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IMPROVING ADC RESOLUTION BY OVERSAMPLING AND AVERAGING

Relevant Devices

This application note applies to the following devices:

C8051F000, CB8051F001, CB8051F002, CB8051F005,
C8051F006, C8051F010, C8051F011, CB8051F012,
C8051F015, C8051F016, and C8051F017.

Introduction

Many applications require measurements using an
analog-to-digital converter (ADC). Such applica-
tions will have resolution requirements based in the
signal’s dynamic range, the smallest change in a
parameter that must be measured, and the signal-to-
noise ratio (SNR). For this reason, many systems
employ a higher resolution off-chip ADC. How-
ever, there are techniques that can be used to
achieve higher resolution measurements and SNR.
This application note describes utilizing oversam-
pling and averaging to increase the resolution and
SNR of analog-to-digital conversions. Oversam-
pling and averaging can increase the resolution of a
measurement without resorting to the cost and
complexity of using expensive off-chip ADC’s.

This application note discusses how to increase the
resolution of analog-to-digital (ADC) measure-
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ments by oversampling and averaging. Addition-
ally, more in-depth analysis of ADC noise, types of
ADC noise optimal for oversampling techniques,
and example code utilizing oversampling and aver-
aging is provided in appendices A, B, and C
respectively at the end of this document.

Key Points

* Oversampling and averaging can be used to
increase measurement resolution, eliminating
the need to resort to expensive, off-chip ADC’s.

* Oversampling and averaging will improve the
SNR and measurement resolution at the cost of
increased CPU utilization and reduced through-
put.

* Oversampling and averaging will improve sig-
nal-to-noise ratio for “white” noise.

Sources of Data Converter
Noise

Noise in ADC conversions can be introduced from
many sources. Examples include: thermal noise,
shot noise, variations in voltage supply, variation in
the reference voltage, phase noise due to sampling
clock jitter, and noise due to quantization error. The
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Figure 1. Oversampling and Averaging to Increase Measurement Resolution By
“w” Bits
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noise caused by quantization error is commonly
referred to as quantization noise. Noise power from
these sources can vary. Many techniques that may
be utilized to reduce noise, such as thoughtful
board layout and bypass capacitance on the refer-
ence voltage signal trace. However, ADC’s will
always have quantization noise, thus the best SNR
of a data converter of a given number of bits is
defined by the quantization noise with no oversam-
pling. Under the correct conditions, oversampling
and averaging will reduce noise and improve the
SNR. This will effectively increase the number of
bits of a measurement’s resolution. Such a system
is shown in Figure 1 on page 1, and can be imple-
mented with Silicon Lab’s on-chip ADC and a soft-
ware routine that takes a set of samples and
averages (filters) them for the result.

Increasing the Resolution of
an ADC Measurement

Many applications measure a large dynamic range
of values, yet require fine resolution to measure
small changes in a parameter. For example, an
ADC may measure a large temperature range, yet
still require the system to respond to changes of
less than one degree. Such a system could require a
measurement resolution of 16 bits. Rather than
resorting to an expensive, off-chip 16-bit ADC,
oversampling and averaging using Silicon Lab’s
on-chip, 12-bit ADC can measure a parameter with
16 bits of resolution.

Some applications will use an ADC to analyze a
signal with higher frequency components. Such a
system will also benefit from oversampling and
averaging. The required sampling frequency in
accordance with the Nyquist Theorem is the
Nyquist Frequency:

f,=2-f

n m

where f,, is the highest frequency compo-
nent of interest in the input signal
Equation 1. Nyquist Frequency

Sampling frequencies (f) above f, is oversam-
pling, and will increase the resolution of a measure-
ment. Please see Appendix A for a discussion of
how this works.

Calculating the Oversampling
Requirements To Increase
Resolution

To increase the effective number of bits (ENOB),
the signal is oversampled, or sampled by the ADC
at a rate that is higher than the system’s required
sampling rate, f, The required sampling rate may
be determined by how often a system requires a
parameter be measured (output word rate), or it
may be the Nyquist frequency, f,.

For each additional bit of resolution, the signal
must be oversampled by a factor of four:
fog = 4" - f

oS S

where w is the number of additional bits of
resolution desired, f; is the original sam-

pling frequency requirement, and f, is the
oversampling frequency

Equation 2. Oversampling Frequency To
Add Measurement Resolution
A derivation of Equation 2 in
Appendix A.

is presented

Assume a system is using a 12-bit ADC to output a
temperature value once every second (1 Hz). To
increase the resolution of the measurement to 16-
bits, we calculate the oversampling frequency as
follows:

f., = 4" 1(Hz) = 256Hz
Thus, if we oversample the temperature sensor at

£=256 Hz, we will collect enough samples within
the required sampling period to average them and
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can now use 16-bits of the output data for a 16-bit
measurement. To do so, we accumulate (add 256
consecutive samples together), then divide the total
by 16 (or right shift the total by 4-bits). Such a pro-
cess is commonly referred to as decimation. This
results in 16-bits of useful data. Such an operation
is referred to as accumulate and dump. Once we
calculate the result of 256 samples (in this exam-
ple), we store or process the data and begin collect-
ing data for the next output word.

Note: The memory location used to accumulate the
oversampled data and perform the divide must
have enough bytes to prevent overflow and trunca-
tion error.

An example of such oversampling and averaging is
provided in Appendix C. In this example, Silicon
Lab’s on-chip temperature sensor is sampled using
the on-chip 12-bit ADC to make a 16-bit measure-
ment. For a more formal discussion of how over-
sampling affects noise and increases resolution,
please see Appendix A.

Calculating the Oversampling
Requirements To Increase SNR

The theoretical limit of the SNR of an ADC mea-
surement is based on the quantization noise due to
the quantization error inherent in the analog-to-dig-
ital conversion process when there is no oversam-
pling and averaging. Because quantization error
depends on the number of bits of resolution of the
ADC (see Equation 5), the best case SNR is calcu-
lated as a function of the Effective Number of Bits
of a data conversion as follows:

SNR(dB) = (6.02 - ENOB) +1.76

where ENOB is the effective number of bits
of the measurement

Equation 3. SNR Calculation as a
Function of ENOB

Note Equation 3 is valid for a full-scale input. That
is, the dynamic range of the input signal must

match the reference voltage of the ADC. If not, the
SNR will be lower than that calculated using
Equation 3.

If the ADC used to measure a parameter is 12-bits
and not oversampled, then the best SNR (calculated
using Equation 3) is 74 dB. If we desire a better
SNR, then we could calculate the ENOB needed
using Equation 3 for a specified SNR. Once we
know the required ENOB, we can then use
Equation 2 to calculate the oversampling require-
ments.

For example, if the required SNR for an application
is 90 dB, then we will need at least 16-bits of reso-
lution. Using and 12-bit ADC and Equation 2, we
know we must oversample by a factor of 256.

When Oversampling and
Averaging Will Work

The effectiveness of oversampling and averaging
depends on the characteristics of the dominant
noise sources. The key requirement is that the noise
can be modeled as white noise. Please see
Appendix B for a discussion on the characteristics
of noise that will benefit from oversampling tech-
niques. Key points to consider are [2] [3]:

* The noise must approximate white noise with
uniform power spectral density over the fre-
quency band of interest.

» The noise amplitude must be sufficient to cause
the input signal to change randomly from sam-
ple to sample by amounts comparable to at least
the distance between two adjacent codes (i.e.,

1 LSB - please see Equation 5 in Appendix A).

* The input signal can be represented as a ran-
dom variable that has equal probability of exist-
ing at any value between two adjacent ADC
codes.

Note: Oversampling and averaging techniques will

not compensate for ADC integral non-linearity

(INL).
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Noise that is correlated or cannot be modeled as
white noise (such as noise in systems with feed-
back) will not benefit from oversampling tech-
niques. Additionally, if the quantization noise
power is greater than that of natural white noise
(e.g., thermal noise), then oversampling and aver-
aging will not be effective. This is often the case in
lower resolution ADC’s. The majority of applica-
tions using 12-bit ADC’s can benefit from over-
sampling and averaging.

Please see Appendix B for a further discussion on
this topic.

Example

An example that utilizes oversampling and averag-
ing is provided in this application note in
Appendix C. This code uses Silicon Lab’s on-chip,
100 ksps, 12-bit ADC to perform a 16-bit measure-
ment of the on-chip temperature sensor, then out-
puts this data via the hardware UART.

Using Equation 2, the oversampling ratio is 256.
The provided code (in “AN018 SW.c”) adds 256
consecutive ADC samples to the variable accumu-
lator. After 256 samples have been added, it shifts
accumulator right 4 bits and places the result in the
variable result. This gives 16-bits of useful data.
After the result is calculated, accumulate is then
“dumped” (cleared) for the next calculation. The
accumulation of the ADC samples are performed in
an ADC end-of-conversion interrupt service rou-
tine (ADC isr).

For more information concerning configuring and
using the on-chip temperature sensor, please see
application note “ANO003 - Using the On-Chip
Temperature Sensor.”

Resolution Improvement

We oversample and average the temperature sensor
to increase the measurement resolution from 12-
bits to 16-bits. Let’s compare the improvement in
the temperature measurement.

The full-scale output of the on-chip temperature
sensor is slightly less than 1 volt. Assuming a refer-
ence voltage (V,.p) of 2.4 volts, we can calculate
the code width and temperature resolution (small-
est measurable change in temperature) for both 12-
bit and 16-bit measurements.

12-bit Temperature Resolution

Without oversampling, we will get a 12-bit result
from the temperature measurement. The on-chip
temperature sensor voltage will change 2.8 mV for
each change in degrees Celsius. The voltage reso-
lution for a 2.4 volt V,.r and a PGA gain of 2 is

(using Equation 5 in Appendix A):

2.4
2 5

A

— 293uV/°C
2

A is the code width as defined in
Equation 5 on page 7. The factor of 2 in the
denominator is to account for a PGA gain

of 2.

Thus, the temperature resolution in a 12-bit mea-
surement (the number a degrees C per ADC code)
is:

_293uV _°C

res12~ oode  28mV 0.1046 °C/cod

T,.41> 1s the temperature resolution for a 12-
bit measurement.

So for each ADC code, the minimum temperature
change we may measure is 0.104 degrees C or
above one-tenth of a degree. Perhaps we need bet-
ter temperature resolution that will allow us to dis-
play closer to one-hundredth of a degree. We can
achieve this resolution by using the same 12-bit
ADC with oversampling and averaging.
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16-Bit Temperature Resolution

Increasing the effective number of bits (ENOB) to
16-bits through oversampling and averaging, a new
resolution is calculated as follows:

A 12

e 18.3uV/°C

Thus, the smallest temperature change we can mea-
sure is:

°C
2.8mV

Tesle IS the temperature resolution for a 16

_18.3uV

= 0.0065 °C/co
code

s16

it measurement.

We can now measure a 0.007 degree C change in
temperature using the same, on-chip, 12-bit ADC
with oversampling and averaging. This now allows
us to measure temperature to an accuracy of better
than one-hundredth of a degree.

Reduced Throughput

Throughput refers to the number of output data
words we obtain per unit time. If an ADC has a
maximum sample rate of 100 ksps, we would
obtain a 100 ksps output word rate without over-
sampling and averaging. However, if we oversam-
ple and average (decimate) to achieve higher
resolution, throughput will be reduced by a factor
of the oversampling ratio, OSR (see Equation 7).
Oversampling by a factor of 256 as we do in the
provided example, our output word rate will be
100 ksps/256 = 390 samples per second (390 Hz).
Thus, there is a trade-off between resolution and
throughput for a given sampling rate. Another
trade-off is the reduced CPU bandwidth during
each sampling period (1/f;) due to the additional

sampling and computations required to achieve the
additional resolution.

Summary

If ADC noise can be approximated as white noise,
oversampling and averaging can be used to
improve the SNR and effective resolution of the
measurement. This can be done for static dc mea-
surements and for input signals with higher fre-
quency components. Equation 2 shows that each
additional required bit of resolution can be
achieved via oversampling by a factor of four, and
each additional bit will add approximately 6 db of
SNR (Equation 3) at the cost of reduced throughput
and increased CPU bandwidth.
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Appendix A - Theory of
Noise and Oversampling

This section discusses how oversampling and aver-
aging affects in-band noise, and how to calculate
the oversampling requirements to obtain a desired
SNR or measurement resolution.

How Oversampling and
Averaging Improves
Performance

Oversampling and averaging is done to accomplish
two things: improve SNR and increase the effective
resolution (i.e., increase the effective number of
bits of the ADC measurement). Both of these are
really the same entities. For example, if we have a
12-bit ADC and want to generate codes with 16-
bits of resolution, then we can use oversampling
and averaging to get the same SNR of a 16-bit
ADC. This will increase the effective number of
bits (ENOB) of the measured data, which is another
measure of SNR. Producing a lower noise floor in
the signal band, the oversampling and averaging
filter allows us to realize 16-bit output words.

How Oversampling Affects In-Band
Noise

A sampling frequency f, will allow signals of inter-

est to be reconstructed at one-half of the sampling
frequency (Nyquist Theorem). Thus, if the sam-
pling rate is 100 kHz, then signals below 50 kHz
can be reconstructed and analyzed reliably. Along
with the input signal, there will be a noise signal
(present in all frequencies as white noise) that will

fold or alias into the measured frequency band of
interest (frequencies less than one-half of 1)

E(f)= e/ms - (f2_s)1/2

where e, is the average noise power, f

rms
is the sampling frequency, and E(f) is the
in-band ESD.

Equation 4. Energy Spectral Density of
In-Band Noise

Equation 4 shows that the Energy Spectral Density
(ESD), or noise floor of the sampled noise will
decrease in the signal band as the sampling fre-
quency is increased.[3]

The Relationship Between
Oversampling and Increased
Resolution

Given the fixed noise power due to quantization
noise, we may calculate the amount of oversam-
pling required to increase the effective resolution.
For example, if we want to increase the effective
number of bits of a parameter measured with a 12-
bit ADC to a 16-bit measurement, then we will
want to establish a relationship that allows us to
calculate the oversampling requirement. To do so,
we first define the characteristics of the noise.

Noise Analysis

To understand the effects of oversampling and
averaging on noise, we must first define what the
quantization noise will be.

The distance between adjacent ADC codes deter-
mines the quantization error. Because the ADC will

6 Rev. 1.2
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round to the nearest quantization level, or ADC
code:

_ Vref
A_ 2_N
where N is the number of bits in the ADC
code and Vref'is the reference voltage.

Equation 5. Distance Between ADC
codes, or the LSB

The quantization error (e,) is:

<
eq_

NI D>

Assuming the noise approximates white noise, the
random variable representing the noise is equally
distributed with zero mean between ADC codes.
Thus, the variance is the average noise power cal-
culated [3] :

A/2 2

2
2 “9)ge =
€rms IA/2( A de 12

Equation 6. Noise Power Due to
Quantization in the ADC

A measure of the sampling frequency compared to
the Nyquist frequency (see Equation 1) is the over-
sampling ratio (OSR). This is defined as follows:

fs
OSR=
2-fm
where fs is the sampling frequency and fm
is the highest frequency component of the
input signal.

Equation 7. Oversampling Ratio

If the noise is white, then the in-band noise power

at the output of the low-pass filter is (see
Figure 1 on page 1):

fm 2
2 2. 2 (2-fm) _ €
0 '[0 erms(f) df = erms( fs ) OSF

vhere ny is the noise power output from the

qlter.
Equation 8. In-Band Noise Power as a
Function of the OSR

Equation 8 shows we can lower the in-band noise
power by increasing the OSR. Oversampling and
averaging does not affect the signal power [1].
Thus, we increase the SNR because oversampling
lowers noise power and does not affect signal
power.

From Equations 5, 6, and 8, we can derive the fol-
lowing expression relating the noise power to the
oversampling ratio and resolution:

02 — 1 (VreU2
0 (12-0OSR) oN
where OSR is the oversampling ratio, N

is the number of ADC bits, and Vref'is the
reference voltage.

Equation 9. Noise Power As a Function
[1] of OSR and Resolution

Conversely, given a fixed noise power, we can cal-
culate the required number of bits. Solving
Equation 9 for NV, we obtain Equation 10 that shows
how to calculate the number of effective bits given
the reference voltage, in-band noise power, and
oversampling ratio. [1].

SILICON LABORATORIES
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N = —10g(OSR),3l0g(12),-3l0g(n3), + log(Vref),

Equation 10. Number of Effective Bits As a Function of Reference Voltage, In-Band Noise
Power, and Oversampling Ratio

From Equation 10, we observe:

Each doubling of the sampling frequency will lower
the in-band noise by 3 dB, and increase the resolu-
tion of the measurement by 1/2 bit. [3]

In a practical sense, we measure a signal band-lim-
ited to less than 1/2*fs, then oversample that signal
with an oversampling ratio (OSR). The resulting
samples are then averaged (or decimated) for the
resulting output data. For each additional bit of res-
olution or 6dB of noise reduction, we oversample
by a factor of four:
f.o=4"f

0os S

where w is the number of additional bits of
resolution desired, f is the original sam-

pling frequency requirement, and f, is the
oversampling frequency

Equation 11. Oversampling Frequency
To Add Measurement Resolution

Equation 11 is Equation 2 presented at the begin-
ning of this application note. If we are using the 12-
bit on-chip ADC and wish to have the accuracy of a
16-bit ADC, we need an additional 4 bits of resolu-
tion. Four factors of four (using Equation 11) is
256. Thus, we need to oversample by a factor of
256 times the Nyquist rate. If the desired signal is
band-limited to 60 Hz (f,,=60 Hz), then we must

oversample at 120 Hz * 256 =30.7 kHz. We
improve the effective resolution by improving the
SNR in our frequency band of interest.

Increasing the sampling rate, or OSR, lowers the
noise floor in the signal band of interest (all fre-
quencies less than 1/2 of fs). The frequency profiles
of the quantization noise and input signal are
shown in Figure 2. Note when oversampling
occurs, less of the noise profile overlaps the input
signal profile. Thus, a low-pass filter may be more
selective without affecting the input signal, and fil-
ter more of the in-band noise. The noise power at
the output of the filter is calculated using
Equation 8. This is the noise level lowered due to
the oversampling and averaging filter. This is
depicted in Figure 3.

8 Rev. 1.2
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The noise that is filtered between fm, and fim/OSR.
Without oversampling, the filter would not have
removed this noise. The output is also downsam-
pled (decimated) by a factor of the OSR (see
Figure 1) to the original Nyquist frequency, fin. This
will give the input signal its frequency profile as if
sampled at the Nyquist frequency, and the noise
profile a lower value (if filtered) of e,,,/OSR (see

rms’

Figure 4).

Calculating Signal To Noise
Ratio

Signal-to-noise ratio is defined as the ratio of the
rms signal power to the rms noise power in deci-
bels (dB). No matter how carefully we work to
remove sources of ADC noise, quantization noise
will always be present. Thus, ideal SNR is calcu-
lated based on quantization noise with no oversam-
pling and averaging. Equation 5 shows that the
higher the resolution of the ADC, the lower the
quantization error and therefore, the lower the
quantization noise. The more bits in the ADC, the
better the SNR can be. As shown in the previous
sections, oversampling and averaging lowers the
in-band noise, improving the SNR and increasing

New Noise Floor After Filter
and Downsample, Reduced
by a factor of 1/0OSR (e/OSR)

the effective number of bits (ENOB). ENOB is
another measure of SNR, and both can be calcu-
lated to determine specifications and oversampling
requirements needed to meet these specifications.

In order to get the best case SNR, the dynamic
range of the input signal must match the reference
voltage (V,ep). If we assume the best case input sig-

nal to be a full-scale sine wave, then it’s rms value
as a function of V ¢ will be:

Vief
Vims = -
2.2

Equation 12. Input Signal RMS Value as
a Full-Scale Sine Wave

From the noise power calculation in Equation 9, we
determine the rms noise power as a function of the
number of bits, N (not oversampled) to be:

Vref
2N /12

Equation 13. RMS Noise Power Value

Ng =

fn

Unaffected Input
Signal Frequency
Profile Of Signal
Downsampled At the
Filter Output

Ve

Noise Power Before
Oversample and Filter

( (e)

—————— —_—

Figure 4. Oversampled Signal After Filter and Downsampled to the Nyquist

Frequency Showing

Lowered Noise Floor
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The SNR in dB is then calculated as follows:

\Vj N
NR = 2o-|og( ”“S) - 20~Iog(2ﬂ

No 2./2

Equation 14. SNR as a Function of the
Number of Bits, N

When oversampling, we may substitute the effec-
tive number of bits (ENOB) for N in Figure 14.
Simplifying Equation 14 and substituting the term
ENOB for N we obtain the well known result in
decibels:

SNR(dB) = (6.02 - ENOB)+ 1.76

where ENOB is the effective number of bits
of the measurement

Equation 15. SNR Calculation as a
Function of ENOB

Averaging To Increase the
Effective Resolution of a dc
Measurement

Thus far, we have considered measuring signals
within some frequency band of interest, f,,. How-

ever, our goal may be to measure a relatively static
dc signal (such as a temperature or strain gauge
output). If we wish to measure a signal that is rela-
tively static, that is, the dominant frequency is near
dc, we can still improve the effective resolution by
oversampling and averaging [2].

Applications Measuring a Static
Voltage

If a weigh scale must measure a wide range of
weights, yet still be able to discern small changes in
weight, then oversampling and averaging can
increase the effective resolution of the measure-

ment. As another example, if the ADC must mea-
sure the output of a temperature sensor, the
temperature range may be large, yet the system
application may have to respond to small changes.

Oversampling and Averaging as an
Interpolative Filter

Averaging data from an ADC measurement is
equivalent to a low-pass digital filter with subse-
quent downsampling (see Figure 1 on page 1). Dig-
ital signal processing that oversamples and low-
pass filters a parameter is often referred to as inter-
polation. In this sense, we use oversampling to
interpolate numbers between the 12-bit ADC
codes. The higher the number of samples averaged,
the more selective the low-pass filter will be, and
the better the interpolation.
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Appendix B - When
Oversampling and
Averaging Will Work

This section discusses guidelines to determine if
oversampling and averaging will be effective for a
given application.

The analog-to-digital data conversion process
introduces noise. Oversampling and averaging can
reduce certain types of noise, thereby increasing
the SNR and effective resolution of the data con-
version. Not all applications will benefit from over-
sampling and averaging. To understand which
ADC measurements will benefit from oversam-
pling, we must understand the type and characteris-
tics of the noise present in a given system.

Noise Requirements For
Effective Oversampling

Oversampling and averaging can improve the SNR
and increase the effective resolution of the analog-
to-digital data measurement. However, this will
work only if the ADC noise can be approximated
as white noise [2] [3]. If the input signal changes
randomly from sample to sample, by amounts
(amplitude) comparable to the code size (1 LSB),
and the input signal has equal probability of being
anywhere between two adjacent codes, then the
noise can be modeled as approximating white
noise. White noise is characterized as having a uni-
form power spectral density over the frequency
band of interest. When the noise can be approxi-
mated as white noise, then oversampling and aver-
aging can improve the SNR and increase the
effective resolution of the data.

If the overall noise is not stationary, (e.g., systems
that have some correlation due to feedback), then
oversampling and averaging may not be effective.
Additionally, if the quantization noise is compara-
ble to sources of white noise (i.e., thermal and shot
noise is small compared to the quantization noise),
then oversampling and averaging may not be effec-

tive. This situation is typical when using lower res-
olution ADC’s (e.g., 8-bit ADC’s). In this case, the
thermal noise does not have sufficient amplitude to
cause the input signal to change randomly with
equal probability between codes, because the code
width A (Equation 5), is too large. Some applica-
tions will inject noise into the signal or process
intentionally to overcome this effect. This is
referred to as dithering.

Histogram Analysis

Most applications that measure a signal using a 12-
bit ADC will benefit from oversampling and aver-
aging techniques. A practical means of determining
if the noise characteristics are appropriate is to ana-
lyze the ADC output data using a histogram (see
Figure 5 below).[2] This histogram shows how
many samples in a set from an ADC resulted in
each ADC code. If the input signal is a constant dc
voltage value, the histogram will approximate a
gaussian probability distribution function (PDF) if
the noise is white, as shown in Figure 5.[2] Due to
the input voltage, the “bin” for code 1024 received
the greatest number of samples, while surrounding
codes received some samples due noise. Because
the histogram approximates a Gaussian PDF
(shown as a blue dotted line in Figure 5), the noise
approximates white noise, and this system can ben-
efit from oversampling and averaging techniques.
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Figure 5. Histogram of ADC samples: dc Input With White Noise

A system with insufficient noise (besides the quan-
tization noise) will result in a histogram with all
samples going to only one bin, or code. Oversam-
pling and averaging may not be helpful in such a
system.

If the noise is correlated or the ADC’s transfer
function is non-linear (e.g., power supply noise,
poor INL, etc.), the histogram may not approximate
a Gaussian PDF, such as the one in Figure 6). In
this case, oversampling and averaging may not
helpful.

In summary, if the combined sources of noise in the
resultant ADC codes approximates white noise, a
histogram of the samples will approximate a Gaus-
sian PDF, and oversampling and averaging will
improve the SNR and increase the effective number
of bits of the signal measurement.
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Figure 6. Histogram of ADC Samples Not Optimal For Oversampling and
Averaging Techniques
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Appendix C - Example Code

!/
//
1/
//
//
//
!/
!/
1/
//
//
//
!/
!/
!/
//
//
//
!/
!/
1/
//
//
//
!/
!/
1/
//
//
//
!/

1/
//

#1i

#include <c8051f000.h> // SFR declarations

[
// 16-bit SFR Definitions for F00x, FOlx

/e
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6é ADCO = Oxbe; // ADCO data

sfrle ADCOGT = Oxc4; // ADCO greater than window

sfrl6e ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = Oxca; // Timer2 capture/reload

sfrl6é T2 = Oxcc; // Timer2

sfrl6 DACO = 0xd2; // DACO data

Copyright 2001 Cygnal Integrated Products, Inc.
AUTH: BW

This program outputs the C8051Fxxx die temperature out the hardware
UART at 115.2kbps. Assumes an 18.432MHz crystal is attached between
XTAL1 and XTALZ2.

The ADC is configured to look at the on-chip temp sensor. The sampling
rate of the ADC is determined by the constant <SAMPLE RATE>, which is given
in Hz. The maximum value of <SAMPLE RATE> is limited to ~86kHz due to

the choice of 18.432MHz crystal (SAR clock = SYSCLK / 16 = 1.152MHz. One
conversion takes 16 SAR clocks --> 72kHz sampling rate).

The ADC End of Conversion Interrupt Handler retrieves the sample

from the ADC and adds it to a running accumulator. Every 256

samples, the ADC updates and stores its result in the global variable
<result>. The sampling technique of adding a set of values and
decimating them (posting results every 256th sample) is called accumulate
and dump. It is easy to implement and requires very few resources.

For each power of 4, you gain 1 bit of effective resolution.

For a factor of 256, gain you 4 bits of resolution: 474 = 256.
Also, to properly scale the result back to 16-bits, perform a right
shift of 4 bits.

Target: C8051F00x or C8051F01x
Tool chain: KEIL C51 6.03 / KEIL C51 EVAL version

nclude <stdio.h>

Rev. 1.2
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#define SYSCLK 18432000
#define BAUDRATE 115200
#define SAMPLE RATE 100000

#define LED P1.6

void SYSCLK Init (void);
void PORT Init (void);
void UART Init (void);
void ADC Init (void);

void TIMER3 Init (int counts);

void ADC ISR (void);

void main (void) {
long temp copy;
int temp int;
int temp frac;

WDTCN = Oxde;
WDTCN Oxad;

SYSCLK_Init ()
PORT Init ();
UART Init ()

TIMER3 Init (SYSCLK/SAMPLE RATE) ;

ADC Init ();
ADCEN = 1;

result = 0L;

while (1) {

DAC1 data

SYSCLK frequency in Hz
Baud rate of UART in bps
Sample frequency in Hz

LED=1 means ON

// Output result from oversmapling and
// averaging 256 samples from the ADC for

// 1l6-bit measurement resolution

//
//
//

!/
//
!/
//
!/
//
//
//
!/

//

integer portion of temperature

fractional portion of temperature (in

hundredths of a degree)

disable watchdog timer

initialize oscillator

initialize crossbar and GPIO

initialize UART

initialize Timer3 to overflow at

sample rate
init ADC

enable ADC

initialize temperature variable

Enable global interrupts

16
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temp copy = result; // Get most recent sample to convert
// the ADC code to a temperature
temp copy -= 0xa381; // correct offset to Odeg, 0V
temp_copy *= 0x01a9; // 2.86mV/degree C
temp copy *= 100; // convert result to 100ths of a degree C
temp copy = temp copy >> 16; // divide by 2716
temp int = temp copy / 100; // Seperate integer and fractional components
temp frac = temp copy - (100 * temp int);

printf (“Temperature is %d.%d\n”, (int) temp int, (int) temp frac);

// Initialization Subroutines

=

/== o
// SYSCLK Init

/==
//

// This routine initializes the system clock to use an 18.432MHz crystal

// as its clock source.

//

void SYSCLK Init (void)

{

int i; // delay counter

OSCXCN = 0x67; // start external oscillator with
// 18.432MHz crystal

for (i=0; i < 256; i++) ; // XTLVLD blanking interval (>1ms)
while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK

// source and enable missing clock
// detector

/e
// PORT Init
ettt bl
//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{
XBRO = 0x07; // Enable I2C, SPI, and UART
XBR1 = 0x00;
XBR2 = 0x40; // Enable crossbar and weak pull-ups
PRTOCF |= Oxff; // enable all outputs on PO as push-pull

// push-pull; let xbar configure pins
// as inputs as necessary
PRTICF |= 0x40; // enable P1.6 (LED) as push-pull output

Rev. 1.2
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//
// Configure the UART using Timerl, for <baudrate> and 8-N-1.
//
void UART Init (void)
{
SCON = 0x50; // SCON: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16) ; // set Timerl reload value for baudrate
TR1 =1; // start Timerl
CKCON |= 0x10; // Timerl uses sysclk as time base
PCON |= 0x80; // SMOD = 1
TI = 1; // Indicate TX ready
}
/e
// ADC_Init
e
//

// Configure A/D converter to use Timer3 overflows as conversion source, to
// generate an interrupt on conversion complete, and to use right-justified
// output mode. Enables ADC end of conversion interrupt. Leaves ADC disabled.

void ADC Init (void)
{
ADCOCN = 0x04; // ADC disabled; normal tracking
// mode; ADC conversions are initiated
// on overflow of Timer3; ADC data is
// right-justified

REFOCN = 0x07; // enable temp sensor, on-chip VREF,
// and VREF output buffer

AMX0SL = 0x0f; // Select TEMP sens as ADC mux output

ADCOCF = 0x61; // ADC conversion clock = sysclk/8

EIE2 |= 0x02; // enable ADC interrupts
}
ettt
// TIMER3 Init
/e e
//

// Configure Timer3 to auto-reload at interval specified by <counts> (no
// interrupt generated) using SYSCLK as its time base.

void TIMER3 Init (int counts)
{

TMR3CN = 0x02; // Stop Timer3; Clear TF3;
// use SYSCLK as timebase

TMR3RL = -counts; // Init reload values

TMR3 = Oxffff; // set to reload immediately

EIE2 &= ~0x01; // disable Timer3 interrupts

TMR3CN |= 0x04; // start Timer3
}
[
// Interrupt Service Routines
/e e
[
// ADC_ISR
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// ADC end-of-conversion ISR

// Here we take the ADC sample,
// decrement our local decimation counter <int dec>. When <int dec> reaches
// zero, we calculate the new value of the global variable <result>,

// which stores the accumulated ADC result.

void ADC isr (void)

{

interrupt 15

static unsigned int dec=256;

static long accumulator=0L;

ADCINT = O;

accumulator += ADCO;

int dec--;

if (int dec == 0) {
int dec = 256;
result = accumulator >>
accumulator = 0L;

4;

//
//
1/
//
//

!/
!/

/7
//
//

//
//
//
//

add it to a running total <accumulator>, and

integrate/decimate counter
we post a new result when
int dec = 0

heres where we integrate the
ADC samples

clear ADC conversion complete
indicator

read ADC value and add to running
total
update decimation counter

if zero, then decimate

reset counter

Shift to perform the divide operation
dump accumulator
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Notes:
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