stop Mode Current
5 1000 -
o
500
0 & A A A
2.7 3.0 3.3 3.6
VDD Voltage (Volts)
6 Rev. 1.1 @

SILICON LABORATORIES

AN138

Figure 7. Effect of CIP-51 Power Management Mode on Supply Current (C8051F31x)

Typical Supply Current vs. VDD Voltage

SYSCLK = 3.0625 MHz (Internal Oscillator in Divide by 8 Mode)

2500 2300
2000 -
- —e— Normal Mode Current
‘é 1500 1500 —m— Idle Mode Current —
E —a— Stop Mode Current
g
5 1000 -
5] 940 1000
860
790
500 +
0 & & A
2.7 3.0 3.3 3.6

VDD Voltage (Volts)

SILICON LABORATORIES

Rev. 1.1

AN138

Figure 8. Stop Mode Current vs. Supply Voltage (C8051F30x)

0.400

0.350

%3‘4
0.300

0.27

o
[N}
0
=)

0.20 ‘ —a— Stop Mode Current (UA) ‘

Current (uA)
o o
- [§)
(@)} o
o o

4
0.14
0.100 -

0.050 +

0.000 T

27 3 3.3 3.6
VDD Voltage (Volts)

The CPU enters Stop mode on writing a ‘1’ to the STOP bit (PCON.1). After the current instruction is
executed, the internal oscillator, and all digital peripherals are disabled. Analog peripherals such as
comparators and the external oscillator remain in their current state. The MCU consumes the least
amount of current when in Stop mode. Figure 8

and Figure 9 show that the Stop mode current is typically less than 500 nA when the internal oscillator is
used for system clocking.

Any reset source can be used to recover from Stop mode. This includes Comparator, Missing Clock
Detector, power on, or VDD monitor reset. Software Example 3 at the end of this note shows how Stop
mode may be used on C8051F30x and C8051F31x systems to save power.

®
8 Rev. 1.1 @

SILICON LABORATORIES

AN138

Figure 9. Stop Mode Current vs. Supply Voltage (C8051F31x)

—a— Stop Mode Current (UA)

Current (uA)
o
N
3

0.18

VDD Voltage (Volts)

®
@ Rev. 1.1 9

SILICON LABORATORIES

AN138

Supply Voltage

Supply current increases with supply voltage. This relationship can be observed at all operating frequen-
cies but has the greatest impact at higher frequencies. Figure 10 and Figure 11 show typical supply cur-

rent vs. supply voltage curves when operating from the internal 24.5 MHz system clock. The minimum
supply voltage specified in the datasheet is 2.7 Volts. However, since many voltage regulators have a +/-
10% accuracy, systems are not typically designed for a supply voltage less than 3.0 Volts.

Temperature

Device temperature does not have an appreciable effect on power consumption on these devices.

Figure 10. Effect of Supply Voltage on Power Consumption (C8051F30x)

Typical Supply Current vs. VDD Voltage
SYSCLK = 24.5 MHz (Internal Oscillator in Divide by 1 Mode)

9000 +
8700
8000 -
7400
7000 -
6100
6000 —e— Normal Mode Current
< —m— |dle Mode Current
S 5000
TE' 5000 —a— Stop Mode Current
o
5 4000 -
(&)
3000 -
2200 2500 2800 3100
2000 -
1000
0 & & A
2.7 3.0 3.3 3.6

VDD Voltage (Volts)

®
10 Rev. 1.1 @

SILICON LABORATORIES

AN138

Figure 11. Effect of Supply Voltage on Power Consumption (C8051F31x)

Typical Supply Current vs. VDD Voltage
SYSCLK = 24.5 MHz (Internal Oscillator in Divide by 1 Mode)

12000
11000
11000 +
10000 -
9600
9000 -
8100
8000 —e— Normal Mode Current |
g 7000 —— —m— |dle Mode Current
=] L
= 6700 —a— Stop Mode Current
c 6000 L
o
G 50001 4500
4000 - 3600
4100
3000 A 3200
2000 -
1000 -
0 & 'S &
2.7 3.0 3.3 3.6

VDD Voltage (Volts)

®
@ Rev. 1.1 11

SILICON LABORATORIES

AN138

Operating Frequency (SYSCLK)

The CPU operating frequency has the greatest impact on power consumption.

Figure 12 and Figure 13 show the effect of operating frequency on power consumption when the CPU is
in Normal mode. Near 13 MHz (C8051F30x devices) and 16 MHz (C8051F31x devices), the current
drops slightly and changes slope because of a switchover in the FLASH read timing mechanism. Table 7

and Table §

show the slope and offset for the graphs in Figure 12 and Figure 13, respectively.

“Region A” in Figure 12 refers to frequencies less than 13 MHz and “Region B” refers to frequencies
higher than 13 MHz. The same is true for Figure 13 except the switchover occurs near 16 MHz.

Figure 12. Effect of Operating Frequency on Normal Mode Power Consumption

(C8051F30x)

Typical Supply Current vs. Operating Frequency (Normal Mode)
Internal Oscillator Disabled, Running from an External CMOS Clock

9000
"Region A" "Region B"
8000 -
7000 -
6000 -
< — VDD=3.6v
:?: 5000 VDD = 3.3v
E, VDD = 3.0v
5 4000 —_VDD=27v
o
3000
2000
1000 A
O T 1
01 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
SYSCLKFrequency (MHz)
12 Rev. 1.1

SILICON LABORATORIES

AN138

Table 7. Slope and Offset Values for the Curves
in Figure 12 (C8051F30x)

Slope Offset Slope Offset
A A B B
mA/MHz mA mA/MHz mA
2.7 0.28 0.01 0.15 14
3.0 0.34 0.01 0.16 2.0
3.3 0.42 0.02 0.18 2.8
3.6 0.50 0.02 0.20 3.7

Figure 13. Effect of Operating Frequency on Normal Mode Power Consumption
(C8051F31x)

Typical Supply Current vs. Operating Frequency (Normal Mode)
Internal Oscillator Disabled, Running from an External CMOS Clock

11000 -

"Region A" "Region B"

10000
9000 AW

8000 -
7000

——VDD=3.6v
VDD =3.3v _
VDD = 3v

——VDD=2.7v

6000

5000

Current (uA)

4000 -
3000

2000 =

1000 -

O T T T T T T T T T T T T T T T
012 3 456 78 9101121314151
SYSCLK Frequency (MHz)

617 1

8192

0 21 22 23 24 25

®
@ Rev. 1.1 13

SILICON LABORATORIES

AN138

Table 8. Slope and Offset Values for the Curves
in Figure 13 (C8051F31x)

Slope Offset Slope Offset
vDD A A B B

mA/MHz mA mA/MHz mA
2.7 0.34 0.03 0.16 2.5
3.0 0.41 0.04 0.18 3.2
3.3 0.49 0.05 0.21 4.1
3.6 0.58 | 0.05 0.24 5.0

When operating in “Region A”, turning off the
FLASH one-shot by writing a ‘0’ to the FOSE bit

in the FLSCL register will extend the “Region B”
curve across the entire operating range of the
device. This is only useful if operating near the
switchover point, where “Region B” operation con-
sumes less power than “Region A”.

When the CPU is in Idle mode, the Current vs.
Operating Frequency curve is a single line over the
operating range of the device. Figure 14 and
Figure 15 show the effect of operating frequency
on power consumption when the CPU is in Idle
mode.

Figure 14. Effect of Operating Frequency on Idle Mode Power Consumption (C8051F30x)

Typical Supply Current vs. Operating Frequency (ldle Mode)
Internal Oscillator Disabled, Running from an External CMOS Clock

3500
3000 -
——VDD=3.6v
2500 VDD = 3.3v
VDD = 3.0v
——VDD=2.7v
< 2000
3
T
g
5 1500 -
o
1000 -
500 -
0 T 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
SYSCLK Frequency (MHz)
14 Rev. 1.1

SILICON LABORATORIES

AN138

Table 9. Slope and Offset Values for the Curves
in Figure 14 (C8051F30x)

2.7 0.09 0.00
3.0 0.10 0.01
3.3 0.1 0.02
3.6 0.12 0.02

Figure 15. Effect of Operating Frequency on Idle Mode Power Consumption (C8051F31x)

Typical Supply Current vs. Operating Frequency (Idle Mode)
Internal Oscillator Disabled, Running from an External CMOS Clock

4500

4000 -

3500 ——VDD=3.6v
VDD =3.3v
3000 VDD =3.0v

2500 -

2000 -

Current (uA)

1500 -

1000 -

500 -

O T T T T 7T T T T T T T T T T T T T T T T T
0o 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

SYSCLK Frequency (MHz)

®
@ Rev. 1.1 15

SILICON LABORATORIES

AN138

cally enabled whenever the ADC, internal oscilla-

Table 10. Slope and Offset Values for the tor, or temperature sensor is enabled.
Curves in Figure 15 (C8051F31x)

The peak ADC current during a conversion is typi-

VDD Slope Offset cally 30% to 50% higher than when the ADC is not
mANHz mA converting. The SAR Conversion Clock frequency
2.7 0.12 0.00 and sampling rate also affect the power consump-

tion. In general, increasing the SAR Conversion
3.0 0.14 0.01 Clock frequency and decreasing the sampling rate
3.3 0.16 0.01 will provide the greatest power savings because the
ADC will spend less time in each conversion and

3.6 0.17 0.01 more time idle between conversions.
Digital Peripherals and Table 11. Typical Current Contribution for
Port 11O Analog Peripherals at 3.0V (C8051F30x)

Typical
Digital peripherals (timers, UART, PCA, SPI, etc.) Peripheral Current
account for a small percentage of the total power Consumption

consumption. For example, operating a C8051F300 :
at 3.06 MHz (internal oscillator divided by 8) and Internal Bias Genera- 110 pA
3.0 Volts, the average device supply current with- tor
out any digital peripherals enabled is approxi- | Temperature Sensor 85 pA
mately 700 pA. This number typically increases by | (ADC Enabled)
18 nA (3 %) when Timer 1 is started at its fastest
clocking setting with UARTO constantly transmit- | lemperature Sensor <1pA
ting data. The power consumption for timers and | (ADC Disabled)
UART depends on the frequency at which they are | Apc (enabled) 430 pA
clocked and the supply voltage.

ADC (converting) 630 uA
The Crossbar and configuration of GPIO pins to Internal Oscillator 340 pA
push-pull mode can also affect power consumption.
In the example above, enabling the Crossbar, rout- | Voltage Comparator 0.4-7.6 uA
ing the UARTO TX signal to P0.4, and configuring (depending on
the port pin to push-pull mode adds another 82 pA speed mode)

(10%) to the total device supply current. The power
consumption for output port pins depends on the
frequency that the pin is toggled and the external
circuitry connected to the pin.

Analog Peripherals

The ADC, temperature sensor, internal bias genera-
tor, and the internal oscillator consume power when
enabled. Table 11 and Table 12 show typical cur-
rent values for the analog peripherals on these
devices. The internal bias generator is automati-

®
16 Rev. 1.1 @

SILICON LABORATORIES

AN138

Table 12. Typical Current Contribution for
Analog Peripherals at 3.0V (C8051F31x)

Typical

Peripheral Current

Consumption

Internal Bias Genera- 110 pA

tor

Temperature Sensor 83 HA

(ADC Enabled)

Temperature Sensor <1pA

(ADC Disabled)

ADC (enabled) 480 pA

ADC (converting) 650 pA

Internal Oscillator 360 pA

Voltage Comparator 0.4-7.6 uA
(depending on
speed mode)

Example Calculations

The following examples show how to calculate the
total device power consumption by adding the con-
tributions from the oscillator, digital power, and
analog power. The examples assume a supply volt-
age of 3.0V.

Example 1: 32.768 kHz Watch Crystal
in Idle Mode (C8051F31x)

In this example, we calculate the total device power
consumption for operating a C8051F31x device
from a 32.768 kHz watch crystal in Idle mode.

Oscillator Current. From Table 2 , the external
oscillator requires ~4.1 pA to drive the watch crys-
tal.

Digital Current. Using the slope and offset infor-
mation from Table 10 , the CPU current in Idle
mode can be calculated using Equation 4.

Equation 4. Calculating Digital Current
from Slope and Offset

Current [mA] = (SYSCLK [MHZz] x Slope) + Offset

In this example, the slope (0.14 mA/MHz) and oft-
set (0.01 mA) give an estimated digital current of
~15 pA for operation at 32.768 kHz and 3.0 V.

Analog Current. In this system, the internal oscil-
lator is disabled when running from the external
watch crystal. We add 0 pA for the analog current
contribution.

Total Current. The total supply current is ~19 pA
for a C8051F31x in this configuration. This num-
ber is an estimate and may vary by a few micro-
amps in an actual system.

Example 2: 24.5 MHz Internal
Oscillator in Normal Mode with ADC
On (C8051F30x)

In this example, we calculate the total device power
consumption for operating a C8051F30x device
from the internal 24.5 MHz calibrated oscillator in
Normal mode with the ADC turned on.

Oscillator Current. From Table 11 , the internal
oscillator requires ~340 pA to generate the
24.5 MHz clock signal.

Digital Current. Using the slope and offset infor-
mation from Table 7 , the CPU current in Normal
mode can be calculated using Equation 4. In this
example, the slope (0.16 mA/MHz) and offset
(2.0 mA) in “Region B” of Figure 12 give an esti-
mated digital current of ~6.0 mA for operation at
24.5 MHz and 3.0 V.

SILICON LABORATORIES

Rev. 1.1 17

AN138

Analog Current. Since the internal bias generator
automatically switches on whenever the ADC or
the internal oscillator are being used, it contributes
110 pA. When the ADC is enabled (not sampling),
it contributes 430 pA. The total analog contribution
comes to 540 pA.

Total Current. There are two ways to estimate the
total current from the data provided in this applica-
tion note. First, we can sum the contributions from
the oscillator, digital current, and analog current.
An alternative is using Figure 10 to determine the
combined digital, internal oscillator, and bias gen-
erator current then adding the ADC contribution to
obtain the total supply current. Both methods
should yield similar results; however, the second
method is faster.

Using the first method, we add the 340 pA oscilla-
tor current, 6.0 mA digital current, and 540 pA
analog current to obtain a total of 6.9 mA.

Using the second method, we add 6.1 mA (supply
current at 3.0V from Figure 10) and 430 pA ADC
current for a total of 6.5 mA.

The estimates from the two methods are within 5%
of each other.

Example 3: 25.000 MHz Crystal in
Normal Mode with ADC On
(C8051F30x)

In this example, we calculate the total device power
consumption for operating a C8051F30x device
from a 25.000 MHz crystal in Normal mode with
the ADC on.

Oscillator Current. From Table 1 , the external
oscillator requires ~4.1 mA to drive the crystal.

Digital Current. Using the slope and offset infor-
mation from Table 7 , the CPU current in Normal
mode can be calculated using Equation 4.

In this example, the slope (0.16 mA/MHz) and oft-
set (2.0 mA) in “Region B” of Figure 12 give an
estimated digital current of ~6 mA for operation at
25.0 MHz and 3.0 V.

Analog Current. In this system, the internal oscil-
lator is disabled when running from the external
crystal. Since we are using the ADC, we add the
110 pA internal bias current to the 430 pA ADC
current for a total 540 pA analog contribution.

Total Current. The total supply current is ~11 mA
for a C8051F30x in this configuration. Comparing
this total to the total from Example 2, we find that
using the internal oscillator saves approximately
4 mA while achieving a comparable operating fre-
quency.

18 Rev. 1.1

SILICON LABORATORIES

AN138

Power Saving Strategies

In most low-power applications, the high perfor-
mance processing capabilities of the device are not
needed 100% of the time. The ability of these
devices to switch between clock sources and power
modes on-the-fly gives them the flexibility of per-
forming high speed tasks and meet the require-
ments of a low power budget.

In most systems with low power requirements, the
average power consumption is optimized. For
example, in a battery powered application, the
average current determines the battery life.
Equation 5 shows how to calculate battery life in a
system based on its average current and rating. Bat-
teries contain a fixed amount of charge, specified in
a battery datasheet in units of milliamp-hours (mA-
h).

Equation 5. Calculating Battery Life

Battery Life [hours] = %

Minimizing Average Power
Consumption

There are two classes of optimizations that can be
used to minimize average power consumption. The
first kind involves adjusting system parameters that
affect the system at all times. One of the main sys-
tem level parameters is supply voltage. The supply
voltage can be derived from a voltage regulator or
from a battery. In low power systems, supply volt-
age should be minimized in order to save power.

The second kind involves structuring the firmware
to save power. This involves having a high perfor-
mance mode and a low power “sleep” mode. These
two modes have different design criteria. The
device should spend as much time as possible in
“sleep” mode in order to save power.

Since the supply voltage is typically constant, min-
imizing average current is directly proportional to
minimizing the average power consumption. Aver-
age current is the amount of charge consumed per
unit time, or the area under a Current vs. Time chart
divided by time, as shown in Figure 16.

Figure 16. Average Current — Charge
Consumed per Unit Time

Current ‘L TIME otal _
TIMEactive AREA = Charge
I active /
I avg (— c— -_—-—
TIMEidle
Time
0

Equation 6 shows that the average current is the
total charge (area) divided by the total time.

Equation 6. Calculating Average Current

xTime, iive) T igie X Timeye)
Tlmetotal

(acti
lavg = active

The charge required for a given task can be reduced
by minimizing the “active” time or minimizing the
peak active current. The designer should always
consider minimizing “active” time and peak cur-
rent to save power.

Decreasing Supply Voltage

Supply voltage can have a large impact on power
consumption. Low-power systems should always
be designed to use the minimum supply voltage
that allows the device to operate reliably within its
specified voltage limits.

SILICON LABORATORIES

Rev. 1.1 19

AN138

Many voltage regulators have +/-10% accuracy. If
a regulator with this accuracy is used, the minimum
design voltage should be 3.0 V, since the regulator
output can vary between 2.7 V and 3.3 V.

An alternative to a voltage regulator is to use a bat-
tery. Lithium manganese dioxide batteries output
2.85 Volts for a majority of their useful life and can
be directly connected to the power pins on the
device. Batteries can provide a constant voltage
that does not need regulation. In these systems, the
on-chip VDD monitor should be enabled to ensure
that the device is held in reset when the battery is
drained.

Designing a Low Power “Sleep”
Mode

The design goal of a low-power “sleep” mode is to
minimize current because the system can spend
long intervals of time in this mode. A “sleep” mode
can be implemented by putting the device in Idle or
Stop mode. Stop mode provides a lower standby
current than Idle mode, but Idle mode is easier to
recover from. Examples of both implementations
are provided at the end of this note.

In “sleep” mode it is important to turn off any
peripherals (ADC, Internal Oscillator, etc.) that
are not required.

In “sleep” mode, it is usually best to operate on an
external oscillator. This allows the system to dis-
able the internal oscillator and operate from a very
low frequency timebase. Two appealing external
oscillator configurations to consider for “sleep”
mode are a 32.768 kHz watch crystal and a single
capacitor.

A capacitor oscillator can consume less power than
a crystal, but is less accurate. The main advantage
of using a capacitor oscillator is the ability to clock
peripherals (such as timers) at rates less than
10 kHz. There is also a cost and PCB space savings
associated with using a single capacitor, as opposed

to a crystal, two loading capacitors and a resistor. If
a high frequency crystal is used in the design, the
loading capacitor connected to the XTAL2 pin can
be used by the external oscillator in C mode to
derive a low-frequency clock source for “sleep”
mode.

Designing a High Performance Mode

A high performance mode should be designed to
accomplish tasks in a minimal amount of time so
that the system can go back to “sleep” mode as
quickly as possible. This involves adjusting the
peak current and the SYSCLK frequency to reduce
the area under the Current vs. Time -curve.
Example 1 shows a system in which the average
power consumption is reduced by increasing the
SYSCLK frequency in the high performance mode.

From a power standpoint, most systems will benefit
by using the internal oscillator in high performance
mode.

Measuring Average Current

The average system current is best calculated by
measuring the power consumption in various
modes using lab bench equipment and estimating
the amount of time the system spends in each
mode. Example 1 shows the power calculations for
a sampling system that uses the on-chip ADC.

Examples

Four examples are provided that demonstrate the
concepts discussed in this application note. The
software for these examples is included at at the
end of this note. The examples are:

* ADC Sampling (C8051F30x). This example
compares the power savings of two different
ADC sampling systems. One system uses a
32.768 kHz crystal while sampling and the
other switches to the internal oscillator to
minimize the time that the ADC remains on.
Both systems are identical in Idle mode.

20

Rev. 1.1

SILICON LABORATORIES

AN138

* Waking From Idle mode on UART Activity
(C8051F30x). This example shows how a
“sleep” mode can be implemented using the
device’s Idle mode. The device wakes up when
it detects UART activity.

* Waking From Stop Mode Using a
Comparator (C8051F30x and C8051F31x).
This example shows how a “sleep” mode can
be implemented using the device’s Stop mode.
The device wakes up when it detects a button
press. A connection diagram of how to wake on
SMBus activity is also included in this
example.

e 32.768 kHz Watch Crystal Low Power Star-
tup Procedure (C8051F30x). This example
shows how to start a 32.768 kHz watch crystal,
minimizing the time in Normal mode waiting
for the crystal to start.

Example 1: ADC Sampling

The two systems in this example take an ADC sam-
ple from the on-chip temperature sensor at a rate of
10 Hz. A 32.768 kHz watch crystal and associated
loading capacitors and shunt resistor are connected
between XTAL1 and XTAL2. Timer 2 overflows
every 100 ms generating an interrupt that wakes the
device up from Idle mode. When the device wakes
up, it captures one ADC sample then goes back into
Idle mode until the next interrupt occurs.

Since this system is battery powered, one of its
goals is to minimize the amount of charge con-
sumed per ADC sample. Since charge is current
integrated over time, there is a choice between min-
imizing time or peak current required to take a
sample. For example, to capture the ADC sample,
the device may switch to the 3 MHz internal oscil-
lator and use a larger amount of current for a short
period of time or remain at 32 kHz and use less cur-
rent for a longer period of time. Figure 17 and
Figure 18 show current vs. time for the two sys-

tems, one with minimized time in Normal mode
and the other with minimized peak current.

Both systems use 4.8 pA in Idle mode to drive a
32 kHz watch crystal and Timer 2.

When the system in Figure 17 wakes from Idle
mode, it turns on the internal oscillator and the
ADC, switches SYSCLK to the internal oscillator
in divide-by-8 mode, and starts the ADC conver-
sion. After the conversion is complete, it reads the
ADC value, disables the ADC and internal oscilla-
tor, and puts the CPU back in Idle mode. To cap-
ture the ADC sample, the device spends less
than 400 ps consuming a peak current of
2.2 mA.

Figure 17. Current vs. Time (Minimized
Time in Normal Mode)

400 us 400 us

Current (uA) 4
2200 = —

4.8

Time (ms)

0 100

Figure 18. Current vs. Time (Minimized
Peak Current)

Current (uA) 4

650

4.8

Time (ms)

SILICON LABORATORIES

Rev. 1.1 21

AN138

When the system in Figure 18 wakes up from Idle
mode, it immediately turns on the ADC and ini-
tiates a sample. It does not turn on the internal
oscillator and SYSCLK remains at 32.768 kHz.
After the conversion is complete, it reads the ADC
value, turns off the ADC and goes into Idle mode.
To capture the ADC sample, the device spends
less than 1.5 ms consuming a peak current of
0.65 mA.

Using Equation 6, the system in Figure 17 has an
average current of 14 pA. If the system is powered
from an ideal 3.0 Volt (actual voltage 2.85V) lith-
ium manganese dioxide watch battery with a
capacity of 575 mA-h, the battery life would be
approximately 42,000 hours, or over four and a half
years.

The average current for the system in Figure 18 is
15 pA. If this system is powered with the same 3.0
Volt lithium manganese dioxide watch battery, the
battery life would also be around 40,000 hours.

In this example, increasing the system clock fre-
quency in the high power mode decreased the
average current.

These examples do not take into account changes
in temperature and battery performance variations
over the life of the battery. One source for Applica-
tion Manuals and Battery Datasheets is the Techni-
cal Info section of the Energizer web site
(wWww.energizer.com).

Example 2: Waking from Idle Mode
on UART Activity

This example configures External Interrupt(O to
wake the device from Idle mode on detecting activ-
ity on the UART receive signal. Once the CPU
comes out of Idle Mode, it disables External
Interrupt O as shown in Figure 19, switches to the
internal oscillator, enables UARTO reception, and
discards the first UART frame. In this system, the
first UART frame received after a period of inactiv-
ity is interpreted as a “wakeup” signal.

In order for the device to wake up and remain syn-
chronized for UART communication, the
“wakeup” signal has to have exactly one falling
edge followed by one rising edge, as shown in
Figure 20. Since the UART start bit is always ‘0’

Figure 19. Waking from Idle Mode on
UART Activity

UARTO

é

RX

External
Interrupt 0

b—"—

Figure 20. UART “Wake-up” Signal

UART RXY Start *

A Stop / Start

F— minimum 13 SYSCLK cycles—#

SYSCLK

L 5-10 kHz External Oscillator ——L———

in C-mode using a 33pF
Capacitor on XTAL2

SYSCLK must increase before this
edge to allow UART communication

3.0625 MHz Internal ~ ——
Oscillator in divide by 8 mode

22 Rev. 1.1

SILICON LABORATORIES

http://www.energizer.com
http://www.energizer.com

AN138

and the stop bit is always ‘1°, the data bits can be
any value as long as there is only one falling edge
and one rising edge in the received signal. Keep in
mind that characters are sent LSB first. Example
“wakeup” characters are 0x00, OxFF, and OxFO but
not 0xOF.

The maximum baud rate supported by the system
will be limited by the frequency of the external
oscillator used while the device is in Idle mode.
When programming in ‘C’, it takes a minimum of
13 SYSCLK cycles after the falling edge of the
“wakeup” signal to enter an External Interrupt ISR
and switch to the internal oscillator. If the UART
character following the “wakeup” signal arrives
before the internal oscillator is enabled, then the
two UART systems may become unsynchronized.

Equation 7 can be used to calculate the maximum
baud rate supported by a system with a given exter-
nal clock frequency. Equation 7 is based upon
10 bits per UART frame and 13 external clock
cycles required to turn on the internal oscillator.
For example, if the external oscillator is a capacitor
oscillating at 5 kHz, the highest standard baud rate
supported by the system would be 2400 baud.

Equation 7. Calculating Maximum
Supported Baud Rate

MAX_BAUD_RATE < (% x EXTCLK]

The software for this example uses a 33 pF capaci-
tor connected to the XTAL2 pin as an external
oscillator. Considering stray capacitance and other
effects, the system clock frequency is between
5 kHz and 10 kHz when the external oscillator is
selected and the external oscillator drive current
(XFCN) is set to its lowest value. The “wakeup”
signal chosen in this example is ‘OxFF’. When the
system wakes up, it waits for the next character and
transmits a string containing that character. Then it
disables UART reception, enables External
Interrupt 0, and goes back into Idle mode.

The average power consumption for this system
scales with the amount of UART activity. As
Figure 21 shows, the system consumes 4.2 pA of
current in Idle mode and approximately 1.5 mA in
Active mode at 3.0 Volts.

In some applications, it is possible to recover the
first character but this places more restrictions on
maximum UART baud rate and minimum external
clock frequency.

Example 3: Waking from Stop Mode
Using a Comparator

This example shows how a “sleep” mode can be
implemented in a system using the Stop mode of
the CPU. This application implements a software
counter that is incremented approximately every
second when the device is in Normal mode. If the
system is powered down when it is in Stop mode,
the counter resumes counting the next time it enters
Normal mode. If the system is powered down while
it is in Normal mode, the counter will reset to zero.
Every time the counter is updated, the current value
of the counter is printed to the UART.

The S2 switch toggles the system back and forth
between Stop mode and Normal mode. On power
up, the system is in Stop mode. The system enters

Figure 21. Example 2 Active Mode vs.
Idle Mode Power Consumption

Current (uA)
A Normal
Mode
3.0625 MHz
1500 —
Idle Mode
5-10kHz
42

Time

SILICON LABORATORIES

Rev. 1.1

23

AN138

Normal mode when the S2 switch on the target
board is pressed, causing a Comparator 0 reset.

Upon entering Normal mode, External Interrupt 0
(/INTO) is activated to sense the S2 switch and
Comparator 0 is disabled as a reset source. Pressing
S2 in Normal mode will cause the INTO ISR to put
the system in Stop mode.

Three target board connections are needed to run
this example on the C8051F30x and four connec-

tions are needed for the C8051F31x. They are cir-
cled in Figure 22 and Figure 23. The C8051F30x
requires one less pin because the CP0+ signal and
the External Interrupt O input can use the same pin.

In this example, the LED on the target board is
used to conveniently provide a voltage that is
between VDD and GND. This voltage can be gen-
erated using a resistor network or DC power sup-
ply. Also, the target board provides a convenient
pull-up resistor (R4) for the S2 switch. The on-chip

Figure 22. Example 3 Target Board Connection Diagram (C8051F30x)

VDD Wire

R4
100K

Reset

10,
ﬁ P0.0

Funnel

B Jumper @ P0.1

LED , P0.2

rm

Figure 23. Example 3 Target Board Connection Diagram (C8051F31x)

VDD P0.0
Wire

Reset

CPO + . Funnel
_ CPO
CPO -
VDD
Weak
Pullup

24 Rev. 1.1

SILICON LABORATORIES

AN138

weak pull-up for the port pin can replace R4 if
the port pin is configured as a digital input and
weak pull-ups are enabled.

The voltage at the CPO- input is used by
Comparator 0 to detect if the CPO+ signal is
high or low. When Comparator 0 is enabled as
a reset source, it will generate a reset when the
non-inverting (CP0O+) input is lower than the
inverting (CPO-) input.

The system remembers its state by storing a
single-byte <SLEEP> flag and a copy of the
counter in FLASH. The <SLEEP> flag is

defined to be TRUE if it has a value of 0x55.
All other values are defined as FALSE. On
every reset, the device decodes the <SLEEP>
variable stored in FLASH and the RSTSRC
register to determine its state. Note that if the
PORSF (Power On Reset Flag) is set in the
RSTSRC register, then all other flag bits in
that register are undefined. Table 13 shows
how the device decodes the RSTSRC register
to determine its state.

The techniques in this example can be used to
wake a device from Stop mode on SMBus
activity. An SMBus start signal consists of a

Table 13. Reset Source Register Decoding for Example 3

Reset Type RSTSRC Action Taken
Hardware, 0x01, Prepare the device for Stop mode.
Power On, 0x02, 1. Enable and configure Comparator 0.
Missing Clock 0x04, 2. Enable Comparator O as a reset source.
Detector, 3. Go into Stop Mode waiting for the User to press
Watchdog Timer, 0x08, the S2 switch to generate a comparator reset.
or FLASH error or 0x40
Comparator 0x20 If the <SLEEP> flag is set to TRUE, then prepare

ing

device to operate in Normal Mode and resume count-

1. Restore the <COUNT> (READ FLASH).

2. Set <SLEEP> flag to FALSE (ERASE FLASH).
3. Enable External Interrupt 0. This interrupt will
save the <COUNT> in FLASH, set the
<SLEEP> flag, and put the CPU in Stop mode
when S2 is pressed.

If the <SLEEP> flag is set to FALSE, start counting at
zero. This condition only happens the first time after a
firmware download or if power is lost while the device
is in Normal mode.

1. Set <COUNT> to zero.

2. Enable External Interrupt O.

The device should now be operating in Normal mode.

SILICON LABORATORIES

Rev. 1.1

25

AN138

falling edge on SDA while SCL is high. When a
start condition is detected, the comparator resets
the device. If the device is a slave, it will NACK
the first transfer (considered a “wakeup” signal),
but respond to all transfers that follow it. Figure 24
shows a possible connection diagram.

Figure 24. Example Wake-On-SMBus
Connection Diagram

SDA

SMBus

SCL

CPO + +
cPo - — - €0

Example 4: 32.768 kHz Watch Crystal
Low-Power Startup Procedure

This example shows how to start an external
32.768 kHz watch crystal in low power applica-
tions. Since a watch crystal can take longer than
one second to start, the device goes into Idle mode
after turning on the external oscillator. At 100 ms
intervals, Timer 2 generates an interrupt and wakes
the device to check the XTLVLD flag. Once the
watch crystal has started, the internal oscillator is
disabled and the system uses the crystal as the sys-
tem clock source.

26 Rev. 1.1

SILICON LABORATORIES

AN138

Software Examples

Example 1A: ADC Sampling System (Minimized “Active” Time)

A e
// ADC_A F30x.c

/mm e e -
// Copyright 2003 Cygnal Integrated Products, Inc.

//

// AUTH: FB

// DATH: 23 JAN 03

//

// This example captures ADC samples at a rate of 10 Hz from P0.0 and is clocked
// from a 32.768 kHz watch crystal. This program keeps the CPU in Idle mode

// until a Timer2 overflow. The Timer2 interrupt turns on the ADC and internal
// oscillator, takes a sample, then turns the ADC and the internal oscillator

// off to save power. While peak current increases when the internal oscillator
// 1is turned on, the power saved by minimizing the time needed to take a sample
// is more than the power consumed by increasing the system clock frequency.

//

//

// Target: C8051F30x

//

// Tool chain: KEIL Eval ‘c’

//

ettt
// Includes

#include <c8051£300.h> // SFR declarations
#include <math.h>

et bttt
// 16-bit SFR Definitions for ‘F30x
/e o
sfrl6 DP = 0x82; // data pointer
sfrle TMR2RL = Oxca; // Timer2 reload value
sfrle TMR2 = Oxcc; // Timer2 counter
sfrl6é PCAOCP1 = 0xe9; // PCAO Module 1 Capture/Compare
sfrl6 PCAOCP2 = 0Oxeb; // PCAO Module 2 Capture/Compare
sfrl6 PCAO = 0xf9; // PCAO counter
sfrl6 PCAOCPO = Oxfb; // PCAO Module 0 Capture/Compare
ettt
// Global CONSTANTS
e
#define INTCLK 24500000 / 8 // Internal Oscillator frequency
// in Hz (divide by 8 mode)
#define EXTCLK 32768 // Frequency for 32.768 kHz External
// crystal oscillator
#define SAMPLERATE 10 // ADC Sampling Rate in Hz
sbit LED = P0"2; // LED="1’ means ON
sbit SW2 = P0"3; // SW2='0’" means switch pressed

Rev. 1.1 27

SILICON LABORATORIES

AN138

void SYSCLK_Init (void) ;

void PORT Init (void);

void Crystal Stabilize (void);
void Timer2 Init (int counts);
void Timer2 ISR (void);

void main (void) {

// disable watchdog timer

PCAOMD &= ~0x40; // WDTE = 0 (clear watchdog timer
// enable)

PORT Init(); // initialize the Crossbar and GPIO

SYSCLK_Init(); // start external oscillator

Timer2 Init (EXTCLK/8/SAMPLERATE) ; // configure Timer2 to overflow at

// <SAMPLERATE> times per second

EA = 1; // enable global interrupts
while (1) {
PCON |= 0x01; // put the device in Idle mode

}
}
/e
// SYSCLK Init
ettt
//

// This routine initializes the system clock to use the external 32.768 kHz
// watch crystal as its clock source and disables the internal oscillator.

void SYSCLK Init (void)
{

int 1i; // delay counter

OSCXCN = 0x61; // start external oscillator

for (i=0; i < 256; i++) ; // wait for osc to start up

while (! (OSCXCN & 0x80)) ; // wait for crystal osc. to settle
Crystal Stabilize(); // wait for crystal osc. to stablilize

28 Rev. 1.1

SILICON LABORATORIES

AN138

OSCXCN = 0x60; // decrease crystal drive current
RSTSRC = 0x04; // enable missing clock detector
OSCICN = 0x08; // switch to external oscillator
}
J e
// Crystal Stabilize
e e
//
// Low-frequency crystal stabilization wait routine:
//

// This routine measures the period of the external oscillator with respect

// to the internal oscillator and loops until the external oscillator period is
// measured to be within 4 internal oscillator periods for 500 cycles in

// a row. This is only necessary for tuning fork crystals, which have

// abnormally long stabilization times (on the order of seconds).

// Assumes that the internal oscillator operating in divide-by-8 mode is
// selected as the system clock source. Also assumes that the external
// oscillator has been enabled, configured, and is oscillating.

// Here we measure the number of system clocks in 8 “EXTCLK/8” periods.
// We compare successive measurements. When we obtain 500 measurements
// in a row that are all within 4 system clocks of each other the

// routine will exit. This condition will only occur once the crystal
// oscillator has fully stabilized at its resonant frequency.

// Note that this can take several seconds.

void Crystal Stabilize (void)

{
int current, last; // used in osc. stabilization check
int tolerance count;

// init PCAOQ
PCAOCN = 0x00; // Stop counter; clear all flags
PCAQOMD 0x0b; // PCA counts in IDLE mode;

// EXTCLK / 8 is time base;

// overflow interrupt is enabled

// init Timer0

TCON &= ~0x30; // Stop timer; clear TFO

TMOD &= ~0x0f; // Timer0 in 16-bit counter mode
TMOD |= 0x01;

CKCON |= 0x08; // Timer(O counts SYSCLKs

tolerance count = 500; // wait for 500 external cycles in

// a row to lie within 4 internal
// clocks of each other

current = 0;
do {
PCAOCN = 0x00;
PCAOL = OxFF; // set PCA time base to ‘-1’

PCAOH = OxFF;
TCON &= ~0x30;

Rev. 1.1 29

SILICON LABORATORIES

AN138

THO
TLO

//
CR
whi

TRO =

CF

PCA
PCA
whi
TRO
las
cur
if

} e

} whil

// Configure the Crossbar and GPIO ports.

// PO.0 -
// PO.
// PO.
// PO.
// PO.
// PO.
// PO.
// PO.

~N oUW N

void PORT
{

XBRO
XBR2
POMDIN

POMDIN

0x00;
0x00;

start PCAO
= 1;
le (CEF == 0);
1;
= 0;
0L = -8;
OH = (=-8) >> 8;
le (CF == 0);
= 0;
t = current;
rent = (THO << 8) | TLO;
(abs (current - last) > 4)
tolerance count = 500;

1se {
tolerance count--;

e (tolerance count != 0);

ADC Input

XTAL1
XTAL2

C2D

Init (void)

= 0x0d;
= 0x40;

&= ~0x0c;

&= ~0x01;

{

//

/7
/7
//
//

//
//

//

//
//

/7
//
/7

init TO time base

wait for edge

Start TimerO

clear PCA overflow

set PCA to overflow in 8 cycles

falls outside bounds; reset
counter

in-bounds; update counter

skip crystal pins and P0.0 in crossbar
enable crossbar and weak pull-ups

configure XTALl and XTAL2 as analog
inputs
configure P0.0 as an analog input

// Configure Timer2 to auto-reload at interval specified by <counts>
// using EXTCLK / 8 as its time base.

void Time

{
TMR2CN

r2 Init (int counts)

= 0x01;

//

Stop Timer2;

30

Rev. 1.1

SILICON LABORATORIES

AN138

TMR2RL = -counts;
TMR2 = TMR2RL;
ET2 = 1;

TR2 = 1;

// Timer2 timebase is EXTCLK/S8
// Init reload value
// Init Timer?2

// enable Timer2 interrupts
// start Timer2

// This ISR is called at <SAMPLERATE> Hz on Timer2 overflows

//

void Timer2 ISR (void) interrupt 5

{
TF2H = 0;

OSCICN |= 0x04;
OSCICN &= ~0x08;

ADCOCN = 0x80;

REFOCN |= O0x0A;

AMX0OSL = 0x80;
ADCOCF = (INTCLK << 3);
ADCOCFE |= 0x01;

// Settling time starts at this point.

// clear Timer2 overflow flag

// Start Internal Oscillator
// Switch to Internal Oscillator

// enable ADC

// Select voltage reference and enable
// bias generator

// ADC in single-ended mode sampling P0.0
// Set SAR clock frequency to ~ 3MHz
// Set PGA gain

Sampling should not start until

// the appropriate settling time has passed. Each SYSCLK cycle is 326.5 ns.

ADOINT = 0;
ADOBUSY = 1;
while (!ADOINT) ;

ADOEN = 0;
REFOCN &= ~0x02;

ADC_READING = ADCO;

OSCICN |= 0x08;
OSCICN &= ~0x07;

// Clear conversion complete flag
// Start a conversion
// Wait until conversion complete

// Disable ADC
// Turn off bias generator

// Capture ADC Reading

// Switch to external oscillator
// disable internal oscillator

SILICON LABORATORIES

Rev. 1.1

31

AN138

Example 1B: ADC Sampling System (Minimized “Active” Peak
Current)

// ADC_B F30x.c

/=
// Copyright 2003 Cygnal Integrated Products, Inc.

//

// AUTH: FB

// DATH: 23 JAN 03

//

// This example captures ADC samples at a rate of 10 Hz from P0.0 and is clocked
// from a 32.768 kHz watch crystal. This program keeps the CPU in Idle mode

// until a Timer2 overflow. The Timer2 interrupt turns on the ADC, takes a

// sample, then turns it off to save power.

//

// This program is meant to be used as a comparison to ADC_A F30x to show that
// reducing the peak current required to take an ADC sample does not always

// save power. In this case, decreasing the SYSCLK frequency increased the

// average system current because the ADC was “on” for a longer period of time.
//

// Target: C8051F30x

//

// Tool chain: KEIL Eval ‘c’

//

ettt
// Includes

#include <c8051£300.h> // SFR declarations
#include <math.h>

[m e -
// 16-bit SFR Definitions for ‘F30x
/e
sfrl6 DP = 0x82; // data pointer
sfrle TMR2RL = Oxca; // Timer2 reload value
sfrle TMR2 = Oxcc; // Timer2 counter
sfrl6 PCAOCP1 = 0xe9; // PCAO Module 1 Capture/Compare
sfrl6 PCAOCP2 = 0Oxeb; // PCAO Module 2 Capture/Compare
sfrl6 PCAO = 0xf9; // PCAO counter
sfrl6 PCAOCPO = Oxfb; // PCAO Module 0 Capture/Compare
[m e -
// Global CONSTANTS
e
#define INTCLK 24500000 / 8 // Internal Oscillator frequency
// in Hz (divide by 8 mode)
#define EXTCLK 32768 // Frequency for 32.768 kHz External
// crystal oscillator
#define SAMPLERATE 10 // ADC Sampling Rate in Hz
sbit LED = P0"2; // LED='1’ means ON
sbit SW2 = P0"3; // SW2='0'" means switch pressed
/m e -

32 Rev. 1.1

SILICON LABORATORIES

AN138

//

Global VARIABLES

void SYSCLK_Init (void) ;
void PORT Init (void);

void Crystal Stabilize

(void) ;

void Timer2 Init (int counts);
void Timer2 ISR (void);

void main (void) {

// disable watchdog timer
PCAOMD &= ~0x40;

PORT Tnit () ;

SYSCLK Init();
TimerZ_Init(EXTCLK/S/SAMPLERATE);
EA = 1;

while (1) {

PCON |= 0x01;

/7
/7

//
//
//
//

/7

//

WDTE = 0 (clear watchdog timer
enable)
initialize the Crossbar and GPIO

start external oscillator
configure Timer2 to overflow at
<SAMPLERATE> times per second

enable global interrupts

put the device in idle mode

This routine initializes the system clock to use the external 32.768 kHz
watch crystal as its clock source and disables the internal oscillator.

void SYSCLK Init (void)

{

int 1i;
OSCXCN = 0x61;
for (i=0; 1 < 256; i++) ;

while (! (OSCXCN & 0x80)) ;

Crystal Stabilize();

OSCXCN = 0x60;

//

//

/7

//

//

delay counter
start external oscillator
wait for osc to start up

wait for crystal osc. to settle

decrease XFCN (crystal drive current)

SILICON LABORATORIES

Rev. 1.1

33

AN138

RSTSRC
OSCICN

0x04;
0x08;

// Crystal Stabilize

// enable missing clock detector
// switch to external oscillator

=

//

// Low-frequency crystal stabilization wait routine:

!/

// This routine measures the period of the external oscillator with respect
// to the internal oscillator and loops until the external oscillator period is

// measured to be within 4 internal oscillator periods for 500 cycles in
This is only necessary for tuning fork crystals,
// abnormally long stabilization times

// a row.

!/

// Assumes that the internal oscillator operating in divide-by-8 mode is
// selected as the system clock source.

// oscillator has been

//

// Here we measure the number of system clocks in 8 “EXTCLK/8” periods.
// We compare successive measurements.

enabled, configured,

Also assumes that the external

and is oscillating.

When we obtain 500 measurements

// in a row that are all within 4 system clocks of each other the

// routine will exit.

This condition will only occur once the crystal

// oscillator has fully stabilized at its resonant frequency.

//
// Note that this can take several seconds.
//
void Crystal Stabilize (void)
{
int current, last; //
int tolerance count;
// init PCAO
PCAOCN = 0x00; //
PCAOMD = 0x0b; //
//
//
// init TimerO
TCON &= ~0x30; //
TMOD &= ~0x0f; //
TMOD |= 0x01;
CKCON |= 0x08; //
tolerance count = 500; //
//
//
current = 0;
do {

PCAOCN = 0x00;
PCAQOL = OxFF;
PCAOH = OxFF;
TCON &= ~0x30;
THO = 0x00;
TLO 0x00;

//

//

which have
(on the order of seconds).

used in osc. stabilization check

Stop counter; clear all flags

PCA counts in IDLE mode;
EXTCLK / 8 is time base;

overflow interrupt is enabled

Stop timer; clear TFO

TimerO in 16-bit counter mode

TimerO counts SYSCLKs

wait for 500 external cycles in a row
to lie within 4 internal clocks of each

other

set PCA time base to

init TO time base

34

Rev. 1.1

SILICON LABORATORIES

AN138

// start PCAQ

CR = 1;

while (CF == 0);

TRO = 1;

CF =0

PCAOL -8;

PCAQOH = (-8) >> 8;

while (CF == 0);

TRO = 0;

last = current;

current = (THO << 8)

if (abs (current - last)
tolerance count = 500;

o~

TLO;
> 4) |

} else {
tolerance count--;

} while (tolerance count != 0);

// Configure the Crossbar and GPIO ports.

// P0.0 - ADC Input
// PO.
// PO.
// PO.
// PO.
// PO.
// PO.
// PO.

- XTALl
- XTAL2

- C2D

~N o 0w N

void PORT Init
{

(void)

XBRO = 0x0d;
XBR2 = 0x40;

POMDIN &= ~0x0c;

POMDIN &= ~0x01;

//
/7
//
//

/7
/7

//

//
//

/7
/7
/7

wait for edge

Start TimerO

clear PCA overflow

set PCA to overflow in 8 cycles

falls outside bounds; reset
counter

in-bounds; update counter

skip crystal pins and P0.0 in crossbar
enable crossbar and weak pull-ups

configure XTALl1l and XTAL2 as analog
inputs
configure P0.0 as an analog input

// Configure Timer2 to auto-reload at interval specified by <counts>

// using EXTCLK / 8 as its time base.
void Timer2 Init (int counts)

{
TMR2CN = 0x01;

/7
//

Stop Timer2;
Timer2 timebase is EXTCLK/S8

SILICON LABORATORIES

Rev. 1.1 35

AN138

TMR2RL = -counts;
TMR2 = TMR2RL;
ET2 = 1;

TR2 = 1;

/7
//
//
//

Init reload value
Init Timer2

enable Timer2 interrupts

start Timer2

// This ISR is called at <SAMPLERATE> Hz on Timer2 overflows

1/

void Timer2 ISR (void)

{

TEF2H = 0;

ADCOCN = 0x80;

REFOCN |= O0x0A;

AMXO0SL = 0x80;

ADCOCF = (EXTCLK << 3);

ADCOCFEF |= 0x01;

// settling time starts at this point,
// the appropriate settling time has passed. At this point, we using

interrupt 5

//

/7

//
//

//

/7

//

sampling

clear Timer2 overflow flag

enable ADC

Select voltage reference and enable

bias generator

ADC in single-ended mode sampling P0.0

Set SAR clock frequency to ~32kHz

Set PGA gain

// a 32.768 kHz so each SYSCLK cycle is 30.5 us.

ADOINT = 0;
ADOBUSY = 1;
while (!ADOINT) ;

ADOEN = 0;
REFOCN &= ~0x02;

ADC READING = ADCO;

//
//

should not start until

Clear conversion complete flag

Start a conversion

// Wait until conversion complete

/7
//
/7

Disable ADC

Turn off bias generator

Capture ADC Reading

36

Rev. 1.1

SILICON LABORATORIES

AN138

Example 2: Waking From Idle Mode on UART Activity (C8051F30x)

// UART_Idle F30x.c

/mm e e -
// Copyright 2002 Cygnal Integrated Products, Inc.

//

// AUTH: FB

// DATE: 6 NOV 02

//

//

// This example shows how a system can wake from Idle mode upon receiving

// a wakeup signal on the UART RX line. The system operates on the internal

// oscillator divided by 8 in Normal mode. When in Idle mode, the system uses
// the external oscillator in C-mode as its clock source. This code assumes
// a 33pF capacitor is present between XTAL2 and GND. The capacitor causes
// oscillation between 5kHz and 10kHz when the external oscillator drive

// current (XFCN) is set to its lowest value.

//

// When in Normal mode, the program gets one character from the UART at 2400
// baud, transmits a string containing the character, and goes back into Idle
// mode. The system consumes approximately 4.2 uA in Idle mode and 1.5 mA in
// Normal mode.

//

// The wakeup character must have only one falling edge followed by only one
// rising edge. Since the start bit is a ‘0’ and the stop bit is a ‘1’,

// example wakeup characters are 0x00, OxFF, and 0xF0 but not OxOF. Keep in
// mind that characters are sent LSB first.

//

// The text file “FF H.txt” contains an OxFF character followed by ‘H’. It
// can be sent over UART to wake up the system from Idle mode.

//

// Target: C8051F30x

// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

et
// Includes

#include <c8051£300.h> // SFR declarations
#include <stdio.h>
#include <math.h>

e
// 16-bit SFR Definitions for ‘F30x
et
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR2RL = Oxca; // Timer2 reload value

sfrl6 TMR2 = Oxcc; // Timer2 counter

sfrl6 PCAOCP1 = 0xe9; // PCAO Module 1 Capture/Compare

sfrl6 PCAOCP2 = Oxeb; // PCAO Module 2 Capture/Compare

sfrl6 PCAQ = 0xf9; // PCAO counter

sfrl6 PCAOCPO = Oxfb; // PCAO Module 0 Capture/Compare

/e o
// Global CONSTANTS

[mm e

Rev. 1.1 37

SILICON LABORATORIES

AN138

#define INTCLK 24500000 / 8 // Internal Oscillator frequency
// in Hz (divide by 8 mode)
#define EXTCLK 5000 // Frequency of external capacitor
// oscillator
#define BAUDRATE 2400 // Baudrate in bits per second
sbit LED = P0"2; // LED='"1’ means ON
sbit SW2 = P0"3; // SW2='0’ means switch pressed
sbit TX0 PIN = P0"4; // UART TX0 pin
sbit RX0_PIN = P0"5; // UART RX0 pin
J e R R
// Function PROTOTYPES
e
void PORT Init (void);
void UARTO Init (void);

void INTO ISR (void);

// Flag indicating system is in Normal
// mode operating at 3.0625 MHz

void main (void) {
char c;

// Disable Watchdog timer

PCAOMD &= ~0x40; // WDTE = 0 (clear watchdog timer
// enable)

PORT Init (); // initialize crossbar and GPIO

UARTO_Init (); // initialize UARTO

ITOICF = 0x05; // Configure External Interrupt 0 to
// generate an interrupt on the falling
// edge of P0.5 (UART RX signal)

EA = 1; // Enable global interrupts

while (1) {

if (UART_ACTIVE) {
c = getchar(); // Get the next character

printf ("\nThe character you entered was:

printf ("\n\nTransmit an (0xFF)

c);

o ”
%c”,

to wake up the system.\n”);

38

Rev. 1.1

SILICON LABORATORIES

AN138

UART ACTIVE = O;

POMDOUT &= ~0x10;
TX0 PIN = 1;

RENO = 0;
OSCXCN = 0x50;
RSTSRC = 0x00;

OSCICN = 0x08;

TR1 = 0;
EXO = 1;
PCON |= 0x01;

!/

!/

//
//

//

//

//

//
!/

//

//

!/

Make device ready for Idle mode

Make TX0 PIN open-drain
Make TX0 PIN high impedance

Disable UART reception
Start external oscillator in C mode
Disable missing clock detector

Switch to external oscillator
and disable internal oscillator

Disable Timerl
Enable External Interrupt O

Go into Idle mode

// This Interrupt Service Routine is called when a UART character is received

// when the system is in Idle mode.

//

// It enables the UART and sets the system state variable <UART_ACTIVE> to ‘1’.

!/

void INTO ISR (void) interrupt 0 {

OSCICN = 0x04;

EX0O = 0;
TR1 = 1;
RENO = 1;
POMDOUT |= 0x10;

UART ACTIVE = 1;

//
//

//

//
//

//

!/

Enable Internal oscillator in divide
by 8 mode and switch to it

Disable External InterruptO

Enable Timerl
Enable UART reception

enable TX0 as a push-pull output

Indicate UART is ready for communication

SILICON LABORATORIES

Rev. 1.1

39

AN138

//

// Configure the Crossbar and GPIO ports.

// PO.0 -

// PO.1 -

// P0.2 - LED (push-pull)

// P0.3 - SW2

// PO.4 - UART TX (push-pull)

// P0O.5 - UART RX

// PO.6 -

// P0.7 - C2D

//

void PORT Init (void)

{
XBRO = 0x08; //
XBR1 = 0x03; //
XBR2 = 0x40; //
POMDOUT |= 0x10; //
POMDIN &= ~0x08; //

}

//

// UARTO Init

//

//

// Configure the UARTO using Timerl, for

//

void UARTO Init (void)

{

SCONO = 0x10; //
//
//
//
//
if (INTCLK/BAUDRATE/2/256 < 1) {
TH1 = - (INTCLK/BAUDRATE/2) ;
CKCON |= 0x10; //
} else if (INTCLK/BAUDRATE/2/256 < 4)
TH1 = - (INTCLK/BAUDRATE/2/4);
CKCON &= ~0x13;
CKCON |= 0x01; //
} else if (INTCLK/BAUDRATE/2/256 < 12)
TH1 = - (INTCLK/BAUDRATE/2/12);
CKCON &= ~0x13; //
} else {
TH1 = - (INTCLK/BAUDRATE/2/48);
CKCON &= ~0x13;
CKCON |= 0x02; //
}
TL1 TH1; //
TMOD &= ~0xf0; //
TMOD |= 0x20;
TR1 = 1; //
TIO 1; //

skip XTAL2 in the crossbar assignments

UARTO TX and RX pins enabled

Enable crossbar and weak pull-ups
enable TX0 as a push-pull output
Configure XTAL2 as an analog input

<BAUDRATE> and 8-N-1.

SCONO: 8-bit variable bit rate

level of STOP bit is ignored

RX enabled
ninth bits are zeros
clear RIO and TIO bits

TIM = 1; SCAl:0 = xx
{

TIM = 0; SCAl1:0 = 01
{

TIM = 0; SCAl1:0 = 00

T1M = 0; SCAl1:0 = 10

set Timerl to reload value

TMOD: timer 1 in 8-bit autoreload

START Timerl
Indicate TX0 ready

40

Rev. 1.1

SILICON LABORATORIES

AN138

Example 3: Waking from Stop Mode Using a Comparator
(C8051F30x)

//
//
1/
!/
1/
//
//
//
!/
!/
//
//
//
//
!/
!/
!/
//
//
//
!/
!/
//
//
//
//
!/
!/
//
//
//
//
!/
!/
1/
//
//
//
!/
!/
1/
//
//
//
!/

1/
!/

#i
#1i

Copyright 2003 Cygnal Integrated Products, Inc.

AUTH: FB / GV
DATE: 23 JAN 03

This example shows how a sleep mode can be implemented in a system using
the Stop mode of the CPU. This application implements a software counter
that is incremented approximately every second when the device is in
Normal mode. If the system is powered down when it is in Stop mode, the
counter resumes counting the next time it enters Normal mode. If the
system is powered down while it is in Normal mode, the counter will reset
to zero. Every time the counter is updated, the current value of the
counter is printed to the UART.

The S2 switch toggles the system back and forth between Stop mode and
Normal mode. On power up, the system is in Stop mode. The system enters
Normal mode when the S2 switch on the target board is pressed, causing
a Comparator 0 reset.

Upon entering Normal mode, External Interrupt 0 (/INTO) is activated
to sense the S2 switch and Comparator 0 is disabled as a reset source.
Pressing S2 in Normal mode will cause the INTO ISR to put the system
in Stop mode.

This program uses Comparator 0 as a reset source. When S2 on the target
board is pressed, the the CP0+ input drops below CPO- (VDD/2). This causes
Comparator 0 to issue a system reset.

For this example, it is necessary to make the following connections:
1. 0.3 sSw -> P0.0
2. P0.2 -> PO.1
3. P0O.2 LED -> P0.2

P0.1 is used as a reference voltage for the comparator and should be
approximately halfway between VDD and GND. When the LED is connected
to P0.2 (high-impedance with weak pull-up), the voltage on P0.2 1is
around 1.7 Volts.

Since this program writes to FLASH, the VDD monitor is enabled.

Target: C8051F30x
Tool Chain: KEIL C51 6.03 / KEIL EVAL C51

nclude <c8051£300.h>
nclude <stdio.h>

Rev. 1.1

SILICON LABORATORIES

41

AN138

J e R R
sfrl6 DP = 0x82; // data pointer
sfrl6 TMR2RL = 0Oxca; // Timer2 reload value
sfrl6e TMR2 = Oxcc; // Timer2 counter
sfrl6 PCAOCP1 = 0xe9; // PCAO Module 1 Capture/Compare
sfrl6 PCAOCP2 = 0Oxeb; // PCAO Module 2 Capture/Compare
sfrl6 PCAO = 0x£f9; // PCAO counter
sfrl6 PCAOCPO = Oxfb; // PCAO Module 0 Capture/Compare
e e
// Global Constants
J e R
#define SYSCLK 3062500 // System Clock Frequency in Hz
#define BAUDRATE 9600 // UART Baud Rate in bps
sbit S2 = P0"0; // Switch on Target Board
J e R
// Global Variables
e et
long COUNT = O; // Software Counter
char code SLEEP at 0x1000; // Flag that indicates device

// is in a low-power state. The

// flag is TRUE when it contains

// an 0x55 pattern. Any other

// pattern indicates FALSE.
long code COUNT_SAVE _at 0x1001; // Non-volatile storage for

// the current count
e R R R NN
// Function Prototypes
J e

void SYSCLK Init (void);

void PORT Init (void);

void CPTO Init (void);

void ResetSRC_Init (void);

void EX0 Init(void);

void UARTO Init (void);

void Check Reset Source (void);
void wait ms(int ms);

void main (void)

{

PCAOMD &= ~0x40; // disable the watchdog timer
RSTSRC = 0x02; // enable VDD monitor

42 Rev. 1.1

SILICON LABORATORIES

AN138

VO

{

EXO Init(); // initialize External Interrupt O
PORT Init (); // initialize crossbar and GPIO
SYSCLK_Init(); // initialize the system clock
UARTO Init(); // initialize UART communication
EA = 1; // Enable global interrupts

Check Reset Source(); // check whether the source of

// of the last reset was due to
// a power-on condition or due to
// a comparator

while (1) {

// print current count
printf (“Current Count: %1d\n”, COUNT) ;
COUNT++;

// wait for one second
wait ms(1000);

This routine is called on every device reset.

On each comparator reset, it restores the value of <COUNT> from the

<COUNT_ SAVE> variable stored in FLASH if the device was in a low-power state
prior to the reset(i.e. the SLEEP flag in FLASH was set to an 0x55 pattern).
If the <SLEEP> flag was not set then the <COUNT> variable is set to zero and
the device starts normal mode operation.

On each power-on reset or HW pin reset, the device goes into a low power
mode waiting for a comparator reset.

id Check Reset Source (void)

char EA SAVE; // interrupt state preservation
char xdata * idata ptrSLEEP = &SLEEP; // FLASH write pointer

printf (“\nDevice Reset -- RESET SOURCE = 0x%02bX\n\n”, RSTSRC) ;

// check for power-on, HW pin, watchdog timer or missing clock detector reset
1if (RSTSRC & O0x4F) {

CPTO_Init(); // initialize comparator O

ResetSRC Init(); // set comparator 0 as a reset source

printf (“Entering Stop Mode\n\n”);
PCON |= 0x02; // put device in stop mode

Rev. 1.1 43

SILICON LABORATORIES

AN138

// check for a comparator reset
else if(RSTSRC & 0x20) {

while (!S2); // wait while switch down
wait ms(5); // wait until switch stabilizes

// if the device was in a low-power state (<SLEEP> flag is set to TRUE),
// then resume counting, otherwise start counting from zero
1f (SLEEP == 0x55) {

// 1. restore <COUNT>
COUNT COUNT SAVE;

// 2. Set <SLEEP> flag to FALSE by erasing the FLASH page containing

// the variable

EA SAVE = EA; // preserve interrupt state

EA = 0; // disable interrupts

PSCTL = 0x01; // MOVX writes write FLASH byte

FLKEY = 0xA5; // FLASH lock and key sequence 1

FLKEY = O0xF1; // FLASH lock and key sequence 2

*ptrSLEEP = 0x00; // clear SLEEP flag to indicate device
// 1s no longer in Stop mode

PSCTL = 0x00; // disable FLASH writes/erases

EA = EA SAVE; // restore interrupt state

// 3. Enable External Interrupt O
EX0 = 1;

// otherwise start counting at zero

else{
// 1. Set <COUNT> to zero
COUNT = 0;

// 2. Enable External Interrupt 0
EXO = 1; // Enable External InterruptO

// handle error condition for unrecognized reset source

else {
printf ("\n**UNRECOGNIZED RESET SOURCE = 0x%02bX\n”, RSTSRC) ;
PCON |= 0x02; // place device in Stop mode
}
}
/) m e e
// wait_ms
[
//
// This routine inserts a delay of <ms> milliseconds.
//

void wait ms(int ms)

{
TMR2CN = 0x00; // Configure Timer 2 as a l6-bit

44 Rev. 1.1

SILICON LABORATORIES

AN138

TMR2RL = - (SYSCLK/1000/12);

TMR2 = TMR2RL;

TR2 = 1;

while (ms) {

TF2H = 0;
while (!TF2H) ;
ms--;

}

TR2 = 0;

void INTO ISR (void) interrupt 0

{

// pointer to COUNT

unsigned char* ptrCOUNT = &COUNT;

// FLASH write pointer

char xdata * idata ptrCOUNT SAVE

// FLASH write pointer

char xdata * idata ptrSLEEP = &SLEEP;

char EA SAVE =

printf (“Entering Stop Mode\n\n”) ;

EA = 0;

PSCTL = 0x03;
FLKEY = OxA5;
FLKEY 0xF1;
*ptrCOUNT SAVE

PSCTL = 0x01;

EA;

= 0;

/7
//

//

/7
//

//

//

//

/7
/7
/7
/7

//

timer counting SYSCLKs/12
Timer 2 overflows at 1 kHz

Start Timer 2

wait until timer overflows
decrement ms

Stop Timer 2

&COUNT SAVE;

save interrupt status

disable interrupts

MOVX writes erase FLASH page
FLASH lock and key sequence 1
FLASH lock and key sequence 2
initiate page erase

MOVX writes write FLASH byte

// copy <COUNT> to the <COUNT SAVE> variable in FLASH

FLKEY
FLKEY

0xA5;
OxF1;

ptrCOUNT SAVE[Q] = ptrCOUNTI[O];

FLKEY = OxA5;
FLKEY = OxF1;

ptrCOUNT SAVE[1] = ptrCOUNT[1];

FLKEY = OxA5;

/7
//
//

//
//
/7

//

FLASH lock and key sequence 1
FLASH lock and key sequence 2
copy first byte

FLASH lock and key sequence 1
FLASH lock and key sequence 2
copy second byte

FLASH lock and key sequence 1

SILICON LABORATORIES

Rev. 1.1

45

AN138

FLKEY = 0xF1; // FLASH lock and key sequence 2
ptrCOUNT SAVE[2] = ptrCOUNT[2]; // copy third byte

FLKEY = 0xA5; // FLASH lock and key sequence 1
FLKEY = 0xF1; // FLASH lock and key sequence 2
ptrCOUNT SAVE[3] = ptrCOUNT[3]; // copy fourth byte

FLKEY = 0xA5; // FLASH lock and key sequence 1
FLKEY = O0xF1; // FLASH lock and key sequence 2
*ptrSLEEP = 0x55; // set SLEEP flag to indicate device

// is in Stop mode and <COUNT> has
// been saved in FLASH

PSCTL = 0x00; // disable FLASH writes and erases
EX0 = 0; // disable External Interrupt O
EA = EA SAVE; // restore interrupt status
while (!S2); // wait while switch down
CPTO_Init(); // initialize comparator O
ResetSRC Init(); // set comparator 0 as a reset source
PCON |= 0x02; // put the device in Stop mode
}
[e
// Initialization Subroutines
/e
[
// SYSCLK Init
[

// This routine initializes the system clock to use the precision internal
// oscillator divided by 8 as its clock source.

void SYSCLK Init (void)
{

OSCICN = 0x04; // SYSCLK is internal osc.
// in divide by 8 mode running
// at 3.0625 MHz

[
// PORT Initialization

[m e
//

// Configure the Crossbar and GPIO ports

//

// P0O.0 - CPO+ input (connected to S2)

// P0O.1 - CPO- input

// P0.2 - Comparator Voltage Reference (connected to P0O.1)

// P0.3 - Used as a weak pull-up for P0.0

//

void PORT Init (void)

46 Rev. 1.1

SILICON LABORATORIES

AN138

XBRO = 0x07; // skip P0.0 - P0.2 in crossbar
XBR1 = 0x03; // Enable UARTO
XBR2 = 0x40; // Enable crossbar and weak pull-ups
POMDOUT |= 0x10; // TX0 is a push-pull output
}
/e
// ComparatorO Initialization
=
//
// Initialize Comparator 0 to detect when the SW2 switch is pressed.
//

void CPTO Init (void)
{

POMDIN = ~0x03; // Comparator 0 inputs (P0.0
// and P0.1) are analog inputs.

CPTOCN = Ox8F; // Comparator enabled with maximum
// positive and negative hysteresis

CPTOMX = 0x00; // PO.1 = Inverting Input for
// the comparator
// P0.0 = Non-Inverting Input for the
// comparator

wait ms(500); // wait for comparator inputs to settle
CPTOCN &= ~0x30; // clear interrupt flags
}
[mm e
// Reset Source Initialization
ettt
//
// Configure Comparator 0 as a reset source.
//

void ResetSRC Init (void)
{

RSTSRC = 0x22; // Comparator 0 is a reset source
// VDD Monitor enabled

1/

// Configure External Interrupt O to generate an interrupt on the falling
// edge of P0.0.

//

void EX0 Init (void)

Rev. 1.1 47

SILICON LABORATORIES

AN138

ITOICF = 0x00; // Configure External Interrupt 0 to
// generate an interrupt on the falling
// edge of P0.0 (S2 switch)

/e
// UARTO Init
[mm e
//
// Configure the UARTO using Timerl, for <BAUDRATE> and 8-N-1.
//
void UARTO Init (void)
{
SCONO = 0x10; // SCONO: 8-bit variable bit rate
// level of STOP bit is ignored
// RX enabled
// ninth bits are zeros
// clear RIO and TIO bits
if (SYSCLK/BAUDRATE/2/256 < 1) {
TH1 = - (SYSCLK/BAUDRATE/2) ;
CKCON |= 0x10; // T1IM = 1; SCAl:0 = xx
} else if (SYSCLK/BAUDRATE/2/256 < 4) {
TH1 = - (SYSCLK/BAUDRATE/2/4);
CKCON &= ~0x13;
CKCON |= 0x01; // TIM = 0; SCAl:0 = 01
} else if (SYSCLK/BAUDRATE/2/256 < 12) {
TH1 = - (SYSCLK/BAUDRATE/2/12);
CKCON &= ~0x13; // T1M = 0; SCAl:0 = 00
} else {
TH1 = - (SYSCLK/BAUDRATE/2/48);
CKCON &= ~0x13;
CKCON |= 0x02; // T1M = 0; SCAl:0 = 10
}
TL1 = THI1; // set Timerl to reload value
TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
TMOD |= 0x20;
TR1 = 1; // START Timerl
TIO = 1; // Indicate TX0 ready

48 Rev. 1.1

SILICON LABORATORIES

AN138

Example 3: Waking from Stop Mode Using a Comparator
(C8051F31x)

//
//
1/
!/
1/
//
//
//
!/
!/
//
//
//
//
!/
!/
!/
//
//
//
!/
!/
//
//
//
//
!/
!/
//

//
//
!/
!/
1/
//
//
//
!/
!/
1/
//
//
//
!/
!/

!/
//

#1i
#i

Copyright 2003 Cygnal Integrated Products, Inc.

AUTH: FB
DATE: 23 JAN 03

This example shows how a sleep mode can be implemented in a system using
the Stop mode of the CPU. This application implements a software counter
that is incremented approximately every second when the device is in
Normal mode. If the system is powered down when it is in Stop mode, the
counter resumes counting the next time it enters Normal mode. If the
system is powered down while it is in Normal mode, the counter will reset
to zero. Every time the counter is updated, the current value of the
counter is printed to the UART.

The S2 switch toggles the system back and forth between Stop mode and
Normal mode. On power up, the system is in Stop mode. The system enters
Normal mode when the S2 switch on the target board is pressed, causing
a Comparator 0 reset.

Upon entering Normal mode, External Interrupt 0 (/INTO) is activated
to sense the S2 switch and Comparator 0 is disabled as a reset source.
Pressing S2 in Normal mode will cause the INTO ISR to put the system
in Stop mode.

This program uses Comparator 0 as a reset source. When S2 on the target
board is pressed, the the CP0+ input drops below CPO- (VDD/2). This causes
Comparator 0 to issue a system reset.

For this example, it is necessary to make the following connections:
1. 0.7 sSw -> P0.0O
2. P0O.7 sw ->P1.0
3. P3.3 -> P1.1
4. P3.3 LED -> P3.3

P0.1 is used as a reference voltage for the comparator and should be
approximately halfway between VDD and GND. When the LED is connected
to P0.2 (high-impedance with weak pull-up), the voltage on P0.2 is
around 1.7 Volts.

Since this program writes to FLASH, the VDD monitor is enabled.

Target: C8051F31x
Tool Chain: KEIL C51 6.03 / KEIL EVAL C51

nclude <c8051f310.h>
nclude <stdio.h>

Rev. 1.1

SILICON LABORATORIES

49

AN138

[m e -
// 16-bit SFR Definitions for ‘F31lx
[mm e
sfrl6 DP = 0x82; // data pointer
sfrle TMR2RL = Oxca; // Timer2 reload value
sfrle TMR2 = Oxcc; // Timer2 counter
sfrl6 TMR3 = 0x94; // Timer3 counter
sfrl6 TMR3RL = 0x92; // Timer3 reload value
sfrl6 PCAOCPO = Oxfb; // PCAO Module 0 Capture/Compare
sfrl6 PCAOCP1 = 0xe9; // PCAO Module 1 Capture/Compare
sfrl6 PCAOCP2 = Oxeb; // PCAO Module 2 Capture/Compare
sfrl6 PCAOCP3 = 0Oxed; // PCAO Module 3 Capture/Compare
sfrl6 PCAOCP4 = Oxfd; // PCAO Module 4 Capture/Compare
sfrl6 PCAO = 0x£f9; // PCAO counter
sfrl6 ADCO = 0xbd; // ADC Data Word Register
sfrl6 ADCOGT = 0xc3; // ADCO Greater-Than
sfrl6 ADCOLT = 0xc5; // ADCO Less-Than
e
// Global Constants
/) mm e
#define SYSCLK 3062500 // System Clock Frequency in Hz
#define BAUDRATE 9600 // UART Baud Rate in bps
sbit S2 = P0"0; // Switch on Target Board
/mm e e -
// Global Variables
/m e -
long COUNT = 0; // Software Counter
char code SLEEP _at_ 0x1000; // Flag that indicates device

// is in a low-power state. The

// flag is TRUE when it contains

// an 0x55 pattern. Any other

// pattern indicates FALSE.
long code COUNT SAVE _at_ 0x1001; // Non-volatile storage for

// the current count
[m e -
// Function Prototypes
e

void SYSCLK Init (void);

void VDMON Init (void);

void PORT Init (void);

void CPTO Init (void);

void ResetSRC_Init (void);

void EX0 Init(void);

void UARTO Init (void);

void Check Reset Source (void);
void wait ms(int ms);

50 Rev. 1.1

SILICON LABORATORIES

AN138

void main (void)

{
PCAOMD &= ~0x40;

VDMON Init () ;

EX0 Tnit();
PORT Init ();
SYSCLK Init();
UARTO Init();

EA = 1;

Check Reset Source();

while (1) {

// print current count
printf (“Current Count:

COUNT++;

// wait for one second

wait ms(1000);

//
//
//
/7

//
//

//

/7
/7

//

COUNT) ;

disable the watchdog timer

initialize VDD monitor

initialize
initialize
initialize
initialize

External Interrupt O
crossbar and GPIO
the system clock
UART communication

Enable global interrupts

check whether the source of

of the last reset was due to
// a power-on condition or due to
a comparator

// This routine is called on every device reset.

// On each comparator reset,

it restores the value of <COUNT> from the

// <COUNT_SAVE> variable stored in FLASH if the device was in a low-power state

// prior to the reset(i.e.

the SLEEP flag in FLASH was set to an 0x55 pattern).

// If the <SLEEP> flag was not set then the <COUNT> variable is set to zero and
// the device starts normal mode operation.

// On each power-on reset or HW pin reset,
// mode waiting for a comparator reset.

void Check Reset Source (void)

{
char EA SAVE;

char xdata * idata ptrSLEEP

printf ("\nDevice Reset -- RESET SOURCE

the device goes into a low power

// interrupt state preservation
// FLASH write pointer

0x%02bX\n\n”, RSTSRC) ;

SILICON LABORATORIES

Rev. 1.1

51

AN138

// check for power-on, HW pin, watchdog timer or missing clock detector reset

1f (RSTSRC & O0x4F) {
CPTO Init();
ResetSRC Init();

printf (“Entering Stop Mode\n\n”);
PCON |= 0x02;
// check for a comparator reset

else if(RSTSRC & 0x20) {

while (!S2);
wait ms(5);

// if the device was in a low-power state

// initialize comparator 0
// set comparator 0 as a reset source

// put device in stop mode

// wait while switch down
// wait until switch stabilizes

(<SLEEP> flag is set to TRUE),

// then resume counting, otherwise start counting from zero

if (SLEEP == 0x55) {

// 1. restore <COUNT>
COUNT = COUNT SAVE;

// 2. Set <SLEEP> flag to FALSE by erasing the FLASH page containing

// the variable
EA SAVE = EA;

EA = 0;

PSCTL = 0x01;
FLKEY = 0xA5;
FLKEY = 0OxF1;

*ptrSLEEP = 0x00;

PSCTL = 0x00;
EA = EA SAVE;

// 3. Enable External Interrupt O

EXO = 1;

// otherwise start counting at zero

else{
// 1. Set <COUNT> to zero
COUNT = O0;

// 2. Enable External Interrupt O

EXO = 1;

// handle error condition for unrecognized reset source

else {

printf ("\n**UNRECOGNIZED RESET SOURCE = 0x%02bX\n”,

PCON |= 0x02;

// preserve interrupt state

// disable interrupts

// MOVX writes write FLASH byte

// FLASH lock and key sequence 1

// FLASH lock and key sequence 2

// clear SLEEP flag to indicate device
// is no longer in Stop mode

// disable FLASH writes/erases

// restore interrupt state

// Enable External InterruptO

RSTSRC) ;

// place device in Stop mode

52

Rev. 1.1

SILICON LABORATORIES

AN138

1/

// This routine inserts a delay of <ms> milliseconds.

1/

void wait ms(int ms)

{
TMR2CN = 0x00;

//
//

TMR2RL = - (SYSCLK/1000/12); //

TMR2 = TMR2RL;

TR2 = 1;

while (ms) {

/7

TF2H = 0;
while (! TF2H) ; //
ms--; //
}
TR2 = 0; //
}
// Interrupt Service Routines

void INTO ISR (void) interrupt 0

{

// pointer to COUNT
unsigned char* ptrCOUNT = &COUNT;

// FLASH write pointer
char xdata * idata ptrCOUNT SAVE = &COUNT SAVE;

// FLASH write pointer
char xdata * idata ptrSLEEP = &SLEEP;

char EA SAVE =

EA; //

printf (“Entering Stop Mode\n\n”) ;

EA = 0;

PSCTL = 0x03;
FLKEY = OxA5;
FLKEY = 0xF1;

*ptrCOUNT_ SAVE

PSCTL = 0x01;

//

//
//
//

= 0; //

/7

Configure Timer 2 as a 16-bit
timer counting SYSCLKs/12
Timer 2 overflows at 1 kHz

Start Timer 2

wait until timer overflows
decrement ms

Stop Timer 2

save interrupt status

disable interrupts

MOVX writes erase FLASH page
FLASH lock and key sequence 1
FLASH lock and key sequence 2
initiate page erase

MOVX writes write FLASH byte

// copy <COUNT> to the <COUNT_ SAVE> variable in FLASH

Rev. 1.1 53

SILICON LABORATORIES

AN138

FLKEY 0xA5;
FLKEY = OxF1;

ptrCOUNT SAVE [0]

FLKEY 0xA5;
FLKEY = OxF1;

ptrCOUNT SAVE([1]

FLKEY =
FLKEY

0xA5;
0xF1;

ptrCOUNT SAVE[2]

FLKEY =
FLKEY

0xA5;
0xF1;

ptrCOUNT_ SAVE [3]

FLKEY
FLKEY

0xA5;
O0xF1;

*ptrSLEEP = 0x55;

PSCTL = 0x00;
EXO = 0;

EA = EA SAVE;
while (!S2);

CPTO Init();

ResetSRC _Init();

PCON |= 0x02;

ptrCOUNT[0];

ptrCOUNT[1];

ptrCOUNT[2];

ptrCOUNT[3];

// FLASH lock
// FLASH lock
// copy first

// FLASH lock
// FLASH lock

and key
and key
byte

and key
and key

// copy second byte

// FLASH lock
// FLASH lock
// copy third

// FLASH lock
// FLASH lock

and key
and key
byte

and key
and key

// copy fourth byte

sequence
sequence

sequence
sequence

sequence
sequence

sequence
sequence

// FLASH lock and key sequence 1

// FLASH lock and key sequence 2

// set SLEEP flag to indicate device
// is in Stop mode and <COUNT> has

// been saved in FLASH

// disable FLASH writes and erases

// Disable External Interrupt O

// restore interrupt status

// wait while switch down

// initialize comparator O

// set comparator 0 as a reset source

// put the device in Stop mode

This routine initializes the VDD monitor.

void VDMON Init

{

VDMOCN = 0x80;

(void)

while (! (VDMOCN & 0x40));

// enable VDD

monitor

// wait until power supply is above
// VDD threshold

54

Rev. 1.1

SILICON LABORATORIES

AN138

// This routine initializes the system clock to use the calibrated internal
// oscillator divided by 8 as its clock source.

//

void SYSCLK Init (void)

{

OSCICN = 0x80; // SYSCLK is internal osc.
// in divide by 8 mode running
// at 3.0625 MHz

J e R R
// PORT_Init
e e i
//

// Configure the Crossbar and GPIO ports

// P0.0 - (connected to S2)

// P1.0 - CP0O+ input (connected to S2)
// Pl.1 - CPO- input
// P3.3 - Comparator Voltage Reference (connected to P1.0)

void PORT Init (void)
{

POSKIP = 0x01; // skip P0.0 in crossbar
P1SKIP = 0x03; // skip P1.0, P1.1 in crossbar
XBRO = 0x01; // Enable UARTO
XBR1 = 0x40; // Enable crossbar and weak pull-ups
POMDOUT |= 0x10; // TX0 is a push-pull output
}
/s
// ComparatorO Initialization
/e
//
// Initialize Comparator 0 to detect when the SW2 switch is pressed.
//

void CPTO Init (void)
{

PIMDIN &= ~0x03; // Comparator 0 inputs (P1.0
// and P1.1) are analog inputs.

CPTOCN = 0x8F; // Comparator enabled with maximum
// positive and negative hysteresis

CPTOMX = 0x00; // PO.1 = Inverting Input for
// the comparator
// P0.0 = Non-Inverting Input for the
// comparator

wait _ms (500); // wait for comparator inputs to settle

Rev. 1.1 55

SILICON LABORATORIES

AN138

CPTOCN &= ~0x30; // clear interrupt flags
}
/)
// Reset Source Initialization
J e R R R
//
// Configure Comparator 0 as a reset source.
//

void ResetSRC Init (void)
{
RSTSRC = 0x22; // Comparator 0 is a reset source
// VDD Monitor enabled

//

// Configure External Interrupt O to generate an interrupt on the falling

// edge of P0.0.

//

void EX0 Init (void)

{

ITOICF = 0x00; // Configure External Interrupt 0 to

// generate an interrupt on the falling
// edge of P0.0 (S2 switch)

//

// Configure the UARTO using Timerl, for <BAUDRATE> and 8-N-1.
//

void UARTO Init (void)

{

SCONO = 0x10; // SCONO: 8-bit variable bit rate
// level of STOP bit is ignored
// RX enabled
// ninth bits are zeros
// clear RIO and TIO bits
if (SYSCLK/BAUDRATE/2/256 < 1) {
TH1 = - (SYSCLK/BAUDRATE/2) ;
CKCON |= 0x08; // TIM = 1; SCAl:0 = xx
} else if (SYSCLK/BAUDRATE/2/256 < 4) {
TH1 = - (SYSCLK/BAUDRATE/2/4);
CKCON &= ~0x0B;
CKCON |= 0x01; // T1M = 0; SCAl:0 = 01
} else if (SYSCLK/BAUDRATE/2/256 < 12) {
TH1 = - (SYSCLK/BAUDRATE/2/12);
CKCON &= ~0x0B; // TIM = 0; SCA1:0 = 00
} else {
TH1 = - (SYSCLK/BAUDRATE/2/48) ;
CKCON &= ~0x0B;
CKCON |= 0x02; // T1M = 0; SCAl:0 = 10

56 Rev. 1.1

SILICON LABORATORIES

AN138

TL1 = THI; // set Timerl to reload value

TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
TMOD |= 0x20;

TR1 = 1; // START Timerl

TIO = 1; // Indicate TX0 ready

®
@ Rev. 1.1 57

SILICON LABORATORIES

AN138

Example 4: 32.768 kHz Watch Crystal Low Power Startup
Procedure (C8051F30x)

/e
// Watch XTAL F30x.c

/mm e e
// Copyright 2003 Cygnal Integrated Products, Inc.

//

// AUTH: FB

// DATE: 23 JAN 03

//

// This example shows how to start an external 32.768 kHz watch crystal in low
// power applications. Since a watch crystal can take longer than one second
// to start, the device goes into Idle mode after turning on the external

// oscillator. Timer2, configured to generate an interrupt every 100 ms using
// a timebase derived from the internal oscillator, wakes the device to check
// the XTLVLD flag. Once the watch crystal has started, the internal oscillator
// is disabled and the system uses the crystal as the system clock source.

//

// Target: C8051F30x

//
// Tool chain: KEIL Eval ‘c’
//
/mm e e -
// Includes
[m e -
#include <c8051f300.h> // SFR declarations
A e
// 16-bit SFR Definitions for ‘F30x
et
sfrl6 DP = 0x82; // data pointer
sfrl6 TMR2RL = Oxca; // Timer2 reload value
sfrl6 TMR2 = Oxcc; // Timer2 counter
sfrl6 PCAOCP1 = 0xe9; // PCAO Module 1 Capture/Compare
sfrl6 PCAOCP2 = Oxeb; // PCAO Module 2 Capture/Compare
sfrl6 PCAQO = 0xf9; // PCAO counter
sfrl6 PCAOCPO = Oxfb; // PCAO Module 0 Capture/Compare
[mm e
// Global CONSTANTS
/m e e
#define INTCLK 24500000 / 8 // Internal Oscillator frequency
// in Hz (divide by 8 mode)
#define EXTCLK 32768 // Frequency for 32.768 kHz External
// crystal oscillator
[m e -
// Global VARIABLES
/e
bit OSC_READY = 0; // flag to indicate when external
// oscillator is ready
et st

58 Rev. 1.1

SILICON LABORATORIES

AN138

// Function PROTOTYPES
void SYSCLK_Init (void) ;
void PORT Init (void);

void Timer2 Init (int counts);
void Timer2 ISR (void);

void main (void) {

// disable watchdog timer

PCAOMD &= ~0x40; // WDTE = 0 (clear watchdog timer
// enable)

PORT Init(); // initialize the crossbar and GPIO

SYSCLK_ Init(); // start external oscillator

// The system should be running from the external oscillator at this point

while (1) {
PCON |= 0x01; // put the device in Idle mode

// This routine starts the external 32.768 kHz watch crystal and puts the system
// in Idle mode. Timer 2 interrupts check the status of the XTLVLD bit and

// switches the system clock to the external oscillator when it is ready. The

// system remains in Idle mode until the oscillator starts.

void SYSCLK Init (void)
{

OSCXCN = 0x61; // start external oscillator

Timer2 Init (INTCLK/12/10); // configure Timer2 to overflow
// at 10 Hz (every 100 ms)

EA = 1; // enable global interrupts

while (!0SC_READY) {

PCON |= 1; // put device in Idle mode
}
}
et il b
// PORT Init
[
//

Rev. 1.1 59

SILICON LABORATORIES

AN138

// Configure the Crossbar and GPIO ports.
// PO.0 -

// PO.
// PO.
// PO.
// PO.
// PO.
// PO.
// PO.
//
void PORT Init (void)
{

- XTALl
- XTAL2

~N o U W N
I

- C2D

XBRO = 0x0c; // skip crystal pins
XBR2 = 0x40; // enable crossbar and weak pull-ups

POMDIN &= ~0x0c; // configure XTALl and XTAL2 as analog
// inputs

// Configure Timer2 to auto-reload at interval specified by <counts>
// using the system clock / 12 as its time base.

void Timer2 Init (int counts)

{

TMR2CN = 0x00; // Stop TimerO0;
// Timer2 timebase is SYSCLK/12
TMR2RL = -counts; // Init reload value
TMR2 = TMR2RL; // Init Timer2
ET2 = 1; // enable Timer2 interrupts
TR2 = 1; // start Timer2
}
/e
// Timer2 ISR
ettt
//
// This interrupt service routine is called on Timer2 overflows
//
void Timer2 ISR (void) interrupt 5
{
TF2H = 0; // clear Timer2 overflow flag
1f (OSCXCN & 0x80) // if crystal osc. has settled
{
OSCXCN = 0x60; // decrease crystal drive current
RSTSRC = 0x04; // enable missing clock detector
OSCICN = 0x08; // switch to external oscillator

// and disable internal oscillator
TR2 = 0; // stop Timer2

OSC_READY = 1; // indicate that the external osc.

60 Rev. 1.1

SILICON LABORATORIES

AN138

// 1is ready

SILICON LABORATORIES

Rev. 1.1

61

AN138

Contact Information

Silicon Laboratories Inc.
4635 Boston Lane

Austin, TX 78735

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: productinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

62 Rev. 1.1

SILICON LABORATORIES

	Relevant Devices
	Introduction
	Key Points
	Calculating Power Consumption
	External Oscillator Power Consumption
	External CMOS Clock
	External Crystal
	External C Mode
	External RC Mode

	Digital Power Consumption
	CPU Power Management Modes
	Supply Voltage
	Temperature
	Operating Frequency (SYSCLK)
	Digital Peripherals and Port I/O

	Analog Peripherals
	Example Calculations
	Example 1: 32.768 kHz Watch Crystal in Idle Mode (C8051F31x)
	Example 2: 24.5 MHz Internal Oscillator in Normal Mode with ADC On (C8051F30x)
	Example 3: 25.000 MHz Crystal in Normal Mode with ADC On (C8051F30x)

	Power Saving Strategies
	Minimizing Average Power Consumption
	Decreasing Supply Voltage
	Designing a Low Power “Sleep” Mode
	Designing a High Performance Mode

	Measuring Average Current
	Examples
	Example 1: ADC Sampling
	Example 2: Waking from Idle Mode on UART Activity
	Example 3: Waking from Stop Mode Using a Comparator
	Example 4: 32.768 kHz Watch Crystal Low-Power Startup Procedure

	Software Examples
	Example 1A: ADC Sampling System (Minimized “Active” Time)
	Example 1B: ADC Sampling System (Minimized “Active” Peak Current)
	Example 2: Waking From Idle Mode on UART Activity (C8051F30x)
	Example 3: Waking from Stop Mode Using a Comparator (C8051F30x)
	Example 3: Waking from Stop Mode Using a Comparator (C8051F31x)
	Example 4: 32.768 kHz Watch Crystal Low Power Startup Procedure (C8051F30x)

