&~

SILICON LABODORATORIES

AN122

ANNOTATED ‘C’ EXAMPLES FOR THE ‘F02X FAMILY

Relevant Devices

This application note applies to the following devices:

C8051F020, C8051F021, C8051F022, and
C8051F023.

Introduction

This note contains example code written in ‘C’ that
can be used as a starting point for the development
of applications based on the C8051F02x family of
devices.

Index of Programs by Peripheral

The following short descriptions provide an index
to the attached programs, organized by peripheral.

ADCO Examples

The following are example programs which use
ADCO.

“ADCO_Buf1.c”

This program shows an example of using ADCO in
interrupt mode using Timer3 overflows as a start-
of-conversion source to sample AINO
<NUM_SAMPLES> times, storing the results in
XDATA space. Once <NUM_SAMPLES> have
been collected, the samples are transmitted out
UARTO. Once the transmission has completed,
another <NUM_SAMPLES> of data are collected
and the process repeats.

“ADCO_Int1.c”

This program shows an example of using ADCO in
interrupt mode using Timer3 overflows as a start-
of-conversion to measure the output of the on-chip
temperature sensor. The temperature is calculated

from the ADCO result and is transmitted out
UARTO.

“ADCO_Int2m.c”

This program shows an example of using ADCO in
interrupt mode using Timer3 overflows as a start-
of-conversion to measure the the voltages on AINO
through AIN7 and the temperature sensor. The
voltages are calculated from the resulting codes
and are transmitted out UARTO.

“ADCO0_OSA1.c”

This program shows an example of using ADCO in
interrupt mode using Timer3 overflows as a start-
of-conversion to measure the output of the on-chip
temperature sensor. The ADCO results are filtered
by a simple integrate-and-dump process whose
integrate/decimate ratio is given by the constant
<INT_DEC>. The temperature is calculated from
the ADCO result and is transmitted out UARTO.

“ADCO0_Poll1.c”

This program demonstrates operation of ADCO in
polled mode. The ADCO is configured to use writes
to ADOBUSY as its start of conversion source and
to measure the output of the on-chip temperature
sensor. The temperature sensor output is converted
to degrees Celsius and is transmitted out UARTO.

DACO Examples

The following are example programs which use
DACO. These can easily be converted to use DAC1
if desired.

Rev. 1.2 12/03

Copyright © 2003 by Silicon Laboratories

AN122-DS12

AN122

“DACO_DTMF1.c”

Example source code which outputs DTMF tones
on DACO. DACO's output is scheduled to update at
a rate determined by the constant <SAMPLER-
ATED>, managed and timed by Timer4.

Oscillator Examples

The following are example programs which config-
ure the internal and external oscillators. They also
show how to measure the internal and external
oscillator frequency and implement a real time
clock.

“OSC_Cry1.c”

This program shows an example of how to config-
ure the External Oscillator to drive a 22.1184 MHz
crystal and to select this external oscillator as the
system clock source. Also enables the missing
clock detector reset function. Assumes an
22.1184 MHz crystal is attached between XTALI1
and XTAL2.

“0SC_Int1.c”

This program shows an example of how to config-
ure the internal oscillator to its maximum fre-
quency (~16 MHz). Also enables the Missing
Clock Detector reset function.

“INT_OSC_Measure1”

This program shows an example of how the exter-
nal oscillator can be used to measure the internal
oscillator frequency. In this example, the internal
oscillator is set to its highest setting. The external
oscillator is configured for a 22.1184 MHz crys-
tal. The PCA counter is used as a generic 16-bit
counter that uses EXTCLK / 8 as its time base. We
configure Timer0 to count SYSCLKSs, and count
the number of INTCLKs in 1 second's worth of
EXTCLK /8

“EXT_OSC_Measure1”

This program shows an example of how the inter-
nal oscillator can be used to measure the external
oscillator frequency. In this example, the internal
oscillator is set to its highest setting. The external
oscillator is configured for a high frequency crys-
tal. The PCA counter is used as a generic 16-bit
counter that uses EXTCLK / 8 as its time base. We
configured Timer0 to count SYSCLKSs, and count
the number of EXTCLK/8 ticks in 16 million
SYSCLKs (or the number of SYSCLKs in
1 second) to obtain the external oscillator fre-
quency.

“OSC_RTC_Cal1”

This program shows an example of how an external
crystal oscillator can be used to measure the inter-
nal oscillator frequency to a sufficient degree to
enable UART operation (better than +/- 2.5%). In
this example, a 32.768kHz watch crystal (with
associated loading capacitors) is connected
between XTAL1 and XTAL2. The PCA counter is
used as a generic 16-bit counter that uses
EXTCLK / 8 as its time base. We preload it to gen-
erate an overflow in 8 counts. Timer0O is config-
ured as a 16-bit counter that is set to count
SYSCLKs. The internal oscillator is configured to
its highest setting, and provides the system clock
source.

A set of real time clock (RTC) values for seconds,
minutes, hours, and days are maintained by the
interrupt handler for Timer 3, which is configured
to use EXTCLK / 8 as its time base and to reload
every 4096 counts. This generates an interrupt once
every second.

Timer Examples

“Timer0_Poll1.c”

This program shows an example of using Timer0 in
polled mode to implement a delay counter with a

2 Rev. 1.2

resolution of 1 ms.

SILICON LABORATORIES

AN122

External Memory Interface (EMIF)
Examples

“EMIF_1.c”

This program configures the external memory
interface to read and write to an external SRAM
mapped to the upper port pins (P4-7).

UART Examples

The following examples show how to use UARTO
and UART1 in polled mode and in interrupt mode.

“UARTO0_Stdio1”

This program configures UARTO to operate in
polled mode, suitable for use with the <stdio>
functions printf() and scanf(), to which examples
areprovided. Assumes an 22.1184 MHz crystal is
attached between XTALI and XTAL2. The system
clock frequency is stored in a global constant
SYSCLK. The target UART baud rate is stored in
a global constant BAUDRATE.

“UARTO Autobaud1”

This program shows an example of how the PCA
can be used to enable accurate UART auto-baud
detection when running from the on-chip internal
oscillator. This algorithm assumes a 0x55 character
(ASCII "U") is sent from the remote transmitter.
Baud rates between 4800 to 19.2kbps can be reli-
ably synchronized. UARTO is then configured to
operate in polled mode, suitable for use with the
<stdio> functions printf() and scanf().

“UARTO_Int1”

This program configures UARTO to operate in
interrupt mode, showing an example of a string
transmitter and a string receiver. These strings are
assumed to be NULL-terminated. Assumes an
22.1184 MHz crystal is attached between XTALI1
and XTAL2. The system clock frequency is stored

in a global constant SYSCLK. The target UART
baud rate is stored in a global constant
BAUDRATE.

“UART1_Int1”

This program is the same as “UARTO0 _Int1” except
it uses UART1.

FLASH Examples

“FLASH_Scratch”

This program illustrates how to erase, write, and
read FLASH memory from application code writ-
ten in 'C' and exercises the upper 128-byte FLASH
sector.

PCA Examples

“Freq_Gen1”

This program uses the PCA in Frequency Output
mode to generate a square wave on P0.0.

SPI Examples

“SP|_EE_Pol1”

This program shows an example of how to inter-
face to a SPI EEPROM using the SPIO interface in
polled-mode. The SPI EEPROM used here is a
Microchip 25LC320 (4k bytes). Assumes a
22.1184MHz crystal is attached between XTALI1
and XTAL2.

“SP|_EE_Int1”

This program is the same as SPI_EE Poll execpt it
uses the SPIO interface in interrupt mode.

SILICON LABORATORIES

Rev.

AN122

Example Code

“ADCO_Buf1.c”

// Copyright 2001 Cygnal Integrated Products, Inc.

// AUTH: BW
// DATE: 27 AUG 01

// This program shows an example of using ADCO in interrupt mode using Timer3
// overflows as a start-of-conversion to sample AINO <NUM SAMPLES> times,
// storing the results in XDATA space. Once <NUM SAMPLES> have been

// collected, the samples are transmitted out UARTO. Once the transmission
// has completed, another <NUM SAMPLES> of data are collected and the process
// repeats.

//

// Assumes an 22.1184MHz crystal is attached between XTAL1l and XTAL2.

//

// The system clock frequency is stored in a global constant SYSCLK. The

// target UART baud rate is stored in a global constant BAUDRATE. The

// ADCO sampling rate is stored in a global constant SAMPLERATEO. The number
// of samples collected during each batch is stored in <NUM SAMPLES>. The

// maximum value of <NUM SAMPLES> is 2048 on a C8051F02x device with 4096

// bytes of XRAM (assuming no external RAM is connected to the External

// Memory Interface).

// Target: C8051F02x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

#include <c8051£f020.h> // SFR declarations
#include <stdio.h>

[mm e e
// 16-bit SFR Definitions for ‘F02x

[
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrle ADCOGT = Oxc4; // ADCO greater than window

sfrle ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = 0Oxca; // Timer2 capture/reload

sfrle T2 = Oxcc; // Timer2

sfrl6 RCAP4 = Oxe4; // Timer4 capture/reload

sfrl6 T4 = 0xf4; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

4 Rev. 1.2

SILICON LABORATORIES

AN122

22118400
115200
50000
2048

#define
#define
#define
#define

SYSCLK
BAUDRATE
SAMPLERATEOQ
NUM_ SAMPLES

#define
#define

TRUE 1
FALSE O

P1"6;
= P3"7;

sbit LED
sbit SWl

void SYSCLK_Init (void) ;

PORT Init (void);

void UARTO Init (void);

void ADCO Init (void);

void Timer3 Init (int counts);

void ADCO ISR (void);

void

xdata unsigned samples[NUM SAMPLES];
bit ADCO_DONE;

// MAIN Routine
void main (void) {
int i;
WDTCN = 0Oxde;
WDTCN = Oxad;

SYSCLK_Init ();

PORT_Init ();

UARTO Init ();

Timer3 Init (SYSCLK/SAMPLERATEO);

ADCO Init ();

while (1) {
// collect samples...

ADCO_DONE = FALSE;
LED = 1;
EIE2 |= 0x02;

!/
!/
//
//
//

//
//
//
//
//
!/
!/
//

//

//
//

SYSCLK frequency in Hz

Baud rate of UART in bps

ADCO Sample frequency in Hz
number of ADCO samples to take in

sequence
LED='"1’ means ON

SW1=’0’ means switch pressed
array to store ADCO results

TRUE when NUM SAMPLES have been
collected

loop counter

disable watchdog timer

initialize
initialize
initialize
initialize

oscillator

crossbar and GPIO
UARTO

Timer3 to overflow at

desired ADCO sample rate
init ADC

Enable global interrupts

turn LED on during sample process
enable ADCO interrupts

SILICON LABORATORIES

Rev. 1.2

AN122

while (ADCO DONE == FALSE) ;

// upload samples to UARTO

LED = 0; //
for (i = 0; i < NUM SAMPLES; i++) {
printf (“$u\n”, samples[i]);

}
printf (“\n”);

[/ m e e
// Initialization Subroutines
e
[
// SYSCLK Init
[/ m e
//
//
// as its clock source.
//
void SYSCLK Init (void)
{
int 1i; //
OSCXCN = 0x67; //
//
for (i=0; 1 < 256; i++) ; //
while (! (OSCXCN & 0x80)) ; //
OSCICN = 0x88; //
//
//
}
e
// PORT_Init
[/ m e e
//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{
XBRO = 0x04; //
XBR1 = 0x00;
XBR2 = 0x40; //
POMDOUT |= 0x01; //
P1MDOUT |= 0x40; //

Configure the UARTO using Timerl,

// wait for samples to be taken

turn LED off during upload process

This routine initializes the system clock to use an 22.1184MHz crystal

delay counter

start external oscillator with
22.1184MHz crystal

Wait for osc. to start up
Wait for crystal osc. to settle
select external oscillator as SYSCLK
source and enable missing clock
detector

Enable UARTO
Enable
enable
enable

crossbar and weak pull-ups
TX0 as a push-pull output
P1.6 (LED) as push-pull output

for <baudrate> and 8-N-1.

Rev. 1.2

SILICON LABORATORIES

AN122

void UARTO Init (void)
{

SCONO = 0x50; // SCONO: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16) ; // set Timerl reload value for baudrate
TR1 =1; // start Timerl
CKCON |= 0x10; // Timerl uses SYSCLK as time base
PCON |= 0x80; // SMOD0O0 = 1
TIO =1; // Indicate TX0 ready
}
e
// ADCO Init
[mm e
//

// Configure ADCO to use Timer3 overflows as conversion source, to

// generate an interrupt on conversion complete, and to use left-justified
// output mode. Enables ADC end of conversion interrupt. Enables ADCO, but
// leaves ADCO end-of-conversion interrupts disabled.

void ADCO Init (void)
{
ADCOCN = 0x05; // ADCO disabled; normal tracking
// mode; ADCO conversions are initiated
// on overflow of Timer3; ADCO data is
// left-justified

REFOCN = 0x07; // enable temp sensor, on-chip VREF,
// and VREF output buffer

AMX0SL = 0x00; // Select AINO as ADC mux output

ADCOCF = (SYSCLK/2500000) << 3; // ADC conversion clock = 2.5MHz

ADCOCF &= ~0x07; // PGA gain = 1

EIE2 &= ~0x02; // disable ADCO interrupts

ADOEN = 1; // enable ADCO
}
ettt
// Timer3 Init
/e e
//

// Configure Timer3 to auto-reload at interval specified by <counts> (no
// interrupt generated) using SYSCLK as its time base.

void Timer3 Init (int counts)

{

TMR3CN = 0x02; // Stop Timer3; Clear TF3;
// use SYSCLK as timebase

TMR3RL = -counts; // Init reload values

TMR3 = Oxffff; // set to reload immediately

EIE2 &= ~0x01; // disable Timer3 interrupts

TMR3CN |= 0x04; // start Timer3
}
[
// Interrupt Service Routines
/e e
[

// ADCO_ISR

Rev. 1.2 7

SILICON LABORATORIES

AN122

// ADCO end-of-conversion ISR

// Here we take the ADCO sample and store it in the global array <samples[]>
// and update the local sample counter <num samples>. When <num samples> ==
// <NUM_SAMPLES>, we disable ADCO end-of-conversion interrupts and post

// ADCO DONE = 1.

void ADCO ISR (void) interrupt 15 using 3
{
static unsigned num samples = 0; // ADCO sample counter
ADOINT = 0; // clear ADCO conversion complete
// indicator

samples [num_samples] = ADCO; // read and store ADCO value
num_samples++; // update sample counter
if (num samples == NUM SAMPLES) {
num_samples = 0; // reset sample counter
EIE2 &= ~0x02; // disable ADCO interrupts
ADCO _DONE = 1; // set DONE indicator

8 Rev. 1.2

SILICON LABORATORIES

AN122

“ADCO_Int1.c”

// ADCO_intl.c

/==
// Copyright 2001 Cygnal Integrated Products, Inc.

//

// AUTH: BW

// DATE: 18 AUG 01

//

// This program shows an example of using ADCO in interrupt mode using Timer3
// overflows as a start-of-conversion to measure the output of the on-chip

// temperature sensor. The temperature is calculated from the ADCO result
// and is transmitted out UARTO.

//

// Assumes an 22.1184MHz crystal is attached between XTAL1l and XTAL2.

//

// The system clock frequency is stored in a global constant SYSCLK. The
// target UART baud rate is stored in a global constant BAUDRATE. The

// ADCO sampling rate is stored in a global constant SAMPLERATEO.

//

// Target: C8051F02x

// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

et
// Includes

#include <c8051£f020.h> // SFR declarations
#include <stdio.h>

/) mm e
// 16-bit SFR Definitions for ‘F02x

[
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrle ADCOGT = Oxc4; // ADCO greater than window

sfrle ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = 0Oxca; // Timer2 capture/reload

sfrl6 T2 = Oxcc; // Timer?2

sfrl6 RCAP4 = Oxe4; // Timer4 capture/reload

sfrl6 T4 = 0xf4; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

[m e
// Global CONSTANTS

[
#define SYSCLK 22118400 // SYSCLK frequency in Hz

#define BAUDRATE 9600 // Baud rate of UART in bps

#define SAMPLERATEO 50000 // ADCO Sample frequency in Hz

sbit LED = P1"6; // LED='1’ means ON

sbit SW1 = P3"7; // SW1='0’ means switch pressed

Rev. 1.2 9

SILICON LABORATORIES

AN122

void SYSCLK Init (void);

void PORT Init (void);

void UARTO Init (void);

void ADCO Init (void);

void Timer3 Init (int counts);
void ADCO ISR (void);

/==
// Global VARIABLES
/= e
long result; // ADCO decimated value
/==
// MAIN Routine
e
void main (void) {

long temperature; // temperature in hundredths of a

// degree C
int temp int, temp frac; // integer and fractional portions of

// temperature

WDTCN = Oxde; // disable watchdog timer

WDTCN = Oxad;

SYSCLK_Init (); // initialize oscillator

PORT Init (); // initialize crossbar and GPIO
UARTO_Init () // initialize UARTO

Timer3 Init (SYSCLK/SAMPLERATEO) ; // initialize Timer3 to overflow at
// sample rate

ADCO_Init (); // init ADC
ADOEN = 1; // enable ADC
EA = 1; // Enable global interrupts

while (1) {

EA = 0; // disable interrupts
temperature = result; // get ADC value from global variable
EA = 1; // re-—-enable interrupts

// calculate temperature in hundredths of a degree

temperature = temperature - 41380;
temperature = (temperature * 100L) / 156;
temp int = temperature / 100;

temp frac = temperature - (temp int * 100);

printf (“Temperature is %+02d.%02d\n”, temp int, temp frac);

// Initialization Subroutines

10 Rev. 1.2

SILICON LABORATORIES

AN122

//
// This routine initializes the system
// as its clock source.

//

clock to use an 22.1184MHz crystal

void SYSCLK_Init (void)
{
int 1i; // delay counter
OSCXCN = 0x67; // start external oscillator with
// 22.1184MHz crystal
for (i=0; i < 256; i++) ; // XTLVLD blanking interval (>1ms)
while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK
// source and enable missing clock
// detector
}
/e
// PORT Init
[
//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{
XBRO = 0x04; // Enable UARTO
XBR1 = 0x00;
XBR2 = 0x40; // Enable crossbar and weak pull-ups
POMDOUT |= 0x01; // enable TX0 as a push-pull output
P1IMDOUT |= 0x40; // enable P1.6 (LED) as push-pull output

[
// UARTO Init
R
//
// Configure the UARTO using Timerl, for <baudrate> and 8-N-1.
//
void UARTO Init (void)
{
SCONO = 0x50; // SCONO: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16) ; // set Timerl reload value for baudrate
TR1 =1; // start Timerl
CKCON |= 0x10; // Timerl uses SYSCLK as time base
PCON |= 0x80; // SMOD0O0 = 1
TIO = 1; // Indicate TX0 ready

// ADCO_Init

Rev. 1.2 11

SILICON LABORATORIES

AN122

//

// Configure ADCO to use Timer3 overflows as conversion source, to

// generate an interrupt on conversion complete, and to use left-justified

// output mode. Enables ADC end of conversion interrupt. Leaves ADC disabled.

//

void ADCO Init (void)

{

ADCOCN = 0x05; // ADCO disabled; normal tracking

// mode; ADCO conversions are initiated
// on overflow of Timer3; ADCO data is
// left-justified

REFOCN = 0x07; // enable temp sensor, on-chip VREF,
// and VREF output buffer

AMXO0SL = 0x0f; // Select TEMP sens as ADC mux output

ADCOCF = (SYSCLK/2500000) << 3; // ADC conversion clock = 2.5MHz

ADCOCF |= 0x01; // PGA gain = 2

EIE2 |= 0x02; // enable ADC interrupts
}
[
// Timer3 Init
[
//

// Configure Timer3 to auto-reload at interval specified by <counts> (no
// interrupt generated) using SYSCLK as its time base.

void Timer3 Init (int counts)

{

TMR3CN = 0x02; // Stop Timer3; Clear TF3;
// use SYSCLK as timebase

TMR3RL = -counts; // Init reload values

TMR3 = Oxffff; // set to reload immediately

EIE2 &= ~0x01; // disable Timer3 interrupts

TMR3CN |= 0x04; // start Timer3
}
/e e
// Interrupt Service Routines
/mm e e
[m e -
// ADCO_ ISR
e
//

// ADCO end-of-conversion ISR

// Here we take the ADCO sample and store it in the global variable <result>.
//

void ADCO ISR (void) interrupt 15

{

ADOINT = 0; // clear ADC conversion complete
// indicator
result = ADCO; // read ADC value

12 Rev. 1.2

SILICON LABORATORIES

AN122

“ADCO_Int2m.c”

// Copyright 2001 Cygnal Integrated Products,

// AUTH: BW

// DATE:

25 AUG 01

// This program shows an example of using ADCO in interrupt mode using Timer3
// overflows as a start-of-conversion to measure the the voltages on AINO

// through AIN7 and the temperature sensor.

The voltages are calculated from

// the resulting codes and are transmitted out UARTO.

// Assumes an 22.1184MHz crystal is attached between XTAL1l and XTAL2.

// The system clock frequency is stored in a global constant SYSCLK.
// target UART baud rate is stored in a global constant BAUDRATE.
// ADCO sampling rate is stored in a global constant SAMPLERATEO.
// reference value is stored in a constant VREFO,

The

The

The voltage
and is used to convert the

// resulting codes from the ADCO measurements into a voltage.

// Target: C8051F02x

// Tool chain:

#include <c8051f020.h>
#include <stdio.h>

// 16-bit SFR Definitions for
sfrle DP = 0x82;

sfrl6 TMR3RL = 0x92;

sfrle TMR3 = 0x94;

sfrl6 ADCO = Oxbe;

sfrl6 ADCOGT = 0xc4;

sfrl6e ADCOLT = 0xco6;

sfrle RCAP2 = Oxca;

sfrle T2 = Oxcc;

sfrl6 RCAP4 = 0Oxed;

sfrle T4 = 0xf4;

sfrl6 DACO = 0xd2;

sfrle DAC1 = 0xd5;

// Global CONSTANTS

#define SYSCLK 22118400
#define BAUDRATE 9600
#define SAMPLERATEO 50000
#define VREFO 2430

//
//
//
//
!/
//
//
//
!/
//
!/
//

//
//
//
//

KEIL C51 6.03 / KEIL EVAL C51

data pointer

Timer3 reload value
Timer3 counter

ADCO data

ADCO greater than window
ADCO less than window
Timer2 capture/reload
Timer2

Timer4 capture/reload
Timerd

DACO data

DAC1l data

SYSCLK frequency in Hz

Baud rate of UART in bps
ADCO Sample frequency in Hz
VREF voltage in millivolts

SILICON

LABORATORIES

Rev. 1.2 13

AN122

sbit LED = P1"6; // LED='"1’ means ON

sbit SW1 = P3"7; // SW1='0’ means switch pressed

e e T
// Function PROTOTYPES

/e

void SYSCLK_Init (void) ;

void PORT Init (void);

void UARTO Init (void);

void ADCO Init (void);

void Timer3 Init (int counts);
void ADCO ISR (void);

e
// Global VARIABLES
[
long result[9]; // AINO-7 and temp sensor output
// results
[
// MAIN Routine
/e e
void main (void) {
long voltage; // voltage in millivolts
int i; // loop counter
// voltage
WDTCN = Oxde; // disable watchdog timer
WDTCN = Oxad;
SYSCLK Init (); // initialize oscillator
PORT Init (); // initialize crossbar and GPIO
UARTO Init (); // initialize UARTO

Timer3 Init (SYSCLK/SAMPLERATEO) ; // initialize Timer3 to overflow at
// sample rate

ADCO_Init (); // init ADC
ADOEN = 1; // enable ADC
EA = 1; // Enable global interrupts

while (1) {
for (i = 0; 1 < 9; i++) {

EA = 0; // disable interrupts
voltage = result[i]; // get ADC value from global variable
EA = 1; // re-enable interrupts

// calculate voltage in millivolts

voltage = voltage * VREFO;

voltage = voltage >> 16;

printf (“Channel ‘%d’ voltage is %1dmvV\n”, i, voltage);

14 Rev. 1.2

SILICON LABORATORIES

AN122

/e e
// Initialization Subroutines
[
e
// SYSCLK Init
[mm e
//
// This routine initializes the system clock to use an 22.1184MHz crystal
// as its clock source.
//
void SYSCLK Init (void)
{
int i; // delay counter
OSCXCN = 0x67; // start external oscillator with
// 22.1184MHz crystal
for (i=0; 1 < 256; i++) ; // XTLVLD blanking interval (>1ms)
while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK
// source and enable missing clock
// detector
}
[
// PORT Init
/e e e
//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{
XBRO = 0x04; // Enable UARTO
XBR1 = 0x00;
XBR2 = 0x40; // Enable crossbar and weak pull-ups
POMDOUT |= 0x01; // enable TX0 as a push-pull output
P1IMDOUT |= 0x40; // enable P1.6 (LED) as push-pull output
}
/e
// UARTO Init
[
//
// Configure the UARTO using Timerl, for <baudrate> and 8-N-1.
//
void UARTO Init (void)
{
SCONO = 0x50; // SCONO: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16) ; // set Timerl reload value for baudrate
TR1 =1; // start Timerl
CKCON |= 0x10; // Timerl uses SYSCLK as time base
PCON |= 0x80; // SMOD0O0 = 1
TIO = 1; // Indicate TX0 ready

Rev. 1.2 15

SILICON LABORATORIES

AN122

//
//
1/
//
1/
//
//
//
!/
VO

{

VO

{

//
//

!/
//
//
//
//
//
!/
1/
VO

{

Configure ADCO to use Timer3 overflows as conversion source, to

generate an interrupt on conversion complete, and to use left-justified
output mode. Enables ADC end of conversion interrupt. Leaves ADC disabled.
Note: here we also enable low-power tracking mode to ensure that minimum
tracking times are met when ADCO channels are changed.

id ADCO Init (void)

ADCOCN = 0x45; // ADCO disabled; low-power tracking
// mode; ADCO conversions are initiated
// on overflow of Timer3; ADCO data is
// left-justified

REFOCN = 0x07; // enable temp sensor, on-chip VREF,
// and VREF output buffer

AMXO0SL = 0x00; // Select AINO as ADC mux output

ADCOCF = (SYSCLK/2500000) << 3; // ADC conversion clock = 2.5MHz

ADCOCF &= ~0x07; // PGA gain = 1

EIE2 |= 0x02; // enable ADC interrupts

Configure Timer3 to auto-reload at interval specified by <counts> (no

interrupt generated) using SYSCLK as its time base.

id Timer3 Init (int counts)

TMR3CN = 0x02; // Stop Timer3; Clear TF3;
// use SYSCLK as timebase

TMR3RL = -counts; // Init reload values

TMR3 = Oxffff; // set to reload immediately

EIE2 &= ~0x01; // disable Timer3 interrupts

TMR3CN |= 0x04; // start Timer3

ADCO end-of-conversion ISR
Here we take the ADCO sample and store it in the global array <result>.
We also select the next channel to convert.

id ADCO_ ISR (void) interrupt 15

static unsigned char channel = 0; // ADC mux channel (0-8)

16

Rev. 1.2

SILICON LABORATORIES

AN122

ADOINT = O;

result [channel] = ADCO;

channel++;

if (channel == 9) {
channel = 0;

AMX0SL = channel;

//
//

//

//

//

clear ADC conversion complete
indicator

read ADC value

change channel

set mux to next channel

SILICON LABORATORIES

Rev. 1.2

17

AN122

“ADCO0_OSA1.c”

Copyright 2001 Cygnal Integrated Products, Inc.

AUTH: BW
DATE: 18 AUG 01

This program shows an example of using ADCO in interrupt mode using Timer3
overflows as a start-of-conversion to measure the output of the on-chip

temperature sensor.

The ADCO results are filtered by a simple integrate-

and-dump process whose integrate/decimate ratio is given by the constant

INT DEC.
and is transmitted out UARTO.

The temperature is calculated from the ADCO result

Assumes an 22.1184MHz crystal is attached between XTALl and XTALZ2.

The system clock frequency is stored in a global constant SYSCLK.
target UART baud rate is stored in a global constant BAUDRATE. The
ADCO sampling rate is stored in a global constant SAMPLERATEO.

Target: C8051F02x

Tool chain: KEIL C51 6.03 / KEIL EVAL C51

#include <c8051f020.h>
#include <stdio.h>

//

// 16-bit SFR Definitions for ‘F02x
//

sfrle DP = 0x82;
sfrle TMR3RL = 0x92;
sfrl6 TMR3 = 0x94;
sfrl6 ADCO = Oxbe;
sfrl6 ADCOGT = 0xc4;
sfrl6 ADCOLT = 0xc6;
sfrle RCAP2 = Oxca;
sfrle T2 = Oxcc;
sfrl6 RCAP4 = Oxe4;
sfrle T4 = 0xf4;
sfrl6 DACO = 0xd2;
sfrl6 DACL = 0xd5;

//

// Global CONSTANTS

//

#define SYSCLK 22118400
#define BAUDRATE 9600
#define SAMPLERATEO 50000
#define INT_DEC 256

//
//
//
//
//
!/
//
//
//
!/
//
!/

!/
!/
//
//

data pointer

Timer3 reload value
Timer3 counter

ADCO data

ADCO greater than window
ADCO less than window
Timer2 capture/reload
Timer2

Timer4 capture/reload
Timer4d

DACO data

DAC1 data

SYSCLK frequency in Hz

Baud rate of UART in bps
ADCO Sample frequency in Hz
integrate and decimate ratio

18

Rev. 1.2

SILICON LABORATORIES

AN122

sbit LED = P176; // LED=’"1’ means ON

sbit SW1 = P3"7; // SW1=’'0’ means switch pressed
et
// Function PROTOTYPES
e

void SYSCLK_Init (void) ;

void PORT Init (void);

void UARTO Init (void);

void ADCO Init (void);

void Timer3 Init (int counts);
void ADCO ISR (void);

/= e
// Global VARIABLES
/=
long result; // ADCO decimated value
e
// MAIN Routine
/=
void main (void) {

long temperature; // temperature in hundredths of a

// degree C
int temp int, temp frac; // integer and fractional portions of

// temperature

WDTCN Oxde; // disable watchdog timer
WDTCN = Oxad;

SYSCLK_Init (); // initialize oscillator
PORT Init (); // initialize crossbar and GPIO
UARTO_Init (); // initialize UARTO

Timer3 Init (SYSCLK/SAMPLERATEO) ; // initialize Timer3 to overflow at
// sample rate

ADCO Init (); // init ADC
ADOEN = 1; // enable ADC
EA = 1; // Enable global interrupts
while (1) {
EA = 0; // disable interrupts
temperature = result;
EA = 1; // re—-enable interrupts

// calculate temperature in hundredths of a degree

temperature = temperature - 41380;
temperature = (temperature * 100L) / 156;
temp int = temperature / 100;

temp frac = temperature - (temp int * 100);

printf (“Temperature is $+02d.%02d\n”, temp int, temp frac);

LED = ~SW1; // LED reflects state of switch

Rev. 1.2 19

SILICON LABORATORIES

// Initialization Subroutines

/==

/=

// SYSCLK Init

/==

//

// This routine initializes the system clock to use an 22.1184MHz crystal

// as its clock source.

!/

void SYSCLK Init

{

int i;

OSCXCN = 0x67;

for (i=0; 1 < 256;

while (! (OSCXCN & 0x80))

OSCICN = 0x88;

//

//
!/

//
//
!/

//
//

// Configure the Crossbar and GPIO ports

// PORT Init

//

//

void PORT Init

{
XBRO = 0x04;
XBR1 = 0x00;
XBR2 = 0x40;
POMDOUT |= 0x01;
P1MDOUT |= 0x40;

// Configure the UARTO using Timerl,

void UARTO

{
SCONO
TMOD
TH1 =
TR1 =
CKCON |=
PCON |=
TIO =

Init (void)

= 0x50;
0x20;

- (SYSCLK/BAUDRATE/16) ;

1;
0x10;
0x80;
1;

//

//
//
//

//
//
!/
!/
//
//
//

delay counter

start external oscillator with
22.1184MHz crystal

XTLVLD blanking interval (>1ms)
Wait for crystal osc. to settle
select external oscillator as SYSCLK

source and enable missing clock
detector

Enable UARTO

Enable
enable
enable

SCONQO :
TMOD:

crossbar and weak pull-ups
TX0 as a push-pull output
P1.6 (LED) as push-pull output

for <baudrate> and 8-N-1.

mode 1, 8-bit UART, enable RX

timer 1, mode 2, 8-bit reload

set Timerl reload value for baudrate
start Timerl

Timerl uses SYSCLK as time base
SMOD0O0O = 1
Indicate TX0 ready

20

Rev. 1.2

SILICON LABORATORIES

AN122

1/

// Configure ADCO to use Timer3 overflows

// generate an interrupt on conversion complete,
Enables ADC end of conversion interrupt.

// output mode.
//

void ADCO Init (void)
{
ADCOCN = 0x05; //
//
//
//
REFOCN = 0x07; //
//
AMX0SL = 0xOf; //
ADCOCF = (SYSCLK/2500000) << 3; //
ADCOCF |= 0x01; //
EIE2 |= 0x02; //

as conversion source, to
and to use left-justified
Leaves ADC disabled.

ADCO disabled;
mode; ADCO conversions are initiated
on overflow of Timer3; ADCO data 1is
left-justified

enable temp sensor, on-chip VREF,
and VREF output buffer

Select TEMP sens as ADC mux output
ADC conversion clock = 2.5MHz

PGA gain = 2

normal tracking

enable ADC interrupts

Configure Timer3 to auto-reload at interval specified by <counts> (no

// interrupt generated) using SYSCLK as its time base.
//
void Timer3 Init (int counts)
{

TMR3CN = 0x02; // Stop Timer3; Clear TF3;

// use SYSCLK as timebase

TMR3RL = -counts; // Init reload values

TMR3 = Oxffff; // set to reload immediately

EIE2 &= ~0x01; // disable Timer3 interrupts

TMR3CN |= 0x04; // start Timer3
}
/==
// Interrupt Service Routines
e
/==
// ADCO_ISR
e e e e i
//
// ADCO end-of-conversion ISR
// Here we take the ADCO sample, add it to a running total <accumulator>, and
// decrement our local decimation counter <int dec>. When <int dec> reaches
// zero, we post the decimated result in the global variable <result>.
//

void ADCO ISR (void)
{

interrupt 15

// integrate/decimate counter
// we post a new result when

static unsigned int dec=INT DEC;

Rev. 1.2 21

SILICON LABORATORIES

AN122

// int _dec = 0
static long accumulator=0L; // here’s where we integrate the
// ADC samples

ADOINT = O; // clear ADC conversion complete
// indicator

accumulator += ADCO; // read ADC value and add to running
// total
int dec--; // update decimation counter
if (int_dec == 0) { // if zero, then post result
int dec = INT DEC; // reset counter
result = accumulator >> 8;
accumulator = 0L; // reset accumulator

22 Rev. 1.2

SILICON LABORATORIES

AN122

“ADCO_Poll1.c”

A e
// ADCO_Polll.c

/mm e e -
// Copyright 2001 Cygnal Integrated Products, Inc.

//

// AUTH: BW

// DATE: 18 AUG 01

//

// This program demonstrates operation of ADCO in polled mode. The ADCO is

// configured to use writes to ADOBUSY as its start of conversion source and

// to measure the output of the on-chip temperature sensor. The temperature

// sensor output is converted to degrees Celsius and is transmitted out UARTO.
// Assumes an 22.1184MHz crystal is attached between XTALl and XTALZ2.

//

// The system clock frequency is stored in a global constant SYSCLK. The

// target UART baud rate is stored in a global constant BAUDRATE.

//

// Target: C8051F02x

// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

[mm e e -
// Includes

/e
#include <c8051f020.h> // SFR declarations

#include <stdio.h>

/m e -
// 16-bit SFR Definitions for ‘F02x

J e R R R
sfrl6 DP = 0x82; // data pointer

sfrle TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrl6 ADCOGT = Oxc4; // ADCO greater than window

sfrl6 ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = 0Oxca; // Timer2 capture/reload

sfrle T2 = Oxcc; // Timer?2

sfrl6 RCAP4 = 0Oxed; // Timerd capture/reload

sfrl6 T4 = Oxf4; // Timerd

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

/mm e e
// Global CONSTANTS

/e
#define SYSCLK 22118400 // SYSCLK frequency in Hz

#define BAUDRATE 9600 // Baud rate of UART in bps

sbit LED = P176; // LED=’"1’ means ON
sbit SWl = P3"7; // SW1='0’ means switch pressed
/e

// Function PROTOTYPES

SILICON LABORATORIES

Rev. 1.2

23

void SYSCLK_Init (void) ;
void PORT Init (void);
void UARTO Init (void);
void ADCO Init (void);

/=
// Global VARIABLES
/=
/==
// MAIN Routine
J e R R
void main (void) {

long temperature; // temperature in hundredths of a

// degree C
int temp int, temp frac; // integer and fractional portions of

// temperature

WDTICN = Oxde; // disable watchdog timer

WDTCN = Oxad;

SYSCLK Init (); // initialize oscillator

PORT Init (); // initialize crossbar and GPIO
UARTO Init (); // initialize UARTO

ADCO Init (); // init and enable ADC

// *** check difference in tracking modes ***

while (1) {

ADOINT = 0; // clear conversion complete indicator
ADOBUSY = 1; // initiate conversion

while (ADOINT == 0); // wait for conversion complete
temperature = ADCO; // read ADCO data

// calculate temperature in hundredths of a degree

temperature = temperature - 41380;
temperature = (temperature * 100L) / 156;
temp int = temperature / 100;

temp frac = temperature - (temp int * 100);

printf (“Temperature is %+02d.%02d\n”, temp int, temp frac);

// Initialization Subroutines

/= m

/e
// SYSCLK Init
ettt bt
//

// This routine initializes the system clock to use an 22.1184MHz crystal

// as its clock source.

//

void SYSCLK Init (void)

24 Rev. 1.2

SILICON LABORATORIES

AN122

int i; // delay counter

OSCXCN = 0x67; // start external oscillator with
// 22.1184MHz crystal

for (i=0; i < 256; i++) ; // XTLVLD blanking interval (>1ms)
while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK

// source and enable missing clock
// detector

e skl
// PORT Init
e e bttt b b
//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{
XBRO = 0x04; // Enable UARTO
XBR1 = 0x00;
XBR2 = 0x40; // Enable crossbar and weak pull-ups
POMDOUT |= 0x01; // enable TX0 as a push-pull output
P1MDOUT |= 0x40; // enable Pl.6 (LED) as push-pull output
}
/e
// UARTO Init
/-
//

// Configure the UARTO using Timerl, for <baudrate> and 8-N-1.

void UARTO Init (void)
{

SCONO = 0x50; // SCONO: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16) ; // set Timerl reload value for baudrate
TR1 =1; // start Timerl
CKCON |= 0x10; // Timerl uses SYSCLK as time base
PCON |= 0x80; // SMOD0O0 = 1
TIO =1; // Indicate TX0 ready
}
[
// ADCO Init
/e e
//

// Configure ADCO to use ADOBUSY as conversion source, to use left-justified
// output mode, to use normal tracking mode, and to measure the output of

// the on-chip temperature sensor. Disables ADCO end of conversion interrupt
// and ADCO window compare interrupt.

void ADCO Init (void)
{
ADCOCN = 0x81; // ADCO enabled; normal tracking

Rev. 1.2

SILICON LABORATORIES

25

AN122

REFOCN = 0x07;

AMXOSL = 0x0f;
ADCOCF = (SYSCLK/2500000) << 3;
ADCOCF |= 0x01;

EIE2 &= ~0x02;
EIE1l &= ~0x04;

!/
//
//
//
!/
1/
//
//

//
//

mode; ADCO conversions are initiated
on write to ADOBUSY; ADCO data is
left-justified

enable temp sensor, on-chip VREF,
and VREF output buffer

Select TEMP sens as ADC mux output
ADC conversion clock = 2.5MHz

PGA gain = 2

disable ADCO EOC interrupt
disable ADCO window compare interrupt

26

Rev. 1.2

SILICON LABORATORIES

AN122

“DACO_DTMF1.c”

A e
// DACO_DTMFl.c

/mm e e -
// Copyright 2001 Cygnal Integrated Products, Inc.

//

// AUTH: BW

// DATE: 27 AUG 01

//

// Target: C8051F02x

// Tool chain: KEIL C51

//

// Description:

// Example source code which outputs DTMF tones on DACO. DACO’s output is
// scheduled to update at a rate determined by the constant SAMPLERATED,
// managed and timed by Timerd4.

//

// Implements a 256-entry full-cycle sine table of 8-bit precision.

//

// The output frequency is proportional a 16-bit phase adder.

// At each DAC update cycle, the phase adder value is added to a running
// phase accumulator.<phase accumulator>, the upper bits of which are used
// to access the sine lookup table.

//

[mm e
// Includes

[
#include <c8051f020.h> // SFR declarations

/) mm e
// 16-bit SFR Definitions for ‘F02x

[
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrle ADCOGT = Oxc4; // ADCO greater than window

sfrle ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = Oxca; // Timer2 capture/reload

sfrl6 T2 = Oxcc; // Timer2

sfrl6 RCAP4 = Oxe4; // Timer4d capture/reload

sfrl6 T4 = 0xf4; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

[m e
// Global CONSTANTS

[
#define SYSCLK 22118400 // SYSCLK frequency in Hz

#define SAMPLERATED 100000L // update rate of DAC in Hz

#define phase precision 65536 // range of phase accumulator

// DIMF phase adder values based on SAMPLERATED and <phase precision>

Rev. 1.2 27

SILICON LABORATORIES

AN122

#define
#define
#define
#define

#define
#define
#define
#define

void main

LOW697697 * phase precision / SAMPLERATED

770 * phase precision / SAMPLERATED
852 * phase precision / SAMPLERATED
941 * phase precision / SAMPLERATED

LOW770
LOW852
LOW941

HI1209
HI1336
HI1477
HI1633

1209

1477
1633

(void) ;

void SYSCLK Init (void);
void PORT Init

(void) ;

void Timer4 Init (int count
void Timer4 ISR (void);

unsigned phase addl;
unsigned phase add2;

bit tonel en;
bit tone2 en;

char code SINE TABLE[256] =

0x00,
0x18,
0x30,
0x47,
0x5a,
Oxo6a,
0x76,
0x7d,
0x7f,
0x7d,
0x76,
Oxb6a,
0x5a,
0x47,
0x30,
0x18,
0x00,
0xe8,
0xdo,
0xb9,
0xa6,
0x96,
0x8a,
0x83,
0x80,
0x83,
0x8a,

0x03,
Ox1lc,
0x33,
0x49,
0x5c,
0xb6c,
0x77,
0x7e,
0x7f,
0x7¢c,
0x75,
0x68,
0x58,
0x44,
Ox2e,
0x15,
Oxfd,
Oxed,
Oxcd,
Oxb7,
Oxa4,
0x94,
0x89,
0x82,
0x81,
0x84,
0x8b,

0x06, 0x09,
0x1f, 0x22,
0x36, 0x39,
Ox4c, 0Ox4e,
Ox5e, 0x60,
Ox6d, Ox6f,
0x78, 0x79,
Ox7e, 0x7f,
0x7f, Ox7f,
0x7c, 0x7b,
0x73, 0x72,
0x66, 0x64,
0x55, 0x53,
0x41, O0x3f,
0x2b, 0x28,
0x12, 0xO0f,
Oxfa, Oxf7,
Oxel, Oxde,
Oxca, 0xc7,
0xb4, 0xb2,
Oxa2, O0xaO0,
0x93, 0x91,
0x88, 0x87,
0x82, 0x81,
0x81, 0x81,
0x84, 0x85,
0x8d, O0x8e,

s);

{
0x0c,
0x25,
0x3c,
0x51,
0x62,
0x70,
Ox7a,
0x7f,
0x7f,
0x7a,
0x70,
0x62,
0x51,
0x3c,
0x25,
0x0c,
0xf4,
Oxdb,
Oxc4,
Oxaf,
0x9e,
0x90,
0x86,
0x81,
0x81,
0x86,
0x90,

* phase precision
1336 * phase precision
* phase precision
* phase precision

//
//

0x0f,
0x28,
0x3f,
0x53,
Oxo64,
0x72,
0x7b,
0x7f,
0x7f,
0x79,
Oxof,
0x60,
Ox4e,
0x39,
0x22,
0x09,
Oxfl,
0xd8,
Oxcl,
Oxad,
0x9c,
0x8e,
0x85,
0x81,
0x81,
0x87,
0x91,

N NN

SAMPLERATED
SAMPLERATED
SAMPLERATED
SAMPLERATED

holds low-tone
holds low-tone

enable = 1 for
enable = 1 for
0x12, 0x15,

0x2b, Ox2e,
0x41, 0Ox44,
0x55, 0x58,
0x66, 0x68,
0x73, 0x75,
0x7c, 0x7c,
0x7f, 0x7f,
O0x7e, 0x7e,
0x78, 0x77,
Ox6d, Oxo6c,
Ox5e, 0x5c,
Ox4c, 0x49,
0x36, 0x33,
O0x1f, Oxlc,
0x06, 0x03,
Oxee, 0Oxeb,
0xd5, 0xd2,
Oxbf, Oxbc,
Oxab, 0xa8,
0x9%a, 0x98,
0x8d, 0x8b,
0x84, 0x84,
0x81, 0x81,
0x82, 0x82,
0x88, 0x89,
0x93, 0x94,

phase adder
phase adder

tone 1
tone 2

28

Rev. 1.2

SILICON LABORATORIES

AN122

0x96,
0xa6,
0xb9,
0xdo,
0xe8,

0x9a,
Oxab,
0Oxbf,
0xd5,
Oxee,

0x9c,
Oxad,
Oxcl,
0xd8,
O0xfl,

0x9e,
Oxaf,
Oxc4,
0xdb,
O0xf4,

0xa0,
0xb2,
0xc7,
Oxde,
0xf7,

0x98,
0xa8,
Oxbc,
0xd2,
Oxeb,

void main (void) {

WDTCN //

WDTCN

Oxde;
Oxad;

SYSCLK Init ();

PORT Init ();

REFOCN = 0x03; //

DACOCN = 0x97; //
//

Timer4_Init(SYSCLK/SAMPLERATED); //
//

tonel en = 1; //

tone2 en = 1; //

phase addl = LOW697;

phase add2 = HI1633;

EA = 1; //

while (1); //

[e
// Init Routines
[/ mmm e
[/ mm e
// SYSCLK Init
[
//
// This routine initializes the system
// as its clock source.
//
void SYSCLK_Init (void)
{
int i; //
OSCXCN = 0x67; //
//
for (i=0; 1 < 256; i++) ; //

Oxa2,
Oxb4,
Oxca,
Oxel,
Oxfa,

Oxa4d,
0xb7,
Oxcd,
Oxed,
0xfd

Disable watchdog timer

enable internal VREF generator
enable DACO in left-justified mode
using Timer4 as update scheduler
initialize T4 to generate DACO

schedule

enable low group tones
enable high group tones

Enable global interrupts

spin forever

clock to use an 22.1184MHz crystal

delay counter

start external oscillator with
22.1184MHz crystal

Wait for osc. to start up

SILICON LABORATORIES

Rev. 1.2 29

AN122

while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK
// source and enable missing clock
// detector
}
e
// PORT_Init
et
//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{
XBRO = 0x00;
XBR1 = 0x00;
XBR2 = 0x40; // Enable crossbar and weak pull-ups
P1IMDOUT |= 0x40; // enable P1.6 (LED) as push-pull output

This routine initializes Timer4 in auto-reload mode to generate interrupts
at intervals specified in <counts>.

void Timer4 Init (int counts)

{

T4CON = 0; // STOP timer; set to auto-reload mode
CKCON |= 0x40; // T4M = ‘1’; Timer4 counts SYSCLKs
RCAP4 = -counts; // set reload value

T4 = RCAP4;

EIE2 |= 0x04; // enable Timer4 interrupts

T4CON |= 0x04; // start Timer4

B
// Interrupt Handlers
et
et bt
// Timer4 ISR
/s
//

// This ISR is called on Timer4 overflows. Timer4d is set to auto-reload mode
// and is used to schedule the DAC output sample rate in this example.

// Note that the value that is written to DACOH during this ISR call is

// actually transferred to DACO at the next Timer4 overflow.

void Timer4 ISR (void)
{

interrupt 16 using 3

0;
0;

// holds low-tone phase accumulator
// holds high-tone phase accumulator

static unsigned phase accl =
static unsigned phase acc2 =
char templ; // temp values for table results
char temp2;

char code *table ptr;

30 Rev. 1.2

SILICON LABORATORIES

AN122

T4CON &= ~0x80;

table ptr = SINE TABLE;

if ((tonel en) && (tone2 en)) {
phase accl += phase addl;
templ = *(table ptr +

phase acc2 += phase add2;
// read the table value
temp2 = *(table ptr +

// now update the DAC value.

// the bipolar table look-up

DACOH = 0x80 ~ ((templ >> 1)
} else if (tonel en) {

phase accl += phase addl;

// read the table value

templ = *(table ptr +

// now update the DAC value.
// the bipolar table look-up
DACOH = 0x80 ~ templ;

} else if (tone2 en) {
phase _acc2 += phase add2;
// read the table value
temp2 = *(table ptr +

// now update the DAC value.
// the bipolar table look-up
DACOH = 0x80 " temp2;

(phase

(phase

// clear T4 overflow flag

// update phase accl (low tone)
(phase_accl >> 8));
// update phase acc2 (high tone)

(phase_acc2 >> 8));

Note: the XOR with 0x80 translates
into a unipolar quantity.
+ (temp2 >> 1));

// update phase accl (low tone)

accl >> 8));

Note: the XOR with 0x80 translates
into a unipolar quantity.

// update phase acc2 (high tone)
acc2 >> 8));

Note: the XOR with 0x80 translates
into a unipolar quantity.

SILICON LABORATORIES

Rev. 1.2 31

AN122

“OSC_Cry1.c”

// Copyright 2001 Cygnal Integrated Products,

// AUTH: BW

// DATE:

25 AUG 01

// This program configures shows an example of how to configure the external

// oscillator to drive a 22.1184MHz crystal and to select this external
Also enables the Missing Clock

// oscillator as the system clock source.
// Detector reset function.
// between XTALl and XTAL2.

Assumes an 22.1184MHz crystal is attached

// The system clock frequency is stored in a global constant SYSCLK.

// Target:
// Tool chain:

C8051F02x

KEIL C51 6.03 / KEIL EVAL C51

// 16-bit SFR Definitions for
sfrle DP = 0x82;

sfrl6 TMR3RL = 0x92;

sfrle TMR3 = 0x94;

sfrl6 ADCO = Oxbe;

sfrl6 ADCOGT = 0xc4;

sfrle ADCOLT = 0xco6;

sfrle RCAP2 = Oxca;

sfrle T2 = Oxcc;

sfrl6 RCAP4 = 0Oxed;

sfrle T4 = 0xf4;

sfrl6 DACO = 0xd2;

sfrle DAC1 = 0xd5;

// Global CONSTANTS

#define SYSCLK 22118400
sbit LED = P176;

sbit SW1 = P3"7;

// Function PROTOTYPES

void SYSCLK_Init (void) ;

//
//
//
!/
!/
//
//
//
//
//
!/
//

data pointer

Timer3 reload value
Timer3 counter

ADCO data

ADCO greater than window
ADCO less than window
Timer2 capture/reload
Timer2

Timer4 capture/reload
Timer4d

DACO data

DAC1l data

SYSCLK frequency in Hz

LED="1"
SW1l="0"'

means ON
means switch pressed

32

Rev. 1.2

SILICON LABORATORIES

AN122

void main (void) {

WDTCN = Oxde; // disable watchdog timer

WDTCN = Oxad;

SYSCLK_Init (); // initialize oscillator

while (1);
}
[m e e
// Initialization Subroutines
[
[
// SYSCLK Init
[m e e
//

// This routine initializes the system clock to use an 22.1184MHz crystal
// as its clock source.

void SYSCLK Init (void)
{

int i; // delay counter

OSCXCN = 0x67; // start external oscillator with
// 22.1184MHz crystal

for (i=0; i < 256; i++) ; // Wait for osc. to start
while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK

// source and enable missing clock
// detector

Rev. 1.2 33

SILICON LABORATORIES

AN122

“OSC Int1.c”

// Copyright 2001 Cygnal Integrated Products, Inc.

// AUTH: BW
// DATE: 25 AUG 01

// This program shows an example of how to configure the internal

// oscillator to its maximum frequency (~16MHz) .

// Clock Detector reset function.

// The system clock frequency is stored in a global constant SYSCLK.

// Target: C8051F02x

// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

Also enables the Missing

//

[m e
// Includes

[
#include <c8051f020.h> // SFR declarations

[m e e
// 16-bit SFR Definitions for ‘F02x

[
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrlé6 ADCO = Oxbe; // ADCO data

sfrle ADCOGT = Oxc4; // ADCO greater than window

sfrle ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = 0Oxca; // Timer2 capture/reload

sfrl6 T2 = Oxcc; // Timer?2

sfrl6 RCAP4 = Oxe4; // Timer4 capture/reload

sfrl6 T4 = 0xf4; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

[m e
// Global CONSTANTS

[
#define SYSCLK 16000000 // SYSCLK frequency in Hz

sbit LED = P176; // LED='"1’ means ON

sbit SW1 = P3"7; // SW1=’'0’ means switch pressed

[

void SYSCLK Init (void);

34

Rev. 1.2

SILICON LABORATORIES

AN122

//

VO

1/
//

//
!/
!/
1/
//
//
//
!/
VO

{

Global VARIABLES

id main (void) {

WDTICN = Oxde; // disable watchdog timer
WDTCN Oxad;

SYSCLK Init (); // initialize oscillator

while (1);

This routine initializes the internal oscillator to its maximum setting and
selects the internal oscillator as the system clock source. Also enables
the missing clock detector reset function.

id SYSCLK Init (void)

OSCICN = 0x87; // configure internal oscillator to
// highest frequency setting; select
// internal oscillator as SYSCLK source
// enable missing clock detector reset

Rev. 1.2

SILICON LABORATORIES

35

AN122

“INT_OSC _Measure1”

// Copyright 2002 Cygnal Integrated Products, Inc.

// AUTH: BW
// DATE: 02 APR 02

// This program shows an example of how the external oscillator
// can be used to measure the internal oscillator frequency.

// In this example, the internal oscillator is set to its highest setting.
// The external oscillator is configured to its desired mode (external

// 22.1184MHz crystal). The PCA counter is used as a generic 16-bit counter

// that uses EXTCLK / 8 as its time base.

// We configure Timer0 to count SYSCLKs, and count the number of INTCLKs

// in 1 second’s worth of EXTCLK/8

// Target: C8051F02x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

#include <c8051£f020.h> // SFR declarations
#include <stdio.h>
#include <math.h>

[e
// 16-bit SFR Definitions for ‘F02x

[e
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrle ADCOGT = Oxc4; // ADCO greater than window
sfrle ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = Oxca; // Timer2 capture/reload

sfrl6 T2 = Oxcc; // Timer?2

sfrl6 RCAP4 = Oxed; // Timer4 capture/reload

sfrlo T4 = 0xf4; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6é DAC1 = 0xd5; // DAC1 data

[
// Global CONSTANTS

[
#define EXTCLK 22118400 // EXTCLK frequency in Hz
#define BAUDRATE 9600 // Baud rate of UART in bps
sbit LED = P1"6; // LED = 1 means ON

36 Rev. 1.2

SILICON LABORATORIES

AN122

// Structures, Unions, Enumerations,

typedef union ULong {
long Long;
unsigned int UInt([2];
unsigned char Char([4];
} ULong;

void SYSCLK_Init (void) ;
void PORT Init (void);

void UARTO Init (void);
void INTCLK Measure (void);

long INTCLK;
long SYSCLK;

void main (void) {

WDTCN
WDTCN

Oxde;
Oxad;

SYSCLK Init ();
PORT Init ();

INTCLK Measure ();

SYSCLK = INTCLK;

UARTO Init ();

while (1) {
INTCLK Measure ();

and Type definitions

// holds INTCLK frequency in Hz
// holds SYSCLK frequency in Hz

// disable watchdog timer

// initialize oscillator

// initialize crossbar and GPIO

// enable global interrupts

// measure internal oscillator and

// update INTCLK variable

// initialize UARTO

// measure internal oscillator and
// update INTCLK variable

printf (“INTCLK = %1d Hz\n”, INTCLK);

SILICON LABORATORIES

Rev. 1.2

37

AN122

// SYSCLK Init

//

// This routine initializes the system clocks

//
void SYSCLK Init (void)
{

int i; //

OSCXCN = 0x67; //

for (i=0; i < 256; i++) ; //

delay counter

start external oscillator

wait for osc to start up

while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x07; // configure internal oscillator at max
// frequency;
// set INTCLK as SYSCLK source
}
A e
// PORT_Init
[mm e e e -
//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{
XBRO |= 0x04; // Enable UARTO
XBR2 |= 0x40; // Enable crossbar and weak pull-ups
POMDOUT |= 0x01; // enable TX0 as a push-pull output
P1MDOUT |= 0x40; // enable LED as push-pull output
}
et
// UARTO Init
[m e -
//

// Configure the UARTO using Timerl, for <baudrate> and 8-N-1.
//

void UARTO Init (void)

{

SCONO = 0x50; // SCONO: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16) ; // set Timerl reload value for baudrate
TR1 =1; // start Timerl
CKCON |= 0x10; // Timerl uses SYSCLK as time base
PCON |= 0x80; // SMOD0O0 = 1
ESO = 0; // disable UARTO interrupts
TIO =1; // indicate ready for TX
}
[
// INTCLK Measure
/e e
//

// This routine uses the external oscillator to measure the frequency of the
// internal oscillator. Assumes that the external oscillator has been
// started and settled. Also assumes that the internal oscillator operating

38 Rev. 1.2

SILICON LABORATORIES

AN122

//
//
//
//
1/
//
1/
//
//
//
!/
!/
//
//

at its highest frequency is selected as the system clock source.

The measurement algorithm is as follows:

1. PCA set to ‘-1’; TimerO set to 0x0000; PCA stopped; Timer0 stopped

2. PCAQO started (CR = 1)

3. On CF, Timer0O is started (TFO = 1); CF is cleared, PCAO0 remains running
4. When TO high:Timer0 reach 0x00000000, stop PCAO

5. EXTCLK frequency = PCAO_ high:PCAQ

Upon completion, the global variable EXTCLK contains the internal

oscillator frequency in Hz.

I believe the worst-case measurement error is around 20 system clocks.
20 / 16e6 = 1.3 ppm (far less than typical crystal ppm’s of 20)

void INTCLK Measure (void)

{

unsigned int TO high; // overflow bytes of Timer0
unsigned int PCAO_high; // overflow bytes of PCAQ
ULong temp; // byte-addressable Long

// PCAO counts up to EXTCLK/8; PCAO _high is the upper 2 bytes of this number
temp.Long = - (EXTCLK >> 3);
PCAO high = temp.UInt[0];
PCAOCN = 0x00; // Stop counter; clear all flags
PCAOMD = 0x0b; // PCA counts in IDLE mode;

// EXTCLK / 8 is time base;

// overflow interrupt is enabled
PCAOL = OxFF; // set time base to ‘-1’
PCAOH OxXFE;

// Timer(O counts from zero to INTCLK

// init Timer0

CKCON |= 0x08; // Timer0O counts SYSCLKs

TCON &= ~0x30; // Stop timer; clear TFO

TMOD &= ~0x0f; // Timer0 in 16-bit counter mode
TMOD |= 0x01;

TO _high = 0x0000; // init TimerO

TLO = 0x00;

THO = 0x00;

// start PCAQ

CR = 1;
while (CF == 0); // wait for edge
TRO = 1; // Start TimerO
CF = 0; // clear PCA overflow
PCAQOL = temp.Char[3];
PCAQOH = temp.Char[2];
while (1) { // wait for 1 second
if (CF) { // handle PCAO overflow
PCAO_high++;
if (PCAO_high == 0x0000) { // check for completion
TRO = 0; // Stop Timer0
break;
}
CF = 0;
}
if (TFO) { // handle TO overflow

Rev. 1.2 39

SILICON LABORATORIES

AN122

TO _high++;
TFO = 0;
}
}
CR = 0; // Stop PCAO

// read 32-bit Timer0 value

temp.UInt[0] = TO high;
temp.Char[2] = THO;
temp.Char[3] TLO;

INTCLK = temp.Long; // INTCLK = Timer0

®
40 Rev. 1.2 @

SILICON LABORATORIES

AN122

“EXT_OSC_Measurel”

// EXT_OSC_Measurel.c

/mm e e -
// Copyright 2002 Cygnal Integrated Products, Inc.

//

// AUTH: BW

// DATE: 01 MAR 02

//

// This program shows an example of how the internal oscillator

// can be used to measure the external oscillator frequency.

//
// In this example, the internal oscillator is set to its highest setting.
// The external oscillator is configured to its desired mode. The PCA counter

// 1is used as a generic 16-bit counter that uses EXTCLK / 8 as its time base.
//

// We configured TimerO to count SYSCLKs, and count the number of EXTCLK/8

// ticks in 16 million SYSCLKs (or the number of SYSCLKs in 1 second) to obtain
// the external oscillator frequency.

//

// Target: C8051F02x

// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

et
// Includes

#include <c8051£f020.h> // SFR declarations
#include <stdio.h>
#include <math.h>

[
// 16-bit SFR Definitions for ‘F02x

[
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrle ADCOGT = Oxc4; // ADCO greater than window

sfrle ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = Oxca; // Timer2 capture/reload

sfrl6 T2 = Oxcc; // Timer?2

sfrl6 RCAP4 = Oxed; // Timer4 capture/reload

sfrlo T4 = 0xf4; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6é DAC1 = 0xd5; // DAC1 data

/e e
// Global CONSTANTS

[
#define SYSCLK 13750000 // SYSCLK frequency in Hz

#define BAUDRATE 9600 // Baud rate of UART in bps

sbit LED = P1"6; // LED = 1 means ON

Rev. 1.2 41

SILICON LABORATORIES

AN122

// Structures, Unions, Enumerations,

typedef union ULong {
long Long;
unsigned int UInt([2];
unsigned char Char([4];

} ULong;

// Function PROTOTYPES
void SYSCLK_Init (void) ;
void PORT Init (void);
void UARTO Init (void);

void EXTCLK Measure (void);

and Type definitions

long EXTCLK; // holds EXTCLK frequency in Hz
unsigned char SECONDS; // seconds counter
unsigned char MINUTES; // minutes counter
unsigned char HOURS; // hours counter
unsigned int DAYS; // days counter
/e e
// MAIN Routine
[m e e
void main (void) {

WDTCN = Oxde; // disable watchdog timer

WDTCN = Oxad;

SYSCLK_Init (); // initialize oscillator

PORT Init (); // initialize crossbar and GPIO

EA = 1; // enable global interrupts

UARTO_Init () // initialize UARTO

while (1) {

EXTCLK Measure (); // measure external oscillator and
// update EXTCLK variable
printf (“\nEXTCLK = %1d Hz\n\n”, EXTCLK);

}
}
/e e
// Initialization Subroutines
[

®

42 Rev. 1.2

SILICON LABORATORIES

AN122

//

// This routine initializes the system clocks

//
void SYSCLK Init (void)

{
int 1i;
OSCXCN = 0x67;

for (i=0; 1 < 256; i++) ;

i = OxXFFFF;
while (! (OSCXCN & 0x80)) {

if (1 == 0){
OSCXCN = 0x62;

i-=;

}
OSCICN = 0x07;

//

//

1/

//

//
!/
//
//
//
//

//
//

//
//
//

// PORT Init
//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{
XBRO |= 0x04;
XBR2 |= 0x40;
POMDOUT |= 0x01;
P1MDOUT |= 0x40;

// UARTO Init
//
// Configure the UARTO using Timerl,
//
void UARTO Init (void)
{
SCONO = 0x50;
TMOD = 0x20;
TH1 = - (SYSCLK/BAUDRATE/16) ;
TR1 = 1;
CKCON |= 0x10;
PCON |= 0x80;
ESO = 0;
TIO =1;

//

//
//
//

!/
!/
//
//

delay counter
start external oscillator

wait for osc to start up

Wait for crystal osc. to settle

A low frequency oscillator will
not start up if XFCN is set too
high. This statement lowers XFCN
if the external oscillator does
not start up within a reasonable
amount of time.

select internal oscillator at max
frequency as the system clock source

Enable UARTO

Enable crossbar and weak pull-ups
enable TX0 as a push-pull output
enable LED as push-pull output

for <baudrate> and 8-N-1.

SCONO: mode 1, 8-bit UART, enable RX
TMOD: timer 1, mode 2, 8-bit reload
set Timerl reload value for baudrate
start Timerl

Timerl uses SYSCLK as time base
SMOD00 = 1

disable UARTO interrupts

indicate ready for TX

SILICON LABORATORIES

Rev. 1.2

43

//
!/
1/
//
//
//
//
!/
!/
1/
//
//
//
!/
!/
//
//
//
//
!/
VO

{

This routine uses the internal oscillator
external oscillator.
started and settled.

to measure the frequency of the

Assumes that the external oscillator has been
Also assumes that the internal oscillator operating

at its highest frequency is selected as the system clock source.

The measurement algorithm is as follows:
PCA set to '-1’; TimerO set to 0x0000;
PCAO started (CR 1)

On CF, Timer(O is started (TFO 1)
When TO high:TimerO reach 0x00000000,
EXTCLK frequency PCAO _high:PCAO
Upon completion,
oscillator frequency in Hz.

g w N

CF is cleared,
stop PCAO

PCA stopped; TimerO stopped

PCAO0 remains running

the global variable EXTCLK contains the internal

I believe the worst-case measurement error is around 20 system clocks.

20 / 16e6 = 1.3 ppm

id EXTCLK Measure (void)

unsigned int TO_high; //
unsigned int PCAO_ high; /7

ULong temp; //
// Timer0 counts up to SYSCLK; TO high
temp.Long -SYSCLK;

TO0 high temp.UInt[0];

THO = temp.Char[2];

TLO temp.Char[3];

is

// PCAQ counts
PCAOCN = 0x00;

from zero to EXTCLK / 8
//

PCAOMD = 0x0b; //
//
//

PCAQL = OxFF; //

PCAOH = OXxFF;

PCAO_high = 0x0000;

// init TimerQ

CKCON |= 0x08; //
TCON &= ~0x30; //
TMOD &= ~0xO0f; //
TMOD |= 0x01;

// start PCAQ
CR =1

while (CF == 0); /7
TRO = 1; //
CF = 0; //
while (1) { //
if (TFO) { //

TO high++;

(far less than typical crystal ppm’s of 20)

overflow bytes of TimerO
overflow bytes of PCAQ
byte-addressable Long

the upper 2 bytes of this number

Stop counter; clear all flags
PCA counts in IDLE mode;
EXTCLK / 8 is time base;
overflow interrupt is enabled
set time base to ‘-1’

TimerO counts SYSCLKs
Stop timer; clear TFO
TimerO in 16-bit counter mode

wait for edge
Start TimerO
clear PCA overflow

wait for 1 second
handle TO overflow

44

Rev. 1.2

SILICON LABORATORIES

AN122

if (TO_high == 0x0000)
CR = 0;
break;
}
TFO = 0;
}
if (CF) {
PCAO_high++;
CF = 0;

}
TRO = 0;

// read PCAO value

// stop PCA
// exit loop

// handle PCAO overflow

// Stop Timer0

//SYSCLK = (TO _high << 16) | (THO << 8) | TLO; // Oxa0 clock cycles
// = 0xla clock cycles using the optimization below

temp.UInt[0] = PCAO high;

temp.Char[2] = PCAOH;

temp.Char[3] = PCAOL;

EXTCLK = temp.Long << 3;

// EXTCLK = 8 * EXTCLK / 8

SILICON LABORATORIES

Rev. 1.2

45

AN122

“0OSC_RTC_Cal1”

// Copyright 2002 Cygnal Integrated Products, Inc.

// AUTH: BW
// DATE: 01 MAR 02

// This program shows an example of how an external crystal oscillator
// can be used to measure the internal oscillator frequency to a sufficient
// degree to enable UART operation (better than +/- 2.5%).

// In this example, a 32.768kHz watch crystal (with associated loading

// capacitors) is connected between XTALl and XTAL2. The PCA counter is

// used as a generic 16-bit counter that uses EXTCLK / 8 as its time base.

// We preload it to generate an overflow in 8 counts. Timer0O is configured
// as a 16-bit counter that is set to count SYSCLKs. The internal oscillator
// is configured to its highest setting, and provides the system clock source.

// The number of 16 MHz clock cycles that occur in 4096 cycles of
// EXTCLK / 8 when EXTCLK = 32.768kHz is 16,000,000. It is calculated as
// follows: 16MHz / 32.768kHz * 8 * 8 * 512 = 31,250 * 512 = 16,000,000.

// The measurement algorithm used in SYSCLK Measure () counts the total number
// of system clocks in 4096 periods of EXTCLK / 8 (1 full second) and maintains
// overflow counters using TimerO. The result is given in MHz.

// The system clock frequency is then stored in a global variable SYSCLK. The
// target UART baud rate is stored in a global constant BAUDRATE.

// A set of RTC values for seconds, minutes, hours, and days are also
// maintained by the interrupt handler for Timer 3, which is configured
// to use EXTCLK / 8 as its time base and to reload every 4096 counts.
// This generates an interrupt once every second.

// Target: C8051F02x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

#include <c8051f020.h> // SFR declarations
#include <stdio.h>
#include <math.h>

[m e
// 16-bit SFR Definitions for ‘F02x

[
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrl6 ADCOGT = 0xc4; // ADCO greater than window

sfrl6 ADCOLT = 0xc6; // ADCO less than window

46 Rev. 1.2

SILICON LABORATORIES

AN122

sfrl6 RCAP2 = 0Oxca; // Timer2 capture/reload

sfrl6 T2 = Oxcc; // Timer?2

sfrl6 RCAP4 = Oxed; // Timer4 capture/reload

sfrl6 T4 = 0xf4; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1 data

[mm e
// Global CONSTANTS

[
//#define SYSCLK 22118400 // SYSCLK frequency in Hz

#define BAUDRATE 19200 // Baud rate of UART in bps

sbit LED = P176; // LED = 1 means ON

[
// Structures, Unions, Enumerations, and Type definitions
e it bt

typedef union ULong {
long Long;
unsigned int UInt([2];
unsigned char Char[4];
} ULong;

void SYSCLK Init (void);
void PORT Init (void);

void UARTO Init (void);
void Timer3 Init (void);
void SYSCLK Measure (void);

void Timer3 ISR (void);

[mm e e
// Global VARIABLES

[
long SYSCLK; // holds SYSCLK frequency in Hz

unsigned char SECONDS; // seconds counter

unsigned char MINUTES; // minutes counter

unsigned char HOURS; // hours counter

unsigned int DAYS; // days counter
et il b
// MAIN Routine

/) m e

void main (void) {

WDTCN = Oxde; // disable watchdog timer

WDTCN = Oxad;

SYSCLK_Init (); // initialize oscillator

PORT Init (); // initialize crossbar and GPIO

Rev. 1.2 47

SILICON LABORATORIES

AN122

!/
1/

//
//
!/
!/
1/
//
//
VO

{

Timer3 Init ();

EA 1;

SYSCLK Measure ();

UARTO Init ();

// initialize Timer 3 for RTC mode
// enable global interrupts

// measure internal oscillator and
// update SYSCLK variable

// initialize UARTO

printf (M\nSYSCLK = %$1d Hz\n\n”, SYSCLK);
while (1) {
OSCICN = 0x07; // switch to fast internal osc
LED = 1; // turn LED on
printf (“%$u Days, %02u:%02u:%02u\n”, DAYS, (unsigned) HOURS,
(unsigned) MINUTES, (unsigned) SECONDS) ;
while (TIO == 0); // wait for end of transmission
OSCICN = 0x08; // switch to EXTOSC
LED = 0; // turn LED off
PCON |= 0x01; // go into IDLE mode (CPU will be
// awakened by the next interrupt,
// and will re-print the RTC
// values) .

This routine initializes the system
as its clock source.

id SYSCLK_Init (void)
int 1i;

int current, last;
int tolerance_ count;

OSCXCN = 0x60;

for (i=0; 1 < 256; i++) ;
while (! (OSCXCN & 0x80)) ;
OSCICN = 0x07;

clock to use a low-frequency crystal

// delay counter

// used in osc. stabilization check
// start external oscillator with
// low-frequency crystal

//

wait for osc to start up

// Wait for crystal osc. to settle

select internal oscillator at its

//

48

Rev. 1.2

SILICON LABORATORIES

AN122

// fastest setting as the system
// clock source

// low-frequency crystal stabilization wait routine

// Here we measure the number of system clocks in 8 EXTCLK / 8 periods.
// We compare successive measurements. When we obtain 1000 measurements
// in a row that are all within 20 system clocks of each other, the

// routine will exit. This condition will only occur once the crystal
// oscillator has fully stabilized at its resonant frequency.

//

// Note that this can take several seconds.

// init PCAO
PCAOCN = 0x00; // Stop counter; clear all flags
PCAOMD = 0x0b; // PCA counts in IDLE mode;

// EXTCLK / 8 is time base;

// overflow interrupt is enabled

// init TimerO

TCON &= ~0x30; // Stop timer; clear TFO
TMOD &= ~0xO0f; // Timer0O in 16-bit counter mode
TMOD |= 0x01;
CKCON |= 0x08; // Timer0 counts SYSCLKs
tolerance count = 1000; // wait for 1000 cycles in a row
// to lie within 20 clocks of each
// other
current = 0;
do {
PCAOCN = 0x00;
PCAOL = OxFF; // set PCA time base to ‘-1’

PCAQOH = OxFF;

TCON &= ~0x30;

THO = 0x00; // init TO time base
TLO = 0x00;

// start PCAQ

CR = 1;

while (CF == 0); // wait for edge

TRO = 1; // Start TimerO

CF = 0; // clear PCA overflow

PCAQOL = -8; // set PCA to overflow in 8 cycles

PCAOH = (-8) >> 8;

while (CF == 0);

TRO = 0;

last = current;

current = (THO << 8) | TLO;

if (abs (current - last) > 20) {

tolerance count = 1000; // falls outside bounds; reset
// counter
} else {
tolerance count--; // in-bounds; update counter
}
} while (tolerance count != 0);

}
J
// PORT_Init
[mm e

Rev. 1.2

SILICON LABORATORIES

49

AN122

//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{
XBRO |= 0x04; // Enable UARTO
XBR2 |= 0x40; // Enable crossbar and weak pull-ups
POMDOUT |= 0x01; // enable TX0 as a push-pull output
P1IMDOUT |= 0x40; // enable LED as push-pull output
}
[mm e e e -
// UARTO Init
/e
//
// Configure the UARTO using Timerl, for <baudrate> and 8-N-1.
//
void UARTO Init (void)
{
SCONO = 0x50; // SCONO: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16) ; // set Timerl reload value for baudrate
TR1 =1; // start Timerl
CKCON |= 0x10; // Timerl uses SYSCLK as time base
PCON |= 0x80; // SMOD0O0 = 1
ESO =0; // disable UARTO interrupts
TIO =1; // indicate ready for TX
}
et
// Timer3 Init
/e
//
// Configure Timer3 for 16-bit auto-reload mode using EXTCLK / 8 as its time
// base and to reload every 4096 counts. This will generate one interrupt
// every second.
//
void Timer3 Init (void)
{
TMR3CN = 0x01; // Stop Timer3; Clear TF3; Timer3
// counts SYSCLK / 8
TMR3RL = -4096; // reload every 4096 counts
TMR3 = TMR3RL; // init T3
EIE2 |= 0x01; // Enable Timer3 interrupts
TMR3CN |= 0x04; // Start Timer3
}
et
// SYSCLK Measure
/e o
//

// This routine uses the external oscillator to measure the frequency of the
// internal oscillator. Assumes that the external oscillator has been

// started and settled. Also assumes that the internal oscillator operating
// at its highest frequency is selected as the system clock source.

//

// The measurement algorithm is as follows:

// 1. PCA set to ‘-1’; Timer0 set to 0x0000; PCA stopped; Timer0 stopped

// 2. PCA started (CR = 1)

50 Rev. 1.2

SILICON LABORATORIES

AN122

// 3. On CF, Timer(O is started (TRO = 1); CF is cleared, PCA remains running
// 4. PCA set to ‘-4096’ (note, we have about 4000 system clocks to
// perform this operation before actually missing a count)
// 5. On CF, TimerO is stopped (TRO = 0);
// 6. Timer0O contains the number of 16 MHz SYSCLKs in 4096 periods of EXTCLK/8
//
// Upon completion, the global variable SYSCLK contains the internal
// oscillator frequency in Hz.
//
// I believe the worst-case measurement error is around 20 system clocks.
// 20 / 16e6 = 1.3 ppm (far less than typical crystal ppm’s of 20)
//
void SYSCLK Measure (void)
{
unsigned int TO_ high; // keeps track of Timer0 overflows
ULong temp; // byte-addressable Long
// init PCAO
PCAOCN = 0x00; // Stop counter; clear all flags
PCAOMD = 0x0b; // PCA counts in IDLE mode;
// EXTCLK / 8 is time base;
// overflow interrupt is enabled
PCAQL = OxFF; // set time base to ‘-1’
PCAOH = OXxFF;
// init TimerO
TO high = 0; // clear overflow counter
CKCON |= 0x08; // Timer0O counts SYSCLKs
TCON &= ~0x30; // Stop timer; clear TFO
TMOD &= ~0x0f; // Timer0 in 16-bit counter mode
TMOD |= 0x01;
THO = 0x00; // init time base
TLO = 0x00;
// start PCAO
CR = 1;
while (CF == 0); // wait for edge
TRO = 1; // Start TimerO
CF = 0; // clear PCA overflow
PCAOL = -4096; // set PCA to overflow in 4096
// cycles (1 second)
PCAOH = (-4096) >> 8;
while (CF == 0) { // wait for 1 second
if (TFO) { // handle TO overflow
TO high++;
TFO = 0;
}
}
TRO = 0; // Stop Timer0

// read Timer0O value

//SYSCLK = (TO high << 16) | (THO << 8) | TLO; // Oxa0 clock cycles
// = 0xla clock cycles using the optimization below

temp.UInt[0] = TO high;

temp.Char[2] = THO;

temp.Char[3] = TLO;

SILICON

Rev. 1.2

LABORATORIES

51

AN122

SYSCLK = temp.Long;

// Timer3 ISR

/=
//

// This ISR is called on overflow of Timer3, which occurs once every second.

// Here we update a set of global RTC counters for seconds, minutes, hours,

// and days.
//
void Timer3 ISR (void) interrupt 14 using 3
{
TMR3CN &= ~0x80; // clear Timer 3 overflow flag
SECONDS++;
if (SECONDS == 60) {
SECONDS = 0;
MINUTES++;
if (MINUTES == 60) {
MINUTES = 0;
HOURS++;
if (HOURS == 24) {
HOURS = 0;
DAYS++;

52 Rev. 1.2

SILICON LABORATORIES

AN122

“Timer0_Poll1.c”

// Copyright 2001 Cygnal Integrated Products, Inc.

// AUTH: BW
// DATE: 27 AUG 01

// This program shows an example of using Timer0 in polled mode to implement
// a delay counter with a resolution of 1 ms.

//

// Assumes an 22.1184MHz crystal is attached between XTAL1l and XTALZ2.
//

// The system clock frequency is stored in a global constant SYSCLK.
//

// Target: C8051F02x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

[
// Includes

[
#include <c8051f020.h> // SFR declarations

[
// 16-bit SFR Definitions for ‘F02x

[e
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrle ADCOGT = Oxc4; // ADCO greater than window

sfrle ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = Oxca; // Timer2 capture/reload

sfrl6 T2 = Oxcc; // Timer?2

sfrl6 RCAP4 = Oxed; // Timer4 capture/reload

sfrleo T4 = 0xf4; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6é DAC1 = 0xd5; // DAC1 data

/e e
// Global CONSTANTS

[
#define SYSCLK 22118400 // SYSCLK frequency in Hz

sbit LED = P176; // LED='"1’ means ON

sbit SW1 = P3"7; // SW1='0’ means switch pressed

[
// Function PROTOTYPES

/e e

void SYSCLK Init (void);
void PORT Init (void);

Rev. 1.2 53

SILICON LABORATORIES

AN122

VvO

VO

vO

{

id TimerO Delay (int ms);

id main (void) {

WDTCN Oxde;
WDTCN = Oxad;

SYSCLK_Init ()
PORT Init ();

while (1) {
TimerO Delay (100);
LED = ~LED;

This routine initializes the system
as its clock source.

id SYSCLK Init (void)
int i;

OSCXCN = 0x67;

for (i=0; 1 < 256; i++) ;
while (! (OSCXCN & 0x80)) ;

OSCICN = 0x88;

// disable watchdog timer

// initialize oscillator
// initialize crossbar and GPIO

// delay for 100ms
// change state of LED

clock to use an 22.1184MHz crystal

// delay counter

// start external oscillator with
// 22.1184MHz crystal

// Wait for osc. to start up
// Wait for crystal osc. to settle
// select external oscillator as SYSCLK

// source and enable missing clock
// detector

// Configure the Crossbar and GPIO ports

//

VO

{

id PORT Init (void)

54

Rev. 1.2

SILICON LABORATORIES

AN122

XBRO
XBR1
XBR2
P1MDOUT

0x00;
0x00;

= 0x40;

|= 0x40;

//
//

Enable crossbar and weak pull-ups
enable P1.6 (LED) as push-pull output

// Configure Timer0O to delay <ms> milliseconds before returning.

void Timer(0 Delay (int ms)

{

int 1i;

TCON &=
TMOD &=
TMOD |=
CKCON |=

for (1 =
TRO =
THO =
TLO =
TRO =
while
TFO =

~0x30;
~0x0f;
0x01;
0x08;

0;
0;

i < ms;

i++)

(-SYSCLK/1000)
-SYSCLK/1000;

1;

(TFO == 0);

0;

{

>> 8;

//

//
//

//

//
//
!/

//
//
//

millisecond counter

STOP TimerO and clear overflow flag
configure Timer0O to 16-bit mode

Timer0 counts SYSCLKs

count milliseconds
STOP TimerO
set Timer0O to overflow in 1ms

START TimerO
wait for overflow
clear overflow indicator

SILICON LABORATORIES

Rev. 1.2

55

AN122

“EMIF_1”

// Copyright 2001 Cygnal Integrated Products, Inc.

// AUTH: BW
// DATE: 11 DEC 01

// This program configures the external memory interface to read and write
// to an external SRAM mapped to the upper port pins. Assumes an external
// 22.1184MHz crystal is attached between XTALl and XTAL2.

// Target: C8051F02x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

#include <c8051£f020.h> // SFR declarations
#include <stdio.h>

/e
// 16-bit SFR Definitions for ‘F02x

[
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrl6 ADCOGT = 0xc4; // ADCO greater than window

sfrle ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = 0Oxca; // Timer2 capture/reload

sfrle T2 = Oxcc; // Timer2

sfrl6 RCAP4 = Oxe4; // Timer4 capture/reload

sfrl6 T4 = Oxf4; // Timerd

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

/e e
// Global CONSTANTS

[mm e e
#define SYSCLK 22118400 // SYSCLK frequency in Hz

#define BAUDRATE 115200 // Baud rate of UART in bps

#define RAM BANK 0x20; // bank select bit is P4"5

#define RAM CS 0x10; // chip select bit is P4"4

sbit LED = P1"6; // LED = 1 means ON

/e
// Function PROTOTYPES

[m e e

void SYSCLK Init (void);

56 Rev. 1.2

SILICON LABORATORIES

AN122

void PORT Init (void);
void UARTO Init (void);
void EMIF Init (void);

void main (void) {

unsigned char xdata *pchar; // memory access pointer
unsigned long 1i;

WDTCN = Oxde; // disable watchdog timer

WDTCN = Oxad;

SYSCLK_Init (); // initialize oscillator

PORT Init (); // initialize crossbar and GPIO
UARTO_Init (); // initialize UARTO

EMIF Init (); // initialize memory interface
P4 &= ~RAM BANK; // select lower bank

P4 &= ~RAM CS; // assert RAM chip select

// clear xdata space

pchar = 0;

for (i = 0; 1 < 65536; i++) {
*pchar++ = 0;
// print status to UARTO

if ((1 % 16) == 0) {
printf (M\nwriting 0x%04x: %02x “, (unsigned) i, (unsigned) O0);
} else {

printf (“%02x “, (unsigned) 0);

// verify all are zero

pchar = 0;
for (i = 0; 1 < 65536; i++) {
if (*pchar != 0) {
printf (“Erase error!\n”);
while (1);

}
// print status to UARTO

if ((1 % 16) == 0) {
printf (M\nverifying 0x%04x: %02x “, (unsigned) i, (unsigned) *pchar);
} else {
printf (“%02x “, (unsigned) *pchar);
}
pchar++;

// write xdata space
pchar = 0;
for (i = 0; 1 < 65536; 1i++) {

Rev. 1.2 57

SILICON LABORATORIES

AN122

*pchar = ~i;
// print status to UARTO
if ((1 % 16) == 0) {
printf (M\nwriting 0x%04x: %02x “, (unsigned) i, (unsigned) ((~1) & O0xff));
} else {
printf (“%02x “, (unsigned) ((~1i) & Oxff));
}
pchar++;
}
// verify
pchar = 0;
for (i = 0; 1 < 65536; i++) {
if (*pchar != ((~1i) & Oxff)) {
printf (“Werify error!\n”);
while (1);

}
// print status to UARTO

if ((1 % 16) == 0) {
printf (M\nverifying 0x%04x: %02x “, (unsigned) i, (unsigned) *pchar);
} else {

printf (“%02x “, (unsigned) *pchar);

}

pchar++;

}

while (1);
}
[
// Initialization Subroutines
=
[
// SYSCLK Init
[
//

// This routine initializes the system clock to use an 22.1184MHz crystal
// as its clock source.

void SYSCLK Init (void)
{

int 1i; // delay counter

OSCXCN = 0x67; // start external oscillator with
// 22.1184MHz crystal

for (i=0; 1 < 256; i++) ; // wait for oscillator to start
while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK

// source and enable missing clock
// detector

// PORT_Init

58 Rev. 1.2

SILICON LABORATORIES

AN122

/e e
//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{
XBRO |= 0x04; // Enable UARTO
XBR2 |= 0x40; // Enable crossbar and weak pull-ups
POMDOUT |= 0x01; // enable TX0 as a push-pull output
PIMDOUT |= 0x40; // enable LED as push-pull output
}
/e e e
// UARTO Init
/e
//
// Configure the UARTO using Timerl, for <baudrate> and 8-N-1.
//
void UARTO Init (void)
{
SCONO = 0x50; // SCONO: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16) ; // set Timerl reload value for baudrate
TR1 =1; // start Timerl
CKCON |= 0x10; // Timerl uses SYSCLK as time base
PCON |= 0x80; // SMOD0O0 = 1
TIO =1; // Indicate TX0 ready
}
[
// EMIF Init
et
//

// Configure the external memory interface to use upper port pins in

// non-multiplexed mode to a mixed on-chip/off-chip configuration without
// Bank Select.

//

void EMIF Init (void)

{

EMIOCF = 0x3c; // upper ports; non-muxed mode;
// split mode w/o bank select

EMIOTC = 0x00; // fastest timing (4-cycle MOVX)

P740UT |= Oxfe; // all EMIF pins configured as

// push-pull

Rev. 1.2 59

SILICON LABORATORIES

AN122

“UARTO0_Stdio1”

// Copyright 2001 Cygnal Integrated Products, Inc.

// AUTH: BW
// DATE: 18 AUG 01

// This program configures UARTO to operate in polled mode, suitable for use
// with the <stdio> functions printf() and scanf(), to which examples are

// provided. Assumes an 22.1184MHz crystal is attached between XTALl and

// XTAL2.

// The system clock frequency is stored in a global constant SYSCLK. The
// target UART baud rate is stored in a global constant BAUDRATE.

// Target: C8051F02x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

#include <c8051f020.h> // SFR declarations
#include <stdio.h>

[e
// 16-bit SFR Definitions for ‘F02x
et
sfrl6 DP = 0x82; // data pointer

sfrloe TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrl6 ADCOGT = Oxc4; // ADCO greater than window

sfrl6 ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = Oxca; // Timer2 capture/reload

sfrleo T2 = Oxcc; // Timer2

sfrl6 RCAP4 = 0Oxed; // Timerd capture/reload

sfrlo T4 = 0xf4; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

[
// Global CONSTANTS

/e e
#define SYSCLK 22118400 // SYSCLK frequency in Hz

#define BAUDRATE 115200 // Baud rate of UART in bps

sbit LED = P1"6; // LED = 1 means ON

/e e
// Function PROTOTYPES

[

60 Rev. 1.2

SILICON LABORATORIES

AN122

void SYSCLK Init (void);
void PORT Init (void);
void UARTO Init (void);

void main (void) {
char input char;

WDTICN = Oxde; // disable watchdog timer

WDTCN = Oxad;

SYSCLK Init (); // initialize oscillator

PORT Init (); // initialize crossbar and GPIO
UARTO Init (); // initialize UARTO

// transmit example
printf (“Howdy!\n”);
// receive example: a ‘1’ turns LED on; a ‘0’ turns LED off.

while (1) {
input char = getchar();
printf (Y ‘%c’, 0x%02x\n”, (unsigned char) input char, (unsigned) input char);
switch (input char) {

case ‘0':
LED = 0;
break;
case ‘1':
LED = 1;
break;
default:
break;
}
}
}
e
// Initialization Subroutines
/=
/] m e
// SYSCLK Init
/= e
//

// This routine initializes the system clock to use an 22.1184MHz crystal
// as its clock source.

//

void SYSCLK Init (void)

{

int 1i; // delay counter

Rev. 1.2 61

SILICON LABORATORIES

AN122

OSCXCN = 0x67; // start external oscillator with
// 22.1184MHz crystal

for (i=0; i < 256; i++) ; // wait for oscillator to start
while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK

// source and enable missing clock
// detector

/m e -
// PORT Init
A e
//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{
XBRO |= 0x04; // Enable UARTO
XBR2 |= 0x40; // Enable crossbar and weak pull-ups
POMDOUT |= 0x01; // enable TX0 as a push-pull output
P1IMDOUT |= 0x40; // enable LED as push-pull output
}
/e
// UARTO Init
et
//
// Configure the UARTO using Timerl, for <baudrate> and 8-N-1.
//
void UARTO Init (void)
{
SCONO = 0x50; // SCONO: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16) ; // set Timerl reload value for baudrate
TR1 =1; // start Timerl
CKCON |= 0x10; // Timerl uses SYSCLK as time base
PCON |= 0x80; // SMODO0O = 1 (disable baud rate
// divide-by-two)
TIO = 1; // Indicate TX0 ready

62 Rev. 1.2

SILICON LABORATORIES

AN122

“UARTO_Autobaud1”

A e
// UARTO_Autobaudl.c

/mm e e -
// Copyright 2002 Cygnal Integrated Products, Inc.

//

// AUTH: BW

// DATE: 30 APR 02

//

// This program shows an example of how the PCA can be used to enable accurate
// UART auto-baud detection when running from the on-chip internal oscillator.
// This algorithm assumes a 0x55 character (ASCII “U”) is sent from the

// remote transmitter. Baud rates between 4800 to 19.2kbps can be reliably

// synchronized.

//

// UARTO is then configured to operate in polled mode, suitable for use

// with the <stdio> functions printf() and scanf ().

//

// Target: C8051F02x

// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

/==

// Includes

#include <c8051f020.h> // SFR declarations
#include <stdio.h>

/e
// 16-bit SFR Definitions for ‘F02x

/) mm e
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrl6 ADCOGT = Oxc4; // ADCO greater than window

sfrl6 ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = 0Oxca; // Timer2 capture/reload

sfrleo T2 = Oxcc; // Timer2

sfrl6 RCAP4 = 0Oxed; // Timerd capture/reload

sfrl6 T4 = Oxf4; // Timerd

sfrl6 DACO = 0xd2; // DACO data

sfrlé DAC1 = 0xd5; // DAC1l data

[
// Structures, Unions, Enumerations, and Type definitions

[m e

typedef union UInt {
unsigned int Int;
unsigned char UChar([2];
} Ulnt;

Rev. 1.2 63

SILICON LABORATORIES

AN122

sbit LED = P1"6; // LED = 1 means ON
et
// Function PROTOTYPES
e

void SYSCLK_Init (void) ;
void PORT Init (void);
void UARTO Init (void);

void main (void) {

WDTICN = Oxde; // disable watchdog timer

WDTCN = Oxad;

SYSCLK Init (); // initialize oscillator

PORT Init (); // initialize crossbar and GPIO
UARTO Init (); // initialize UARTO

// transmit example
printf (“Howdy!\n”);

while (1);

// Initialization Subroutines

T

et Rt
// SYSCLK Init
e R R R R NS
//
// This routine initializes the system clock to use the internal oscillator
// operating at its maximum frequency.
//
void SYSCLK Init (void)
{
OSCICN = 0x07; // internal osc max frequency

//
// Configure the Crossbar and GPIO ports

//
void PORT Init (void)

64 Rev. 1.2

SILICON LABORATORIES

AN122

VO

{

XBRO |= 0x04; // Enable UARTO

XBR2 |= 0x40; // Enable crossbar and weak pull-ups
POMDOUT |= 0x01; // enable TX0 as a push-pull output
P1IMDOUT |= 0x40; // enable LED as push-pull output

Configure the UARTO using Timerl, for auto-baud detect and 8-N-1.

In this example, the CEX1l is directed to appear on P0.l1 (which is where the
UARTO RX pin will appear on ‘F02x devices) and CEXO is directed to appear
on P0.0 (which is where the UART RX pin would appear). CEXO is not used.
The detection algorithm assumes that the host transmitter will send a 0x55
character, which is an ASCII captial “U”.
-————4 +-——— + +———- + +-——— + +-———- + fo————
/| s | s | 1 | 2 | 3 | 4 | 5 | 6 | MSB | P
+-——— + e + +-——— + +-——— + R +

The PCA time base is configured to count SYSCLKs. SYSCLK is assumed to

be operating from the internal oscillator at its max frequency, though this
should not affect the operation of the algorithm (though a lower frequency
will decrease the maximum UART baud rate that can be matched).

A bit period at 9600bps is ~104us, or about 63ns. Therefore there are about
1670 SYSCLKs in 1 bit period.

The algorithm operates as follows:
1. The time at which the falling edge is recorded in <last time>.
2. The times between successive rising and falling edges are recorded
in edge array.
3. The average bit time is calculated from the information in edge array.

4. Timerl is configured in 8-bit auto-reload mode to reload 16 times faster
than the average bit time.

5. The PCA modules are disabled in the Crossbar and UARTO is enabled.
id UARTO Init (void)
unsigned int edge arrayl[9]; // holds bit times of received

// training character

unsigned int last time; // PCAO value when last edge occurred
UInt temp; // byte-addressable unsigned int
unsigned char 1i; // edge counter

// Route CEX0 and CEX1 to P0.0 and PO.1 on Crossbar

XBR2 = 0x00; // Disable Crossbar
XBRO = 0x10; // Enable CEX0 and CEX1 (P0.0, PO.1)
XBR2 = 0x40; // Enable Crossbar and weak pull-ups

// Configure PCA for edge-capture operation

PCAOMD = 0x08; // Configure PCA time base to use SYSCLK
PCAOCPMO = 0x00; // Module 0 is not used
PCAOCPM1 = 0x30; // Module 1 configured for edge capture

Rev. 1.2 65

SILICON LABORATORIES

AN122

// (no interrupt generated)

PCAOCN = 0x40; // Start PCA counter; clear all flags
while (!CCF1); // wait for edge

CCF1 = 0; // clear edge flag

temp.UChar[0] = PCAOCPHI; // read edge time

temp.UChar[1l] = PCAOCPL1;

last time = temp.Int;

for (1 = 0; 1 < 8; i++) {

while (!CCF1); // wait for edge
CCF1l = 0; // clear edge flag
// read the edge

temp.UChar[0] = PCAOCPHI; // read edge time

temp.UChar[1l] = PCAOCPL1;

// store the edge
edge array[i] = temp.Int - last time;
last _time = temp.Int; // update last edge timer

// add 8 bit times in prep for averaging
last _time = 0x0000; // initialize holding variable
for (i = 0; i < 8; i++) {

last time += edge arrayl[i];

last time = last time >> (3 + 4); // divide by 8 for averaging
// and by 16 for Timer reload rate

// Disable CEX0 and CEX1 through Crossbar and enable UARTO

XBR2 = 0x00; // Disable Crossbar
XBRO = 0x04; // Enable UARTO in Crossbar
XBR2 = 0x40; // Enable Crossbar and weak pull-ups

// Configure UARTO and Timerl

SCONO = 0x50; // SCONO: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = -last_time; // set Timerl reload value for baudrate
TR1 =1; // start Timerl

CKCON |= 0x10; // Timerl uses SYSCLK as time base

PCON |= 0x80; // SMOD0O0 = 1

TIO =1; // Indicate TX0 ready

printf (“\nAuto-baud detection statistics:\n”);

(
printf (“Edge Array:\n”);
for (1 = 0; 1 < 8; i++) {

printf (™ bit width %d: %u SYSCLKs\n”, (int) i, edge array[i]);
}

printf (“"Timer 1 reload value: 0x%02x\n”, (unsigned) (TH1 & OxFF));

66 Rev. 1.2

SILICON LABORATORIES

AN122

“UARTO_Int1”

A e
// UARTO Intl.c

/mm e e -
// Copyright 2001 Cygnal Integrated Products, Inc.

//

// AUTH: BW

// DATE: 28 AUG 01

//

// This program configures UARTO to operate in interrupt mode, showing an

// example of a string transmitter and a string receiver. These strings are

// assumed to be NULL-terminated.

//

// Assumes an 22.1184MHz crystal is attached between XTALl and XTALZ2.

//

// The system clock frequency is stored in a global constant SYSCLK. The

// target UART baud rate is stored in a global constant BAUDRATE.

//

// Target: C8051F02x

// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

[mm e e -
// Includes
e
#include <c8051f020.h> // SFR declarations

#include <stdio.h>

#include <string.h>

/e e
// 16-bit SFR Definitions for ‘F02x

/) mm e
sfrl6 DP = 0x82; // data pointer

sfrle TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrl6 ADCOGT = 0xc4; // ADCO greater than window

sfrle ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = 0Oxca; // Timer2 capture/reload

sfrle T2 = Oxcc; // Timer?2

sfrl6 RCAP4 = Oxe4; // Timer4 capture/reload

sfrl6 T4 = Oxf4; // Timerd

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

et st
// Global CONSTANTS
e
#define SYSCLK 22118400 // SYSCLK frequency in Hz

#define BAUDRATE 115200 // Baud rate of UART in bps

#define RX LENGTH 16 // length of UART RX buffer

sbit LED = P176; // LED = 1 means ON
/e

Rev. 1.2 67

SILICON LABORATORIES

AN122

// Function PROTOTYPES

void SYSCLK_Init (void) ;
void PORT Init (void);
void UARTO Init (void);
void UARTO ISR (void);

bit TX Ready;
char *TX ptr;

bit RX Ready;
char idata RX Buf[RX LENGTH];

void main (void) {
int 1i;
char tx buf[8];

WDTCN
WDTCN

Oxde;
Oxad;

SYSCLK Init ();
PORT Init ();
UARTO Init ();

EA = 1;

// transmit example: here we print

// per line to UARTO.

while (!TX Ready);
TX Ready = 0;

TX ptr = “Howdy!"”;
TIO = 1;

for (1 = 0; 1 < 1000; i++)
while (!TX Ready);
TX Ready = 0;

sprintf (tx buf, “%d\r\n”,

TX ptr = tx buf;
TIO = 1;

//
//

//
!/

//

!/
//
!/

//

the

//
//
//
//

//
//
//
//
//

‘1’ means okay to TX
pointer to string to transmit

‘1’ means RX string received
receive string storage buffer

loop counter
transmit buffer

disable watchdog timer

initialize oscillator
initialize crossbar and GPIO
initialize UARTO

enable global interrupts

numbers 0 through 999, one

wait for TX ready

claim transmitter

set buffer pointer
start transmit

wait for TX ready

claim transmitter

build a string

set buffer pointer
start transmit

// receive example: here we input a line using the receive function

// and print the line using

while (1) {
while (RX Ready == 0) ;
while (!TX Ready) 7
TX Ready = 0;
TX ptr = RX Buf;

!/
!/
!/
//
//
//

the transmit function.

echo messages

wait for string

wait for transmitter to be available
claim transmitter

set TX buffer pointer to point to
received message

68

Rev. 1.2

SILICON LABORATORIES

AN122

TIO0 = 1; // start transmit

while (!TX Ready) // wait for transmission to complete

TX Ready = 0;

TX ptr = “\r\n”; // send CR+LF

TIO0 = 1; // start transmit

while (!TX Ready) ; // wait for transmission to complete

RX Ready = 0; // free the receiver

}

}
[
// Initialization Subroutines
/e e e
[mm e
// SYSCLK Init
e
//

// This routine initializes the system clock to use an 22.1184MHz crystal
// as its clock source.

//

void SYSCLK Init (void)

{

int 1i; // delay counter

OSCXCN = 0x67; // start external oscillator with
// 22.1184MHz crystal

for (i=0; i < 256; i++) ; // wait for XTLVLD to stabilize
while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK

// source and enable missing clock
// detector

/e
// PORT Init
/e
//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{
XBRO |= 0x04; // Enable UARTO
XBR2 |= 0x40; // Enable crossbar and weak pull-ups
POMDOUT |= 0x01; // enable TX0 as a push-pull output
P1MDOUT |= 0x40; // enable LED as push-pull output
}
[mm e
// UARTO Init
et
//
// Configure the UARTO using Timerl, for <baudrate> and 8-N-1.
//

void UARTO Init (void)
{

Rev. 1.2 69

SILICON LABORATORIES

AN122

SCONO = 0x50; // SCONO: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16) ; // set Timerl reload value for baudrate
TR1 =1; // start Timerl

CKCON |= 0x10; // Timerl uses SYSCLK as time base

PCON |= 0x80; // SMOD0O0 = 1

ESO = 1; // enable UARTO interrupts

TX Ready = 1; // indicate TX ready for transmit

RX Ready = 0; // indicate RX string not ready

TX_ptr = NULL;

// Interrupt Service Routine for UARTO:

// Transmit function is implemented as a NULL-terminated string transmitter

// that uses the global variable <TX ptr> and the global semaphore <TX Ready>.
// Example usage:

// while (TX Ready == 0); // wait for transmitter to be available
// TX Ready = 0; // claim transmitter

// TX ptr = <pointer to string to transmit>;

// TIO = 1; // initiate transmit

//

// Receive function is implemented as a CR-terminated string receiver
// that uses the global buffer <RX Buf> and global indicator <RX Ready>.

// Once the message is received, <RX Ready> is set to ‘1’. Characters
// received while <RX Ready> is ‘1’ are ignored.
//

void UARTO ISR (void) interrupt 4 using 3
{

static unsigned char RX index = 0; // receive buffer index
unsigned char the char;

if (RIO == 1) { // handle receive function
RIO = 0; // clear RX complete indicator
if (RX Ready != 1) { // check to see if message pending
the char = SBUFO;
if (the _char != “\r’) { // check for end of message

// store the character
RX Buf [RX index] = the char;
// increment buffer pointer and wrap if necessary
if (RX index < (RX_LENGTH - 2)) {
RX index++;

} else {
RX index = 0; // if length exceeded,
RX Ready = 1; // post message complete, and
// NULL-terminate string
RX Buf [RX index-1] = “\0’;
}
} else {
RX Buf [RX index] = *\0’; // NULL-terminate message
RX Ready = 1; // post message ready

70 Rev. 1.2

SILICON LABORATORIES

AN122

RX index = 0; // reset RX message index
}
} else {
// ignore character -- previous message has not been processed
}
} else if (TIO == 1) { // handle transmit function
TIO = 0; // clear TX complete indicator

the char = *TX ptr;

if (the_char !

\\OI)

SBUFO = the char;

TX ptr++;
} else {
TX Ready =

1;

{

//

//
//
//
1/

read next character in string

transmit it

get ready for next character
character is NULL

indicate ready for next TX

SILICON LABORATORIES

Rev. 1.2 71

AN122

“UART1_Int1”

// Copyright 2001 Cygnal Integrated Products, Inc.

// AUTH: BW
// DATE: 30 OCT 01

// This program configures UART1 to operate in interrupt mode, showing an

// example of a string transmitter and a string receiver. These strings are

// assumed to be NULL-terminated.
// Assumes an 22.1184MHz crystal is attached between XTALl and XTALZ2.

// The system clock frequency is stored in a global constant SYSCLK. The
// target UART baud rate is stored in a global constant BAUDRATE.

// Target: C8051F02x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

#include <c8051f020.h> // SFR declarations
#include <stdio.h>
#include <string.h>

et
// 16-bit SFR Definitions for ‘F02x

[
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrl6 ADCOGT = 0xc4; // ADCO greater than window

sfrle ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = 0Oxca; // Timer2 capture/reload

sfrle T2 = Oxcc; // Timer2

sfrl6 RCAP4 = Oxe4; // Timer4 capture/reload

sfrl6 T4 = Oxf4; // Timerd

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

/e e
// Global CONSTANTS

/e e
#define SYSCLK 22118400 // SYSCLK frequency in Hz

#define BAUDRATE 115200 // Baud rate of UART in bps

#define RX LENGTH 16 // length of UART RX buffer

sbit LED = P176; // LED = 1 means ON

[

72 Rev. 1.2

SILICON LABORATORIES

AN122

// Function PROTOTYPES

void SYSCLK_Init (void) ;
void PORT Init (void);
void UART1 Init (void);
void UART1 ISR (void);

it
// Global VARIABLES
R S
bit TX Ready; //
char *TX ptr; //
bit RX Ready; //
char idata RX Buf[RX LENGTH]; //
/)=
// MAIN Routine
e e
void main (void) {
int i; //
char tx buf[8]; //
WDTCN = Oxde; //
WDTCN = Oxad;
SYSCLK_ Init (); !/
PORT Init (); //
UART1 Init (); !/

EA = 1; //

// transmit example: the

// per line to UARTO.

here we print

while (!TX Ready); //
TX Ready = 0; //
TX ptr = “Howdy!”; //
SCON1 |= 0x02; //
for (i = 0; 1 < 1000; i++) {
while (!TX Ready); //
TX Ready = 0; //
sprintf (tx buf, “%d\r\n”, 1i); //
TX ptr = tx buf; //
SCON1 |= 0x02; //

‘1’ means okay to TX
pointer to string to transmit

‘1’ means RX string received
receive string storage buffer

loop counter
transmit buffer

disable watchdog timer

initialize oscillator
initialize crossbar and GPIO
initialize UARTO

enable global interrupts

numbers 0 through 999, one

wait for TX ready

claim transmitter

set buffer pointer

TI1 = 1; start transmit

wait for TX ready

claim transmitter

build a string

set buffer pointer

TI1 = 1; start transmit

// receive example: here we input a line using the receive function

// and print the line using

while (1) { //
while (RX Ready == 0) ; //
while (!TX Ready) ; //
TX Ready = 0; //
TX ptr = RX Buf; //

//

the transmit function.

echo messages

wait for string

wait for transmitter to be available
claim transmitter

set TX buffer pointer to point to
received message

SILICON LABORATORIES

Rev. 1.2 73

AN122

SCON1 |= 0x02; // TI1 = 1; start transmit

while (!TX Ready) // wait for transmission to complete

TX Ready = 0;

TX ptr = “\r\n”; // send CR+LF

SCON1 |= 0x02; // TI1 = 1; start transmit

while (!TX Ready) ; // wait for transmission to complete

RX Ready = 0; // free the receiver

}

}
[
// Initialization Subroutines
/e e e
[mm e
// SYSCLK Init
e
//

// This routine initializes the system clock to use an 22.1184MHz crystal
// as its clock source.

//

void SYSCLK Init (void)

{

int 1i; // delay counter

OSCXCN = 0x67; // start external oscillator with
// 22.1184MHz crystal

for (i=0; 1 < 256; i++) ; // wait for crystal osc. to start up
while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK

// source and enable missing clock
// detector

/e
// PORT Init
/e
//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{

XBR2 |= 0x44; // Enable UART1, crossbar and weak

// pull-ups

POMDOUT |= 0x01; // enable TX1 as a push-pull output

P1MDOUT |= 0x40; // enable LED as push-pull output
}
[mm e
// UART1 Init
et
//
// Configure UART1 using Timerl, for <baudrate> and 8-N-1.
//

void UART1 Init (void)
{

74 Rev. 1.2

SILICON LABORATORIES

AN122

/*
//
//
!/
!/
!/
//
VO

{

!/
1/
//

//
!/
!/
//
//
//
//
//
!/
1/
!/
//
//
//

SCON1 = 0x50; // SCON1l: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16) ; // set Timerl reload value for baudrate
TR1 =1; // start Timerl

CKCON |= 0x10; // Timerl uses SYSCLK as time base

PCON = 0x10; // SMOD1 = 1

EIE2 |= 0x40; // enable UART1 interrupts

TX Ready = 1; // indicate TX ready for transmit

RX Ready = 0; // indicate RX string not ready

TX_ptr = NULL;

UART1 Tnit

Configure UART1 using Timer4, for <baudrate> and 8-N-1.

id UART1 TInit (void)

SCON1 = 0x50; // SCON1l: mode 1, 8-bit UART, enable RX

T4CON = 0x30; // Stop Timer; clear int flags; enable
// UART baudrate mode; enable 16-bit
// auto-reload timer function; disable
// external count and capture modes

RCAP4 = - (SYSCLK/BAUDRATE/32); // set Timer reload value for baudrate

T4 = RCAP4; // initialize Timer value

CKCON |= 0x40; // Timer4 uses SYSCLK as time base

T4CON |= 0x04; // TR4 = 1; start Timer4

PCON |= 0x10; // SMOD1l = 1

EIE2 |= 0x40; // enable UART1 interrupts

TX Ready = 1; // indicate TX ready for transmit

RX Ready = 0; // indicate RX string not ready

TX ptr = NULL;

Interrupt Service Routine for UARTL1:
Transmit function is implemented as a NULL-terminated string transmitter

that uses the global variable <TX ptr> and the global semaphore <TX Ready>.
Example usage:
while (TX Ready == 0); // wait for transmitter to be available
TX Ready = 0; // claim transmitter
TX ptr = <pointer to string to transmit>;
SCON1 |= 0x02; // TI1 = 1; initiate transmit

Receive function is implemented as a CR-terminated string receiver

31

Rev. 1.2

LICON LABORATORIES

75

AN122

// that uses the global buffer <RX Buf> and global indicator <RX Ready>.
// Once the message is received, <RX Ready> is set to ‘1’.
// received while <RX Ready> is ‘1’ are ignored.

//

void UART1 ISR (void)
{

Characters

interrupt 20 using 3

static unsigned char RX index = 0; // receive buffer index
unsigned char the char;
if ((SCON1l & 0x01l) == 0x01) { // handle receive function
SCON1 &= ~0x01; // RI1 = 0; clear RX complete
// indicator
if (RX Ready != 1) { // check to see if message pending
the char = SBUF1;
if (the _char != “\r’) { // check for end of message
// store the character
RX Buf [RX index] = the char;
// increment buffer pointer and wrap if necessary
if (RX index < (RX LENGTH - 2)) {
RX index++;
} else {
RX index = 0; // if length exceeded,
RX Ready = 1; // post message complete, and
// NULL-terminate string
RX Buf[RX index-1] = “\0’;
}
} else {
RX Buf [RX index] = *\0’; // NULL-terminate message
RX Ready = 1; // post message ready
RX index = 0; // reset RX message index
}
} else {
; // ignore character -- previous message has not been processed
}
} else if ((SCON1 & 0x02) == 0x02) {// handle transmit function
SCON1 &= ~0x02; // TI1 = 0; clear TX complete
// indicator
the char = *TX ptr; // read next character in string
if (the char != \0’") {
SBUF1 = the char; // transmit it
TX ptr++; // get ready for next character
} else { // character is NULL
TX Ready = 1; // indicate ready for next TX

76 Rev. 1.2

SILICON LABORATORIES

AN122

“FLASH Scratch”

//
!/
1/
//
//
//
//
!/
!/
1/
//
//
//
!/
!/

Copyright 2002 Cygnal Integrated Products, Inc.

AUTH: BW
DATE: 24 JUN 02

This program illustrates how to erase, write, and read FLASH memory from
application code written in ‘C’. This routine exercises the upper 128-
byte FLASH sector.

Note: debugging operations are not possible while SFLE = 1.

Note: because this code contains routines which write to FLASH memory,
the on-chip VDD monitor should be enabled by tying the MONEN pin high

// to VDD.

//

// Target: C8051F02x

// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//
ittt b
// Includes

[mm e
#include <c8051£f020.h> // SFR declarations

#include <stdio.h>
et
// 16-bit SFR Definitions for ‘F02x

[
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrl6 ADCOGT = 0xc4; // ADCO greater than window

sfrle ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = 0Oxca; // Timer2 capture/reload

sfrle T2 = Oxcc; // Timer2

sfrl6 RCAP4 = Oxe4; // Timer4 capture/reload

sfrl6 T4 = Oxf4; // Timerd

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

/e e
// Global CONSTANTS

/e e
#define SYSCLK 22118400 // SYSCLK frequency in Hz

#define SCRATCH ADDR 0x0000 // address of Scratchpad

sbit LED = P0"2; // LED='"1’ means ON

sbit SW2 = P0"3; // SW2='0’ means switch pressed

Rev. 1.2 77

SILICON LABORATORIES

AN122

/==
// Function PROTOTYPES

/=
void SYSCLK Init (void);

/=
// Global VARIABLES
e
char code my array[] = “Monkeys”;

/=
// MAIN Routine

/=

VO

id main (void) {

unsigned char xdata * data pwrite; // FLASH write pointer
unsigned char code * data pread; // read pointer
unsigned char test array[l16];

unsigned char 1i;

unsigned char temp;

// Disable Watchdog timer
WDTCN = Oxde;
WDTCN = Oxad;

SYSCLK_Init (); // initialize oscillator

// erase Scratchpad

FLSCL |= 0x01; // Enable FLASH writes/erases
PSCTL |= 0x03; // set PSWE = PSEE = 1
PSCTL |= 0x04; // set SFLE = 1 (enable

// access to scratchpad)

// initialize FLASH write pointer to SCRATCH ADDRESS
pwrite = (unsigned char xdata *) SCRATCH ADDR;

*pwrite = 0x00; // erase SCRATCH PAGE
PSCTL &= ~0x07; // set PSWE = PSEE = SLFE = 0

// copy array into SCRATCH PAGE

pread = my array; // you can set a breakpoint at
// this line to verify that the
// Scratch Pad Memory has been
// erased.

PSCTL |= 0x01; // set PSWE = 1 so that MOVX
// writes will target FLASH
// memory

for (i = 0; i < sizeof(my array); i++) {
PSCTL &= ~0x04; // clear SLFE to enable FLASH
// reads from non-Scratch Pad memory
temp = pread[i]; // read the source character
PSCTL |= 0x04; // set SFLE to enable FLASH writes
// to Scratch Pad memory
pwrite[i] = temp; // write the byte
®
78 Rev. 1.2

SILICON LABORATORIES

AN122

// set PSWE = PSEE = SFLE = 0
// clear FLWE to disable FLASH
// write/erases

PSCTL &=
FLSCL &=

~0x07;
~0x01;

// copy first 16 bytes from Scratch Pad memory to a local RAM array

PSCTL |= 0x04; // set SFLE = 1 to access Scratch
// Pad memory
pread = (unsigned char code *) SCRATCH ADDR;
for (i = 0; 1 < 1lo6; i++) {
test arrayl[i] = pread[i];
}
PSCTL &= ~0x04; // clear SFLE to disable access
// to Scratch Pad memory
while (1); // you can set a breakpoint at
// this line to verify that the
// string has been written to the
// Scratch Pad memory
}
e
// Initialization Subroutines
/) m e
[
// SYSCLK Init
/e e
//

// This routine initializes the system clock to use an 22.1184MHz crystal
// as 1its clock source.

void SYSCLK Init (void)
{
int i; // delay counter
OSCXCN = 0x67; // start external oscillator with
// 22.1184MHz crystal
for (i=0; 1 < 256; i++) ; // wait for oscillator to start
while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK

// source and enable missing clock
// detector

Rev. 1.2

SILICON LABORATORIES

79

AN122

“Freq_Gen1”

// Copyright 2002 Cygnal Integrated Products, Inc.

// AUTH: BW
// DATE: 09 APR 02

// This program uses the PCA in Frequency Output mode to generate a square
// wave on P0.O0.

// Target: C8051F02x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

[
// Includes

[mm e
#include <c8051f020.h> // SFR declarations

[
// 16-bit SFR Definitions for ‘F02x

/e
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6e TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrl6 ADCOGT = Oxc4; // BADCO greater than window

sfrl6 ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = Oxca; // Timer2 capture/reload

sfrleo T2 = Oxcc; // Timer2

sfrl6 RCAP4 = 0Oxed; // Timerd capture/reload

sfrleoc T4 = 0xf4; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

[
// Global CONSTANTS

/e e
#define SYSCLK 22118400 // SYSCLK frequency in Hz

#define FREQ 172800 // Frequency to generate in Hz

#define BAUDRATE 9600 // Baud rate of UART in bps

sbit LED = P1"6; // LED = 1 means ON

/) m e
// Structures, Unions, Enumerations, and Type definitions

[

typedef union ULong {
long Long;
unsigned int UInt([2];
unsigned char Char([4];
} ULong;

80 Rev. 1.2

SILICON LABORATORIES

AN122

void SYSCLK Init (void);
void PORT Init (void);
void PCAO Init (void);

void main (void) {

WDTCN = Oxde; //
WDTCN = Oxad;

SYSCLK_ Init (); //
PORT Init (); //
PCAO_Init (); //
while (1) ;

disable watchdog timer

initialize oscillator
initialize crossbar and GPIO
initialize PCAOQ

delay counter

start external oscillator

wait for osc to start up

Wait for crystal osc. to settle
select external oscillator as

system clock source and enable
missing clock detector

// Initialization Subroutines
// SYSCLK Init
//
// This routine initializes the system clocks
//
void SYSCLK Init (void)
{
int 1i; //
OSCXCN = 0x67; //
for (i=0; 1 < 256; 1i++) ; //
while (! (OSCXCN & 0x80)) ; //
OSCICN = 0x88; //
//
//
}
// PORT Init
//

// Configure the Crossbar and GPIO ports

void PORT Init (void)
{

XBRO |= 0x08; // Enable CEX0 on P0.0

XBR2 |= 0x40; // Enable crossbar and weak pull-ups

SILICON LABORATORIES

Rev. 1.2

81

AN122

POMDOUT |= 0x01; // enable P0.0 as a push-pull output

// PCAO Init

F A e e

//

// Configure PCAO: PCA uses SYSCLK as time base; overflow interrupt

// disabled.

// Module 0 configured in Frequency Output mode to generate a frequency equal

// to the constant FREQ.

//

void PCAO Init (void)

{
// configure PCA time base to use SYSCLK; overflow interrupt disabled
PCAOCN = 0x00; // Stop counter; clear all flags
PCAOMD = 0x08; // Time base uses SYSCLK

// Configure Module 0 to Frequency Output mode to toggle at 2*FREQ
PCAOCPMO = 0x46; // Frequency Output mode
PCAOCPHO = SYSCLK/FREQ/2; // Set frequency

// Start PCA counter
CR = 1;

82 Rev. 1.2

SILICON LABORATORIES

AN122

“SP|_EE Pol1”

A e
// SPI_EE Polll.c

/mm e e -
// Copyright 2002 Cygnal Integrated Products, Inc.

//

// AUTH: BW

// DATE: 14 SEP 01

//

// This program shows an example of how to interface to a SPI EEPROM using

// the SPI0 interface in polled-mode. The SPI EEPROM used here is a Microchip
// 25LC320 (4k bytes). The hardware connections are as follows:

//

// P0.0 — TX -- UART used for display/testing purposes

// P0O.1 - RX

//

// P0.2 - SCK (connected to SCK on EEPROM)

// P0O.3 - MISO (connected to SI on EEPROM)

// P0.4 - MOSI (connected to SO on EEPROM)

// P0O.5 - NSS (unconnected, but pulled high by on-chip pull-up resistor)

//

// P1.7 - EE_CS (connected to /CS on EEPROM)

//

// Assumes an 22.1184MHz crystal is attached between XTALl and XTAL2.

//

// In this example, the attached SPI device is loaded with a test pattern.

// The EEPROM contents are then verified with the test pattern. If the test

// pattern is verified with no errors, the LED blinks on operation complete.

// Otherwise, the LED stays off. Progress can also be monitored by a terminal
// connected to UARTO operating at 115.2kbps.

//

// Target: C8051F02x

// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

[m e -
// Includes

/e
#include <c8051f020.h> // SFR declarations

#include <stdio.h>
et
// 16-bit SFR Definitions for ‘F02x

[mm e
sfrl6 DP = 0x82; // data pointer

sfrle TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrl6 ADCOGT = 0xc4; // ADCO greater than window

sfrl6 ADCOLT = 0xc6; // ADCO less than window

sfrl16 RCAP2 = 0Oxca; // Timer2 capture/reload

sfrle T2 = Oxcc; // Timer?2

sfrl6 RCAP4 = 0Oxed; // Timer4d capture/reload

sfrl6 T4 = Oxf4; // Timerd

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

Rev. 1.2 83

SILICON LABORATORIES

AN122

[m e o
// Global CONSTANTS

e R
#define SYSCLK 22118400 // SYSCLK frequency in Hz

#define BAUDRATE 115200 // Baud rate of UART in bps

sbit LED = P176; // LED='"1’ means ON

sbit EE CS = P1"7; // EEPROM CS signal

#define EE_SIZE 4096 // EEPROM size in bytes

#define EE_READ 0x03 // EEPROM Read command

#define EE _WRITE 0x02 // EEPROM Write command

#define EE_WRDI 0x04 // EEPROM Write disable command
#define EE_WREN 0x06 // EEPROM Write enable command
#define EE RDSR 0x05 // EEPROM Read status register
#define EE WRSR 0x01 // EEPROM Write status register
ettt

void SYSCLK Init (void);

void PORT Init (void);

void UARTO Init (void);

void SPIO Init (void);

void Timer(0 ms (unsigned ms);
void TimerO us (unsigned us);

unsigned char EE Read (unsigned Addr);
void EE Write (unsigned Addr, unsigned char value);

void main (void) {

unsigned EE Addr; // address of EEPROM byte
unsigned char test byte;

WDTCN = Oxde; // disable watchdog timer

WDTCN = Oxad;

SYSCLK_Init (); // initialize oscillator

PORT Init (); // initialize crossbar and GPIO
UARTO_Init () // initialize UARTO

SPIO Init (); // initialize SPIO

// £ill EEPROM with OxFF’s
LED = 1;

84 Rev. 1.2

SILICON LABORATORIES

AN122

for (EE Addr 0; EE Addr < EE SIZE; EE Addr++) {
test byte = Oxff;
EE Write (EE_Addr, test byte);

// print status to UARTO

if ((EE_Addr % 16) == 0) ({
printf (Mnwriting 0x%04x: $02x “, EE Addr, (unsigned) test byte);
} else {

printf (“%02x %, (unsigned) test byte);

// verify EEPROM with OxFF’s

LED = 0;

for (EE_Addr = 0; EE Addr < EE SIZE; EE_Addr++) {
test byte = EE Read (EE _Addr);

// print status to UARTO

if ((EE_Addr % 16) == 0) {
printf (M\nverifying 0x%04x: %02x “, EE Addr, (unsigned) test byte);
} else {

printf (%%02x %, (unsigned) test byte);
}

if (test byte != OxFF) {
printf (“Error at %u\n”, EE Addr);
while (1); // stop here on error

// £ill EEPROM memory with LSB of EEPROM address.
LED = 1;
for (EE Addr = 0; EE Addr < EE _SIZE; EE Addr++) ({
test byte = EE Addr & Oxff;
EE Write (EE_Addr, test byte);

// print status to UARTO

if ((EE_Addr % 16) == 0) {
printf (M\nwriting 0x%04x: %02x “, EE Addr, (unsigned) test byte);
} else {

printf (%%02x %, (unsigned) test byte);

// verify EEPROM memory with LSB of EEPROM address

LED = 0;

for (EE_Addr = 0; EE Addr < EE SIZE; EE_Addr++) {
test byte EE Read (EE Addr);

// print status to UARTO

if ((EE_Addr % 16) == 0) {
printf (M\nverifying 0x%04x: %02x “, EE Addr, (unsigned) test byte);
} else {

printf (“%02x %, (unsigned) test byte);
}

if (test byte != (EE Addr & OxFF)) {
printf (“Error at %u\n”, EE Addr);
while (1); // stop here on error

Rev. 1.2 85

SILICON LABORATORIES

AN122

while (1) { // Flash LED when done
TimerO ms (100);
LED = ~LED;

// This routine initializes the system clock to use an 22.1184 MHz crystal
// as its clock source.

void SYSCLK Init (void)
{

int i; // delay counter

OSCXCN = 0x67; // start external oscillator with
// 22.1184 MHz crystal

for (i=0; 1 < 256; i++) ; // Wait for osc. to start up
while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK

// source and enable missing clock
// detector

et ettt b b
// PORT Init
e ettt bbbl
//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{
XBRO |= 0x06; // Enable SPI0 and UARTO
XBR1 = 0x00;
XBR2 = 0x40; // Enable crossbar and weak pull-ups
POMDOUT |= 0x15; // enable P0.0 (TX), P0.2 (SCK), and
// P0.4 (MOSI) as push-pull outputs
PIMDOUT |= 0xCO; // enable P1.6 (LED) and P1.7 (EE _CS)

// as push-pull outputs

// Configure SPI0 for 8-bit, 2MHz SCK, Master mode, polled operation, data
// sampled on 1lst SCK rising edge.

void SPIO Init (void)

86 Rev. 1.2

SILICON LABORATORIES

AN122

SPIOCFG = 0x07; // data sampled on 1lst SCK rising edge
// 8-bit data words

SPIOCN = 0x03; // Master mode; SPI enabled; flags
// cleared
SPIOCKR = SYSCLK/2/2000000; // SPI clock <= 2MHz (limited by

// EEPROM spec.)

[e
// UARTO Init
/e e
//
// Configure the UARTO using Timerl, for <baudrate> and 8-N-1.
//
void UARTO Init (void)
{
SCONO = 0x50; // SCONO: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16) ; // set Timerl reload value for baudrate
TR1 =1; // start Timerl
CKCON |= 0x10; // Timerl uses SYSCLK as time base
PCON |= 0x80; // SMODO0 = 1 (disable baud rate
// divide-by-two)
TIO =1; // Indicate TX0 ready
}
[e
// Timer0 ms
/) mm e
//
// Configure Timer0O to delay <ms> milliseconds before returning.
//
void TimerO ms (unsigned ms)
{
unsigned i; // millisecond counter
TCON &= ~0x30; // STOP Timer0O and clear overflow flag
TMOD &= ~0x0f; // configure TimerO to 16-bit mode
TMOD |= 0x01;
CKCON |= 0x08; // Timer0 counts SYSCLKs
for (1 = 0; 1 < ms; 1i++) { // count milliseconds
TRO = 0; // STOP TimerO
THO = (-SYSCLK/1000) >> 8; // set Timer0 to overflow in 1ms
TLO = -SYSCLK/1000;
TRO = 1; // START Timer0
while (TFO == 0); // wait for overflow
TFO = 0; // clear overflow indicator
}
}
ittt Bt
// Timer0 us
[m e
//

// Configure Timer0O to delay <us> microseconds before returning.

Rev. 1.2 87

SILICON LABORATORIES

AN122

//

void Timer0O us

{

//
//
//

unsigned char EE Read (unsigned Addr)

{

(unsigned us)

unsigned i;

//

!/
//

//

//
//
//

//
//
//

millisecond counter

STOP TimerO and clear overflow flag

configure Timer0O to 16-bit mode

Timer0 counts SYSCLKs

count microseconds
STOP TimerO
set Timer0O to overflow in 1lus

START TimerO
wait for overflow
clear overflow indicator

TCON &= ~0x30;

T™MOD &= ~0x0f;

TMOD |= 0x01;

CKCON |= 0x08;

for (i = 0; 1 < us; i++) {
TRO = 0;
THO = (-SYSCLK/1000000) >>
TLO = -SYSCLK/1000000;
TRO = 1;
while (TFO == 0);
TFO = 0;

}

EE Read

This routine reads and returns a single EEPROM byte whose address is

given in <Addr>.

unsigned char retval;

EE CS = 0;
EE CS = 0;

TimerO us (1);

// transmit READ opcode

SPIF = 0;
SPIODAT = EE_READ;
while (SPIF == 0);

// transmit Address MSB-first
SPIF = 0;
SPIODAT = (Addr >> 8);

while (SPIF == 0);
SPIF = 0;

SPIODAT = Addr;
while (SPIF == 0);

// initiate dummy transmit to read data

SPIF = 0
SPIODAT 0;
while (SPIF == 0);

I~

retval = SPIODAT;

TimerO us (1);

//

//
//
//

//

//

//

//

// wait at least 250ns

value to return

select EEPROM
find out why Keil compiler is
optimizing one of these out

wait at least 250ns

transmit MSB of address

transmit LSB of address

read data from SPI

(CS setup time)

(CS hold time)

88

Rev. 1.2

SILICON LABORATORIES

AN122

EE CS = 1; //
(1) //

TimerO us

return retval;

// This routine writes a single EEPROM byte <value> to address <Addr>.
and return once the write operation has
This prevents us from having to poll before an EEPROM Read

// we implement post-write polling,
// completed.
// or Write operation.

void EE Write
{

(unsigned Addr,

EE CS = 0; //

Timer0O us (1); //

// transmit WREN (Write Enable) opcode

SPIF = 0;

SPIODAT = EE_WREN;

while (SPIF == 0);

Timer0 us (1); //

EE CS = 1; //

Timer0O us (1); //
//

EE CS = 0; /7

TimerO us (1); //

// transmit WRITE opcode
SPIF = 0;

SPIODAT = EE WRITE;
while (SPIF == 0);

// transmit Address MSB-first

SPIF = 0; //
SPIODAT = (Addr >> 8);

while (SPIF == 0);

SPIF = 0; //
SPIODAT = Addr;

while (SPIF == 0);

// transmit data

SPIF = 0;
SPIODAT = value;
while (SPIF == 0);

(1) //

TimerO us

de-select EEPROM

wait at least 500ns (CS disable time)

Here

unsigned char value)

select EEPROM

wait at least 250ns (CS setup time)
walt at least 250ns (CS hold time)
de-select EEPROM to set WREN latch
wait at least 500ns (CS disable
time)

select EEPROM

wait at least 250ns (CS setup time)

transmit MSB of address

transmit LSB of address

wait at least 250ns (CS hold time)

SILICON LABORATORIES

Rev. 1.2

89

AN122

EE Cs = 1; // deselect EEPROM (initiate EEPROM
// write cycle)

// now poll Read Status Register (RDSR) for Write operation complete

do {
TimerO us (1); // wait at least 500ns (CS disable
// time)
EE CS = 0; // select EEPROM to begin polling
Timer0 us (1); // wait at least 250ns (CS setup time)
SPIF = 0;
SPIODAT = EE_RDSR; // send Read Status register opcode
while (SPIF == 0);
SPIF = 0;
SPIODAT = 0; // dummy write to read status register
while (SPIF == 0);
Timer0O us (1); // wait at least 250ns (CS hold
// time)
EE CS = 1; // de-select EEPROM
} while (SPIODAT & 0x01); // poll until WIP (Write In
// Progress) bit goes to ‘0’
Timer0 us (1); // wait at least 500ns (CS disable

// time)

90 Rev. 1.2

SILICON LABORATORIES

AN122

“SPI|_EE Int1”

A e
// SPI_EE Intl.c

/mm e e -
// Copyright 2001 Cygnal Integrated Products, Inc.

//

// AUTH: BW

// DATE: 14 SEP 01

//

// This program shows an example of how to interface to an SPI EEPROM using

// the SPI0 interface in interrupt-mode. The SPI EEPROM used here is a

// Microchip 25LC320 (4k bytes). The hardware connections are as follows:

//

// P0.0 — TX -- UART used for display/testing purposes

// P0O.1 - RX

//

// P0.2 - SCK (connected to SCK on EEPROM)

// P0O.3 - MISO (connected to SI on EEPROM)

// P0.4 - MOSI (connected to SO on EEPROM)

// P0O.5 - NSS (unconnected, but pulled high by on-chip pull-up resistor)

//

// P1.7 - EE_CS (connected to /CS on EEPROM)

//

// Assumes an 22.1184MHz crystal is attached between XTALl and XTAL2.

//

// In this example, the attached SPI device is loaded with a test pattern.

// The EEPROM contents are then verified with the test pattern. If the test

// pattern is verified with no errors, the LED blinks on operation complete.

// Otherwise, the LED stays off. Progress can also be monitored by a terminal
// connected to UARTO operating at 115.2kbps.

//

// Target: C8051F02x

// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

[m e -
// Includes

/e
#include <c8051f020.h> // SFR declarations

#include <stdio.h>
et
// 16-bit SFR Definitions for ‘FO00x

[mm e
sfrl6 DP = 0x82; // data pointer

sfrle TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrl6 ADCOGT = 0xc4; // ADCO greater than window

sfrl6 ADCOLT = 0xc6; // ADCO less than window

sfrl16 RCAP2 = 0Oxca; // Timer2 capture/reload

sfrle T2 = Oxcc; // Timer?2

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

[mm e

Rev. 1.2 91

SILICON LABORATORIES

AN122

// Global CONSTANTS

#define TRUE 1
#define FALSE 0
#define SYSCLK 22118400
#define BAUDRATE 115200
sbit LED = P176;

sbit EE CS = P1°7;
#define EE SIZE 4096
#define EE_READ 0x03
#define EE WRITE 0x02
#define EE_WRDI 0x04
#define EE_WREN 0x06
#define EE RDSR 0x05
#define EE WRSR 0x01
// Function PROTOTYPES

void SYSCLK Init (void);

void PORT Init (void);

void UARTO Init (void);

void SPIO Init (void);

void TimerO Init (void);

void TimerO ms (unsigned ms);

unsigned char EE Read (unsigned Addr);

void EE Write (unsigned Addr,

bit EE Ready = FALSE;
bit EE WR = FALSE;
unsigned EE Addr =
unsigned char EE Data =

0x0000;
0x00;

void main (void) {

unsigned test addr;
unsigned char test byte;

WDTCN =
WDTCN

Oxde;
Oxad;

SYSCLK Init ();
PORT Init ();

UARTO Init ();
TimerO Init ();

unsigned

//
//

//
//

!/
//
//
//
!/
//
!/

SYSCLK frequency in Hz
Baud rate of UART in bps

LED='1’ means ON
EEPROM CS signal

EEPROM
EEPROM
EEPROM
EEPROM
EEPROM
EEPROM
EEPROM

size in bytes

Read command

Write command

Write disable command
Write enable command

Read status register

Write status register

char wvalue) ;

//
//
//
//

//

//

//
//
//
//

semaphore for SPI0/EEPROM
TRUE = write; FALSE = read
EEPROM address

EEPROM data

address of EEPROM byte

disable watchdog timer

oscillator
crossbar and GPIO
UARTO

Timer0

initialize
initialize
initialize
initialize

92

Rev. 1.2

SILICON LABORATORIES

AN122

SPIO Init (); // initialize SPIO
EA = 1; // enable global interrupts

// f£ill EEPROM with OxFF’s

LED = 1;

for (test addr = 0; test addr < EE SIZE; test addr++) |
test byte = Oxff;
EE Write (test addr, test byte);

// print status to UARTO

if ((test_addr % 16) == 0) {
printf (M\nwriting 0x%04x: %02x “, test addr, (unsigned) test byte);
} else {

printf (%%02x %, (unsigned) test byte);

// verify EEPROM with OxFF’s

LED = 0;

for (test addr = 0; test addr < EE SIZE; test addr++)
test byte = EE Read (test addr);

// print status to UARTO

if ((test_addr % 16) == 0) {
printf (“\nverifying Ox%04x: %02x %, test_addr, (unsigned) test byte);
} else {

printf (“%02x “, (unsigned) test byte);
}

if (test byte != O0xFF) {
printf (“Error at %u\n”, test addr);
while (1); // stop here on error

// £ill EEPROM memory with LSB of EEPROM address.

LED = 1;

for (test addr = 0; test addr < EE SIZE; test addr++) {
test byte = test addr & Oxff;
EE Write (test addr, test byte);

// print status to UARTO

if ((test_addr % 16) == 0) {
printf (“\nwriting 0x%04x: %02x “, test addr, (unsigned) test byte);
} else {

printf (“%02x “, (unsigned) test byte);

// verify EEPROM memory with LSB of EEPROM address

LED = 0;

for (test addr = 0; test addr < EE SIZE; test addr++)
test byte = EE Read (test addr);

// print status to UARTO

if ((test_addr % 16) == 0) {
printf (M\nverifying 0x%04x: %02x %, test addr, (unsigned) test byte);
} else {

Rev. 1.2 93

SILICON LABORATORIES

AN122

printf (“%02x “, (unsigned)

}

test byte);

stop here on error

disable TimerO interrupts

Flash LED when done

This routine initializes the system clock to use an 22.1184 MHz crystal

delay counter

start external oscillator with
22.1184 MHz crystal

Wait for osc. to start up
Wait for crystal osc. to settle
select external oscillator as SYSCLK

source and enable missing clock
detector

if (test byte != (test addr & OxFF)) {
printf (“Error at %u\n”, test addr);
while (1); //
}
}
ETO = 0; //
while (1) { //
Timer0 ms (100);
LED = ~LED;
}
}
/e
// Subroutines
/e
f =
// SYSCLK Init
/e
//
//
// as its clock source.
//
void SYSCLK_Init (void)
{
int 1i; //
OSCXCN = 0x67; //
//
for (i=0; 1 < 256; i++) ; //
while (! (OSCXCN & 0x80)) ; //
OSCICN = 0x88; //
//
//
}
J = m
// PORT Init
/=
//

// Configure the Crossbar and GPIO ports
//

void PORT Init (void)
{
XBRO |= 0x06; //
XBR1 = 0x00;
XBR2 = 0x40; //
POMDOUT |= 0x15; //
//
PIMDOUT |= 0xCO; //
//

Enable SPI0O and UARTO

Enable crossbar and weak pull-ups

enable P0.0 (TX), P0.2 (SCK), and
P0.4 (MOSI) as push-pull outputs
enable P1.6 (LED) and P1.7 (EE_CS)

as push-pull outputs

94

Rev. 1.2

SILICON LABORATORIES

AN122

//
// Configure SPI0 for 8-bit, 2MHz SCK, Master mode, interrupt operation, data
// sampled on 1lst SCK rising edge. SPIO interrupts are enabled here
//
void SPIO Init (void)
{
SPIOCFG = 0x07; // data sampled on 1lst SCK rising edge
// 8-bit data words

SPIOCN = 0x03; // Master mode; SPI enabled; flags
// cleared
SPIOCKR = SYSCLK/2/2000000; // SPI clock <= 2MHz (limited by
// EEPROM spec.)
EE Ready = TRUE; // post SPIO/EEPROM available
EIE1 |= 0x01; // enable SPIO interrupts
}
/) mm e
// UARTO Init
[mm e e -
//
// Configure the UARTO using Timerl, for <baudrate> and 8-N-1.
//
void UARTO Init (void)
{
SCONO = 0x50; // SCONO: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16) ; // set Timerl reload value for baudrate
TR1 =1; // start Timerl
CKCON |= 0x10; // Timerl uses SYSCLK as time base
PCON |= 0x80; // SMOD0O0 = 1 (disable baud rate
// divide-by-two)
TIO = 1; // Indicate TX0 ready
}
[mm e
// Timer(0 Init
ettt
//
// Configure TimerO for 16-bit interrupt mode.
//
void Timer(0 Init (void)
{
TCON &= ~0x30; // STOP TimerO and clear overflow flag
TMOD &= ~0x0f; // configure TimerO to 16-bit mode
TMOD = 0x01;
CKCON |= 0x08; // Timer0 counts SYSCLKs
}
[m e
// Timer(O ms
/m e -
//
// Configure Timer0O to delay <ms> milliseconds before returning.
//

Rev. 1.2 95

SILICON LABORATORIES

AN122

void Timer0 ms

{

//
//

(unsigned ms)

unsigned i;

//

!/
!/

//
//
//

//
//
//

millisecond counter

STOP TimerO and clear overflow flag
configure Timer0O to 16-bit mode

Timer0 counts SYSCLKs

count milliseconds
STOP TimerO

set Timer0O to overflow in 1ms

START TimerO
wait for overflow
clear overflow indicator

TCON &= ~0x30;

TMOD &= ~0x0f;

T™OD |= 0x01;

CKCON |= 0x08;

for (1 = 0; 1 < ms; 1i++) {
TRO = 0;
THO = (-SYSCLK/1000) >>
TLO = -SYSCLK/1000;
TRO = 1;
while (TFO == 0);
TFO = 0;

}

EE Read

This routine reads
given in <Addr>.

unsigned char EE Read (unsigned Addr)

{

VO

{

while (EE Ready == FALSE);

EE Ready = FALSE;

EE Addr =
EE WR =

Addr;
FALSE;

SPIF = 1;
while

(EE_Ready == FALSE);

return EE Data;

//

//

//
//

//

//

//

and returns a single EEPROM byte whose address is

wait for EEPROM available
claim EEPROM

initialize EEPROM address
set up for READ operation

initiate EEPROM operation
wait for operation complete

return data

This routine writes a single EEPROM byte <value> to address <Addr>.

we implement pre-write polling.

id EE Write (unsigned Addr,

while (EE Ready == FALSE);

EE_Ready = FALSE;
EE Addr =
EE Data =
EE WR =

Addr;
value;
TRUE;

unsigned char value)

//
//
!/

//
//

wait for EEPROM available
claim EEPROM
initialize EEPROM address

initialize EEPROM data
set up for WRITE operation

Here

96

Rev. 1.2

SILICON LABORATORIES

AN122

SPIF = 1; // initiate EEPROM operation
}
e
// Timer(O ISR
/)
//

// Timer0O implements a delay which is used by the SPIO ISR to manage setup
// and hold requirements on the EE CS line. This ISR initiates a SPIO

// interrupt when called, and stops TimerO.

//

void TimerO ISR (void) interrupt 1 using 3

{

TRO = 0; // STOP TimerO

SPIF = 1; // initiate SPIO interrupt
}
[
// SPIO_ ISR
[mm e
//

// This ISR implements a state machine which handles byte-level read and
// write operations to an attached EEPROM.

void SPIO ISR (void) interrupt 6 using 3
{
enum SPIO state { RESET, RD SO, RD S1, RD S2, RD S3, RD _S4, RD S5, RD S6,
RD S7, WR S0, WR_S1, WR S2, WR S3, WR S4, WR S5, WR_S6,
WR _S7, WR S8, WR S9, WR S10, WR S11, WR S12, WR S13,
WR S14, WR S15};

static enum SPIO state state = RESET;
SPIF = 0; // clear SPI interrupt flag
switch (state) {
case RESET: // assert EE CS; set Timer0O to cause SPIO interrupt in
// 250ns (CS setup time); decode EE WR to determine
// whether next state is RD SO (read) or WR SO (write).
EE CS = 0; // assert CS signal on EEPROM

// set Timer0 to interrupt 250ns from now

ETO = 0; // disable Timer(0 interrupts

TCON &= ~0x30; // STOP TimerO and clear overflow flag
THO = (-SYSCLK/4000000) >> 8; // set TimerO to overflow in 250ns

TLO = -SYSCLK/4000000;

ETO = 1; // enable Timer(Q interrupts

TRO = 1; // START Timer0

// decode EE Write flag to determine whether operation is a read
// or a write

if (EE WR == TRUE) ({

state = WR_S0; // set up for a write
} else {

state = RD_S0; // set up for a read
}
break;

case RD_S0: // transmit READ op-code

Rev. 1.2 97

SILICON LABORATORIES

AN122

SPIODAT = EE READ; //
state = RD_S1; //
break;

case RD Sl:

transmit READ opcode
advance to next state

// transmit MSB of Address

transmit MSB of Address
advance to next state

transmit LSB of Address

advance to next state

// transmit dummy read to get data from EEPROM

transmit dummy read
advance to next state

SPIODAT = EE Addr >> 8; //
state = RD_S2; //
break;

case RD_S2: // transmit LSB of Address
SPIODAT = EE Addr; //
state = RD_S3; //
break;

case RD_S3:
SPIODAT = 0; //
state = RD_S4; !/
break;

case RD_S4: // wait 250ns

// set Timer0 to interrupt 250ns

ET0 = 0; //
TCON &= ~0x30; //
THO = (-SYSCLK/4000000) >> 8; //
TLO = -SYSCLK/4000000;

ETO = 1; //
TRO = 1; //
state = RD_S5; //
break;

case RD_S5: // raise CS and wait 500ns

EE CS = 1; //

// set Timer0 to interrupt 500ns

(EEPROM CS hold time)

from now

disable Timer0 interrupts

STOP TimerO and clear overflow flag
set TimerO0 to overflow in 250ns

enable Timer0O interrupts

START TimerO
advance to next state

(EEPROM CS disable time)
de-assert EEPROM CS

from now

ETO = 0; // disable Timer(0 interrupts
TCON &= ~0x30; // STOP Timer0O and clear overflow flag
THO = (-SYSCLK/2000000) >> 8; // set Timer0O to overflow in 500ns
TLO = -SYSCLK/2000000;
ET0 = 1; // enable Timer(O interrupts
TRO = 1; // START Timer0
state = RD_S6; // advance to next state
break;
case RD_S6: // read data from SPIO and post EEPROM ready
EE Data = SPIODAT; // read EEPROM data from SPIO
EE Ready = TRUE; // indicate EEPROM ready for
// next operation
state = RESET; // reset state variable
break;
case WR_S0: // transmit WRITE ENABLE opcode
SPIODAT = EE WREN; // transmit WREN opcode
state = WR_S1; // advance to next state
break;
case WR_S1: // wait at least 250ns (CS hold time)
// set Timer0 to interrupt 250ns from now
®
98 Rev. 1.2

SILICON LABORATORIES

AN122

ETO = 0; //
TCON &= ~0x30; //
THO = (-SYSCLK/4000000) >> 8; //
TLO = -SYSCLK/4000000;

ETO = 1; //
TRO = 1; //
state = WR_S2; //
break;

case WR S2:

EE CS = 1; //

// set TimerO to interrupt 500ns

ET0 = 0; //
TCON &= ~0x30; //
THO = (-SYSCLK/2000000) >> 8; //
TLO = -SYSCLK/2000000;

ETO = 1; //
TRO = 1; //
state = WR_S3; //
break;

case WR S3:

// raise CS and wait 500ns

// assert CS and wait 250ns

disable TimerO interrupts
STOP Timer0O and clear overflow flag
set TimerO to overflow in 250ns

enable TimerO interrupts
START TimerO

advance to next state

(CS disable time)

deassert CS

from now

disable TimerO interrupts

STOP Timer0O and clear overflow flag

set Timer0O to overflow in 500ns

enable TimerO interrupts
START TimerO

advance to next state

(CS setup time)

EE CS = 0; // assert CS
// set Timer0 to interrupt 250ns from now
ETO = 0; // disable Timer0 interrupts
TCON &= ~0x30; // STOP Timer0O and clear overflow flag
THO = (-SYSCLK/4000000) >> 8; // set TimerO to overflow in 250ns
TLO = -SYSCLK/4000000;
ETO = 1; // enable Timer(O interrupts
TRO = 1; // START Timer0
state = WR S4; // advance to next state
break;

case WR_S4: // transmit WRITE opcode
SPIODAT = EE_WRITE; // transmit WRITE opcode
state = WR_S5; // advance to next state
break;

case WR_S5: // transmit MSB of Address
SPIODAT = EE_Addr >> 8; // transmit MSB of Address
state = WR_S6; // advance to next state
break;

case WR _S6: // transmit LSB of Address
SPIODAT = EE_Addr; // transmit LSB of Address
state = WR_S7; // advance to next state
break;

case WR S7: // transmit DATA
SPIODAT = EE Data; // transmit DATA
state = WR_S8; // advance to next state
break;

case WR_S8: // wait 250ns (CS hold time)

SILICON LABORATORIES

Rev. 1.2 99

AN122

// set Timer0 to interrupt 250ns

ET0 = 0; //
TCON &= ~0x30; //
THO = (-SYSCLK/4000000) >> 8; //
TLO = -SYSCLK/4000000;

ETO = 1; //
TRO = 1; //
state = WR_S9; //
break;

case WR_S9: // deassert CS and wait
EE CS = 1; //

// set TimerO to interrupt 500ns

ETO = 0; //
TCON &= ~0x30; //
THO = (-SYSCLK/2000000) >> 8; //
TLO = -SYSCLK/2000000;

ETO = 1; //
TRO = 1; //
state = WR_S10; //
break;

from now

disable TimerO interrupts

STOP Timer0O and clear overflow flag
set TimerO to overflow in 250ns

enable TimerO interrupts
START TimerO

advance to next state

500ns (CS disable time)

deassert CS

from now

disable Timer0O interrupts

STOP Timer0O and clear overflow flag

set Timer0O to overflow in 500ns

enable Timer0O interrupts
START TimerO

advance to next state

case WR_S10: // assert CS and wait 250ns (begin polling RDSR)

EE CS = 0; //

// set Timer0 to interrupt 250ns

ETO = 0; //
TCON &= ~0x30; //
THO = (-SYSCLK/4000000) >> 8; //
TLO = -SYSCLK/4000000;

ETO = 1; //
TRO = 1; //
state = WR S11; //
break;

assert CS

from now

disable TimerO interrupts

STOP TimerO and clear overflow flag
set TimerO to overflow in 250ns

enable Timer0O interrupts
START TimerO

advance to next state

case WR_S11: // transmit Read Status Register opcode

SPIODAT = EE_RDSR; //
state = WR_S12; //
break;

transmit RDSR opcode
advance to next state

case WR_S12: // transmit dummy write to read Status Register

SPIODAT = 0; //
//
//
//
state = WR_S13; //
break;

case WR_S13: // wait 250ns (CS hold
// set Timer0 to interrupt 250ns

ETO = 0; //
TCON &= ~0x30; //
THO = (-SYSCLK/4000000) >> 8; //
TLO = -SYSCLK/4000000;

ET0 = 1; //

dummy write (after this completes,
SPIODAT will contain Read Status
Register contents, which are decoded
in WR S15 below)

advance to next state

time)

from now

disable TimerO interrupts

STOP TimerO and clear overflow flag
set TimerO to overflow in 250ns

enable Timer0O interrupts

100

Rev. 1.2

SILICON LABORATORIES

AN122

TRO = 1; //
state = WR_S14; //
break;

case WR S14:

EE CS = 1; !/

// set TimerO to interrupt 500ns

ETO = 0; //
TCON &= ~0x30; //
THO = (-SYSCLK/2000000) >> 8; //
TLO = -SYSCLK/2000000;

ETO = 1; //
TRO = 1; //
state = WR_S15; !/
break;

case WR_S15: // check WIP bit

// otherwise,

if (SPIODAT & 0x01) { //
state = WR_S10; //
SPIF = 1; //

} else { //
EE Ready = TRUE; //
state = RESET; //

}

break;

default:
while (1); //

// deassert CS and wait 500ns

(LSB of RDSR):
RESET and post Write Complete

START TimerO

advance to next state

(CS disable time)
deassert CS

from now

disable Timer0O interrupts

STOP TimerO and clear overflow flag
set TimerO0 to overflow in 500ns

enable Timer0O interrupts
START TimerO

advance to next state

if ‘1’7, then poll again;
TRUE if write in progress

poll RDSR again

initiate new polling operation
we’re done. clean up.

indicate EEPROM available

reset state variable

error

SILICON LABORATORIES

Rev. 1.2 101

AN122

Contact Information

Silicon Laboratories Inc.
4635 Boston Lane

Austin, TX 78735

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: productinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

102 Rev. 1.2

SILICON LABORATORIES

	Relevant Devices
	Introduction
	Index of Programs by Peripheral
	ADC0 Examples
	DAC0 Examples
	Oscillator Examples
	Timer Examples
	External Memory Interface (EMIF) Examples
	UART Examples
	FLASH Examples
	PCA Examples
	SPI Examples

	Example Code
	“ADC0_Buf1.c”
	“ADC0_Int1.c”
	“ADC0_Int2m.c”
	“ADC0_OSA1.c”
	“ADC0_Poll1.c”
	“DAC0_DTMF1.c”
	“OSC_Cry1.c”
	“OSC_Int1.c”
	“INT_OSC_Measure1”
	“EXT_OSC_Measure1”
	“OSC_RTC_Cal1”
	“Timer0_Poll1.c”
	“EMIF_1”
	“UART0_Stdio1”
	“UART0_Autobaud1”
	“UART0_Int1”
	“UART1_Int1”
	“FLASH_Scratch”
	“Freq_Gen1”
	“SPI_EE_Pol1”
	“SPI_EE_Int1”

