
Rev. 1.1 12/03 Copyright © 2003 by Silicon Laboratories AN138-DS11

AN138

POWER MANAGEMENT TECHNIQUES FOR THE ‘F30X AND ‘F31X

Relevant Devices
This application note applies to the following devices:
C8051F300, C8051F301, C8051F302, C8051F303,
C8051F304, C8051F305, C8051F310, and C8051F311.

Introduction
The C8051F30x and C8051F31x are excellent
choices for low power applications. They provide
flexible clocking hardware and 3V operation which
significantly reduces power consumption. In addi-
tion, the pipelined core executes instructions at an
average rate of one system clock per opcode byte.

This application note discusses power calculation
techniques and power saving strategies for for
C8051F30x and C8051F31x devices. It discusses
how the internal and external oscillators, CPU
power management modes, system clock fre-
quency, and supply voltage play a role in the power
consumption of the device. This note also discusses
and gives examples of implementing a “sleep”
mode to reduce power consumption. Software
examples are included to demonstrate how the

techniques discussed in this note can be applied in
actual systems.

Key Points
• Flexible clocking hardware makes it easy to

switch between a high-performance mode and a
low-power mode.

• Managing power smartly can significantly
reduce the total power consumption of the sys-
tem.

• The missing clock detector will cause a device
reset if the operating frequency drops below
10 kHz.

Calculating Power
Consumption
When designing a system with a power budget,
being able to estimate the system’s power con-
sumption on paper can save time and resources by
allowing the designer to experiment with different
configurations before hardware is built. Since Sili-
con Labs devices often provide single-chip solu-
tions to many applications, the device power

0
Time

Current

TIMEactive
Iactive

AREA = Charge

Iavg

Iidle
TIMEidle

TIMEtotal

AN138

2 Rev. 1.1

consumption is often equivalent to the system
power consumption.

The device power consumption is calculated by
taking the sum of individual contributions. The
main contributors to power consumption include
the oscillators, digital power, analog peripherals,
and Port I/O.

The oscillator power consumption consists of con-
tributions from the internal and external oscillators.
The internal oscillator power consumption is dis-
cussed in the analog peripherals section.

Digital power consumption depends on CPU mode,
supply voltage, and system clock frequency. Tem-
perature and the digital peripherals themselves
have a minimal effect on digital power consump-
tion.

Analog peripheral power consumption is domi-
nated by the ADC, VREF, temperature sensor, bias
generator, and internal oscillator. Comparators also
contribute a small amount to the total analog
peripheral power consumption.

All current sourced by a port pin is taken from the
device supply current. For example, if 10 mA are
being used to power an LED connected to a port
pin, the device power consumption will increase by
10 mA.

External Oscillator Power
Consumption
The external oscillator circuitry on these devices is
very flexible. It may derive its timebase from a
crystal or ceramic resonator, a capacitor, an RC net-
work, or an external CMOS clock. Each of these
clocking methods has its advantages. Since the
oscillator can change clocking modes from applica-
tion code, switching modes on the fly can signifi-
cantly reduce power consumption. In C, RC, and
CMOS clock modes, it is possible to achieve very
low operating frequencies.

External CMOS Clock

When the External Oscillator is in CMOS Clock
mode, the external oscillator driver is turned off
and the circuitry consumes a negligible amount of
current. When a CMOS clock signal is present on
XTAL2, it may be used as a clocking source for the
CPU, Timers, PCA, or other peripherals. Note that
power consumption increases slightly when a high
frequency signal is applied to any port pin.

External Crystal

An external crystal provides the most accurate
timebase, but may consume more power at a given
frequency when compared with other clocking
methods discussed in this note. The external crystal
current depends on the crystal frequency and the
external oscillator drive current setting (XFCN).
Table 1 and Table 2 show typical current values
for the external oscillator circuitry when driving
various crystals.

Table 1. Typical External Oscillator Power
Consumption in Crystal Mode (C8051F30x)

XFCN Crystal
Frequency

Current
(3.0 Volts)

1 32.768 kHz 3.7 µA

5 4.000 MHz 240 µA

7 11.0592 MHz 3.8 mA

7 25.000 MHz 4.1 mA

Table 2. Typical External Oscillator Power
Consumption in Crystal Mode (C8051F31x)

XFCN Crystal
Frequency

Current
(3.0 Volts)

1 32.768 kHz 4.1 µA

5 4.000 MHz 280 µA

7 11.0592 MHz 4.4 mA

AN138

Rev. 1.1 3

External C Mode

External C mode can provide low-power clocking
to the device with a single capacitor connected to
XTAL2. A wide range of frequencies can be
achieved by varying the XFCN bits in the
OSCXCN register. Table 3 through Table 6 show
how frequency and current are affected by capaci-
tance and XFCN settings.

Since the frequency of the external oscillator in C
mode depends on capacitance, it will vary from
system to system due to capacitor tolerance and
stray capacitance. The tolerance of the internal cur-
rent source also plays a role in determining the
oscillation frequency. Once the capacitor starts
oscillation, the frequency remains relatively stable.

The external oscillator frequency may be measured
to 2% accuracy using the 24.5 MHz internal cali-
brated oscillator. For even greater accuracy, the
internal oscillator frequency may first be measured
using a 32.768 kHz watch crystal. Once the fre-
quency of the internal oscillator is found, it may be
used to more accurately measure the external oscil-
lator frequency in C mode. Having up to three
clock sources with one hardware configuration is

possible because of the ability to switch oscillator
modes on-the-fly.

7 25.000 MHz 4.7 mA

Table 2. Typical External Oscillator Power
Consumption in Crystal Mode (C8051F31x)

XFCN Crystal
Frequency

Current
(3.0 Volts)

Table 3. C mode Frequency Range and Typical
Oscillator Power Consumption with a 33 pF
Capacitor on XTAL2
(C8051F30x)

XFCN
Approximate
Frequency
(3.0 Volts)

Current
(3.0 Volts)

0 5 kHz 2 µA

1 15 kHz 4 µA

2 44 kHz 10 µA

3 130 kHz 26 µA

4 380 kHz 73 µA

5 1.0 MHz 220 µA

6 3.8 MHz 960 µA

7 9.5 MHz 4.0 mA

Table 4. C mode Frequency Range and Typical
Oscillator Power Consumption with a 10 pF
Capacitor on XTAL2
(C8051F30x)

XFCN
Approximate
Frequency
(3.0 Volts)

 Current
(3.0 Volts)

0 9 kHz 2 µA

1 27 kHz 4 µA

2 80 kHz 10 µA

3 230 kHz 27 µA

4 650 kHz 78 µA

5 1.8 MHz 230 µA

6 5.8 MHz 990 µA

7 11.9 MHz 4.0 mA

AN138

4 Rev. 1.1

Frequency Generation in C Mode

The external oscillator in C mode generates a clock
signal by constantly charging and discharging the

capacitor connected to XTAL2. As Figure 1 shows,
the capacitor charges linearly from a constant cur-
rent source. When the voltage on the capacitor
reaches VDD/3, the comparator creates a path to
ground, discharging the capacitor. Once the capaci-
tor is discharged, the comparator opens the switch
and the cycle repeats. The resulting waveform is
shown in Figure 2. The output of the comparator, a
digital signal, is fed to a “divide-by-two” circuit
whose output can be selected as the system clock.

External RC Mode

RC mode operates similarly to C mode with the
exception that in RC mode the capacitor is charged

Table 5. C mode Frequency Range and Typical
Oscillator Power Consumption with a 100 pF
Capacitor on XTAL2 (C8051F30x)

XFCN
Approximate
Frequency
(3.0 Volts)

 Current
(3.0 Volts)

0 2 kHz 2 µA

1 7 kHz 4 µA

2 20 kHz 9 µA

3 56 kHz 24 µA

4 170 kHz 70 µA

5 480 MHz 210 µA

6 2.0 MHz 930 µA

7 6.3 MHz 4.0 mA

Table 6. C mode Frequency Range and Typical
Oscillator Power Consumption with a 33 pF
Capacitor on XTAL2
(C8051F31x)

XFCN
Approximate
Frequency
(3.0 Volts)

 Current
(3.0 Volts)

0 7 kHz 2 µA

1 21 kHz 4 µA

2 61 kHz 11 µA

3 170 kHz 29 µA

4 500 kHz 85 µA

5 1.4 MHz 260 µA

6 5.0 MHz 1.1 mA

7 11.2 MHz 4.5 mA
XTAL2

+
-

VDD/3

VDD

+

-

Vc

C

Figure 1. C Mode Overview

VDD

VDD/3

Time

Vc

Figure 2. C Mode Waveform at XTAL2

AN138

Rev. 1.1 5

through an external resistor, as shown in Figure 3.
Once the capacitor voltage reaches VDD/3, the
comparator creates a path to ground, discharging
the capacitor. Figure 4 shows the waveform at
XTAL2 generated by this cycle.

Calculating Power in RC Mode

The average power consumption for the external
oscillator in RC mode is determined by the the
average current through the resistor. The voltage
drop across the resistor is exponential, but can be

modeled as a triangular waveform to simplify find-
ing the average, as shown in Figure 5.

With this simplification, Equation 1 can be used to
calculate the average voltage. The external oscilla-
tor average current and power are shown in
Equation 2 and Equation 3, respectively.

Note that the power consumption of the external
oscillator in RC mode depends on the resistor value
and not on the capacitor value.

XTAL2
+
-

VDD/3

VDD

+

-

Vc

C

R

Figure 3. RC Mode Overview

VDD

VDD/3

Time

Vc

Figure 4. RC Mode Waveform at XTAL2 VDD

2/3 VDD

Time

5/6 VDD

VR

Actual Curve
(Exponential)

Triangle
Model

Figure 5. RC Mode Resistor Voltage

Equation 1. Average Resistor Voltage

Vavg
5
6
--- VDD×≅

Equation 2. Average Current

Iavg
Vavg

R
--------------=

Equation 3. Average Power

Pavg
Vavg

2

R
--------------=

AN138

6 Rev. 1.1

Digital Power Consumption
Digital power consumption is dominated by CPU
current. The factors that play a major role in deter-
mining this current are CPU power management
mode, supply voltage, and system clock frequency.
Temperature and digital peripherals have a minimal
effect on digital power consumption.

CPU Power Management Modes

The CPU has three modes of operation: Normal,
Idle, and Stop. Figure 6 and Figure 7 show typical
supply current curves when the internal oscillator is
in divide by eight mode (3.0625 MHz) and is
selected as the system clock. The Idle mode current
is dominated by the internal oscillator. The Normal
mode current minus the Idle mode current is
approximately the amount of current needed by the
CPU to execute instructions at 3.0625 MHz.

The CPU is in Normal mode whenever it is execut-
ing instructions. On writing a ‘1’ to the IDLE bit
(PCON.0), the CPU finishes executing the current
instruction and enters a low-power mode until
awakened by an interrupt or device reset. In Idle
mode, all analog and digital peripherals, mem-
ory, and internal registers remain operational.
When awakened, the CPU resumes execution at the
instruction following the write to the IDLE bit.

Figure 6. Effect of CIP-51 Power Management Mode on Supply Current
(C8051F30x)

Typical Supply Current vs. VDD Voltage
SYSCLK = 3.0625 MHz (Internal Oscillator in Divide by 8 Mode)

1600

1900
2200

1300

710
780 840

650

0

500

1000

1500

2000

2500

2.7 3.0 3.3 3.6
VDD Voltage (Volts)

Cu
rr

en
t (

uA
)

Normal Mode Current
Idle Mode Current
Stop Mode Current

AN138

Rev. 1.1 7

Typical Supply Current vs. VDD Voltage
SYSCLK = 3.0625 MHz (Internal Oscillator in Divide by 8 Mode)

1500

2300

2000

1700

790
1000940860

0

500

1000

1500

2000

2500

2.7 3.0 3.3 3.6
VDD Voltage (Volts)

C
ur

re
nt

 (u
A

) Normal Mode Current
Idle Mode Current
Stop Mode Current

Figure 7. Effect of CIP-51 Power Management Mode on Supply Current (C8051F31x)

AN138

8 Rev. 1.1

The CPU enters Stop mode on writing a ‘1’ to the STOP bit (PCON.1). After the current instruction is
executed, the internal oscillator, and all digital peripherals are disabled. Analog peripherals such as
comparators and the external oscillator remain in their current state. The MCU consumes the least
amount of current when in Stop mode. Figure 8

and Figure 9 show that the Stop mode current is typically less than 500 nA when the internal oscillator is
used for system clocking.

Any reset source can be used to recover from Stop mode. This includes Comparator, Missing Clock
Detector, power on, or VDD monitor reset. Software Example 3 at the end of this note shows how Stop
mode may be used on C8051F30x and C8051F31x systems to save power.

Figure 8. Stop Mode Current vs. Supply Voltage (C8051F30x)

0.27

0.20

0.14

0.34

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

2.7 3 3.3 3.6
VDD Voltage (Volts)

Cu
rr

en
t (

uA
)

Stop Mode Current (uA)

AN138

Rev. 1.1 9

0.37

0.28

0.18

0.45

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

2.7 3 3.3 3.6
VDD Voltage (Volts)

Cu
rr

en
t (

uA
)

Stop Mode Current (uA)

Figure 9. Stop Mode Current vs. Supply Voltage (C8051F31x)

AN138

10 Rev. 1.1

Supply Voltage

Supply current increases with supply voltage. This relationship can be observed at all operating frequen-
cies but has the greatest impact at higher frequencies. Figure 10 and Figure 11 show typical supply cur-
rent vs. supply voltage curves when operating from the internal 24.5 MHz system clock. The minimum
supply voltage specified in the datasheet is 2.7 Volts. However, since many voltage regulators have a +/-
10% accuracy, systems are not typically designed for a supply voltage less than 3.0 Volts.

Temperature

Device temperature does not have an appreciable effect on power consumption on these devices.

Typical Supply Current vs. VDD Voltage
SYSCLK = 24.5 MHz (Internal Oscillator in Divide by 1 Mode)

5000

8700

7400

6100

2200 31002800
2500

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2.7 3.0 3.3 3.6

VDD Voltage (Volts)

Cu
rre

nt
 (u

A)

Normal Mode Current

Idle Mode Current

Stop Mode Current

Figure 10. Effect of Supply Voltage on Power Consumption (C8051F30x)

AN138

Rev. 1.1 11

Figure 11. Effect of Supply Voltage on Power Consumption (C8051F31x)

Typical Supply Current vs. VDD Voltage
SYSCLK = 24.5 MHz (Internal Oscillator in Divide by 1 Mode)

6700

11000

9600

8100

3200

4500

4100
3600

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

2.7 3.0 3.3 3.6

VDD Voltage (Volts)

C
ur

re
nt

 (u
A

)

Normal Mode Current

Idle Mode Current

Stop Mode Current

AN138

12 Rev. 1.1

Operating Frequency (SYSCLK)

The CPU operating frequency has the greatest impact on power consumption.

Figure 12 and Figure 13 show the effect of operating frequency on power consumption when the CPU is
in Normal mode. Near 13 MHz (C8051F30x devices) and 16 MHz (C8051F31x devices), the current
drops slightly and changes slope because of a switchover in the FLASH read timing mechanism. Table 7
and Table 8 show the slope and offset for the graphs in Figure 12 and Figure 13, respectively.
“Region A” in Figure 12 refers to frequencies less than 13 MHz and “Region B” refers to frequencies
higher than 13 MHz. The same is true for Figure 13 except the switchover occurs near 16 MHz.

Typical Supply Current vs. Operating Frequency (Normal Mode)
Internal Oscillator Disabled, Running from an External CMOS Clock

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
SYSCLK Frequency (MHz)

Cu
rr

en
t (

uA
) VDD = 3.6v

VDD = 3.3v

VDD = 3.0v

VDD = 2.7v

"Region A" "Region B"

Figure 12. Effect of Operating Frequency on Normal Mode Power Consumption
(C8051F30x)

AN138

Rev. 1.1 13

Table 7. Slope and Offset Values for the Curves
in Figure 12 (C8051F30x)

VDD
Slope

A
mA/MHz

Offset
A

mA

Slope
B

mA/MHz

Offset
B

mA

2.7 0.28 0.01 0.15 1.4

3.0 0.34 0.01 0.16 2.0

3.3 0.42 0.02 0.18 2.8

3.6 0.50 0.02 0.20 3.7

Typical Supply Current vs. Operating Frequency (Normal Mode)
Internal Oscillator Disabled, Running from an External CMOS Clock

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
SYSCLK Frequency (MHz)

Cu
rre

nt
 (u

A) VDD = 3.6v

VDD = 3.3v

VDD = 3v

VDD = 2.7v

"Region B""Region A"

Figure 13. Effect of Operating Frequency on Normal Mode Power Consumption
(C8051F31x)

AN138

14 Rev. 1.1

When operating in “Region A”, turning off the
FLASH one-shot by writing a ‘0’ to the FOSE bit

in the FLSCL register will extend the “Region B”
curve across the entire operating range of the
device. This is only useful if operating near the
switchover point, where “Region B” operation con-
sumes less power than “Region A”.

When the CPU is in Idle mode, the Current vs.
Operating Frequency curve is a single line over the
operating range of the device. Figure 14 and
Figure 15 show the effect of operating frequency
on power consumption when the CPU is in Idle
mode.

Table 8. Slope and Offset Values for the Curves
in Figure 13 (C8051F31x)

VDD
Slope

A
mA/MHz

Offset
A

mA

Slope
B

mA/MHz

Offset
B

mA

2.7 0.34 0.03 0.16 2.5

3.0 0.41 0.04 0.18 3.2

3.3 0.49 0.05 0.21 4.1

3.6 0.58 0.05 0.24 5.0

Typical Supply Current vs. Operating Frequency (Idle Mode)
Internal Oscillator Disabled, Running from an External CMOS Clock

0

500

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

SYSCLK Frequency (MHz)

C
ur

re
nt

 (u
A

)

VDD = 3.6v

VDD = 3.3v

VDD = 3.0v

VDD = 2.7v

Figure 14. Effect of Operating Frequency on Idle Mode Power Consumption (C8051F30x)

AN138

Rev. 1.1 15

Table 9. Slope and Offset Values for the Curves
in Figure 14 (C8051F30x)

VDD Slope
mA/MHz

Offset
mA

2.7 0.09 0.00

3.0 0.10 0.01

3.3 0.11 0.02

3.6 0.12 0.02

Typical Supply Current vs. Operating Frequency (Idle Mode)
Internal Oscillator Disabled, Running from an External CMOS Clock

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

SYSCLK Frequency (MHz)

C
ur

re
nt

 (u
A

)

VDD = 3.6v

VDD = 3.3v

VDD = 3.0v

VDD = 2.7v

Figure 15. Effect of Operating Frequency on Idle Mode Power Consumption (C8051F31x)

AN138

16 Rev. 1.1

Digital Peripherals and
Port I/O

Digital peripherals (timers, UART, PCA, SPI, etc.)
account for a small percentage of the total power
consumption. For example, operating a C8051F300
at 3.06 MHz (internal oscillator divided by 8) and
3.0 Volts, the average device supply current with-
out any digital peripherals enabled is approxi-
mately 700 µA. This number typically increases by
18 µA (3 %) when Timer 1 is started at its fastest
clocking setting with UART0 constantly transmit-
ting data. The power consumption for timers and
UART depends on the frequency at which they are
clocked and the supply voltage.

The Crossbar and configuration of GPIO pins to
push-pull mode can also affect power consumption.
In the example above, enabling the Crossbar, rout-
ing the UART0 TX signal to P0.4, and configuring
the port pin to push-pull mode adds another 82 µA
(10%) to the total device supply current. The power
consumption for output port pins depends on the
frequency that the pin is toggled and the external
circuitry connected to the pin.

Analog Peripherals
The ADC, temperature sensor, internal bias genera-
tor, and the internal oscillator consume power when
enabled. Table 11 and Table 12 show typical cur-
rent values for the analog peripherals on these
devices. The internal bias generator is automati-

cally enabled whenever the ADC, internal oscilla-
tor, or temperature sensor is enabled.

The peak ADC current during a conversion is typi-
cally 30% to 50% higher than when the ADC is not
converting. The SAR Conversion Clock frequency
and sampling rate also affect the power consump-
tion. In general, increasing the SAR Conversion
Clock frequency and decreasing the sampling rate
will provide the greatest power savings because the
ADC will spend less time in each conversion and
more time idle between conversions.

Table 10. Slope and Offset Values for the
Curves in Figure 15 (C8051F31x)

VDD Slope
mA/MHz

Offset
mA

2.7 0.12 0.00

3.0 0.14 0.01

3.3 0.16 0.01

3.6 0.17 0.01

Table 11. Typical Current Contribution for
Analog Peripherals at 3.0V (C8051F30x)

Peripheral
Typical
Current

Consumption

Internal Bias Genera-
tor

110 µA

Temperature Sensor
(ADC Enabled)

85 µA

Temperature Sensor
(ADC Disabled)

< 1 µA

ADC (enabled) 430 µA

ADC (converting) 630 µA

Internal Oscillator 340 µA

Voltage Comparator 0.4 - 7.6 µA
(depending on
speed mode)

AN138

Rev. 1.1 17

Example Calculations
The following examples show how to calculate the
total device power consumption by adding the con-
tributions from the oscillator, digital power, and
analog power. The examples assume a supply volt-
age of 3.0V.

Example 1: 32.768 kHz Watch Crystal
in Idle Mode (C8051F31x)

In this example, we calculate the total device power
consumption for operating a C8051F31x device
from a 32.768 kHz watch crystal in Idle mode.

Oscillator Current. From Table 2 , the external
oscillator requires ~4.1 µA to drive the watch crys-
tal.

Digital Current. Using the slope and offset infor-
mation from Table 10 , the CPU current in Idle
mode can be calculated using Equation 4.

In this example, the slope (0.14 mA/MHz) and off-
set (0.01 mA) give an estimated digital current of
~15 µA for operation at 32.768 kHz and 3.0 V.

Analog Current. In this system, the internal oscil-
lator is disabled when running from the external
watch crystal. We add 0 µA for the analog current
contribution.

Total Current. The total supply current is ~19 µA
for a C8051F31x in this configuration. This num-
ber is an estimate and may vary by a few micro-
amps in an actual system.

Example 2: 24.5 MHz Internal
Oscillator in Normal Mode with ADC
On (C8051F30x)

In this example, we calculate the total device power
consumption for operating a C8051F30x device
from the internal 24.5 MHz calibrated oscillator in
Normal mode with the ADC turned on.

Oscillator Current. From Table 11 , the internal
oscillator requires ~340 µA to generate the
24.5 MHz clock signal.

Digital Current. Using the slope and offset infor-
mation from Table 7 , the CPU current in Normal
mode can be calculated using Equation 4. In this
example, the slope (0.16 mA/MHz) and offset
(2.0 mA) in “Region B” of Figure 12 give an esti-
mated digital current of ~6.0 mA for operation at
24.5 MHz and 3.0 V.

Table 12. Typical Current Contribution for
Analog Peripherals at 3.0V (C8051F31x)

Peripheral
Typical
Current

Consumption

Internal Bias Genera-
tor

110 µA

Temperature Sensor
(ADC Enabled)

83 µA

Temperature Sensor
(ADC Disabled)

< 1 µA

ADC (enabled) 480 µA

ADC (converting) 650 µA

Internal Oscillator 360 µA

Voltage Comparator 0.4 - 7.6 µA
(depending on
speed mode)

Current [mA] SYSCLK [MHz] Slope×() Offset+=

Equation 4. Calculating Digital Current
from Slope and Offset

AN138

18 Rev. 1.1

Analog Current. Since the internal bias generator
automatically switches on whenever the ADC or
the internal oscillator are being used, it contributes
110 µA. When the ADC is enabled (not sampling),
it contributes 430 µA. The total analog contribution
comes to 540 µA.

Total Current. There are two ways to estimate the
total current from the data provided in this applica-
tion note. First, we can sum the contributions from
the oscillator, digital current, and analog current.
An alternative is using Figure 10 to determine the
combined digital, internal oscillator, and bias gen-
erator current then adding the ADC contribution to
obtain the total supply current. Both methods
should yield similar results; however, the second
method is faster.

Using the first method, we add the 340 µA oscilla-
tor current, 6.0 mA digital current, and 540 µA
analog current to obtain a total of 6.9 mA.

Using the second method, we add 6.1 mA (supply
current at 3.0V from Figure 10) and 430 µA ADC
current for a total of 6.5 mA.

The estimates from the two methods are within 5%
of each other.

Example 3: 25.000 MHz Crystal in
Normal Mode with ADC On
(C8051F30x)

In this example, we calculate the total device power
consumption for operating a C8051F30x device
from a 25.000 MHz crystal in Normal mode with
the ADC on.

Oscillator Current. From Table 1 , the external
oscillator requires ~4.1 mA to drive the crystal.

Digital Current. Using the slope and offset infor-
mation from Table 7 , the CPU current in Normal
mode can be calculated using Equation 4.

In this example, the slope (0.16 mA/MHz) and off-
set (2.0 mA) in “Region B” of Figure 12 give an
estimated digital current of ~6 mA for operation at
25.0 MHz and 3.0 V.

Analog Current. In this system, the internal oscil-
lator is disabled when running from the external
crystal. Since we are using the ADC, we add the
110 µA internal bias current to the 430 µA ADC
current for a total 540 µA analog contribution.

Total Current. The total supply current is ~11 mA
for a C8051F30x in this configuration. Comparing
this total to the total from Example 2, we find that
using the internal oscillator saves approximately
4 mA while achieving a comparable operating fre-
quency.

AN138

Rev. 1.1 19

Power Saving Strategies
In most low-power applications, the high perfor-
mance processing capabilities of the device are not
needed 100% of the time. The ability of these
devices to switch between clock sources and power
modes on-the-fly gives them the flexibility of per-
forming high speed tasks and meet the require-
ments of a low power budget.

In most systems with low power requirements, the
average power consumption is optimized. For
example, in a battery powered application, the
average current determines the battery life.
Equation 5 shows how to calculate battery life in a
system based on its average current and rating. Bat-
teries contain a fixed amount of charge, specified in
a battery datasheet in units of milliamp-hours (mA-
h).

Minimizing Average Power
Consumption
There are two classes of optimizations that can be
used to minimize average power consumption. The
first kind involves adjusting system parameters that
affect the system at all times. One of the main sys-
tem level parameters is supply voltage. The supply
voltage can be derived from a voltage regulator or
from a battery. In low power systems, supply volt-
age should be minimized in order to save power.

The second kind involves structuring the firmware
to save power. This involves having a high perfor-
mance mode and a low power “sleep” mode. These
two modes have different design criteria. The
device should spend as much time as possible in
“sleep” mode in order to save power.

Since the supply voltage is typically constant, min-
imizing average current is directly proportional to
minimizing the average power consumption. Aver-
age current is the amount of charge consumed per
unit time, or the area under a Current vs. Time chart
divided by time, as shown in Figure 16.

Equation 6 shows that the average current is the
total charge (area) divided by the total time.

The charge required for a given task can be reduced
by minimizing the “active” time or minimizing the
peak active current. The designer should always
consider minimizing “active” time and peak cur-
rent to save power.

Decreasing Supply Voltage

Supply voltage can have a large impact on power
consumption. Low-power systems should always
be designed to use the minimum supply voltage
that allows the device to operate reliably within its
specified voltage limits.

Equation 5. Calculating Battery Life

Battery Life [hours] Qtotal[mA-h]
Iavg[mA]

-----------------------------------=

Figure 16. Average Current – Charge
Consumed per Unit Time

0
Time

Current

TIMEactive
Iactive

AREA = Charge

Iavg

Iidle
TIMEidle

TIMEtotal

Equation 6. Calculating Average Current

Iavg
Iactive Timeactive×() Iidle Timeidle×()+

Timetotal
--=

AN138

20 Rev. 1.1

Many voltage regulators have +/-10% accuracy. If
a regulator with this accuracy is used, the minimum
design voltage should be 3.0 V, since the regulator
output can vary between 2.7 V and 3.3 V.

An alternative to a voltage regulator is to use a bat-
tery. Lithium manganese dioxide batteries output
2.85 Volts for a majority of their useful life and can
be directly connected to the power pins on the
device. Batteries can provide a constant voltage
that does not need regulation. In these systems, the
on-chip VDD monitor should be enabled to ensure
that the device is held in reset when the battery is
drained.

Designing a Low Power “Sleep”
Mode

The design goal of a low-power “sleep” mode is to
minimize current because the system can spend
long intervals of time in this mode. A “sleep” mode
can be implemented by putting the device in Idle or
Stop mode. Stop mode provides a lower standby
current than Idle mode, but Idle mode is easier to
recover from. Examples of both implementations
are provided at the end of this note.

In “sleep” mode it is important to turn off any
peripherals (ADC, Internal Oscillator, etc.) that
are not required.

In “sleep” mode, it is usually best to operate on an
external oscillator. This allows the system to dis-
able the internal oscillator and operate from a very
low frequency timebase. Two appealing external
oscillator configurations to consider for “sleep”
mode are a 32.768 kHz watch crystal and a single
capacitor.

A capacitor oscillator can consume less power than
a crystal, but is less accurate. The main advantage
of using a capacitor oscillator is the ability to clock
peripherals (such as timers) at rates less than
10 kHz. There is also a cost and PCB space savings
associated with using a single capacitor, as opposed

to a crystal, two loading capacitors and a resistor. If
a high frequency crystal is used in the design, the
loading capacitor connected to the XTAL2 pin can
be used by the external oscillator in C mode to
derive a low-frequency clock source for “sleep”
mode.

Designing a High Performance Mode

A high performance mode should be designed to
accomplish tasks in a minimal amount of time so
that the system can go back to “sleep” mode as
quickly as possible. This involves adjusting the
peak current and the SYSCLK frequency to reduce
the area under the Current vs. Time curve.
Example 1 shows a system in which the average
power consumption is reduced by increasing the
SYSCLK frequency in the high performance mode.

From a power standpoint, most systems will benefit
by using the internal oscillator in high performance
mode.

Measuring Average Current
The average system current is best calculated by
measuring the power consumption in various
modes using lab bench equipment and estimating
the amount of time the system spends in each
mode. Example 1 shows the power calculations for
a sampling system that uses the on-chip ADC.

Examples
Four examples are provided that demonstrate the
concepts discussed in this application note. The
software for these examples is included at at the
end of this note. The examples are:

• ADC Sampling (C8051F30x). This example
compares the power savings of two different
ADC sampling systems. One system uses a
32.768 kHz crystal while sampling and the
other switches to the internal oscillator to
minimize the time that the ADC remains on.
Both systems are identical in Idle mode.

AN138

Rev. 1.1 21

• Waking From Idle mode on UART Activity
(C8051F30x). This example shows how a
“sleep” mode can be implemented using the
device’s Idle mode. The device wakes up when
it detects UART activity.

• Waking From Stop Mode Using a
Comparator (C8051F30x and C8051F31x).
This example shows how a “sleep” mode can
be implemented using the device’s Stop mode.
The device wakes up when it detects a button
press. A connection diagram of how to wake on
SMBus activity is also included in this
example.

• 32.768 kHz Watch Crystal Low Power Star-
tup Procedure (C8051F30x). This example
shows how to start a 32.768 kHz watch crystal,
minimizing the time in Normal mode waiting
for the crystal to start.

Example 1: ADC Sampling

The two systems in this example take an ADC sam-
ple from the on-chip temperature sensor at a rate of
10 Hz. A 32.768 kHz watch crystal and associated
loading capacitors and shunt resistor are connected
between XTAL1 and XTAL2. Timer 2 overflows
every 100 ms generating an interrupt that wakes the
device up from Idle mode. When the device wakes
up, it captures one ADC sample then goes back into
Idle mode until the next interrupt occurs.

Since this system is battery powered, one of its
goals is to minimize the amount of charge con-
sumed per ADC sample. Since charge is current
integrated over time, there is a choice between min-
imizing time or peak current required to take a
sample. For example, to capture the ADC sample,
the device may switch to the 3 MHz internal oscil-
lator and use a larger amount of current for a short
period of time or remain at 32 kHz and use less cur-
rent for a longer period of time. Figure 17 and
Figure 18 show current vs. time for the two sys-

tems, one with minimized time in Normal mode
and the other with minimized peak current.

Both systems use 4.8 µA in Idle mode to drive a
32 kHz watch crystal and Timer 2.

When the system in Figure 17 wakes from Idle
mode, it turns on the internal oscillator and the
ADC, switches SYSCLK to the internal oscillator
in divide-by-8 mode, and starts the ADC conver-
sion. After the conversion is complete, it reads the
ADC value, disables the ADC and internal oscilla-
tor, and puts the CPU back in Idle mode. To cap-
ture the ADC sample, the device spends less
than 400 µs consuming a peak current of
2.2 mA.

Figure 17. Current vs. Time (Minimized
Time in Normal Mode)

 0 100 Time (ms)

Current (uA)
2200

4.8

400 us 400 us

Figure 18. Current vs. Time (Minimized
Peak Current)

 0 100 Time (ms)

Current (uA)

650

4.8

1.5 ms 1.5 ms

AN138

22 Rev. 1.1

When the system in Figure 18 wakes up from Idle
mode, it immediately turns on the ADC and ini-
tiates a sample. It does not turn on the internal
oscillator and SYSCLK remains at 32.768 kHz.
After the conversion is complete, it reads the ADC
value, turns off the ADC and goes into Idle mode.
To capture the ADC sample, the device spends
less than 1.5 ms consuming a peak current of
0.65 mA.

Using Equation 6, the system in Figure 17 has an
average current of 14 µA. If the system is powered
from an ideal 3.0 Volt (actual voltage 2.85V) lith-
ium manganese dioxide watch battery with a
capacity of 575 mA-h, the battery life would be
approximately 42,000 hours, or over four and a half
years.

The average current for the system in Figure 18 is
15 µA. If this system is powered with the same 3.0
Volt lithium manganese dioxide watch battery, the
battery life would also be around 40,000 hours.

In this example, increasing the system clock fre-
quency in the high power mode decreased the
average current.

These examples do not take into account changes
in temperature and battery performance variations
over the life of the battery. One source for Applica-
tion Manuals and Battery Datasheets is the Techni-
cal Info section of the Energizer web site
(www.energizer.com).

Example 2: Waking from Idle Mode
on UART Activity

This example configures External Interrupt 0 to
wake the device from Idle mode on detecting activ-
ity on the UART receive signal. Once the CPU
comes out of Idle Mode, it disables External
Interrupt 0 as shown in Figure 19, switches to the
internal oscillator, enables UART0 reception, and
discards the first UART frame. In this system, the
first UART frame received after a period of inactiv-
ity is interpreted as a “wakeup” signal.

In order for the device to wake up and remain syn-
chronized for UART communication, the
“wakeup” signal has to have exactly one falling
edge followed by one rising edge, as shown in
Figure 20. Since the UART start bit is always ‘0’

TX

RX

UART0

External
Interrupt 0

Figure 19. Waking from Idle Mode on
UART Activity

Wake-UpStart Stop Start

 minimum 13 SYSCLK cycles

SYSCLK

UART RX

SYSCLK must increase before this
edge to allow UART communication

5 - 10 kHz External Oscillator
in C-mode using a 33pF

Capacitor on XTAL2

3.0625 MHz Internal
Oscillator in divide by 8 mode

Figure 20. UART “Wake-up” Signal

http://www.energizer.com
http://www.energizer.com

AN138

Rev. 1.1 23

and the stop bit is always ‘1’, the data bits can be
any value as long as there is only one falling edge
and one rising edge in the received signal. Keep in
mind that characters are sent LSB first. Example
“wakeup” characters are 0x00, 0xFF, and 0xF0 but
not 0x0F.

The maximum baud rate supported by the system
will be limited by the frequency of the external
oscillator used while the device is in Idle mode.
When programming in ‘C’, it takes a minimum of
13 SYSCLK cycles after the falling edge of the
“wakeup” signal to enter an External Interrupt ISR
and switch to the internal oscillator. If the UART
character following the “wakeup” signal arrives
before the internal oscillator is enabled, then the
two UART systems may become unsynchronized.

Equation 7 can be used to calculate the maximum
baud rate supported by a system with a given exter-
nal clock frequency. Equation 7 is based upon
10 bits per UART frame and 13 external clock
cycles required to turn on the internal oscillator.
For example, if the external oscillator is a capacitor
oscillating at 5 kHz, the highest standard baud rate
supported by the system would be 2400 baud.

The software for this example uses a 33 pF capaci-
tor connected to the XTAL2 pin as an external
oscillator. Considering stray capacitance and other
effects, the system clock frequency is between
5 kHz and 10 kHz when the external oscillator is
selected and the external oscillator drive current
(XFCN) is set to its lowest value. The “wakeup”
signal chosen in this example is ‘0xFF’. When the
system wakes up, it waits for the next character and
transmits a string containing that character. Then it
disables UART reception, enables External
Interrupt 0, and goes back into Idle mode.

The average power consumption for this system
scales with the amount of UART activity. As
Figure 21 shows, the system consumes 4.2 µA of
current in Idle mode and approximately 1.5 mA in
Active mode at 3.0 Volts.

In some applications, it is possible to recover the
first character but this places more restrictions on
maximum UART baud rate and minimum external
clock frequency.

Example 3: Waking from Stop Mode
Using a Comparator

This example shows how a “sleep” mode can be
implemented in a system using the Stop mode of
the CPU. This application implements a software
counter that is incremented approximately every
second when the device is in Normal mode. If the
system is powered down when it is in Stop mode,
the counter resumes counting the next time it enters
Normal mode. If the system is powered down while
it is in Normal mode, the counter will reset to zero.
Every time the counter is updated, the current value
of the counter is printed to the UART.

The S2 switch toggles the system back and forth
between Stop mode and Normal mode. On power
up, the system is in Stop mode. The system enters

Equation 7. Calculating Maximum
Supported Baud Rate

MAX_BAUD_RATE 10
13
------ EXTCLK× 
 <

Time

Current (uA)

1500

4.2

Normal
Mode

3.0625 MHz

Idle Mode
5 - 10 kHz

Figure 21. Example 2 Active Mode vs.
Idle Mode Power Consumption

AN138

24 Rev. 1.1

Normal mode when the S2 switch on the target
board is pressed, causing a Comparator 0 reset.

Upon entering Normal mode, External Interrupt 0
(/INT0) is activated to sense the S2 switch and
Comparator 0 is disabled as a reset source. Pressing
S2 in Normal mode will cause the INT0_ISR to put
the system in Stop mode.

Three target board connections are needed to run
this example on the C8051F30x and four connec-

tions are needed for the C8051F31x. They are cir-
cled in Figure 22 and Figure 23. The C8051F30x
requires one less pin because the CP0+ signal and
the External Interrupt 0 input can use the same pin.

In this example, the LED on the target board is
used to conveniently provide a voltage that is
between VDD and GND. This voltage can be gen-
erated using a resistor network or DC power sup-
ply. Also, the target board provides a convenient
pull-up resistor (R4) for the S2 switch. The on-chip

P0.0
+
-P0.1

S2

Jumper
CP0

CP0 +

CP0 -

VDD

R4
100K

VDD

Weak
Pullup

Wire

LED
3

2

1

P0.2

Reset
Funnel

Figure 22. Example 3 Target Board Connection Diagram (C8051F30x)

P1.0
+
-P1.1

S2

Jumper
CP0

CP0 +

CP0 -

VDD

R4
100K

VDD

Weak
PullupP3.3

Wire

LED

3

2

1

P0.0

4

Reset
Funnel

Figure 23. Example 3 Target Board Connection Diagram (C8051F31x)

AN138

Rev. 1.1 25

weak pull-up for the port pin can replace R4 if
the port pin is configured as a digital input and
weak pull-ups are enabled.

The voltage at the CP0- input is used by
Comparator 0 to detect if the CP0+ signal is
high or low. When Comparator 0 is enabled as
a reset source, it will generate a reset when the
non-inverting (CP0+) input is lower than the
inverting (CP0-) input.

The system remembers its state by storing a
single-byte <SLEEP> flag and a copy of the
counter in FLASH. The <SLEEP> flag is

defined to be TRUE if it has a value of 0x55.
All other values are defined as FALSE. On
every reset, the device decodes the <SLEEP>
variable stored in FLASH and the RSTSRC
register to determine its state. Note that if the
PORSF (Power On Reset Flag) is set in the
RSTSRC register, then all other flag bits in
that register are undefined. Table 13 shows
how the device decodes the RSTSRC register
to determine its state.

The techniques in this example can be used to
wake a device from Stop mode on SMBus
activity. An SMBus start signal consists of a

Table 13. Reset Source Register Decoding for Example 3

Reset Type RSTSRC Action Taken

Hardware,
Power On,
Missing Clock
Detector,
Watchdog Timer,
or FLASH error

0x01,
0x02,
0x04,

0x08,
or 0x40

Prepare the device for Stop mode.
1. Enable and configure Comparator 0.
2. Enable Comparator 0 as a reset source.
3. Go into Stop Mode waiting for the User to press

the S2 switch to generate a comparator reset.

Comparator 0x20 If the <SLEEP> flag is set to TRUE, then prepare
device to operate in Normal Mode and resume count-
ing.

1. Restore the <COUNT> (READ FLASH).
2. Set <SLEEP> flag to FALSE (ERASE FLASH).
3. Enable External Interrupt 0. This interrupt will

save the <COUNT> in FLASH, set the
<SLEEP> flag, and put the CPU in Stop mode
when S2 is pressed.

If the <SLEEP> flag is set to FALSE, start counting at
zero. This condition only happens the first time after a
firmware download or if power is lost while the device
is in Normal mode.

1. Set <COUNT> to zero.
2. Enable External Interrupt 0.

The device should now be operating in Normal mode.

AN138

26 Rev. 1.1

falling edge on SDA while SCL is high. When a
start condition is detected, the comparator resets
the device. If the device is a slave, it will NACK
the first transfer (considered a “wakeup” signal),
but respond to all transfers that follow it. Figure 24
shows a possible connection diagram.

Example 4: 32.768 kHz Watch Crystal
Low-Power Startup Procedure

This example shows how to start an external
32.768 kHz watch crystal in low power applica-
tions. Since a watch crystal can take longer than
one second to start, the device goes into Idle mode
after turning on the external oscillator. At 100 ms
intervals, Timer 2 generates an interrupt and wakes
the device to check the XTLVLD flag. Once the
watch crystal has started, the internal oscillator is
disabled and the system uses the crystal as the sys-
tem clock source.

SDA

SCL

CP0 +
CP0 -

+
- CP0

SMBus

Figure 24. Example Wake-On-SMBus
Connection Diagram

AN138

Rev. 1.1 27

Software Examples

Example 1A: ADC Sampling System (Minimized “Active” Time)
//---
// ADC_A_F30x.c
//---
// Copyright 2003 Cygnal Integrated Products, Inc.
//
// AUTH: FB
// DATH: 23 JAN 03
//
// This example captures ADC samples at a rate of 10 Hz from P0.0 and is clocked
// from a 32.768 kHz watch crystal. This program keeps the CPU in Idle mode
// until a Timer2 overflow. The Timer2 interrupt turns on the ADC and internal
// oscillator, takes a sample, then turns the ADC and the internal oscillator
// off to save power. While peak current increases when the internal oscillator
// is turned on, the power saved by minimizing the time needed to take a sample
// is more than the power consumed by increasing the system clock frequency.
//
//
// Target: C8051F30x
//
// Tool chain: KEIL Eval ‘c’
//

//---
// Includes
//---
#include <c8051f300.h> // SFR declarations
#include <math.h>

//---
// 16-bit SFR Definitions for ‘F30x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR2RL = 0xca; // Timer2 reload value
sfr16 TMR2 = 0xcc; // Timer2 counter
sfr16 PCA0CP1 = 0xe9; // PCA0 Module 1 Capture/Compare
sfr16 PCA0CP2 = 0xeb; // PCA0 Module 2 Capture/Compare
sfr16 PCA0 = 0xf9; // PCA0 counter
sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 Capture/Compare

//---
// Global CONSTANTS
//---

#define INTCLK 24500000 / 8 // Internal Oscillator frequency
 // in Hz (divide by 8 mode)
#define EXTCLK 32768 // Frequency for 32.768 kHz External
 // crystal oscillator
#define SAMPLERATE 10 // ADC Sampling Rate in Hz

sbit LED = P0^2; // LED=’1’ means ON
sbit SW2 = P0^3; // SW2=’0’ means switch pressed

AN138

28 Rev. 1.1

//---
// Global VARIABLES
//---
char ADC_READING = 0;

//---
// Function PROTOTYPES
//---
void SYSCLK_Init (void);
void PORT_Init (void);
void Crystal_Stabilize (void);
void Timer2_Init (int counts);
void Timer2_ISR (void);

//---
// MAIN Routine
//---
void main (void) {

 // disable watchdog timer
 PCA0MD &= ~0x40; // WDTE = 0 (clear watchdog timer
 // enable)

 PORT_Init(); // initialize the Crossbar and GPIO
 SYSCLK_Init(); // start external oscillator
 Timer2_Init(EXTCLK/8/SAMPLERATE); // configure Timer2 to overflow at
 // <SAMPLERATE> times per second

 EA = 1; // enable global interrupts

 while(1){
 PCON |= 0x01; // put the device in Idle mode
 }
}

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use the external 32.768 kHz
// watch crystal as its clock source and disables the internal oscillator.
//
void SYSCLK_Init (void)
{

 int i; // delay counter

 OSCXCN = 0x61; // start external oscillator

 for (i=0; i < 256; i++) ; // wait for osc to start up

 while (!(OSCXCN & 0x80)) ; // wait for crystal osc. to settle

 Crystal_Stabilize(); // wait for crystal osc. to stablilize

AN138

Rev. 1.1 29

 OSCXCN = 0x60; // decrease crystal drive current
 RSTSRC = 0x04; // enable missing clock detector
 OSCICN = 0x08; // switch to external oscillator

}

//---
// Crystal_Stabilize
//---
//
// Low-frequency crystal stabilization wait routine:
//
// This routine measures the period of the external oscillator with respect
// to the internal oscillator and loops until the external oscillator period is
// measured to be within 4 internal oscillator periods for 500 cycles in
// a row. This is only necessary for tuning fork crystals, which have
// abnormally long stabilization times (on the order of seconds).
//
// Assumes that the internal oscillator operating in divide-by-8 mode is
// selected as the system clock source. Also assumes that the external
// oscillator has been enabled, configured, and is oscillating.
//
// Here we measure the number of system clocks in 8 “EXTCLK/8” periods.
// We compare successive measurements. When we obtain 500 measurements
// in a row that are all within 4 system clocks of each other the
// routine will exit. This condition will only occur once the crystal
// oscillator has fully stabilized at its resonant frequency.
//
// Note that this can take several seconds.
//
void Crystal_Stabilize (void)
{
 int current, last; // used in osc. stabilization check
 int tolerance_count;

 // init PCA0
 PCA0CN = 0x00; // Stop counter; clear all flags
 PCA0MD = 0x0b; // PCA counts in IDLE mode;
 // EXTCLK / 8 is time base;
 // overflow interrupt is enabled

 // init Timer0
 TCON &= ~0x30; // Stop timer; clear TF0
 TMOD &= ~0x0f; // Timer0 in 16-bit counter mode
 TMOD |= 0x01;
 CKCON |= 0x08; // Timer0 counts SYSCLKs

 tolerance_count = 500; // wait for 500 external cycles in
 // a row to lie within 4 internal
 // clocks of each other
 current = 0;

 do {
 PCA0CN = 0x00;
 PCA0L = 0xFF; // set PCA time base to ‘-1’
 PCA0H = 0xFF;
 TCON &= ~0x30;

AN138

30 Rev. 1.1

 TH0 = 0x00; // init T0 time base
 TL0 = 0x00;

 // start PCA0
 CR = 1;
 while (CF == 0); // wait for edge
 TR0 = 1; // Start Timer0
 CF = 0; // clear PCA overflow
 PCA0L = -8; // set PCA to overflow in 8 cycles
 PCA0H = (-8) >> 8;
 while (CF == 0);
 TR0 = 0;
 last = current;
 current = (TH0 << 8) | TL0;
 if (abs (current - last) > 4) {
 tolerance_count = 500; // falls outside bounds; reset
 // counter
 } else {
 tolerance_count--; // in-bounds; update counter
 }

 } while (tolerance_count != 0);

}

//---
// PORT_Init
//---
//
// Configure the Crossbar and GPIO ports.
// P0.0 - ADC Input
// P0.1 -
// P0.2 - XTAL1
// P0.3 - XTAL2
// P0.4 -
// P0.5 -
// P0.6 -
// P0.7 - C2D
//
void PORT_Init (void)
{
 XBR0 = 0x0d; // skip crystal pins and P0.0 in crossbar
 XBR2 = 0x40; // enable crossbar and weak pull-ups

 P0MDIN &= ~0x0c; // configure XTAL1 and XTAL2 as analog
 // inputs
 P0MDIN &= ~0x01; // configure P0.0 as an analog input
}

//---
// Timer2_Init
//---
//
// Configure Timer2 to auto-reload at interval specified by <counts>
// using EXTCLK / 8 as its time base.
//
void Timer2_Init (int counts)
{
 TMR2CN = 0x01; // Stop Timer2;

AN138

Rev. 1.1 31

 // Timer2 timebase is EXTCLK/8

 TMR2RL = -counts; // Init reload value
 TMR2 = TMR2RL; // Init Timer2
 ET2 = 1; // enable Timer2 interrupts
 TR2 = 1; // start Timer2
}

//---
// Timer2_ISR
//---
//
// This ISR is called at <SAMPLERATE> Hz on Timer2 overflows
//
void Timer2_ISR (void) interrupt 5
{

 TF2H = 0; // clear Timer2 overflow flag

 OSCICN |= 0x04; // Start Internal Oscillator
 OSCICN &= ~0x08; // Switch to Internal Oscillator

 ADC0CN = 0x80; // enable ADC

 REF0CN |= 0x0A; // Select voltage reference and enable
 // bias generator

 AMX0SL = 0x80; // ADC in single-ended mode sampling P0.0

 ADC0CF = (INTCLK << 3); // Set SAR clock frequency to ~ 3MHz

 ADC0CF |= 0x01; // Set PGA gain

 // Settling time starts at this point. Sampling should not start until
 // the appropriate settling time has passed. Each SYSCLK cycle is 326.5 ns.

 AD0INT = 0; // Clear conversion complete flag
 AD0BUSY = 1; // Start a conversion
 while(!AD0INT); // Wait until conversion complete

 AD0EN = 0; // Disable ADC
 REF0CN &= ~0x02; // Turn off bias generator

 ADC_READING = ADC0; // Capture ADC Reading

 OSCICN |= 0x08; // Switch to external oscillator
 OSCICN &= ~0x07; // disable internal oscillator

}

AN138

32 Rev. 1.1

Example 1B: ADC Sampling System (Minimized “Active” Peak
Current)
//---
// ADC_B_F30x.c
//---
// Copyright 2003 Cygnal Integrated Products, Inc.
//
// AUTH: FB
// DATH: 23 JAN 03
//
// This example captures ADC samples at a rate of 10 Hz from P0.0 and is clocked
// from a 32.768 kHz watch crystal. This program keeps the CPU in Idle mode
// until a Timer2 overflow. The Timer2 interrupt turns on the ADC, takes a
// sample, then turns it off to save power.
//
// This program is meant to be used as a comparison to ADC_A_F30x to show that
// reducing the peak current required to take an ADC sample does not always
// save power. In this case, decreasing the SYSCLK frequency increased the
// average system current because the ADC was “on” for a longer period of time.
//
// Target: C8051F30x
//
// Tool chain: KEIL Eval ‘c’
//

//---
// Includes
//---
#include <c8051f300.h> // SFR declarations
#include <math.h>

//---
// 16-bit SFR Definitions for ‘F30x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR2RL = 0xca; // Timer2 reload value
sfr16 TMR2 = 0xcc; // Timer2 counter
sfr16 PCA0CP1 = 0xe9; // PCA0 Module 1 Capture/Compare
sfr16 PCA0CP2 = 0xeb; // PCA0 Module 2 Capture/Compare
sfr16 PCA0 = 0xf9; // PCA0 counter
sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 Capture/Compare

//---
// Global CONSTANTS
//---

#define INTCLK 24500000 / 8 // Internal Oscillator frequency
 // in Hz (divide by 8 mode)
#define EXTCLK 32768 // Frequency for 32.768 kHz External
 // crystal oscillator
#define SAMPLERATE 10 // ADC Sampling Rate in Hz

sbit LED = P0^2; // LED=’1’ means ON
sbit SW2 = P0^3; // SW2=’0’ means switch pressed

//---

AN138

Rev. 1.1 33

// Global VARIABLES
//---
char ADC_READING = 0;

//---
// Function PROTOTYPES
//---
void SYSCLK_Init (void);
void PORT_Init (void);
void Crystal_Stabilize (void);
void Timer2_Init (int counts);
void Timer2_ISR (void);
//---
// MAIN Routine
//---
void main (void) {

 // disable watchdog timer
 PCA0MD &= ~0x40; // WDTE = 0 (clear watchdog timer
 // enable)

 PORT_Init(); // initialize the Crossbar and GPIO
 SYSCLK_Init(); // start external oscillator
 Timer2_Init(EXTCLK/8/SAMPLERATE); // configure Timer2 to overflow at
 // <SAMPLERATE> times per second

 EA = 1; // enable global interrupts

 while(1){

 PCON |= 0x01; // put the device in idle mode
 }
}

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use the external 32.768 kHz
// watch crystal as its clock source and disables the internal oscillator.
//
void SYSCLK_Init (void)
{

 int i; // delay counter

 OSCXCN = 0x61; // start external oscillator

 for (i=0; i < 256; i++) ; // wait for osc to start up

 while (!(OSCXCN & 0x80)) ; // wait for crystal osc. to settle

 Crystal_Stabilize();

 OSCXCN = 0x60; // decrease XFCN (crystal drive current)

AN138

34 Rev. 1.1

 RSTSRC = 0x04; // enable missing clock detector
 OSCICN = 0x08; // switch to external oscillator

}

//---
// Crystal_Stabilize
//---
//
// Low-frequency crystal stabilization wait routine:
//
// This routine measures the period of the external oscillator with respect
// to the internal oscillator and loops until the external oscillator period is
// measured to be within 4 internal oscillator periods for 500 cycles in
// a row. This is only necessary for tuning fork crystals, which have
// abnormally long stabilization times (on the order of seconds).
//
// Assumes that the internal oscillator operating in divide-by-8 mode is
// selected as the system clock source. Also assumes that the external
// oscillator has been enabled, configured, and is oscillating.
//
// Here we measure the number of system clocks in 8 “EXTCLK/8” periods.
// We compare successive measurements. When we obtain 500 measurements
// in a row that are all within 4 system clocks of each other the
// routine will exit. This condition will only occur once the crystal
// oscillator has fully stabilized at its resonant frequency.
//
// Note that this can take several seconds.
//
void Crystal_Stabilize (void)
{
 int current, last; // used in osc. stabilization check
 int tolerance_count;

 // init PCA0
 PCA0CN = 0x00; // Stop counter; clear all flags
 PCA0MD = 0x0b; // PCA counts in IDLE mode;
 // EXTCLK / 8 is time base;
 // overflow interrupt is enabled

 // init Timer0
 TCON &= ~0x30; // Stop timer; clear TF0
 TMOD &= ~0x0f; // Timer0 in 16-bit counter mode
 TMOD |= 0x01;
 CKCON |= 0x08; // Timer0 counts SYSCLKs

 tolerance_count = 500; // wait for 500 external cycles in a row
 // to lie within 4 internal clocks of each
 // other
 current = 0;

 do {
 PCA0CN = 0x00;
 PCA0L = 0xFF; // set PCA time base to ‘-1’
 PCA0H = 0xFF;
 TCON &= ~0x30;
 TH0 = 0x00; // init T0 time base
 TL0 = 0x00;

AN138

Rev. 1.1 35

 // start PCA0
 CR = 1;
 while (CF == 0); // wait for edge
 TR0 = 1; // Start Timer0
 CF = 0; // clear PCA overflow
 PCA0L = -8; // set PCA to overflow in 8 cycles
 PCA0H = (-8) >> 8;
 while (CF == 0);
 TR0 = 0;
 last = current;
 current = (TH0 << 8) | TL0;
 if (abs (current - last) > 4) {
 tolerance_count = 500; // falls outside bounds; reset
 // counter
 } else {
 tolerance_count--; // in-bounds; update counter
 }

 } while (tolerance_count != 0);

}

//---
// PORT_Init
//---
//
// Configure the Crossbar and GPIO ports.
// P0.0 - ADC Input
// P0.1 -
// P0.2 - XTAL1
// P0.3 - XTAL2
// P0.4 -
// P0.5 -
// P0.6 -
// P0.7 - C2D
//
void PORT_Init (void)
{
 XBR0 = 0x0d; // skip crystal pins and P0.0 in crossbar
 XBR2 = 0x40; // enable crossbar and weak pull-ups

 P0MDIN &= ~0x0c; // configure XTAL1 and XTAL2 as analog
 // inputs
 P0MDIN &= ~0x01; // configure P0.0 as an analog input
}

//---
// Timer2_Init
//---
//
// Configure Timer2 to auto-reload at interval specified by <counts>
// using EXTCLK / 8 as its time base.
//
void Timer2_Init (int counts)
{
 TMR2CN = 0x01; // Stop Timer2;
 // Timer2 timebase is EXTCLK/8

AN138

36 Rev. 1.1

 TMR2RL = -counts; // Init reload value
 TMR2 = TMR2RL; // Init Timer2
 ET2 = 1; // enable Timer2 interrupts
 TR2 = 1; // start Timer2
}

//---
// Timer2_ISR
//---
//
// This ISR is called at <SAMPLERATE> Hz on Timer2 overflows
//
void Timer2_ISR (void) interrupt 5
{

 TF2H = 0; // clear Timer2 overflow flag

 ADC0CN = 0x80; // enable ADC

 REF0CN |= 0x0A; // Select voltage reference and enable
 // bias generator

 AMX0SL = 0x80; // ADC in single-ended mode sampling P0.0

 ADC0CF = (EXTCLK << 3); // Set SAR clock frequency to ~32kHz

 ADC0CF |= 0x01; // Set PGA gain

 // settling time starts at this point, sampling should not start until
 // the appropriate settling time has passed. At this point, we using
 // a 32.768 kHz so each SYSCLK cycle is 30.5 us.

 AD0INT = 0; // Clear conversion complete flag
 AD0BUSY = 1; // Start a conversion
 while(!AD0INT); // Wait until conversion complete

 AD0EN = 0; // Disable ADC
 REF0CN &= ~0x02; // Turn off bias generator
 ADC_READING = ADC0; // Capture ADC Reading

}

AN138

Rev. 1.1 37

Example 2: Waking From Idle Mode on UART Activity (C8051F30x)
//---
// UART_Idle_F30x.c
//---
// Copyright 2002 Cygnal Integrated Products, Inc.
//
// AUTH: FB
// DATE: 6 NOV 02
//
//
// This example shows how a system can wake from Idle mode upon receiving
// a wakeup signal on the UART RX line. The system operates on the internal
// oscillator divided by 8 in Normal mode. When in Idle mode, the system uses
// the external oscillator in C-mode as its clock source. This code assumes
// a 33pF capacitor is present between XTAL2 and GND. The capacitor causes
// oscillation between 5kHz and 10kHz when the external oscillator drive
// current (XFCN) is set to its lowest value.
//
// When in Normal mode, the program gets one character from the UART at 2400
// baud, transmits a string containing the character, and goes back into Idle
// mode. The system consumes approximately 4.2 uA in Idle mode and 1.5 mA in
// Normal mode.
//
// The wakeup character must have only one falling edge followed by only one
// rising edge. Since the start bit is a ‘0’ and the stop bit is a ‘1’,
// example wakeup characters are 0x00, 0xFF, and 0xF0 but not 0x0F. Keep in
// mind that characters are sent LSB first.
//
// The text file “FF_H.txt” contains an 0xFF character followed by ‘H’. It
// can be sent over UART to wake up the system from Idle mode.
//
// Target: C8051F30x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51
//

//---
// Includes
//---

#include <c8051f300.h> // SFR declarations
#include <stdio.h>
#include <math.h>

//---
// 16-bit SFR Definitions for ‘F30x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR2RL = 0xca; // Timer2 reload value
sfr16 TMR2 = 0xcc; // Timer2 counter
sfr16 PCA0CP1 = 0xe9; // PCA0 Module 1 Capture/Compare
sfr16 PCA0CP2 = 0xeb; // PCA0 Module 2 Capture/Compare
sfr16 PCA0 = 0xf9; // PCA0 counter
sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 Capture/Compare

//---
// Global CONSTANTS
//---

AN138

38 Rev. 1.1

#define INTCLK 24500000 / 8 // Internal Oscillator frequency
 // in Hz (divide by 8 mode)
#define EXTCLK 5000 // Frequency of external capacitor
 // oscillator

#define BAUDRATE 2400 // Baudrate in bits per second

sbit LED = P0^2; // LED=’1’ means ON
sbit SW2 = P0^3; // SW2=’0’ means switch pressed
sbit TX0_PIN = P0^4; // UART TX0 pin
sbit RX0_PIN = P0^5; // UART RX0 pin

//---
// Function PROTOTYPES
//---

void PORT_Init (void);
void UART0_Init (void);
void INT0_ISR (void);

//---
// Global VARIABLES
//---

bit UART_ACTIVE = 0; // Flag indicating system is in Normal
 // mode operating at 3.0625 MHz

//---
// MAIN Routine
//---

void main (void) {

 char c;

 // Disable Watchdog timer
 PCA0MD &= ~0x40; // WDTE = 0 (clear watchdog timer
 // enable)
 PORT_Init (); // initialize crossbar and GPIO
 UART0_Init (); // initialize UART0

 IT01CF = 0x05; // Configure External Interrupt 0 to
 // generate an interrupt on the falling
 // edge of P0.5 (UART RX signal)

 EA = 1; // Enable global interrupts

 while (1) {

 if(UART_ACTIVE){
 c = getchar(); // Get the next character
 printf(“\nThe character you entered was: %c”, c);

 }

 printf(“\n\nTransmit an (0xFF) to wake up the system.\n”);

AN138

Rev. 1.1 39

 UART_ACTIVE = 0; // Make device ready for Idle mode

 P0MDOUT &= ~0x10; // Make TX0_PIN open-drain
 TX0_PIN = 1; // Make TX0_PIN high impedance

 REN0 = 0; // Disable UART reception

 OSCXCN = 0x50; // Start external oscillator in C mode

 RSTSRC = 0x00; // Disable missing clock detector

 OSCICN = 0x08; // Switch to external oscillator
 // and disable internal oscillator

 TR1 = 0; // Disable Timer1

 EX0 = 1; // Enable External Interrupt 0

 PCON |= 0x01; // Go into Idle mode
 }
}

//---
// Interrupt Service Routines
//---

//---
// INT0_ISR
//---
//
// This Interrupt Service Routine is called when a UART character is received
// when the system is in Idle mode.
//
// It enables the UART and sets the system state variable <UART_ACTIVE> to ‘1’.
//
void INT0_ISR (void) interrupt 0 {

 OSCICN = 0x04; // Enable Internal oscillator in divide
 // by 8 mode and switch to it

 EX0 = 0; // Disable External Interrupt0

 TR1 = 1; // Enable Timer1
 REN0 = 1; // Enable UART reception

 P0MDOUT |= 0x10; // enable TX0 as a push-pull output

 UART_ACTIVE = 1; // Indicate UART is ready for communication
}

//---
// Initialization Subroutines
//---

//---
// PORT_Init
//---

AN138

40 Rev. 1.1

//
// Configure the Crossbar and GPIO ports.
// P0.0 -
// P0.1 -
// P0.2 - LED (push-pull)
// P0.3 - SW2
// P0.4 - UART TX (push-pull)
// P0.5 - UART RX
// P0.6 -
// P0.7 - C2D
//
void PORT_Init (void)
{
 XBR0 = 0x08; // skip XTAL2 in the crossbar assignments
 XBR1 = 0x03; // UART0 TX and RX pins enabled
 XBR2 = 0x40; // Enable crossbar and weak pull-ups
 P0MDOUT |= 0x10; // enable TX0 as a push-pull output
 P0MDIN &= ~0x08; // Configure XTAL2 as an analog input

}

//---
// UART0_Init
//---
//
// Configure the UART0 using Timer1, for <BAUDRATE> and 8-N-1.
//
void UART0_Init (void)
{
 SCON0 = 0x10; // SCON0: 8-bit variable bit rate
 // level of STOP bit is ignored
 // RX enabled
 // ninth bits are zeros
 // clear RI0 and TI0 bits
 if (INTCLK/BAUDRATE/2/256 < 1) {
 TH1 = -(INTCLK/BAUDRATE/2);
 CKCON |= 0x10; // T1M = 1; SCA1:0 = xx
 } else if (INTCLK/BAUDRATE/2/256 < 4) {
 TH1 = -(INTCLK/BAUDRATE/2/4);
 CKCON &= ~0x13;
 CKCON |= 0x01; // T1M = 0; SCA1:0 = 01
 } else if (INTCLK/BAUDRATE/2/256 < 12) {
 TH1 = -(INTCLK/BAUDRATE/2/12);
 CKCON &= ~0x13; // T1M = 0; SCA1:0 = 00
 } else {
 TH1 = -(INTCLK/BAUDRATE/2/48);
 CKCON &= ~0x13;
 CKCON |= 0x02; // T1M = 0; SCA1:0 = 10
 }

 TL1 = TH1; // set Timer1 to reload value
 TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
 TMOD |= 0x20;
 TR1 = 1; // START Timer1
 TI0 = 1; // Indicate TX0 ready
}

AN138

Rev. 1.1 41

Example 3: Waking from Stop Mode Using a Comparator
(C8051F30x)
//---
// CP0_Stop_F30x.c
//---
// Copyright 2003 Cygnal Integrated Products, Inc.
//
// AUTH: FB / GV
// DATE: 23 JAN 03
//
// This example shows how a sleep mode can be implemented in a system using
// the Stop mode of the CPU. This application implements a software counter
// that is incremented approximately every second when the device is in
// Normal mode. If the system is powered down when it is in Stop mode, the
// counter resumes counting the next time it enters Normal mode. If the
// system is powered down while it is in Normal mode, the counter will reset
// to zero. Every time the counter is updated, the current value of the
// counter is printed to the UART.
//
// The S2 switch toggles the system back and forth between Stop mode and
// Normal mode. On power up, the system is in Stop mode. The system enters
// Normal mode when the S2 switch on the target board is pressed, causing
// a Comparator 0 reset.
//
// Upon entering Normal mode, External Interrupt 0 (/INT0) is activated
// to sense the S2 switch and Comparator 0 is disabled as a reset source.
// Pressing S2 in Normal mode will cause the INT0_ISR to put the system
// in Stop mode.
//
// This program uses Comparator 0 as a reset source. When S2 on the target
// board is pressed, the the CP0+ input drops below CP0- (VDD/2). This causes
// Comparator 0 to issue a system reset.
//
// For this example, it is necessary to make the following connections:
// 1. P0.3_SW -> P0.0
// 2. P0.2 -> P0.1
// 3. P0.2_LED -> P0.2
//
// P0.1 is used as a reference voltage for the comparator and should be
// approximately halfway between VDD and GND. When the LED is connected
// to P0.2 (high-impedance with weak pull-up), the voltage on P0.2 is
// around 1.7 Volts.
//
// Since this program writes to FLASH, the VDD monitor is enabled.
//
// Target: C8051F30x
// Tool Chain: KEIL C51 6.03 / KEIL EVAL C51
//

//---
// Include Files
//---

#include <c8051f300.h>
#include <stdio.h>

//---

AN138

42 Rev. 1.1

// 16-bit SFR Definitions for ‘F30x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR2RL = 0xca; // Timer2 reload value
sfr16 TMR2 = 0xcc; // Timer2 counter
sfr16 PCA0CP1 = 0xe9; // PCA0 Module 1 Capture/Compare
sfr16 PCA0CP2 = 0xeb; // PCA0 Module 2 Capture/Compare
sfr16 PCA0 = 0xf9; // PCA0 counter
sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 Capture/Compare

//---
// Global Constants
//---

#define SYSCLK 3062500 // System Clock Frequency in Hz
#define BAUDRATE 9600 // UART Baud Rate in bps

sbit S2 = P0^0; // Switch on Target Board

//---
// Global Variables
//---
long COUNT = 0; // Software Counter

char code SLEEP _at_ 0x1000; // Flag that indicates device
 // is in a low-power state. The
 // flag is TRUE when it contains
 // an 0x55 pattern. Any other
 // pattern indicates FALSE.

long code COUNT_SAVE _at_ 0x1001; // Non-volatile storage for
 // the current count

//---
// Function Prototypes
//---

void SYSCLK_Init (void);
void PORT_Init (void);
void CPT0_Init (void);
void ResetSRC_Init(void);
void EX0_Init(void);
void UART0_Init (void);
void Check_Reset_Source(void);
void wait_ms(int ms);

//---
// MAIN Routine
//---

void main (void)
{

 PCA0MD &= ~0x40; // disable the watchdog timer
 RSTSRC = 0x02; // enable VDD monitor

AN138

Rev. 1.1 43

 EX0_Init(); // initialize External Interrupt 0
 PORT_Init (); // initialize crossbar and GPIO
 SYSCLK_Init(); // initialize the system clock
 UART0_Init(); // initialize UART communication

 EA = 1; // Enable global interrupts

 Check_Reset_Source(); // check whether the source of
 // of the last reset was due to
 // a power-on condition or due to
 // a comparator

 while(1){

 // print current count
 printf(“Current Count: %ld\n”, COUNT);
 COUNT++;

 // wait for one second
 wait_ms(1000);

 }
}

//---
// Check_Reset_Source
//---
//
// This routine is called on every device reset.
//
// On each comparator reset, it restores the value of <COUNT> from the
// <COUNT_SAVE> variable stored in FLASH if the device was in a low-power state
// prior to the reset(i.e. the SLEEP flag in FLASH was set to an 0x55 pattern).
// If the <SLEEP> flag was not set then the <COUNT> variable is set to zero and
// the device starts normal mode operation.
//
// On each power-on reset or HW pin reset, the device goes into a low power
// mode waiting for a comparator reset.
//
void Check_Reset_Source(void)
{
 char EA_SAVE; // interrupt state preservation
 char xdata * idata ptrSLEEP = &SLEEP; // FLASH write pointer

 printf(“\nDevice Reset -- RESET SOURCE = 0x%02bX\n\n”, RSTSRC);

 // check for power-on, HW pin, watchdog timer or missing clock detector reset
 if(RSTSRC & 0x4F){
 CPT0_Init(); // initialize comparator 0
 ResetSRC_Init(); // set comparator 0 as a reset source

 printf(“Entering Stop Mode\n\n”);
 PCON |= 0x02; // put device in stop mode
 }

AN138

44 Rev. 1.1

 // check for a comparator reset
 else if(RSTSRC & 0x20){

 while(!S2); // wait while switch down
 wait_ms(5); // wait until switch stabilizes

 // if the device was in a low-power state (<SLEEP> flag is set to TRUE),
 // then resume counting, otherwise start counting from zero
 if(SLEEP == 0x55){

 // 1. restore <COUNT>
 COUNT = COUNT_SAVE;

 // 2. Set <SLEEP> flag to FALSE by erasing the FLASH page containing
 // the variable
 EA_SAVE = EA; // preserve interrupt state
 EA = 0; // disable interrupts
 PSCTL = 0x01; // MOVX writes write FLASH byte
 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2
 *ptrSLEEP = 0x00; // clear SLEEP flag to indicate device
 // is no longer in Stop mode
 PSCTL = 0x00; // disable FLASH writes/erases
 EA = EA_SAVE; // restore interrupt state

 // 3. Enable External Interrupt 0
 EX0 = 1;
 }

 // otherwise start counting at zero
 else{
 // 1. Set <COUNT> to zero
 COUNT = 0;

 // 2. Enable External Interrupt 0
 EX0 = 1; // Enable External Interrupt0
 }

 }

 // handle error condition for unrecognized reset source
 else {
 printf(“\n**UNRECOGNIZED RESET SOURCE = 0x%02bX\n”, RSTSRC);
 PCON |= 0x02; // place device in Stop mode
 }

}

//---
// wait_ms
//---
//
// This routine inserts a delay of <ms> milliseconds.
//
void wait_ms(int ms)
{
 TMR2CN = 0x00; // Configure Timer 2 as a 16-bit

AN138

Rev. 1.1 45

 // timer counting SYSCLKs/12
 TMR2RL = -(SYSCLK/1000/12); // Timer 2 overflows at 1 kHz
 TMR2 = TMR2RL;

 TR2 = 1; // Start Timer 2

 while(ms){
 TF2H = 0;
 while(!TF2H); // wait until timer overflows
 ms--; // decrement ms
 }

 TR2 = 0; // Stop Timer 2
}

//---
// Interrupt Service Routines
//---

//---
// INT0_ISR
//---

void INT0_ISR (void) interrupt 0
{
 // pointer to COUNT
 unsigned char* ptrCOUNT = &COUNT;

 // FLASH write pointer
 char xdata * idata ptrCOUNT_SAVE = &COUNT_SAVE;

 // FLASH write pointer
 char xdata * idata ptrSLEEP = &SLEEP;

 char EA_SAVE = EA; // save interrupt status

 printf(“Entering Stop Mode\n\n”);

 EA = 0; // disable interrupts

 PSCTL = 0x03; // MOVX writes erase FLASH page
 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2
 *ptrCOUNT_SAVE = 0; // initiate page erase

 PSCTL = 0x01; // MOVX writes write FLASH byte

 // copy <COUNT> to the <COUNT_SAVE> variable in FLASH

 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2
 ptrCOUNT_SAVE[0] = ptrCOUNT[0]; // copy first byte

 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2
 ptrCOUNT_SAVE[1] = ptrCOUNT[1]; // copy second byte

 FLKEY = 0xA5; // FLASH lock and key sequence 1

AN138

46 Rev. 1.1

 FLKEY = 0xF1; // FLASH lock and key sequence 2
 ptrCOUNT_SAVE[2] = ptrCOUNT[2]; // copy third byte

 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2
 ptrCOUNT_SAVE[3] = ptrCOUNT[3]; // copy fourth byte

 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2
 *ptrSLEEP = 0x55; // set SLEEP flag to indicate device
 // is in Stop mode and <COUNT> has
 // been saved in FLASH

 PSCTL = 0x00; // disable FLASH writes and erases

 EX0 = 0; // disable External Interrupt 0

 EA = EA_SAVE; // restore interrupt status

 while(!S2); // wait while switch down

 CPT0_Init(); // initialize comparator 0
 ResetSRC_Init(); // set comparator 0 as a reset source

 PCON |= 0x02; // put the device in Stop mode

}

//---
// Initialization Subroutines
//---

//---
// SYSCLK_Init
//---
// This routine initializes the system clock to use the precision internal
// oscillator divided by 8 as its clock source.
//
void SYSCLK_Init (void)
{

 OSCICN = 0x04; // SYSCLK is internal osc.
 // in divide by 8 mode running
 // at 3.0625 MHz
}

//---
// PORT Initialization
//---
//
// Configure the Crossbar and GPIO ports
//
// P0.0 - CP0+ input (connected to S2)
// P0.1 - CP0- input
// P0.2 - Comparator Voltage Reference (connected to P0.1)
// P0.3 - Used as a weak pull-up for P0.0
//
void PORT_Init (void)

AN138

Rev. 1.1 47

{
 XBR0 = 0x07; // skip P0.0 - P0.2 in crossbar

 XBR1 = 0x03; // Enable UART0
 XBR2 = 0x40; // Enable crossbar and weak pull-ups

 P0MDOUT |= 0x10; // TX0 is a push-pull output

}

//---
// Comparator0 Initialization
//---
//
// Initialize Comparator 0 to detect when the SW2 switch is pressed.
//
void CPT0_Init(void)
{

 P0MDIN &= ~0x03; // Comparator 0 inputs (P0.0
 // and P0.1) are analog inputs.

 CPT0CN = 0x8F; // Comparator enabled with maximum
 // positive and negative hysteresis

 CPT0MX = 0x00; // P0.1 = Inverting Input for
 // the comparator
 // P0.0 = Non-Inverting Input for the
 // comparator

 wait_ms(500); // wait for comparator inputs to settle

 CPT0CN &= ~0x30; // clear interrupt flags

}

//---
// Reset Source Initialization
//---
//
// Configure Comparator 0 as a reset source.
//
void ResetSRC_Init(void)
{
 RSTSRC = 0x22; // Comparator 0 is a reset source
 // VDD Monitor enabled
}

//---
// External Interrupt 0 Initialization
//---
//
// Configure External Interrupt 0 to generate an interrupt on the falling
// edge of P0.0.
//
void EX0_Init(void)

AN138

48 Rev. 1.1

{
 IT01CF = 0x00; // Configure External Interrupt 0 to
 // generate an interrupt on the falling
 // edge of P0.0 (S2 switch)
}
//---
// UART0_Init
//---
//
// Configure the UART0 using Timer1, for <BAUDRATE> and 8-N-1.
//
void UART0_Init (void)
{
 SCON0 = 0x10; // SCON0: 8-bit variable bit rate
 // level of STOP bit is ignored
 // RX enabled
 // ninth bits are zeros
 // clear RI0 and TI0 bits
 if (SYSCLK/BAUDRATE/2/256 < 1) {
 TH1 = -(SYSCLK/BAUDRATE/2);
 CKCON |= 0x10; // T1M = 1; SCA1:0 = xx
 } else if (SYSCLK/BAUDRATE/2/256 < 4) {
 TH1 = -(SYSCLK/BAUDRATE/2/4);
 CKCON &= ~0x13;
 CKCON |= 0x01; // T1M = 0; SCA1:0 = 01
 } else if (SYSCLK/BAUDRATE/2/256 < 12) {
 TH1 = -(SYSCLK/BAUDRATE/2/12);
 CKCON &= ~0x13; // T1M = 0; SCA1:0 = 00
 } else {
 TH1 = -(SYSCLK/BAUDRATE/2/48);
 CKCON &= ~0x13;
 CKCON |= 0x02; // T1M = 0; SCA1:0 = 10
 }

 TL1 = TH1; // set Timer1 to reload value
 TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
 TMOD |= 0x20;
 TR1 = 1; // START Timer1
 TI0 = 1; // Indicate TX0 ready

}

AN138

Rev. 1.1 49

Example 3: Waking from Stop Mode Using a Comparator
(C8051F31x)
//---
// CP0_Stop_F31x.c
//---
// Copyright 2003 Cygnal Integrated Products, Inc.
//
// AUTH: FB
// DATE: 23 JAN 03
//
// This example shows how a sleep mode can be implemented in a system using
// the Stop mode of the CPU. This application implements a software counter
// that is incremented approximately every second when the device is in
// Normal mode. If the system is powered down when it is in Stop mode, the
// counter resumes counting the next time it enters Normal mode. If the
// system is powered down while it is in Normal mode, the counter will reset
// to zero. Every time the counter is updated, the current value of the
// counter is printed to the UART.
//
// The S2 switch toggles the system back and forth between Stop mode and
// Normal mode. On power up, the system is in Stop mode. The system enters
// Normal mode when the S2 switch on the target board is pressed, causing
// a Comparator 0 reset.
//
// Upon entering Normal mode, External Interrupt 0 (/INT0) is activated
// to sense the S2 switch and Comparator 0 is disabled as a reset source.
// Pressing S2 in Normal mode will cause the INT0_ISR to put the system
// in Stop mode.
//
// This program uses Comparator 0 as a reset source. When S2 on the target
// board is pressed, the the CP0+ input drops below CP0- (VDD/2). This causes
// Comparator 0 to issue a system reset.

// For this example, it is necessary to make the following connections:
// 1. P0.7_SW -> P0.0
// 2. P0.7_SW -> P1.0
// 3. P3.3 -> P1.1
// 4. P3.3_LED -> P3.3
//
// P0.1 is used as a reference voltage for the comparator and should be
// approximately halfway between VDD and GND. When the LED is connected
// to P0.2 (high-impedance with weak pull-up), the voltage on P0.2 is
// around 1.7 Volts.
//
// Since this program writes to FLASH, the VDD monitor is enabled.
//
// Target: C8051F31x
// Tool Chain: KEIL C51 6.03 / KEIL EVAL C51
//

//---
// Include Files
//---

#include <c8051f310.h>
#include <stdio.h>

AN138

50 Rev. 1.1

//---
// 16-bit SFR Definitions for ‘F31x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR2RL = 0xca; // Timer2 reload value
sfr16 TMR2 = 0xcc; // Timer2 counter
sfr16 TMR3 = 0x94; // Timer3 counter
sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 Capture/Compare
sfr16 PCA0CP1 = 0xe9; // PCA0 Module 1 Capture/Compare
sfr16 PCA0CP2 = 0xeb; // PCA0 Module 2 Capture/Compare
sfr16 PCA0CP3 = 0xed; // PCA0 Module 3 Capture/Compare
sfr16 PCA0CP4 = 0xfd; // PCA0 Module 4 Capture/Compare
sfr16 PCA0 = 0xf9; // PCA0 counter
sfr16 ADC0 = 0xbd; // ADC Data Word Register
sfr16 ADC0GT = 0xc3; // ADC0 Greater-Than
sfr16 ADC0LT = 0xc5; // ADC0 Less-Than

//---
// Global Constants
//---

#define SYSCLK 3062500 // System Clock Frequency in Hz
#define BAUDRATE 9600 // UART Baud Rate in bps

sbit S2 = P0^0; // Switch on Target Board

//---
// Global Variables
//---
long COUNT = 0; // Software Counter

char code SLEEP _at_ 0x1000; // Flag that indicates device
 // is in a low-power state. The
 // flag is TRUE when it contains
 // an 0x55 pattern. Any other
 // pattern indicates FALSE.

long code COUNT_SAVE _at_ 0x1001; // Non-volatile storage for
 // the current count

//---
// Function Prototypes
//---

void SYSCLK_Init (void);
void VDMON_Init (void);
void PORT_Init (void);
void CPT0_Init (void);
void ResetSRC_Init(void);
void EX0_Init(void);
void UART0_Init (void);
void Check_Reset_Source(void);
void wait_ms(int ms);

//---
// MAIN Routine
//---

AN138

Rev. 1.1 51

void main (void)
{

 PCA0MD &= ~0x40; // disable the watchdog timer

 VDMON_Init(); // initialize VDD monitor

 EX0_Init(); // initialize External Interrupt 0
 PORT_Init (); // initialize crossbar and GPIO
 SYSCLK_Init(); // initialize the system clock
 UART0_Init(); // initialize UART communication

 EA = 1; // Enable global interrupts

 Check_Reset_Source(); // check whether the source of
 // of the last reset was due to
 // a power-on condition or due to
 // a comparator

 while(1){

 // print current count
 printf(“Current Count: %ld\n”, COUNT);
 COUNT++;

 // wait for one second
 wait_ms(1000);

 }
}

//---
// Check_Reset_Source
//---
//
// This routine is called on every device reset.
//
// On each comparator reset, it restores the value of <COUNT> from the
// <COUNT_SAVE> variable stored in FLASH if the device was in a low-power state
// prior to the reset(i.e. the SLEEP flag in FLASH was set to an 0x55 pattern).
// If the <SLEEP> flag was not set then the <COUNT> variable is set to zero and
// the device starts normal mode operation.
//
// On each power-on reset or HW pin reset, the device goes into a low power
// mode waiting for a comparator reset.
//
void Check_Reset_Source(void)
{
 char EA_SAVE; // interrupt state preservation
 char xdata * idata ptrSLEEP = &SLEEP; // FLASH write pointer

 printf(“\nDevice Reset -- RESET SOURCE = 0x%02bX\n\n”, RSTSRC);

AN138

52 Rev. 1.1

 // check for power-on, HW pin, watchdog timer or missing clock detector reset
 if(RSTSRC & 0x4F){
 CPT0_Init(); // initialize comparator 0
 ResetSRC_Init(); // set comparator 0 as a reset source

 printf(“Entering Stop Mode\n\n”);
 PCON |= 0x02; // put device in stop mode
 }

 // check for a comparator reset
 else if(RSTSRC & 0x20){

 while(!S2); // wait while switch down
 wait_ms(5); // wait until switch stabilizes

 // if the device was in a low-power state (<SLEEP> flag is set to TRUE),
 // then resume counting, otherwise start counting from zero
 if(SLEEP == 0x55){

 // 1. restore <COUNT>
 COUNT = COUNT_SAVE;

 // 2. Set <SLEEP> flag to FALSE by erasing the FLASH page containing
 // the variable
 EA_SAVE = EA; // preserve interrupt state
 EA = 0; // disable interrupts
 PSCTL = 0x01; // MOVX writes write FLASH byte
 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2
 *ptrSLEEP = 0x00; // clear SLEEP flag to indicate device
 // is no longer in Stop mode
 PSCTL = 0x00; // disable FLASH writes/erases
 EA = EA_SAVE; // restore interrupt state

 // 3. Enable External Interrupt 0
 EX0 = 1;
 }

 // otherwise start counting at zero
 else{
 // 1. Set <COUNT> to zero
 COUNT = 0;

 // 2. Enable External Interrupt 0
 EX0 = 1; // Enable External Interrupt0
 }

 }

 // handle error condition for unrecognized reset source
 else {
 printf(“\n**UNRECOGNIZED RESET SOURCE = 0x%02bX\n”, RSTSRC);
 PCON |= 0x02; // place device in Stop mode
 }

}

AN138

Rev. 1.1 53

//---
// wait_ms
//---
//
// This routine inserts a delay of <ms> milliseconds.
//
void wait_ms(int ms)
{
 TMR2CN = 0x00; // Configure Timer 2 as a 16-bit
 // timer counting SYSCLKs/12
 TMR2RL = -(SYSCLK/1000/12); // Timer 2 overflows at 1 kHz
 TMR2 = TMR2RL;

 TR2 = 1; // Start Timer 2

 while(ms){
 TF2H = 0;
 while(!TF2H); // wait until timer overflows
 ms--; // decrement ms
 }

 TR2 = 0; // Stop Timer 2
}

//---
// Interrupt Service Routines
//---

//---
// INT0_ISR
//---

void INT0_ISR (void) interrupt 0
{
 // pointer to COUNT
 unsigned char* ptrCOUNT = &COUNT;

 // FLASH write pointer
 char xdata * idata ptrCOUNT_SAVE = &COUNT_SAVE;

 // FLASH write pointer
 char xdata * idata ptrSLEEP = &SLEEP;

 char EA_SAVE = EA; // save interrupt status

 printf(“Entering Stop Mode\n\n”);

 EA = 0; // disable interrupts

 PSCTL = 0x03; // MOVX writes erase FLASH page
 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2
 *ptrCOUNT_SAVE = 0; // initiate page erase

 PSCTL = 0x01; // MOVX writes write FLASH byte

 // copy <COUNT> to the <COUNT_SAVE> variable in FLASH

AN138

54 Rev. 1.1

 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2
 ptrCOUNT_SAVE[0] = ptrCOUNT[0]; // copy first byte

 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2
 ptrCOUNT_SAVE[1] = ptrCOUNT[1]; // copy second byte

 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2
 ptrCOUNT_SAVE[2] = ptrCOUNT[2]; // copy third byte

 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2
 ptrCOUNT_SAVE[3] = ptrCOUNT[3]; // copy fourth byte

 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2
 *ptrSLEEP = 0x55; // set SLEEP flag to indicate device
 // is in Stop mode and <COUNT> has
 // been saved in FLASH

 PSCTL = 0x00; // disable FLASH writes and erases

 EX0 = 0; // Disable External Interrupt 0

 EA = EA_SAVE; // restore interrupt status

 while(!S2); // wait while switch down

 CPT0_Init(); // initialize comparator 0

 ResetSRC_Init(); // set comparator 0 as a reset source

 PCON |= 0x02; // put the device in Stop mode

}

//---
// Initialization Subroutines
//---

//---
// VDMON_Init
//---
// This routine initializes the VDD monitor.
//
void VDMON_Init (void)
{
 VDM0CN = 0x80; // enable VDD monitor
 while(!(VDM0CN & 0x40)); // wait until power supply is above
 // VDD threshold
}

AN138

Rev. 1.1 55

//---
// SYSCLK_Init
//---
// This routine initializes the system clock to use the calibrated internal
// oscillator divided by 8 as its clock source.
//
void SYSCLK_Init (void)
{

 OSCICN = 0x80; // SYSCLK is internal osc.
 // in divide by 8 mode running
 // at 3.0625 MHz
}

//---
// PORT_Init
//---
//
// Configure the Crossbar and GPIO ports
// P0.0 - (connected to S2)
// P1.0 - CP0+ input (connected to S2)
// P1.1 - CP0- input
// P3.3 - Comparator Voltage Reference (connected to P1.0)
//
void PORT_Init (void)
{
 P0SKIP = 0x01; // skip P0.0 in crossbar
 P1SKIP = 0x03; // skip P1.0, P1.1 in crossbar

 XBR0 = 0x01; // Enable UART0
 XBR1 = 0x40; // Enable crossbar and weak pull-ups

 P0MDOUT |= 0x10; // TX0 is a push-pull output

}

//---
// Comparator0 Initialization
//---
//
// Initialize Comparator 0 to detect when the SW2 switch is pressed.
//
void CPT0_Init(void)
{

 P1MDIN &= ~0x03; // Comparator 0 inputs (P1.0
 // and P1.1) are analog inputs.

 CPT0CN = 0x8F; // Comparator enabled with maximum
 // positive and negative hysteresis

 CPT0MX = 0x00; // P0.1 = Inverting Input for
 // the comparator
 // P0.0 = Non-Inverting Input for the
 // comparator

 wait_ms(500); // wait for comparator inputs to settle

AN138

56 Rev. 1.1

 CPT0CN &= ~0x30; // clear interrupt flags

}

//---
// Reset Source Initialization
//---
//
// Configure Comparator 0 as a reset source.
//
void ResetSRC_Init(void)
{
 RSTSRC = 0x22; // Comparator 0 is a reset source
 // VDD Monitor enabled
}

//---
// External Interrupt 0 Initialization
//---
//
// Configure External Interrupt 0 to generate an interrupt on the falling
// edge of P0.0.
//
void EX0_Init(void)
{
 IT01CF = 0x00; // Configure External Interrupt 0 to
 // generate an interrupt on the falling
 // edge of P0.0 (S2 switch)
}

//---
// UART0_Init
//---
//
// Configure the UART0 using Timer1, for <BAUDRATE> and 8-N-1.
//
void UART0_Init (void)
{
 SCON0 = 0x10; // SCON0: 8-bit variable bit rate
 // level of STOP bit is ignored
 // RX enabled
 // ninth bits are zeros
 // clear RI0 and TI0 bits
 if (SYSCLK/BAUDRATE/2/256 < 1) {
 TH1 = -(SYSCLK/BAUDRATE/2);
 CKCON |= 0x08; // T1M = 1; SCA1:0 = xx
 } else if (SYSCLK/BAUDRATE/2/256 < 4) {
 TH1 = -(SYSCLK/BAUDRATE/2/4);
 CKCON &= ~0x0B;
 CKCON |= 0x01; // T1M = 0; SCA1:0 = 01
 } else if (SYSCLK/BAUDRATE/2/256 < 12) {
 TH1 = -(SYSCLK/BAUDRATE/2/12);
 CKCON &= ~0x0B; // T1M = 0; SCA1:0 = 00
 } else {
 TH1 = -(SYSCLK/BAUDRATE/2/48);
 CKCON &= ~0x0B;
 CKCON |= 0x02; // T1M = 0; SCA1:0 = 10
 }

AN138

Rev. 1.1 57

 TL1 = TH1; // set Timer1 to reload value
 TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
 TMOD |= 0x20;
 TR1 = 1; // START Timer1
 TI0 = 1; // Indicate TX0 ready
}

AN138

58 Rev. 1.1

Example 4: 32.768 kHz Watch Crystal Low Power Startup
Procedure (C8051F30x)
//---
// Watch_XTAL_F30x.c
//---
// Copyright 2003 Cygnal Integrated Products, Inc.
//
// AUTH: FB
// DATE: 23 JAN 03
//
// This example shows how to start an external 32.768 kHz watch crystal in low
// power applications. Since a watch crystal can take longer than one second
// to start, the device goes into Idle mode after turning on the external
// oscillator. Timer2, configured to generate an interrupt every 100 ms using
// a timebase derived from the internal oscillator, wakes the device to check
// the XTLVLD flag. Once the watch crystal has started, the internal oscillator
// is disabled and the system uses the crystal as the system clock source.
//
// Target: C8051F30x
//
// Tool chain: KEIL Eval ‘c’
//

//---
// Includes
//---
#include <c8051f300.h> // SFR declarations

//---
// 16-bit SFR Definitions for ‘F30x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR2RL = 0xca; // Timer2 reload value
sfr16 TMR2 = 0xcc; // Timer2 counter
sfr16 PCA0CP1 = 0xe9; // PCA0 Module 1 Capture/Compare
sfr16 PCA0CP2 = 0xeb; // PCA0 Module 2 Capture/Compare
sfr16 PCA0 = 0xf9; // PCA0 counter
sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 Capture/Compare

//---
// Global CONSTANTS
//---

#define INTCLK 24500000 / 8 // Internal Oscillator frequency
 // in Hz (divide by 8 mode)
#define EXTCLK 32768 // Frequency for 32.768 kHz External
 // crystal oscillator

//---
// Global VARIABLES
//---
bit OSC_READY = 0; // flag to indicate when external
 // oscillator is ready

//---

AN138

Rev. 1.1 59

// Function PROTOTYPES
//---
void SYSCLK_Init (void);
void PORT_Init (void);
void Timer2_Init (int counts);
void Timer2_ISR (void);

//---
// MAIN Routine
//---
void main (void) {

 // disable watchdog timer
 PCA0MD &= ~0x40; // WDTE = 0 (clear watchdog timer
 // enable)

 PORT_Init(); // initialize the crossbar and GPIO
 SYSCLK_Init(); // start external oscillator

 // The system should be running from the external oscillator at this point

 while(1){
 PCON |= 0x01; // put the device in Idle mode
 }
}

//---
// SYSCLK_Init
//---
//
// This routine starts the external 32.768 kHz watch crystal and puts the system
// in Idle mode. Timer 2 interrupts check the status of the XTLVLD bit and
// switches the system clock to the external oscillator when it is ready. The
// system remains in Idle mode until the oscillator starts.
//
void SYSCLK_Init (void)
{

 OSCXCN = 0x61; // start external oscillator

 Timer2_Init(INTCLK/12/10); // configure Timer2 to overflow
 // at 10 Hz (every 100 ms)

 EA = 1; // enable global interrupts

 while(!OSC_READY){
 PCON |= 1; // put device in Idle mode
 }

}

//---
// PORT_Init
//---
//

AN138

60 Rev. 1.1

// Configure the Crossbar and GPIO ports.
// P0.0 -
// P0.1 -
// P0.2 - XTAL1
// P0.3 - XTAL2
// P0.4 -
// P0.5 -
// P0.6 -
// P0.7 - C2D
//
void PORT_Init (void)
{
 XBR0 = 0x0c; // skip crystal pins
 XBR2 = 0x40; // enable crossbar and weak pull-ups

 P0MDIN &= ~0x0c; // configure XTAL1 and XTAL2 as analog
 // inputs
}

//---
// Timer2_Init
//---
//
// Configure Timer2 to auto-reload at interval specified by <counts>
// using the system clock / 12 as its time base.
//
void Timer2_Init (int counts)
{
 TMR2CN = 0x00; // Stop Timer0;
 // Timer2 timebase is SYSCLK/12

 TMR2RL = -counts; // Init reload value
 TMR2 = TMR2RL; // Init Timer2
 ET2 = 1; // enable Timer2 interrupts
 TR2 = 1; // start Timer2
}

//---
// Timer2_ISR
//---
//
// This interrupt service routine is called on Timer2 overflows
//
void Timer2_ISR (void) interrupt 5
{
 TF2H = 0; // clear Timer2 overflow flag

 if(OSCXCN & 0x80) // if crystal osc. has settled
 {
 OSCXCN = 0x60; // decrease crystal drive current
 RSTSRC = 0x04; // enable missing clock detector
 OSCICN = 0x08; // switch to external oscillator
 // and disable internal oscillator

 TR2 = 0; // stop Timer2

 OSC_READY = 1; // indicate that the external osc.

AN138

Rev. 1.1 61

 // is ready

 }
}

AN138

62 Rev. 1.1

Contact Information
Silicon Laboratories Inc.
4635 Boston Lane
Austin, TX 78735
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: productinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

	Relevant Devices
	Introduction
	Key Points
	Calculating Power Consumption
	External Oscillator Power Consumption
	External CMOS Clock
	External Crystal
	External C Mode
	External RC Mode

	Digital Power Consumption
	CPU Power Management Modes
	Supply Voltage
	Temperature
	Operating Frequency (SYSCLK)
	Digital Peripherals and Port I/O

	Analog Peripherals
	Example Calculations
	Example 1: 32.768 kHz Watch Crystal in Idle Mode (C8051F31x)
	Example 2: 24.5 MHz Internal Oscillator in Normal Mode with ADC On (C8051F30x)
	Example 3: 25.000 MHz Crystal in Normal Mode with ADC On (C8051F30x)

	Power Saving Strategies
	Minimizing Average Power Consumption
	Decreasing Supply Voltage
	Designing a Low Power “Sleep” Mode
	Designing a High Performance Mode

	Measuring Average Current
	Examples
	Example 1: ADC Sampling
	Example 2: Waking from Idle Mode on UART Activity
	Example 3: Waking from Stop Mode Using a Comparator
	Example 4: 32.768 kHz Watch Crystal Low-Power Startup Procedure

	Software Examples
	Example 1A: ADC Sampling System (Minimized “Active” Time)
	Example 1B: ADC Sampling System (Minimized “Active” Peak Current)
	Example 2: Waking From Idle Mode on UART Activity (C8051F30x)
	Example 3: Waking from Stop Mode Using a Comparator (C8051F30x)
	Example 3: Waking from Stop Mode Using a Comparator (C8051F31x)
	Example 4: 32.768 kHz Watch Crystal Low Power Startup Procedure (C8051F30x)

