
Rev. 1.3 12/03 Copyright © 2003 by Silicon Laboratories AN113-DS13

AN113

SERIAL COMMUNICATION WITH THE SMBUS

Relevant Devices
This application note applies to the following
devices:

C8051F000, C8051F001, C8051F002,
C8051F005, C8051F006, C8051F010, C8051F011,
C8051F012, C8051F020, C8051F021,
C8051F022, and C8051F023.

Introduction
C8051F0xx devices are equipped with an SMBus
serial I/O device that is compliant with the System
Management Bus Specification version 1.1, as well
as the I2C serial bus. The SMBus is a bi-direc-
tional, 2-wire interface capable of communication
with multiple devices. SMBus is a trademark of
Intel; I2C is a trademark of Philips Semiconductor.

This application note describes configuration and
operation of the SMBus. Example assembly and C
code is given: (1) Interfacing a single EEPROM
with 1-byte address space, in assembly; (2) Inter-
facing multiple EEPROMs with 2-byte address
space, in C; and (3) Peer-to-peer communication
between two C8051F0xx devices, in C.

SMBus Specification
This section presents a description of the SMBus
protocol. The SMBus discussion begins in the next
section--Using the SMBus.

SMBus Structure
An SMBus system is a 2-wire network, where each
device has a unique address and may be addressed
by any other device on the network. All transfers
are initiated by a master device; if a device recog-

nizes its own address and responds, it becomes the
slave device for that transfer. It is important to note
that assigning one specified master device is not
necessary. Any device may assume the role of mas-
ter or slave for any particular transfer. In the case
that two devices attempt to initiate a transfer simul-
taneously, an arbitration scheme forces one device
to give up the bus. This arbitration scheme is non-
destructive (one device wins and no information is
lost). Arbitration is discussed in depth in the arbi-
tration section.

Two wires are used in SMBus communication:
SDA (serial data), and SCL (serial clock). Each
line is bi-directional, with direction depending on
what modes the devices are in. The master always
supplies SCL; either device may transmit on SDA.
Both lines should be connected to a positive power
supply through a pull-up circuit. All devices on the
SMBus line should have an open-drain or open col-
lector output, so that the lines may remain high
when the bus is free. The line is pulled low if one or
more devices attempts to output a LOW signal. All
devices must output a HIGH for the line to stay
high. A typical SMBus configuration is shown in
Figure 1 on page 2.

AN113

2 Rev. 1.3

Handshaking
SMBus employs various line conditions as hand-
shaking between devices. Note that during a data
transfer, SDA is only allowed to change levels
while SCL is low. Changes on SDA while SCL is
high represent START and STOP signals, as fol-
lows:

START: This initiates a transfer. It consists of a
falling edge on SDA while SCL is high.

STOP: This ends a transfer. It consists of a rising
edge on SDA while SCL is high.

ACKNOWLEDGE: Also referred to as an ACK,
this is transmitted by a receiving device as a confir-
mation. For example, after device_X receives a
byte, it transmits an ACK to confirm the transfer.
An ACK consists of a low level on SDA sampled
when SCL is high.

NOT_ACKNOWLEDGE: Also referred to as a
NACK, this is a high SDA while SCL is high.

When a receiving device fails to ACK, the sending
device sees a NACK. In typical transfers, a
received NACK indicates that the addressed slave
is not ready for transfer, or is not present on the
bus. A receiving master may transmit a NACK to
indicate the last byte of a transfer. Both of these sit-
uations are discussed further in the next section.
Figure 2 illustrates the handshaking signals.

Transfer Modes
Two types of transfers are possible: a WRITE
(transfer from master to slave) and a READ (trans-
fer from slave to master). During a transfer, any
device may assume one of four roles. These four
roles are explained below. Note that ‘slave address
+ R/W’ refers to an 8 bit transfer (7 address, 1 R/
W).

1) Master Transmitter: In this mode, the device
transmits serial data on SDA and drives the clock
on SCL. The device initiates the transfer with a
START condition, sends the slave address + W, and
waits for an ACK from the slave. After the ACK,

Figure 1. Typical SMBus Configuration

VDD = +5V/+3V

Device 1 Device 2 Device 3

SDA

SCL

SLA6
SDA

SLA5-0 R/W D7 D6-0

SCL

Slave Address + R/W Data ByteSTART ACK NACK STOP

Figure 2. SMBus Timing

AN113

Rev. 1.3 3

the device transmits one or more bytes of data, with
each byte ACK’ed by the slave. After the last byte,
the device transmits a STOP.

2) Master Receiver: In this role, the device receives
serial data on SDA while driving the clock on SCL.
The device initiates the transfer with a START fol-
lowed by the slave address + R. After the slave
ACK’s the address, the device will output the clock
on SCL, and receive data on SDA. After the last
byte, the device will issue a NACK followed by a
STOP.

3) Slave Transmitter: In this role, a device outputs
serial data on SDA and receives the clock on SCL.
The device receives a START followed by its own
slave address + R, then ACK’s, and enters slave
transmitter mode. The device transmits serial data
on SDA and receives an ACK after each byte. After

the last byte, the master will issue a NACK fol-
lowed by a STOP.

4) Slave Receiver: In this role, a device receives a
START followed by its own slave address + W
from a master device. The device sends an ACK
and enters slave receiver mode. The device now
receives serial data on SDA and the clock on SCL.
The device ACK’s after each byte is received, and
exits slave mode after the master issues a STOP.
Figure 3 shows the typical WRITE scenarios. (1)
shows a successful transfer.

In (2), the master receives a NACK after sending
the slave address + W. This occurs when a slave is
‘offline’, meaning it is not responding to its own
address. In this case, the master should issue a
STOP or repeated START. To retry the transfer, the
master follows the STOP with a START and the
slave address + W again. The master will repeat the

Figure 3. Typical WRITE Transfer Scenarios

From Slave
to Master

NACK received after SLA + W PA(2)

(3) Repeat start issued after Acknowledge ASLA + RS

(4) NACK received after data PA

S = Start
SLA = Slave Address (7 bits)
W = Write (1 bit)
R = Read (1 bit)
Data = Serial data (8 bits)
A = Acknowledge
A = Not-Acknowledge
P = Stop

Successful WRITE S SLA + W A Data PA AData(1)

Any number of data
bytes and acknowledges

From Master
to Slave

Data

AN113

4 Rev. 1.3

cycle until it receives an ACK. This is referred to as
“acknowledge polling”.

In (3), the master issues a repeated START after an
ACK. This process allows the master to initiate a
new transfer without giving up the bus (to switch
from a WRITE to a READ, for example). The
repeated START is commonly used in EEPROM
memory access applications, where a memory
READ must be directly preceded by a WRITE of
the desired memory location. The repeated START
is demonstrated in all three code examples.

In (4), a NACK is received after a data byte. In typ-
ical SMBus systems, this is how the receiving
device indicates an error. The master sends a STOP,
and retries the transfer as in (2), or gives up the
transfer. Note that the use of NACKs is not
restricted to error situations; the acknowledge level
is a user-definable characteristic, and may vary in
different applications.

Figure 4 shows the typical READ scenarios. (1)
shows a successful READ operation. In (2), the

master receives a NACK after sending the slave
address + R. This situation is handled in the same
fashion as in (2) of the WRITE discussion. The
master can use acknowledge polling to retry the
transfer, or it can give up the transfer. (3) Shows the
master sending a repeated START after sending a
byte of data. This is the same repeated START state
as in the WRITE discussion. A master may send a
repeated START after any data byte, and may ini-
tiate a READ or a WRITE following the repeated
START. Generally a repeated START is used to
change direction (R/W) or to change addresses
(slave devices).

Note that the READ and WRITE diagrams show
only the typical scenarios. Bus errors, time outs,
and arbitration are also possible occurrences. Time-
outs are used to detect when a transfer has stalled
or when the bus is free. Often a device may hold
SCL low until it is ready to continue a transfer. This
process allows a slower slave device to communi-
cate with a faster master, since stalling the bus
effectively reduces the SCL frequency. The SMBus
protocol specifies that all devices on the SMBus

Figure 4. Typical Read Scenarios

S = Start
SLA = Slave Address (7 bits)
W = Write (1 bit)
R = Read (1 bit)
Data = Serial data (8 bits)
A = Acknowledge
A = Not-Acknowledge
P = Stop

From Slave
to Master

Any number of data
bytes and acknowledges

From Master
to Slave

Data

NACK received after SLA + R PA(2)

(3) Repeat start issued after ACK ASLA + RS

Successful READ(1) S SLA + R A Data PA AData

AN113

Rev. 1.3 5

must declare any SCL signal held low for more
than 25 ms a “timeout”. In this case, all devices on
the bus must reset communication. A high SCL
timeout may also occur. If both SDA and SCL
remain high for more than 50 µsec, the bus is des-
ignated as free.

Arbitration
If multiple masters are configured on the same
SMBus system, it is possible that two will attempt
to initiate a transfer at the same time. If this hap-
pens, an arbitration scheme is employed to force
one device to give up the bus.

What the scheme is: both masters continue to trans-
mit until one attempts a HIGH while the other
attempts a LOW. Due to the open-drain bus, the
device attempting a LOW will win the bus. The
HIGH device gives up the bus, and the other device
continues its transfer. Note that the collision is non-
destructive: one device always wins.

How it works: Assume device_X and device_Y
contend for the bus. The winner, device_X, is not
affected at all by the arbitration. Since data is
shifted into the SMBus data register as it is shifted
out, device_Y does not miss any data. Figure 5
shows an example output sequence between two
devices during arbitration. Note that Device_Y
begins receiving data after it gives up the bus.

Using the SMBus
The SMBus can operate in both master and slave
modes. The hardware provides timing and shifting
control for the serial transfers; byte-wise control is
user-defined. The SMBus hardware performs the
following application-independent tasks:

Timing Control: In master mode, the hardware gen-
erates the clock signal on SCL and synchronizes
the data on SDA. Hardware also recognizes time-
outs and bus errors.

Serial Data Transfers: The hardware controls all
shifting of data to and from SDA, including the
acknowledge level. The acknowledge level is user-
defined, as explained in the register definitions
below.

Slave Address Recognition: The hardware recog-
nizes a START from another device, and reads the
following slave address. If the slave address
matches the contents of the SMBus Address Regis-
ter (defined below), then the hardware acknowl-
edges the address. Note that this features is only
enabled if AA (Address Acknowledge) is set.

Configuration and Control
SMBus operation is determined by the contents of
the following registers.

Figure 5. Arbitration Sequence

Device_Y

Device_X
01 1 1 0 1 1 0

01 1 1 1

01 1 1 0 1 1 0
Seen on the Bus

Device_Y
gives up
the bus

AN113

6 Rev. 1.3

SMB0STA. The SMBus Status Register holds an
8-bit status code for the current state of the SMBus.
The contents of SMB0STA are only defined when
the SI bit is set. There are 28 possible states, all of
which have a unique code (the codes are multiples
of 8). SMB0STA should never be written to. The
28 possible states and their descriptions are given
in Table 1 on page 12.

SMB0CN. The SMBus control register is used to
enable the SMBus and navigate the possible
SMBus states. This register includes START and
STOP control, as well as interrupt, acknowledge,
and timeout control.

A transfer is initiated by setting the STA bit. The
SMBus hardware will wait until the bus is free,
then transmit a START. Note that STA is not
cleared by hardware. User software must manu-
ally clear STA so that an unwanted repeated
START is not generated. User software must also
manually clear STO prior to setting STA.

A transfer is ended by setting the STO bit. In mas-
ter mode, setting STO will cause a STOP condition
to be generated. If STA is set when STO is set, a
STOP followed by a START will be transmitted. In
slave mode, setting STO will cause the hardware to
act as if a STOP was received, though no STOP
condition is transmitted.

The SI bit is set when any of the possible 28
SMBus states are entered (excluding the idle state).
This bit is not automatically cleared by hardware.
Note that SCL is held low while SI is set. This
means that the bus is stalled until SI is cleared, syn-
chronizing the master with the slave.

The AA bit determines the type of acknowledge
returned during the acknowledge cycle. If AA=1,
an ACK will be sent; if AA=0, a NACK will be
sent. This means the device will respond to its slave
address only if AA is set.

SCL high and low timeout detection is enabled by
setting the FTE and TOE bits, respectively.

The SMBus is enabled by setting the SMBus
enable bit, ENSMB.

SMB0CR. The SMBus clock register is used to
control the SCL clock rate when the device is in
master mode. The 8 bits held in the SMB0CR reg-
ister determine the clock rate as follows:

 <1>

Where SMB0CR is a 2’s complement negative
number. So for a SCL frequency of 100 kHz and a
SYSCLK of 16 MHz, SMB0CL should be loaded
with -80, or 0xB0.

SMB0CR also defines the limit for the bus free
time period (high SCL timeout). The bus free time
is defined by the following equation, where
SMB0CR is a 2’s complement negative number.
Note that TFree is about 5 bit periods.

 <2>

SMB0ADR. The SMBus Address Register holds
the slave address that the device will respond to in
slave mode. Bits(7:1) hold the slave address; bit0 is
the General Call Enable. If bit0 is set, the device
will respond to the general call address (0x00).

SMB0DAT. The SMBus Data Register is used to
hold data to be transmitted or data that has just
been received by the SMBus. Data read from this
register is only valid while SI = 1. When SI is not
set, the SMBus may be in the process of shifting
data in or out of SMB0DAT. Note that when trans-
mitting, data shifted out of the most significant bit
of SMB0DAT is shifted back into the least signifi-
cant bit, so that after a transmit the original data is
still contained in SMB0DAT.

SMB0CR SYSCLK
2 FSCL×
-------------------------–≅

TFree
10 SMB0CR×() 1+

SYSCLK
--–=

AN113

Rev. 1.3 7

Implementation Choices
User software controls the SMBus on a state-by-
state basis. Upon each state change, the SI bit is set
by hardware, and an interrupt generated if inter-
rupts are enabled. The SMBus is then halted until
user software services the state change and clears
the SI bit. The SMBus operation is most easily
defined in a state table; however, note that it is not
necessary to define all 28 states. For example, if the
SMBus is the only master in the system, the slave
and arbitration states may be left undefined. If the
SMBus will never operate as a master, the master
states may be left undefined. If states are left unde-
fined, a default response should be programmed to
account for unexpected or error situations.

The SMBus state table lends itself to a case-switch
statement definition in C. However, for simple or
time-restricted systems, an assembly state decoding
can be more efficient. Note that the status codes
held in SMB0STA are multiples of 8. If the SMBus
states are programmed in 8-byte segments,
SMB0STA may be used as a software index. In this
case, a status code is decoded in 3 assembly com-
mands. However, only 8 bytes of code space are
available for each state definition. For states that
require more than 8 bytes, the program must branch
out of the state table so that subsequent states are
not disturbed.

Examples
Three examples are provided: a single EEPROM
with 1-byte address space, in assembly; multiple
EEPROMs with 2-byte address space, in C; and a
peer-to-peer interface between two devices, in C.
Each example uses interrupt-driven operation.

Single EEPROM
This is a simple interface between the SMBus and a
256-byte EEPROM. The SMBus acts as the master
at all times. The transfer procedure is similar to that
of any 2-wire EEPROM interface.

The Send operation is a 1-byte random WRITE.
The SMBus sends a START followed by three
bytes: the EEPROM’s device address + W (this
address is found in the EEPROM datasheet), the
memory location to be written, and then the data
byte. The slave should ACK after each byte. If the
master receives an ACK after each byte, it sends a
STOP and the transfer is over. If at any time the
master receives a NACK, it will retry the transfer
using acknowledge polling. It is common for an
EEPROM to NACK if multiple read/write opera-
tions are performed sequentially, since most self-
timed EEPROMs go offline to actually perform the
memory write. Figure 6 shows SDA for the Single
EEPROM send operation.

The Receive operation is a 1-byte random READ.
The transfer begins, as in the WRITE function,
with the master sending a START followed by the
EEPROM device address + W (a WRITE is used to
set the EEPROM’s “current address”). After the
slave ACK’s, the master sends the memory location
to be read. Upon receipt of an ACK, the master
then issues a repeated START followed by the
slave address + R. Now after the slave ACK’s, it
will send the data byte read from the location given
in the preceding “aborted” WRITE. The master
sends a NACK (since this data is the last and only
byte), followed by a STOP. The repeated START is
used in this case so that no other transfers may
begin between the WRITE of the memory address
and the READ of the data byte. Figure 7 shows
SDA for a Single EEPROM Receive operation.

The software for this example was written in
assembly to demonstrate the advantage of using
SMB0STA as a software index. The SMBus state
table written in 8-byte memory segments (8 bytes
for each state). This is accomplished through the
use of an ‘org’ statement for each state, offset from
the beginning of the table by the corresponding sta-

S SLA W A A A P8-bit
Address Data Byte

Figure 6. Single EERPOM Send
Sequence

AN113

8 Rev. 1.3

tus code. For example, if the state table is labeled
STATE_TABLE, and State_1 is 0x08, the code seg-
ment for State_1 should begin with:

; State_1
org STATE_TABLE + 08h
; State_1 code

Now when SMB0STA holds 0x80, State_1 may be
accessed with the following:

; Load current State
mov A, SMB0STA;

; Point DPTR to start of table
mov DPTR, #STATE_TABLE;

; Jump to indexed state
jmp @A+DPTR;

This process allows for very efficient state decod-
ing. However, it is important to note that only 8
bytes of code space are available for each state. If a
state requires more than 8 bytes, the program must
jump to a segment outside of the state table, so that
the next state definition is not disturbed.

To keep the states simple and understandable, the
SMBus is assumed to be the only master in the sys-
tem. The slave states are not defined, and the arbi-
tration states ignore any received data. Also, the
repeated START state may assume the transfer is a
READ. The code listing begins on page 14.

.

Figure 7. Single EEPROM Receive Sequence

AS SLA W A 8-bit
Address

S SLA R A Data Byte N P

S SLA W A AHigh
Address Byte ALow Address

Byte S SLA R A Data Byte N P

Figure 8. Multiple EEPROM Receive Sequence

AN113

Rev. 1.3 9

Multiple EEPROMs
Example 2 uses multiple EEPROMs with 2-byte
address space. The software is written in C. The
three EEPROMs used are 8k-bytes. Note that three
identical EEPROMs are used. The EEPROMs have
three address selection pins, A0 - A2, that are used
to set the slave address for the devices. The four
high bits of the device address are set in EEPROM
to “0101”; the lower three bits of the slave address
are determined by the setting of the address pins
(VDD for 1, GND for 0). Figure 9 shows the device
configuration.

The distinction with this example is that the
EEPROMs have a 2-byte address space. This
means that the READ and WRITE operations must
send an extra address byte for each transfer (see
Figure 8) When the Interrupt Service Routine
reaches the “Data Transmitted, ACK Received”
state, it must know which byte was transmitted--the
high address byte, the low address byte, or the data
byte. This information is kept in the
BYTE_NUMBER state variable.

The SMBus ISR is implemented as a case-switch
statement, with the SMBus status code
(SMB0STA) used as the switch variable. The code
listing for this example begins on page 23.

Figure 9. Multiple EEPROM Configuration

CHIP_A

A2 A1 A0

CHIP_C

A2 A0A1

CHIP_B

A2 A1
VDD

VDD

SDA SCL

A0

CF000
Addr = 001 Addr = 010

VDD

2.7k Addr = 0002.7k

AN113

10 Rev. 1.3

Peer-to-Peer Interface
The final example features two C8051F0xx devices
configured to communicate as peers. The peer-to-
peer interface uses a set of op codes to perform the
set of tasks below. Either device may initiate a
transfer.

Write to slave DAC: The master device sends a
WRITE_DAC op code followed by a byte of data.
Upon receipt, the slave device writes the data to its
DAC0 port.

Write to buffer: The master device sends a
WRITE_BUF op code, followed by a byte of data
for the receiving device to store in a buffer. The
upper 4 bits of the WRITE_BUF op code hold the
buffer index. Figure 10 shows a peer-to-peer
WRITE sequence (same for both DAC and buffer
writes).

Read ADC: The master device sends a
READ_ADC op code followed by a repeated

START. The slave reads its ADC input, and places
the data in its SMB0DAT register. In this case, the
slave clears AA to go ‘offline’ during the ADC
conversion. While the slave is offline, the master
receives a NACK after the repeated START and
slave address. The master continues acknowledge
polling until the slave responds. This technique is
useful if the slave’s operation is time-consuming,
since other devices may use the bus while the slave
is offline. The slave sets AA=1 when it is ready,
and the transfer continues. The master requests a
READ after the slave acknowledges. See Figure 11
for the transmission sequence.

Read buffer: The master sends a READ_BUF op
code followed by a repeated START. The upper 4
bits of the op code hold the buffer index. In this
case the slave holds the SCL line low while it
decodes the op code. While SCL is held low, the
master cannot attempt to continue the transfer.
Additionally, no other masters on the bus may
attempt a transfer. This bus stalling technique is
useful when the slave’s delay is short. The slave
releases SCL when it has finished decoding the op
code and is ready to transmit the data. The master
issues the repeated START and the slave address +
R. See Figure 11.

The SMBus operation in this example is defined as
a case-switch statement in the SMBus ISR. All pos-
sible states are defined, including the arbitration
states. If arbitration occurs, the losing device stores

S SLA W A Write
Op Code A PData ByteA

Bus stalled
here until slave

decodes the
 Op Code

Figure 10. Peer-to-Peer Write Sequence

Figure 11. Peer-to-Peer Read Sequence

S SLA W A Read_Buf
Op Code

S SLA R A Data Byte N PA

Bus stalled
here until slave

decodes the
 Op Code

AS SLA W A Read ADC
Op Code

Slave goes
'offline' here
until ADC

conversion is
complete.

S SLA R A Data Byte N P

Buffer Read

ADC Read

AN113

Rev. 1.3 11

its current transfer data (target slave address, op
code, relevant data) and responds to the received op
code. After the transfer is finished, the losing
device retries the transfer by reverting to the saved
transfer data.

An OP_CODE_HANDLER function runs in polled
mode to process received data. When the device
receives a valid op code, the
OP_CODE_HANDLER decodes it and reacts
appropriately.

To test the bus, comment out the
OP_CODE_HANDLER call in the code for
CHIP_A. This will allow CHIP_A to run the pro-
vided test code. Note that the constant MY_ADD
must be unique to each device on the bus.

The code listing for this example begins on
page 29.

AN113

12 Rev. 1.3

Table 1. SMBus Status Codes and States

Mode Status
Code SMBus State Typical Action

M
T/

M
R

0x08 START condition transmitted. Load SMB0DAT with Slave Address +
R/W

0x10 Repeated START condition transmitted. Load SMB0DAT with Slave Address +
R/W

M
as

te
r T

ra
ns

m
itt

er

0x18 Slave Address + W transmitted. ACK
received.

Load SMB0DAT with data to be transmit-
ted. Clear STA

0x20 Slave Address + W transmitted. NACK
received.

Acknowledge poll to retry. Set STO + STA

0x28 Data byte transmitted. ACK received.
1) Load SMB0DAT with next byte, OR
2) Set STO, OR
3) Clear STO, then set STA for repeated

START

0x30 Data byte transmitted. NACK received. 1) Retry transfer OR
2) Set STO

0x38 Arbitration Lost. Save current data

M
as

te
r R

ec
ei

ve
r 0x40 Slave Address + R transmitted. ACK received. Clear STA. Wait for received data.

0x48 Slave Address + R transmitted. NACK
received.

Acknowledge poll to retry. Set STO + STA

0x50 Data byte received. ACK transmitted. Read SMB0DAT. Wait for next byte. If
next byte is last byte, clear AA

0x58 Data byte received. NACK transmitted. Set STO

AN113

Rev. 1.3 13

Sl
av

e
R

ec
ei

ve
r

0x60 Own slave address + W received. ACK trans-
mitted.

Wait for data

0x68 Arbitration lost in sending SLA + R/W as mas-
ter. Own address + W received. ACK transmit-
ted.

Save current data for retry when bus is
free. Wait for data

0x70 General call address received. ACK transmit-
ted.

Wait for data

0x78 Arbitration lost in sending SLA + R/W as mas-
ter. General call address received. ACK trans-
mitted.

Save current data for retry when bus is
free.

0x80 Data byte received. ACK transmitted. Read SMB0DAT. Wait for next byte or
STOP

0x88 Data byte received. NACK transmitted. Set STO to reset SMBus

0x90 Data byte received after general call address.
ACK transmitted.

Read SMB0DAT. Wait for next byte or
STOP

0x98 Data byte received after general call address.
NACK transmitted.

Set STO to reset SMBus

0xA0 STOP or repeated START received. No action necessary

Sl
av

e
Tr

an
sm

itt
er

0xA8 Own address + R received. ACK transmitted. Load SMB0DAT with data to transmit.

0xB0 Arbitration lost in transmitting SLA + R/W as
master. Own address + R received. ACK
transmitted.

Save current data for retry when bus is
free. Load SMB0DAT with data to trans-
mit.

0xB8 Data byte transmitted. ACK received. Load SMB0DAT with data to transmit.

0xC0 Data byte transmitted. NACK received. Wait for STOP

0xC8 Last data byte transmitted (AA=0). ACK
received.

Set STO to reset SMBus

Sl
av

e

0xD0 SCL Clock High Timer per SMB0CR timed out Set STO to reset SMBus

Al
l 0x00 Bus Error (illegal START or STOP) Set STO to reset SMBus

0xF8 Idle State does not set SI

Table 1. SMBus Status Codes and States

Mode Status
Code SMBus State Typical Action

AN113

14 Rev. 1.3

Software Examples for the C8051F00x and C8051F01x
series
;---
;
; Copyright 2001 Cygnal Integrated Products, Inc.
;
; Program: SMBus_EX1.asm
; Created on: 2/21/01
; Last mod : 27 AUG 03 -- BW
; Created by: JS
;
; Example code to interface a single 256-byte EEPROM to a C8051F00x via the SMBus
; Code assumes a single EEPROM with slave address 1010000 is connected on
; the SDA and SCL lines, and no other masters are on the bus.
;
; The SEND routine performs a 1-byte write to the EEPROM. This consists of (1) START,
; (2) slave address + W, (3) memory location byte write, and (4) a data byte write.
;
; STEPS FOR WRITING TO EEPROM:
; 1) Load slave address into SLA_ADD
; 2) Load memory address into MEM_ADD
; 3) Load data byte into TRANSMIT_BYTE.
; 4) Call SEND
;
; The RECEIVE routine performs a 1-byte read from the EEPROM. This consists of (1)
; START, (2) slave address + W, (3) memory location byte write, (4) repeated START,
; (5) slave address + R, (6) data byte read.
;
; STEPS FOR RECEIVING DATA:
; 1) Load slave address into SLA_ADD
; 2) Load memory address into MEM_ADD
; 3) Call RECEIVE
; 4) Read RECEIVE_BYTE
;
; The SMBus state table is broken into 8-byte state segments, allowing the SMBus
; status code (SMB0STA) to be used as a state index. Note that this leaves only
; 8 bytes of code space per SMBus state definition. As a result, certain tasks
; have been altered to limit state definition lengths:
;
; 1) The SMB_MTDBACK state (Master transmitter, data byte sent, ACK received) is
; reduced to a bit-check and branch operation. The branch is outside of the state
; table, so that a larger code segment may be executed for this state.
;
; 2) Three data bytes are used for slave address storage: SLA_ADD, WRI_ADD, READ_ADD.
; Rather than using bit-wise operations in the SMBus states, each transfer routine
; pre-loads the address values. Since a RECEIVE includes both a WRITE and READ
; transfer, two address bytes are necessary - WRI_ADD and READ_ADD. SLA_ADD is used
; as a generic slave chip select before a function call.
;
; Note that SLA_ADD is equivalent to WRI_ADD, since WRI_ADD = SLA_ADD + W (W=0).
; The two are left separate to clarify the demonstration.
;
;---

AN113

Rev. 1.3 15

;---
; EQUATES
;---

 $include (c8051f000.inc) ; Include register definition file.

 WRITE EQU 00h ; SMBus WRITE command
 READ EQU 01h ; SMBus READ command

 CHIP_A EQU 0A0h ; EEPROM slave address

 ; SMBus States
 SMB_BUS_ERROR EQU 00h ; (all modes) BUS ERROR
 SMB_START EQU 08h ; (MT & MR) START transmitted
 SMB_RP_START EQU 10h ; (MT & MR) repeated START
 SMB_MTADDACK EQU 18h ; (MT) Slave address + W transmitted;
 ; ACK received
 SMB_MTADDNACK EQU 20h ; (MT) Slave address + W transmitted;
 ; NACK received
 SMB_MTDBACK EQU 28h ; (MT) data byte transmitted; ACK rec’vd
 SMB_MTDBNACK EQU 30h ; (MT) data byte transmitted; NACK rec’vd
 SMB_MTARBLOST EQU 38h ; (MT) arbitration lost
 SMB_MRADDACK EQU 40h ; (MR) Slave address + R transmitted;
 ; ACK received
 SMB_MRADDNACK EQU 48h ; (MR) Slave address + R transmitted;
 ; NACK received
 SMB_MRDBACK EQU 50h ; (MR) data byte rec’vd; ACK transmitted
 SMB_MRDBNACK EQU 58h ; (MR) data byte rec’vd; NACK transmitted

;---
; VARIABLES
;---

MYDATA SEGMENT DATA ; declare DATA segment
 RSEG MYDATA ; select DATA segment

 TRANSMIT_BYTE: DS 1 ; Holds a byte to be transmitted by the SMBus
 RECEIVE_BYTE: DS 1 ; Holds a byte just received by the SMBus
 SLA_ADD: DS 1 ; Holds the slave address
 WRI_ADD: DS 1 ; Holds the slave address + WRITE
 READ_ADD: DS 1 ; Holds the slave address + READ
 MEM_ADD: DS 1 ; EEPROM memory location to be accessed

 ; Variables used for testing.
 TEST_COUNT: DS 1 ; Test counter variable
 TEST_BYTE: DS 1 ; Test data
 TEST_ADDR: DS 1 ; Test memory location

MYBITS SEGMENT BIT
 RSEG MYBITS

 RW: DBIT 1 ; R/W command bit. 1=READ, 0=WRITE
 SM_BUSY: DBIT 1 ; SMBus Busy flag (kept in software)
 BYTE_SENT: DBIT 1 ; Used to indicate what byte was just sent:
 ; 1: EEPROM memory address sent
 ; 0: Data byte sent

AN113

16 Rev. 1.3

;-------------------
; STACK

STACK SEGMENT IDATA ; declare STACK segment
 RSEG STACK
 DS 80h ; reserve 128 bytes for stack

;--
; RESET and INTERRUPT VECTORS
;--

CSEG

; Reset Vector
 org 00h
 ljmp Reset_Vector

; SMBus Interrupt Vector
 org 03Bh
 ljmp SMBus_ISR

MYCODE SEGMENT CODE
 RSEG MYCODE
 USING 0

;--
; Reset Vector
;
; - Disables Watchdog Timer
; - Routes SDA and SCL to GPIO pins via the crossbar
; - Enables crossbar
; - Jumps to MAIN

Reset_Vector:

 mov WDTCN, #0DEh ; Disable Watchdog Timer
 mov WDTCN, #0ADh

 mov SP, #STACK ; Initialize Stack Pointer

 orl OSCICN, #03h ; Set internal oscillator to highest setting
 ; (16 MHz)

 mov XBR0, #01h ; Route SMBus to GPIO pins through crossbar
 mov XBR2, #40h ; Enable crossbar and weak pull-ups

 ljmp MAIN

;--
; MAIN PROGRAM
;--

MAIN:
 acall SMBus_Init ; Initialize SMBus
 setb EA ; Enable global interrupts

 mov TEST_BYTE, #0ffh ;

AN113

Rev. 1.3 17

 mov TEST_ADDR, #00h ; Load initial test values
 mov TEST_COUNT, #0feh ;

; TEST CODE--

TEST:

 ; Send TEST_BYTE to memory location TEST_ADDR
 mov SLA_ADD, #CHIP_A ; Load slave address
 mov TRANSMIT_BYTE, TEST_BYTE ; Load transmit data into TRANSMIT_BYTE
 mov MEM_ADD, TEST_ADDR ; Load memory address into MEM_ADD
 acall SEND ; Call send routine

 ; Read memory location TEST_ADDR into RECEIVE_BYTE
 mov SLA_ADD, #CHIP_A ; Load slave address
 mov MEM_ADD, TEST_ADDR ; Load memory address into MEM_ADD
 acall RECEIVE ; Call receive routine

 ; Compare byte received to byte sent
 mov A, RECEIVE_BYTE ; Load received byte into accumulator
 cjne A, TEST_BYTE, END_TEST ; Compare sent byte to received byte
 ; Jump to END_TEST if not equal

 ; Change test variables
 dec TEST_BYTE ; If sent=received, change test variables
 inc TEST_ADDR ; and cycle through again.

 ; Cycle through again if TEST_COUNTER not zero
 djnz TEST_COUNT, TEST ; Decrement counter, loop back to beginning
 mov A, #99h ; Load accumulator with 99h if test successful.

END_TEST:

 jmp $; Spin
;---
; SUBROUTINES
;---

;---
; SEND subroutine. Assumes that the slave address, memory location, and transmit
; data have all been loaded into their associated variables. This routine manages
; the SM_BUSY bit, sets RW=WRITE, loads the WRI_ADD, and initiates the transfer.
;
SEND:

 push ACC ; Preserve accumulator
 jb SM_BUSY, $; Wait for SMBus to be free
 clr RW ; RW = 0 (WRITE)

 mov A, SLA_ADD ; Store SLA_ADD + WRITE
 orl A, #WRITE ; in WRI_ADD
 mov WRI_ADD, A ;

 setb SM_BUSY ; Occupy SMBus
 setb STA ; Initiate Transfer
 pop ACC ; Restore accumulator

AN113

18 Rev. 1.3

 ret

;---
; RECEIVE subroutine. Assumes that the slave address and memory location have been
; loaded into their associated variables. This routine manages the SM_BUSY bit, sets
; RW=READ, loads the READ_ADD and WRI_ADD, and initiates the transfer.
;
; Note that the RECEIVE transfer consists of a WRITE of the memory location to be accessed,
; followed by a repeated START and a READ operation. Therefore, both WRI_ADD
; and READ_ADD are used by this routine.
RECEIVE:

 push ACC ; Preserve accumulator
 jb SM_BUSY, $; Wait for SMBus to be free
 setb RW ; RW = 1 (READ)

 mov A, SLA_ADD ; Store SLA_ADD + WRITE
 orl A, #WRITE ; in WRITE_ADD
 mov WRI_ADD, A ;

 mov A, SLA_ADD ; Store SLA_ADD + READ
 orl A, #READ ; in READ_ADD
 mov READ_ADD, A ;

 setb SM_BUSY ; Occupy SMBus
 setb STA ; Initiate Transfer

 jb SM_BUSY, $; Wait for receive to finish
 pop ACC ; Restore accumulator

 ret

;---
; SMBus_Init
; SMbus initialization routine
;

; - Configures and enables the SMBus.
; - Sets SMBus clock rate.
; - Enables SMBus interrupt.
; - Clears SM_Busy flag for first transfer.

SMBus_Init:

 mov SMB0CN, #04h ; Configure SMBus to send ACKs on acknowledge cycle
 mov SMB0CR, #0B0h ; SMBus clock rate = 100KHz, per SMB0CR equation:
 ; SMB0CR = -(SYSCLK)/(2*Fscl)

 orl SMB0CN, #40h ; Enable SMBus

 orl EIE1, #02h ; Enable SMBus interrupts
 clr SM_BUSY

 ret

;--
; INTERRUPT VECTORS
;--

AN113

Rev. 1.3 19

;--
; SMBus ISR
;
; Implemented as a state table lookup, with the SMBus status register as the index.
; SMBus status codes are multiples of 8; thus the status code can be used to index
; program segments that are spaced by 8 bytes. Each ‘org’ command indicates
; a new state, offset from the beginning of the table by its status code value.
;
; Note that only 8 bytes are available to process each state. In the cases where
; more than 8 bytes are necessary, the code jumps to a program location outside
; of the state table. This is only necessary in the state ‘SMB_MTDBACK’.

SMBus_ISR:

 push PSW ;
 push ACC ;
 push DPH ; Resource preservation
 push DPL ;
 push ACC ;

 mov A, SMB0STA ; Load accumulator with current SMBus state.
 ; State corresponds to the address offset
 ; for each state execution

 anl A, #7Fh ; Mask out upper bit, since any states that
 ; set this bit are not defined in this code.

 mov DPTR, #SMB_STATE_TABLE ; Point DPTR to the beginning of the state table
 jmp @A+DPTR ; Jump to the current state

; SMBus State Table--

SMB_STATE_TABLE:

 ; SMB_BUS_ERROR
 ; All Modes: Bus Error
 ; Reset hardware by setting STOP bit
 org SMB_STATE_TABLE + SMB_BUS_ERROR

 setb STO
 jmp SMB_ISR_END ; Jump to exit ISR

 ; SMB_START
 ; Master Transmitter/Receiver: START transmitted.
 ; The R/W bit will always be a zero (W) in this state because
 ; for both write and read, the memory address must first be written.
 org SMB_STATE_TABLE + SMB_START

 mov SMB0DAT, WRI_ADD ; Load slave address + W
 clr STA ; Manually clear START bit
 jmp SMB_ISR_END ; Jump to exit ISR

 ; SMB_RP_START
 ; Master Transmitter/Receiver: Repeated START transmitted.
 ; This state should only occur during a read, after the memory
 ; address has been sent and acknowledged.
 org SMB_STATE_TABLE + SMB_RP_START

AN113

20 Rev. 1.3

 mov SMB0DAT, READ_ADD ; Load slave address + R
 clr STA ; Manually clear START bit
 jmp SMB_ISR_END

 ; SMB_MTADDACK
 ; Master Transmitter: Slave address + WRITE transmitted.
 ; ACK received
 org SMB_STATE_TABLE + SMB_MTADDACK

 mov SMB0DAT, MEM_ADD ; Load memory address
 setb BYTE_SENT ; BYTE_SENT=1: In the next ISR call,
 ; the memory address will have just been
 ; sent.
 jmp SMB_ISR_END

 ; SMB_MTADDNACK
 ; Master Transmitter: Slave address + WRITE transmitted.
 ; NACK received. The slave is not responding. Try again with
 ; acknowledge polling. Send STOP + START.
 org SMB_STATE_TABLE + SMB_MTADDNACK

 setb STO
 setb STA
 jmp SMB_ISR_END

 ; SMB_MTDBACK
 ; Master Transmitter: Data byte transmitted. ACK received.
 ; This state is used in both read and write operations.
 ; Check BYTE_SENT; if 1, memory address has just been sent. Else,
 ; data has been sent.
 org SMB_STATE_TABLE + SMB_MTDBACK

 jbc BYTE_SENT, ADDRESS_SENT ; If BYTE_SENT=1, clear bit and
 ; jump to ADDRESS_SENT to process
 ; outside of state table.

 jmp DATA_SENT ; If BYTE_SENT=0, data has just been sent,
 ; transfer is finished.
 ; jump to end transfer

 ; SMB_MTDBNACK
 ; Master Transmitter: Data byte transmitted. NACK received.
 ; Slave not responding. Send STOP followed by START to try again.
 org SMB_STATE_TABLE + SMB_MTDBNACK

 setb STO
 setb STA
 jmp SMB_ISR_END

 ; SMB_MTARBLOST
 ; Master Transmitter: Arbitration Lost.
 ; Should not occur. If so, restart transfer.
 org SMB_STATE_TABLE + SMB_MTARBLOST

 setb STO
 setb STA
 jmp SMB_ISR_END

AN113

Rev. 1.3 21

 ; SMB_MRADDACK
 ; Master Receiver: Slave address + READ transmitted. ACK received.
 ; Set to transmit NACK after next transfer since it will be the
 ; last (only) byte.
 org SMB_STATE_TABLE + SMB_MRADDACK

 clr AA ; NACK sent on acknowledge cycle
 jmp SMB_ISR_END

 ; SMB_MRADDNACK
 ; Master Receiver: Slave address + READ transmitted. NACK received.
 ; Slave not responding. Send repeated START to try again.
 org SMB_STATE_TABLE + SMB_MRADDNACK

 clr STO
 setb STA
 jmp SMB_ISR_END

 ; SMB_MRDBACK
 ; Master Receiver: Data byte received. ACK transmitted.
 ; Should not occur because AA is cleared in previous state.
 ; Send STOP if state does occur.
 org SMB_STATE_TABLE + SMB_MRDBACK

 setb STO
 jmp SMB_ISR_END

 ; SMB_MRDBNACK
 ; Master Receiver: Data byte received. NACK transmitted.
 ; Read operation completed. Read data register and send STOP
 org SMB_STATE_TABLE + SMB_MRDBNACK

 mov RECEIVE_BYTE, SMB0DAT
 setb STO
 setb AA ; Set AA for next transfer
 clr SM_BUSY
 jmp SMB_ISR_END

; End of State Table--

;---
; Program segment to handle SMBus states that require more than 8 bytes of program
; space.

; Address byte has just been sent. Check RW. If R (1), jump to RW_READ.
; If W, load data to transmit into SMB0DAT.
ADDRESS_SENT:

 jb RW, RW_READ
 mov SMB0DAT, TRANSMIT_BYTE ; Load data
 jmp SMB_ISR_END ; Jump to exit ISR

; Operation is a READ, and the address byte has just been sent. Send
; repeated START to initiate memory read.
RW_READ:

 clr STO
 setb STA ; Send repeated START
 jmp SMB_ISR_END ; Jump to exit ISR

AN113

22 Rev. 1.3

; Operation is a WRITE, and the data byte has just been sent. Transfer
; is finished. Send STOP, free the bus, and exit the ISR.
DATA_SENT:

 setb STO ; Send STOP and exit ISR.
 clr SM_BUSY ; Free SMBus
 jmp SMB_ISR_END ; Jump to exit ISR
;---

; SMBus ISR exit.
; Restore registers, clear SI bit, and return from interrupt.
SMB_ISR_END:

 clr SI
 pop ACC
 pop DPL
 pop DPH
 pop ACC
 pop PSW

 reti

END

AN113

Rev. 1.3 23

//--
//
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// FILE NAME : SMB_Ex2.c
// TARGET DEVICE : C8051F000
// CREATED ON : 2/20/01
// CREATED BY : JS
//
//
// Example code for interfacing a C8051F0xx to three EEPROMs via the SMBus.
// Code assumes that three 16-bit address space EEPROMs are connected
// on the SCL and SDA lines, and configured so that their slave addresses
// are as follows:
// CHIP_A = 1010000
// CHIP_B = 1010001
// CHIP_C = 1010010
//
// Slave and arbitration states are not defined. Assume the CF000 is the only
// master in the system.
// Functions: SM_Send performs a 1-byte write to the specified EEPROM
// SM_Receive performs a 1-byte read of the specified EEPROM address (both include
// memory address references).
//
// Includes test code section.

//--
// Includes
//--
#include <c8051f000.h> // SFR declarations

//--
// Global CONSTANTS
//--

#define WRITE 0x00 // SMBus WRITE command
#define READ 0x01 // SMBus READ command

// Device addresses (7 bits, lsb is a don’t care)
#define CHIP_A 0xA0 // Device address for chip A
#define CHIP_B 0xA2 // Device address for chip B
#define CHIP_C 0xA4 // Device address for chip C

// SMBus states:
// MT = Master Transmitter
// MR = Master Receiver
#define SMB_BUS_ERROR 0x00 // (all modes) BUS ERROR
#define SMB_START 0x08 // (MT & MR) START transmitted
#define SMB_RP_START 0x10 // (MT & MR) repeated START
#define SMB_MTADDACK 0x18 // (MT) Slave address + W transmitted;
 // ACK received
#define SMB_MTADDNACK 0x20 // (MT) Slave address + W transmitted;
 // NACK received
#define SMB_MTDBACK 0x28 // (MT) data byte transmitted; ACK rec’vd
#define SMB_MTDBNACK 0x30 // (MT) data byte transmitted; NACK rec’vd
#define SMB_MTARBLOST 0x38 // (MT) arbitration lost
#define SMB_MRADDACK 0x40 // (MR) Slave address + R transmitted;
 // ACK received
#define SMB_MRADDNACK 0x48 // (MR) Slave address + R transmitted;

AN113

24 Rev. 1.3

 // NACK received
#define SMB_MRDBACK 0x50 // (MR) data byte rec’vd; ACK transmitted
#define SMB_MRDBNACK 0x58 // (MR) data byte rec’vd; NACK transmitted

//---
//Global VARIABLES
//---
char COMMAND; // Holds the slave address + R/W bit for
 // use in the SMBus ISR.

char WORD; // Holds data to be transmitted by the SMBus
 // OR data that has just been received.

char BYTE_NUMBER; // Used by ISR to check what data has just been
 // sent - High address byte, Low byte, or data
 // byte

unsigned char HIGH_ADD, LOW_ADD; // High & Low byte for EEPROM memory address

bit SM_BUSY; // This bit is set when a send or receive
 // is started. It is cleared by the
 // ISR when the operation is finished.

//--
// Function PROTOTYPES
//--

void SMBus_ISR (void);
void SM_Send (char chip_select, unsigned int byte_address, char out_byte);
char SM_Receive (char chip_select, unsigned int byte_address);

//--
// MAIN Routine
//--
//
// Main routine configures the crossbar and SMBus, and tests
// the SMBus interface between the three EEPROMs
void main (void)
{
 unsigned char check; // Used for testing purposes

 WDTCN = 0xde; // disable watchdog timer
 WDTCN = 0xad;

 OSCICN |= 0x03; // Set internal oscillator to highest setting
 // (16 MHz)

 XBR0 = 0x01; // Route SMBus to GPIO pins through crossbar
 XBR2 = 0x40; // Enable crossbar and weak pull-ups

 SMB0CN = 0x44; // Enable SMBus with ACKs on acknowledge
 // cycle
 SMB0CR = -80; // SMBus clock rate = 100kHz.

 EIE1 |= 2; // SMBus interrupt enable
 EA = 1; // Global interrupt enable

AN113

Rev. 1.3 25

 SM_BUSY = 0; // Free SMBus for first transfer.

// TEST CODE---
 SM_Send(CHIP_A, 0x0088, 0x53); // Send 0x53(data) to address 0x88 on CHIP_A
 SM_Send(CHIP_B, 0x0001, 0x66); // Send 0x66(data) to address 0x01 on CHIP_B
 SM_Send(CHIP_C, 0x0010, 0x77);
 SM_Send(CHIP_B, 0x0333, 0xF0);
 SM_Send(CHIP_A, 0x0242, 0xF0);

 check = SM_Receive(CHIP_A, 0x0088); // Read address 0x88 on CHIP_A
 check = SM_Receive(CHIP_B, 0x0001); // Read address 0x01 on CHIP_B
 check = SM_Receive(CHIP_C, 0x0010);
 check = SM_Receive(CHIP_B, 0x0333);
 check = SM_Receive(CHIP_A, 0x0242);
// END TEST CODE---

}

// SMBus byte write function---
// Writes a single byte at the specified memory location.
//
// out_byte = data byte to be written
// byte_address = memory location to be written into (2 bytes)
// chip_select = device address of EEPROM chip to be written to
void SM_Send (char chip_select, unsigned int byte_address, char out_byte)
{
 while (SM_BUSY); // Wait for SMBus to be free.
 SM_BUSY = 1; // Occupy SMBus (set to busy)
 SMB0CN = 0x44; // SMBus enabled,
 // ACK on acknowledge cycle

 BYTE_NUMBER = 2; // 2 address bytes.
 COMMAND = (chip_select | WRITE); // Chip select + WRITE

 HIGH_ADD = ((byte_address >> 8) & 0x00FF);// Upper 8 address bits
 LOW_ADD = (byte_address & 0x00FF); // Lower 8 address bits

 WORD = out_byte; // Data to be writen

 STO = 0;
 STA = 1; // Start transfer

}

// SMBus random read function--
// Reads 1 byte from the specified memory location.
//
// byte_address = memory address of byte to read
// chip_select = device address of EEPROM to be read from
char SM_Receive (char chip_select, unsigned int byte_address)
{
 while (SM_BUSY); // Wait for bus to be free.
 SM_BUSY = 1; // Occupy SMBus (set to busy)
 SMB0CN = 0x44; // SMBus enabled, ACK on acknowledge cycle

 BYTE_NUMBER = 2; // 2 address bytes
 COMMAND = (chip_select | READ); // Chip select + READ

AN113

26 Rev. 1.3

 HIGH_ADD = ((byte_address >> 8) & 0x00FF);// Upper 8 address bits
 LOW_ADD = (byte_address & 0x00FF); // Lower 8 address bits

 STO = 0;
 STA = 1; // Start transfer
 while (SM_BUSY); // Wait for transfer to finish
 return WORD;
}

//--
// Interrupt Service Routine
//--

// SMBus interrupt service routine:

void SMBUS_ISR (void) interrupt 7
{
 switch (SMB0STA){ // Status code for the SMBus (SMB0STA register)

 // Master Transmitter/Receiver: START condition transmitted.
 // The R/W bit of the COMMAND word sent after this state will
 // always be a zero (W) because for both read and write,
 // the memory address must be written first.
 case SMB_START:
 SMB0DAT = (COMMAND & 0xFE); // Load address of the slave to be accessed.
 STA = 0; // Manually clear START bit
 break;

 // Master Transmitter/Receiver: Repeated START condition transmitted.
 // This state should only occur during a read, after the memory address has been
 // sent and acknowledged.
 case SMB_RP_START:
 SMB0DAT = COMMAND; // COMMAND should hold slave address + R.
 STA = 0;
 break;

 // Master Transmitter: Slave address + WRITE transmitted. ACK received.
 case SMB_MTADDACK:
 SMB0DAT = HIGH_ADD; // Load high byte of memory address
 // to be written.
 break;

 // Master Transmitter: Slave address + WRITE transmitted. NACK received.
 // The slave is not responding. Send a STOP followed by a START to try again.
 case SMB_MTADDNACK:
 STO = 1;
 STA = 1;
 break;

 // Master Transmitter: Data byte transmitted. ACK received.
 // This state is used in both READ and WRITE operations. Check BYTE_NUMBER
 // for memory address status - if only HIGH_ADD has been sent, load LOW_ADD.
 // If LOW_ADD has been sent, check COMMAND for R/W value to determine
 // next state.
 case SMB_MTDBACK:
 switch (BYTE_NUMBER){

AN113

Rev. 1.3 27

 case 2: // If BYTE_NUMBER=2, only HIGH_ADD
 SMB0DAT = LOW_ADD; // has been sent.
 BYTE_NUMBER--; // Decrement for next time around.
 break;
 case 1: // If BYTE_NUMBER=1, LOW_ADD was just sent.
 if (COMMAND & 0x01){ // If R/W=READ, sent repeated START.
 STO = 0;
 STA = 1;

 } else {
 SMB0DAT = WORD; // If R/W=WRITE, load byte to write.
 BYTE_NUMBER--;
 }
 break;
 default: // If BYTE_NUMBER=0, transfer is finished.
 STO = 1;
 SM_BUSY = 0; // Free SMBus
 }
 break;

 // Master Transmitter: Data byte transmitted. NACK received.
 // Slave not responding. Send STOP followed by START to try again.
 case SMB_MTDBNACK:
 STO = 1;
 STA = 1;
 break;

 // Master Transmitter: Arbitration lost.
 // Should not occur. If so, restart transfer.
 case SMB_MTARBLOST:
 STO = 1;
 STA = 1;
 break;

 // Master Receiver: Slave address + READ transmitted. ACK received.
 // Set to transmit NACK after next transfer since it will be the last (only)
 // byte.
 case SMB_MRADDACK:
 AA = 0; // NACK sent on acknowledge cycle.
 break;

 // Master Receiver: Slave address + READ transmitted. NACK received.
 // Slave not responding. Send repeated start to try again.
 case SMB_MRADDNACK:
 STO = 0;
 STA = 1;
 break;

 // Data byte received. ACK transmitted.
 // State should not occur because AA is set to zero in previous state.
 // Send STOP if state does occur.
 case SMB_MRDBACK:
 STO = 1;
 SM_BUSY = 0;
 break;

 // Data byte received. NACK transmitted.
 // Read operation has completed. Read data register and send STOP.

AN113

28 Rev. 1.3

 case SMB_MRDBNACK:
 WORD = SMB0DAT;
 STO = 1;
 SM_BUSY = 0; // Free SMBus
 break;

 // All other status codes meaningless in this application. Reset communication.
 default:
 STO = 1; // Reset communication.
 SM_BUSY = 0;
 break;
 }

 SI=0; // clear interrupt flag
}

AN113

Rev. 1.3 29

//--
//
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// FILE NAME : SMB_Ex3.c
// TARGET DEVICE : C8051F000
// CREATED ON : 2/20/01
// CREATED BY : JS
//
// Example code to demonstrate the use of the SMBus interface between two CF000 devices.
// The devices operate in a peer-to-peer configuration.
//
// Demonstration includes use of op codes for each device to command the other to:
//
// 1) Write a byte to DAC0
// 2) Write a byte to a data buffer
// 3) Perform an ADC conversion
// 4) Read a byte from a data buffer
//
// These op codes are can be tested easily if each chip has DAC0 routed to AIN0.
// With this configuration, a READ_ADC command can be used to test the output
// of a WRITE_DAC command.
//
// Code assumes that two CF0xx devices are connected via SCL and SDA, with
// slave addresses (held by register SMB0ADR)
// CHIP_A = 1111000
// CHIP_B = 1110000
//
// Test code is included. For testing purposes, the test code should be omitted
// in one device, and run in the other. This can be accomplished by commenting
// the OP_CODE_HANDLER() call before the test code in the device that will assume
// the master role.
//
// PLEASE NOTE that the constant MY_ADD must correspond with the
// current device - change it to CHIP_B when downloading code to CHIP_B.
//
//--

//--
// Includes
//--
#include <c8051f000.h> // SFR declarations
//--
// Global CONSTANTS
//--

#define WRITE 0x00 // WRITE direction bit
#define READ 0x01 // READ direction bit

// Device addresses
#define CHIP_A 0xF0
#define CHIP_B 0xE0
#define MY_ADD CHIP_A // Corresponds to the chip currently
 // being programmed.

// Peer-to-Peer OP_CODEs
#define READ_ADC 0x01 // OP_CODE to read from slave ADC
#define WRITE_DAC 0x02 // OP_CODE to write to slave DAC

AN113

30 Rev. 1.3

#define WRITE_BUF 0x03 // OP_CODE to write to slave buffer
#define READ_BUF 0x04 // OP_CODE to read from slave buffer

//SMBus states:
// MT = Master Transmitter
// MR = Master Receiver
// ST = Slave Transmitter
// SR = Slave Receiver

#define SMB_BUS_ERROR 0x00 // (all modes) BUS ERROR
#define SMB_START 0x08 // (MT & MR) START transmitted
#define SMB_RP_START 0x10 // (MT & MR) repeated START
#define SMB_MTADDACK 0x18 // (MT) Slave address + W transmitted;
 // ACK received
#define SMB_MTADDNACK 0x20 // (MT) Slave address + W transmitted;
 // NACK received
#define SMB_MTDBACK 0x28 // (MT) data byte transmitted; ACK rec’vd
#define SMB_MTDBNACK 0x30 // (MT) data byte transmitted; NACK rec’vd
#define SMB_MTARBLOST 0x38 // (MT) arbitration lost
#define SMB_MRADDACK 0x40 // (MR) Slave address + R transmitted;
 // ACK received
#define SMB_MRADDNACK 0x48 // (MR) Slave address + R transmitted;
 // NACK received
#define SMB_MRDBACK 0x50 // (MR) data byte rec’vd; ACK transmitted
#define SMB_MRDBNACK 0x58 // (MR) data byte rec’vd; NACK transmitted
#define SMB_SROADACK 0x60 // (SR) SMB’s own slave address + W rec’vd;
 // ACK transmitted
#define SMB_SROARBLOST 0x68 // (SR) SMB’s own slave address + W rec’vd;
 // arbitration lost
#define SMB_SRGADACK 0x70 // (SR) general call address rec’vd;
 // ACK transmitted
#define SMB_SRGARBLOST 0x78 // (SR) arbitration lost when transmitting
 // slave addr + R/W as master; general
 // call address rec’vd; ACK transmitted
#define SMB_SRODBACK 0x80 // (SR) data byte received under own slave
 // address; ACK returned
#define SMB_SRODBNACK 0x88 // (SR) data byte received under own slave
 // address; NACK returned
#define SMB_SRGDBACK 0x90 // (SR) data byte received under general
 // call address; ACK returned
#define SMB_SRGDBNACK 0x98 // (SR) data byte received under general
 // call address; NACK returned
#define SMB_SRSTOP 0xa0 // (SR) STOP or repeated START received
 // while addressed as a slave
#define SMB_STOADACK 0xa8 // (ST) SMB’s own slave address + R rec’vd;
 // ACK transmitted
#define SMB_STOARBLOST 0xb0 // (ST) arbitration lost in transmitting
 // slave address + R/W as master; own
 // slave address rec’vd; ACK transmitted
#define SMB_STDBACK 0xb8 // (ST) data byte transmitted; ACK rec’ed
#define SMB_STDBNACK 0xc0 // (ST) data byte transmitted; NACK rec’ed
#define SMB_STDBLAST 0xc8 // (ST) last data byte transmitted (AA=0);
 // ACK received
#define SMB_SCLHIGHTO 0xd0 // (ST & SR) SCL clock high timer per
 // SMB0CR timed out (FTE=1)
#define SMB_IDLE 0xf8 // (all modes) Idle

//---

AN113

Rev. 1.3 31

//Global VARIABLES
//---

char COMMAND; // Holds the slave address + R/W bit for
 // use in the SMBus ISR.

char WORD; // Holds data to be transmitted by the SMBus
 // OR data that has just been received.

char OP_CODE; // Holds an op code to be sent or one
 // that has just been received.

char LOST_COMMAND, LOST_WORD, LOST_CODE; // Used to hold relevant data after a
 // lost arbitration.

char DATA_BUF[16]; // Data buffer accessed by OP_CODE_HANDLER

bit LOST; // Arbitration lost flag, set when
 // arbitration is lost while in master mode.
 // Used to resume a failed transfer.

bit SM_BUSY; // This bit is set when a send or receive
 // is started. It is cleared by the
 // ISR when the operation is finished.

bit VALID_OP; // Flag used to determine if byte received
 // as a slave is an OP_CODE or data.

bit DATA_READY; // Used by OP_CODE handler to flag when
 // valid data has been received from the
 // master

//--
// Function PROTOTYPES
//--

void SMBUS_ISR (void);
char SLA_READ(char chip_select, char out_op);
void SLA_SEND(char chip_select, char out_op, char out_data);
void OP_CODE_HANDLER(void);

//--
// MAIN Routine
//--

void MAIN (void)
{
 char i, check_1, check_2; // Variables used for testing purposes only.

 WDTCN = 0xde; // disable watchdog timer
 WDTCN = 0xad;

 XBR0 = 0x01; // Route SMBus to GPIO pins through crossbar
 XBR2 = 0x40; // Enable crossbar and weak pull-ups

 SMB0CN = 0x44; // Enable SMBus with acknowledge low (AA = 1)
 SMB0CR = -80; // SMBus clock rate = 100 kHz
 SMB0ADR = MY_ADD; // Set own slave address.

AN113

32 Rev. 1.3

 ADC0CN = 0x80; // Enable ADC, conversions to start with
 // write to ADBUSY.

 ADC0CN |= 0x01; // ADC data registers left-justified.

 DAC0CN = 0x84; // enable DAC0, with left justified data
 // registers.

 REF0CN = 0x03; // reference voltage enabled.

 EIE1 |= 2; // SMBus interrupt enable
 EA = 1; // Global interrupt enable

 SM_BUSY = 0; // Free bus for first transfer.
 SI = 0; //

// OP_CODE_HANDLER(); // This line should be commented in only
 // one of the two peer devices. It is
 // for testing purposes only.
 // In a normal setup, the OP_CODE_HANDLER
 // would be running at all times in order
 // to react to OP_CODES being sent to the
 // device.

// TEST CODE--
// This code is used only to test the interface between the two devices. If
// the above OP_CODE_HANDLER line is commented out, this device assumes the master
// role. The other device should be running the OP_CODE_HANDLER at all times, to
// respond to the OP_CODEs below.

 SLA_SEND(CHIP_B, (0x40 | WRITE_BUF), 0x24); // Write to index 4
 // in the data buffer
 SLA_SEND(CHIP_B, (0x60 | WRITE_BUF), 0x25); // Write to index 6
 SLA_SEND(CHIP_B, (0x80 | WRITE_BUF), 0x26); // Write to index 8
 SLA_SEND(CHIP_B, (0x10 | WRITE_BUF), 0x27); // Write to index 1

 check_1 = SLA_READ(CHIP_B, (0x40 | READ_BUF)); // Read index 4 from the buffer
 check_1 = SLA_READ(CHIP_B, (0x60 | READ_BUF)); // Read index 6
 check_1 = SLA_READ(CHIP_B, (0x80 | READ_BUF)); // Read index 8
 check_1 = SLA_READ(CHIP_B, (0x10 | READ_BUF)); // Read index 1

// Loop to continuously increase the DAC output on CHIP_B, and read its
// ADC each round. DAC output on CHIP_B should ramp.

 for (i=0;i<50;i++){
 SLA_SEND(CHIP_B, WRITE_DAC, 2*i); // Write 2*i to DAC0 on CHIP_B
 check_1 = SLA_READ(CHIP_B, READ_ADC); // Read AIN0 on CHIP_B
 check_2 = 2*i;} // check_1 should be approximately
 // the same as check_2.
// END TEST CODE--

}

//--
// Functions
//--

// Send to slave.

AN113

Rev. 1.3 33

// The send function transmits two bytes to the slave device: an op code, and a data
// byte. There are two op code choices for sending data: WRITE_DAC and WRITE_BUF.
// If the op code is WRITE_BUF, then the upper 4 bits of the op code should contain
// the buffer index. For example, to write to index 2 of the data buffer, the
// op_code parameter should be (0x20 | WRITE_BUF).
//
// chip_select = address of slave device.
// out_op = OP_CODE to be sent.
// out_data = data byte to be sent.
void SLA_SEND(char chip_select, char out_op, char out_data){

 while(SM_BUSY); // Wait while SMBus is busy.
 SM_BUSY = 1; // SMBus busy flag set.
 SMB0CN = 0x44; // SMBus enabled, ACK low.
 COMMAND = (chip_select | WRITE); // COMMAND = 7 address bits + WRITE.
 OP_CODE = out_op; // WORD = OP_CODE to be transmitted.
 WORD = out_data; // DATA = data to be transmitted.
 STO = 0;
 STA = 1; // Start transfer.

}

// Read from slave.
// The read function transmits a 1-byte op code, then issues a repeated start
// to request a 1-byte read. The two op code choices are READ_ADC and READ_BUF.
// If the op code is READ_BUF, then the upper 4 bits of the op code should
// contain the buffer index. For example, to read index 5 of the data buffer,
// the op code should be (0x50 | READ_BUF).
//
// chip_select = address of slave device.
// out_op = OP_CODE to be sent.
char SLA_READ(char chip_select, char out_op){

 while(SM_BUSY); // Wait while SMBus is busy.
 SM_BUSY = 1; // Set busy flag.
 SMB0CN = 0x44; // Enable SMBus, ACK low.
 COMMAND = (chip_select | READ); // COMMAND = 7 address bits + READ
 OP_CODE = out_op;
 STO = 0;
 STA = 1; // Start transfer.
 while(SM_BUSY); // Wait for transfer to finish.
 return WORD; // Return received word.

}

// OP_CODE handler.
// Decodes incoming op codes and performs tasks according to those op codes.
// A call to this function runs forever.
//
// The VALID_OP bit flags when a valid op code has been received. Upon receipt,
// the handler decodes the op code, performs the task, then clears
// VALID_OP to wait for another code.
void OP_CODE_HANDLER(void){

 char index; // data buffer index
 while (1){ // run forever
 VALID_OP = 0; // Wait for a valid OP_CODE
 while (!VALID_OP); //

AN113

34 Rev. 1.3

 // The lower 4 bits of the OP_CODE are used to determine the action, while the
 // upper 4 bits are used to index the DATA_BUF array when the READ_BUF or
 // WRITE_BUF OP_CODEs are received. Note that the SMBus is stalled until the
 // OP_CODE is decoded.
 switch (OP_CODE & 0x0F){ // Decode OP_CODE

 // OP_CODE = READ_ADC - Perform an ADC conversion, and place data in
 // output buffer.
 // Read only ADC high byte.
 case READ_ADC:
 SI = 0; // Free the bus
 AA = 0; // Take slave ‘offline’
 ADCINT = 0; // Clear ADC interrupt flag.
 ADBUSY = 1; // Start conversion.
 while (!ADCINT); // Wait for conversion to finish.
 WORD = ADC0H; // Put data in output buffer.
 AA = 1; // Put slave back ‘online’
 VALID_OP = 0; // Look for a new OP_CODE
 break;

 // OP_CODE = WRITE_DAC - Wait for a valid data byte, and write it to high
 // byte of DAC0.
 case WRITE_DAC:
 SI = 0; // Free the bus
 DATA_READY = 0; // Wait for valid data.
 while (!DATA_READY); //
 DAC0L = 0; // DAC low byte
 DAC0H = WORD; // DAC high byte
 VALID_OP = 0; // Look for new OP_CODE
 SI = 0; // Free bus when finished.
 break;

 // OP_CODE = WRITE_BUF - Wait for valid data byte, then place data in
 // DATA_BUF array. Index data according to upper 4 bits of OP_CODE.
 case WRITE_BUF:
 SI = 0; // Free the bus
 index = (OP_CODE & 0xF0); // Use upper 4 bits as array index.
 DATA_READY = 0; // Wait for valid data.
 while (!DATA_READY); //
 DATA_BUF[index] = WORD; // Store data in array.
 VALID_OP = 0; // Look for new OP_CODE
 SI = 0; // Free the bus when finished.
 break;

 // OP_CODE = READ_BUF - Read DATA_BUF array and place byte in output buffer.
 // Array index determined by upper 4 bits of OP_CODE.
 case READ_BUF:
 index = (OP_CODE & 0xF0); // Use upper 4 bits as array index.
 WORD = DATA_BUF[index]; // Place indexed data in output buffer.
 VALID_OP = 0; // Look for new OP_CODE
 SI = 0; // Free the bus when finished.
 break;
 }

 if (LOST){ // If LOST is set, the device has recently
 COMMAND = LOST_COMMAND; // lost an arbitration. Load saved values
 WORD = LOST_WORD; // back into transfer variables, and retry
 OP_CODE = LOST_CODE; // transfer.

AN113

Rev. 1.3 35

 LOST = 0;
 STO = 0;
 STA = 1;
 }
 }
}

//--
// SMBus Interrupt Service Routine
//--

void SMBUS_ISR (void) interrupt 7
{
 switch (SMB0STA){ // Status code for the SMBus
 // (SMB0STA register)

 // Master Transmitter/Receiver: START condition transmitted.
 // Load SMB0DAT with slave device address. Mask out R/W bit since all transfers
 // start with an OP_CODE write.
 case SMB_START:
 SMB0DAT = (COMMAND & 0xFE); // Load address of the slave to be accessed.
 // Mask out R/W bit because first transfer
 // will always be a write of the OP_CODE.
 STA = 0; // Manually clear STA bit
 SI = 0; // Clear interrupt flag
 break;

 // Master Transmitter/Receiver: Repeated START condition transmitted.
 // This state only occurs during a READ, after the OP_CODE has been sent. Load
 // device address + READ into SMB0DAT.
 case SMB_RP_START:
 SMB0DAT = COMMAND;
 STA = 0; // Manually clear START bit.
 SI = 0;
 break;

 // Master Transmitter: Slave address + WRITE transmitted. ACK received.
 // Load OP_CODE into SMB0DAT.
 case SMB_MTADDACK:
 SMB0DAT = OP_CODE;
 SI = 0; // Clear interrupt flag
 break;

 // Master Transmitter: Slave address + WRITE transmitted. NACK received.
 // The slave is not responding. Use ACK polling to retry.
 case SMB_MTADDNACK:
 STO = 1;
 STA = 1;
 SI = 0; // Clear interrupt flag
 break;

 // Master Transmitter: Data byte transmitted. ACK received.
 // Check OP_CODE - If it is a READ code, send repeated START to begin
 // read. If it is a WRITE code, load WORD into SMB0DAT for transfer.
 // If it is not a valid code, then either 1) data has been transmitted
 // and the transfer is finished, or 2) there is an error. In either case,
 // send STOP and end transfer.

AN113

36 Rev. 1.3

 case SMB_MTDBACK:
 switch (OP_CODE & 0x0F){ // Check only lower 4 bits.

 // OP_CODE is a READ. Send repeated START.
 case READ_BUF:
 case READ_ADC:
 OP_CODE = 0; // Current OP_CODE no longer useful
 STO = 0;
 STA = 1;
 break;

 // OP_CODE is a WRITE. Load output data into SMB0DAT.
 case WRITE_BUF:
 case WRITE_DAC:
 SMB0DAT = WORD;
 OP_CODE = 0; // Clear OP_CODE so transfer ends the next
 break; // time this state occurs
 // (after data is sent).

 default: // No valid OP_CODE. End transfer.
 STO = 1;
 SM_BUSY = 0;
 break;
 }
 SI = 0;
 break;

 // Master Transmitter: Data byte transmitter. NACK received.
 // Use ACK polling to retry transfer.
 case SMB_MTDBNACK:
 STO = 1;
 STA = 1;
 SI = 0; // Clear interrupt flag
 break;

 // Master Transmitter: Arbitration lost.
 case SMB_MTARBLOST:
 LOST_COMMAND = COMMAND; //
 LOST_WORD = WORD; // Store variables for use when bus is free.
 LOST_CODE = OP_CODE; //

 LOST = 1; // Set flag to retry transfer
 // when bus is free.
 SI = 0; // Clear interrupt flag
 break;

 // Master Receiver: Slave address + READ transmitted. ACK received.
 // Set to transmit NACK after next transfer since it will be the
 // last (only) byte.
 case SMB_MRADDACK:
 AA = 0; // NACK sent during acknowledge cycle.
 SI = 0;
 break;

 // Master Receiver: Slave address + READ transmitted. NACK received.
 // Slave not responding. Send repeated START to try again.
 case SMB_MRADDNACK:
 STO = 0;
 STA = 1;

AN113

Rev. 1.3 37

 SI = 0;
 break;

 // Master Receiver: Data byte received. ACK transmitted.
 // State should not occur because AA is cleared in previous state.
 // Send STOP if state does occur.
 case SMB_MRDBACK:
 STO = 1;
 SM_BUSY = 0;
 SI = 0;
 break;

 // Master Receiver: Data byte received. NACK transmitted.
 // Read operation has completed. Read data register and send STOP.
 case SMB_MRDBNACK:
 WORD = SMB0DAT;
 STO = 1;
 SM_BUSY = 0;
 AA = 1; // Set AA for next transfer
 SI = 0;
 break;

 // Slave Receiver: Arbitration lost, general call address received.
 // Set LOST flag to retry transfer when bus is free. Fall through.
 case SMB_SRGARBLOST:

 // Slave Receiver: Arbitration lost, own slave address + WRITE received.
 // Set LOST flag to retry transfer when bus is free.
 // Set STO bit to get out of master mode.
 case SMB_SROARBLOST:
 LOST_COMMAND = COMMAND; //
 LOST_WORD = WORD; // Store variables for use when bus is free.
 LOST_CODE = OP_CODE; //
 LOST = 1; // Retry transfer when bus is free.
 SI = 0;
 break;

 // Slave Receiver: Slave address + WRITE received. ACK transmitted.
 // Fall through.
 case SMB_SROADACK:

 // Slave Receiver: General call address received. ACK transmitted.
 case SMB_SRGADACK:
 SI = 0;
 break;

 // Slave Receiver: Data byte received after addressed by general
 // call address + WRITE.
 // ACK transmitted. Fall through.
 case SMB_SRGDBACK:

 // Slave Receiver: Data byte received after addressed by own
 // slave address + WRITE.
 // ACK transmitted.
 // Take action depending on OP_CODE or data received.
 case SMB_SRODBACK:
 if (!VALID_OP){ // if VALID_OP=0, this byte is an OP_CODE.
 OP_CODE = SMB0DAT; // Store OP_CODE
 VALID_OP = 1; // Next byte is not an OP_CODE

AN113

38 Rev. 1.3

 } else {
 DATA_READY = 1; // Valid data has been received. Process
 // in OP_CODE handler.
 WORD = SMB0DAT;
 SI = 0;
 }
 break;

 // Slave Receiver: Data byte received while addressed as slave.
 // NACK transmitted. Should not occur since AA will not be cleared
 // as slave. Fall through to next state.
 case SMB_SRODBNACK:

 // Slave Receiver: Data byte received while addressed by general call.
 // NACK transmitted.
 // Should not occur since AA will not be cleared as slave.
 case SMB_SRGDBNACK:
 AA = 1;
 SI = 0;
 break;

 // Slave Receiver: STOP or repeated START received while addressed as slave.
 case SMB_SRSTOP:
 SI = 0;
 break;

 // Slave Transmitter: Own slave address + READ received. ACK transmitted.
 // Load SMB0DAT with data to be output.
 case SMB_STOADACK:
 SMB0DAT = WORD;
 SI = 0;
 break;

 // Slave Transmitter: Arbitration lost as master. Own address + READ received.
 // ACK transmitted.
 case SMB_STOARBLOST:
 LOST_COMMAND = COMMAND; //
 LOST_WORD = WORD; // Store variables for use when bus
 LOST_CODE = OP_CODE; // is free.
 LOST = 1; // Retry when bus is free.

 SI = 0;
 break;

 // Slave Transmitter: Data byte transmitted. ACK received. Fall through.
 case SMB_STDBACK:

 // Slave Transmitter: Data byte transmitted. NACK received. Fall through.
 case SMB_STDBNACK:

 // Slave Transmitter: Last data byte transmitted. ACK received.
 // No action necessary.
 case SMB_STDBLAST:
 SI = 0;
 break;

 // All other status codes invalid. Reset communication.
 default:
 STO = 1;

AN113

Rev. 1.3 39

 SM_BUSY = 0;
 break;
 }

}

AN113

40 Rev. 1.3

Software Example for the C8051F02x series
//--
//
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// FILE NAME : SMB_Ex3.c
// TARGET DEVICE : C8051F020
// CREATED ON : 6/5/02
// CREATED BY : JS / FB
//
// Example code to demonstrate the use of the SMBus interface between two CF000 devices.
// The devices operate in a peer-to-peer configuration.
//
// Demonstration includes use of op codes for each device to command the other to:
//
// 1) Write a byte to DAC0
// 2) Write a byte to a data buffer
// 3) Perform an ADC conversion
// 4) Read a byte from a data buffer
//
// These op codes are can be tested easily if each chip has DAC0 routed to AIN0.
// With this configuration, a READ_ADC command can be used to test the output
// of a WRITE_DAC command.
//
// Code assumes that two CF0xx devices are connected via SCL and SDA, with
// slave addresses (held by register SMB0ADR)
// CHIP_A = 1111000
// CHIP_B = 1110000
//
// Test code is included. For testing purposes, the test code should be omitted
// in one device, and run in the other. This can be accomplished by commenting
// the OP_CODE_HANDLER() call before the test code in the device that will assume
// the master role.
//
// PLEASE NOTE that the constant MY_ADD must correspond with the
// current device - change it to CHIP_B when downloading code to CHIP_B.
//
//--

//---
// Includes
//---
#include <c8051f020.h> // SFR declarations

//---
// 16-bit SFR Definitions for ‘F02x
//---
sfr16 DP = 0x82; // data pointer
sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 TMR3 = 0x94; // Timer3 counter
sfr16 ADC0 = 0xbe; // ADC0 data
sfr16 ADC0GT = 0xc4; // ADC0 greater than window
sfr16 ADC0LT = 0xc6; // ADC0 less than window
sfr16 RCAP2 = 0xca; // Timer2 capture/reload
sfr16 T2 = 0xcc; // Timer2
sfr16 RCAP4 = 0xe4; // Timer4 capture/reload

AN113

Rev. 1.3 41

sfr16 T4 = 0xf4; // Timer4
sfr16 DAC0 = 0xd2; // DAC0 data
sfr16 DAC1 = 0xd5; // DAC1 data

//--
// Global CONSTANTS
//--

#define WRITE 0x00 // WRITE direction bit
#define READ 0x01 // READ direction bit

// Device addresses
#define CHIP_A 0xF0
#define CHIP_B 0xE0
#define MY_ADD CHIP_A // Corresponds to the chip currently
 // being programmed.

// Peer-to-Peer OP_CODEs
#define READ_ADC 0x01 // OP_CODE to read from slave ADC
#define WRITE_DAC 0x02 // OP_CODE to write to slave DAC
#define WRITE_BUF 0x03 // OP_CODE to write to slave buffer
#define READ_BUF 0x04 // OP_CODE to read from slave buffer

//SMBus states:
// MT = Master Transmitter
// MR = Master Receiver
// ST = Slave Transmitter
// SR = Slave Receiver

#define SMB_BUS_ERROR 0x00 // (all modes) BUS ERROR
#define SMB_START 0x08 // (MT & MR) START transmitted
#define SMB_RP_START 0x10 // (MT & MR) repeated START
#define SMB_MTADDACK 0x18 // (MT) Slave address + W transmitted;
 // ACK received
#define SMB_MTADDNACK 0x20 // (MT) Slave address + W transmitted;
 // NACK received
#define SMB_MTDBACK 0x28 // (MT) data byte transmitted; ACK rec’vd
#define SMB_MTDBNACK 0x30 // (MT) data byte transmitted; NACK rec’vd
#define SMB_MTARBLOST 0x38 // (MT) arbitration lost
#define SMB_MRADDACK 0x40 // (MR) Slave address + R transmitted;
 // ACK received
#define SMB_MRADDNACK 0x48 // (MR) Slave address + R transmitted;
 // NACK received
#define SMB_MRDBACK 0x50 // (MR) data byte rec’vd; ACK transmitted
#define SMB_MRDBNACK 0x58 // (MR) data byte rec’vd; NACK transmitted
#define SMB_SROADACK 0x60 // (SR) SMB’s own slave address + W rec’vd;
 // ACK transmitted
#define SMB_SROARBLOST 0x68 // (SR) SMB’s own slave address + W rec’vd;
 // arbitration lost
#define SMB_SRGADACK 0x70 // (SR) general call address rec’vd;
 // ACK transmitted
#define SMB_SRGARBLOST 0x78 // (SR) arbitration lost when transmitting
 // slave addr + R/W as master; general
 // call address rec’vd; ACK transmitted
#define SMB_SRODBACK 0x80 // (SR) data byte received under own slave
 // address; ACK returned
#define SMB_SRODBNACK 0x88 // (SR) data byte received under own slave
 // address; NACK returned
#define SMB_SRGDBACK 0x90 // (SR) data byte received under general

AN113

42 Rev. 1.3

 // call address; ACK returned
#define SMB_SRGDBNACK 0x98 // (SR) data byte received under general
 // call address; NACK returned
#define SMB_SRSTOP 0xa0 // (SR) STOP or repeated START received
 // while addressed as a slave
#define SMB_STOADACK 0xa8 // (ST) SMB’s own slave address + R rec’vd;
 // ACK transmitted
#define SMB_STOARBLOST 0xb0 // (ST) arbitration lost in transmitting
 // slave address + R/W as master; own
 // slave address rec’vd; ACK transmitted
#define SMB_STDBACK 0xb8 // (ST) data byte transmitted; ACK rec’ed
#define SMB_STDBNACK 0xc0 // (ST) data byte transmitted; NACK rec’ed
#define SMB_STDBLAST 0xc8 // (ST) last data byte transmitted (AA=0);
 // ACK received
#define SMB_SCLHIGHTO 0xd0 // (ST & SR) SCL clock high timer per
 // SMB0CR timed out (FTE=1)
#define SMB_IDLE 0xf8 // (all modes) Idle

//---
//Global VARIABLES
//---

char COMMAND; // Holds the slave address + R/W bit for
 // use in the SMBus ISR.

char WORD; // Holds data to be transmitted by the SMBus
 // OR data that has just been received.

char OP_CODE; // Holds an op code to be sent or one
 // that has just been received.

char LOST_COMMAND, LOST_WORD, LOST_CODE; // Used to hold relevant data after a
 // lost arbitration.

char DATA_BUF[16]; // Data buffer accessed by OP_CODE_HANDLER

bit LOST; // Arbitration lost flag, set when
 // arbitration is lost while in master mode.
 // Used to resume a failed transfer.

bit SM_BUSY; // This bit is set when a send or receive
 // is started. It is cleared by the
 // ISR when the operation is finished.

bit VALID_OP; // Flag used to determine if byte received
 // as a slave is an OP_CODE or data.

bit DATA_READY; // Used by OP_CODE handler to flag when
 // valid data has been received from the
 // master

//--
// Function PROTOTYPES
//--

void SYSCLK_Init (void);

void SMBUS_ISR (void);

AN113

Rev. 1.3 43

char SLA_READ(char chip_select, char out_op);
void SLA_SEND(char chip_select, char out_op, char out_data);
void OP_CODE_HANDLER(void);

//--
// MAIN Routine
//--

void MAIN (void)
{
 char i, check_1, check_2; // Variables used for testing purposes only.

 WDTCN = 0xde; // disable watchdog timer
 WDTCN = 0xad;

 SYSCLK_Init(); // turn on the external oscillator

 XBR0 = 0x01; // Route SMBus to GPIO pins through crossbar
 XBR2 = 0x40; // Enable crossbar and weak pull-ups

 SMB0CN = 0x44; // Enable SMBus with acknowledge low (AA = 1)
 SMB0CR = -80; // SMBus clock rate = 100 kHz
 SMB0ADR = MY_ADD; // Set own slave address.

 ADC0CN = 0x80; // Enable ADC, conversions to start with
 // write to AD0BUSY.

 ADC0CN |= 0x01; // ADC data registers left-justified.

 DAC0CN = 0x84; // enable DAC0, with left justified data
 // registers.

 REF0CN = 0x03; // reference voltage enabled.

 EIE1 |= 2; // SMBus interrupt enable
 EA = 1; // Global interrupt enable

 SM_BUSY = 0; // Free bus for first transfer.
 SI = 0; //

// OP_CODE_HANDLER(); // This line should be commented in only
 // one of the two peer devices. It is
 // for testing purposes only.
 // In a normal setup, the OP_CODE_HANDLER
 // would be running at all times in order
 // to react to OP_CODES being sent to the
 // device.

// TEST CODE--
// This code is used only to test the interface between the two devices. If
// the above OP_CODE_HANDLER line is commented out, this device assumes the master
// role. The other device should be running the OP_CODE_HANDLER at all times, to
// respond to the OP_CODEs below.

 SLA_SEND(CHIP_B, (0x40 | WRITE_BUF), 0x24); // Write to index 4
 // in the data buffer
 SLA_SEND(CHIP_B, (0x60 | WRITE_BUF), 0x25); // Write to index 6
 SLA_SEND(CHIP_B, (0x80 | WRITE_BUF), 0x26); // Write to index 8
 SLA_SEND(CHIP_B, (0x10 | WRITE_BUF), 0x27); // Write to index 1

AN113

44 Rev. 1.3

 check_1 = SLA_READ(CHIP_B, (0x40 | READ_BUF)); // Read index 4 from the buffer
 check_1 = SLA_READ(CHIP_B, (0x60 | READ_BUF)); // Read index 6
 check_1 = SLA_READ(CHIP_B, (0x80 | READ_BUF)); // Read index 8
 check_1 = SLA_READ(CHIP_B, (0x10 | READ_BUF)); // Read index 1

// Loop to continuously increase the DAC output on CHIP_B, and read its
// ADC each round. DAC output on CHIP_B should ramp.

 for (i=0;i<50;i++){
 SLA_SEND(CHIP_B, WRITE_DAC, 2*i); // Write 2*i to DAC0 on CHIP_B
 check_1 = SLA_READ(CHIP_B, READ_ADC); // Read AIN0 on CHIP_B
 check_2 = 2*i; // check_1 should be approximately
 } // the same as check_2.

// END TEST CODE--

}

//--
// Initialization Routines
//--

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use an 22.1184MHz crystal
// as its clock source.
//
void SYSCLK_Init (void)
{
 int i; // delay counter

 OSCXCN = 0x67; // start external oscillator with
 // 22.1184MHz crystal

 for (i=0; i < 256; i++) ; // XTLVLD blanking interval (>1ms)

 while (!(OSCXCN & 0x80)) ; // Wait for crystal osc. to settle

 OSCICN = 0x88; // select external oscillator as SYSCLK
 // source and enable missing clock
 // detector
}

//--
// Functions
//--

// Send to slave.
// The send function transmits two bytes to the slave device: an op code, and a data
// byte. There are two op code choices for sending data: WRITE_DAC and WRITE_BUF.
// If the op code is WRITE_BUF, then the upper 4 bits of the op code should contain
// the buffer index. For example, to write to index 2 of the data buffer, the
// op_code parameter should be (0x20 | WRITE_BUF).
//
// chip_select = address of slave device.

AN113

Rev. 1.3 45

// out_op = OP_CODE to be sent.
// out_data = data byte to be sent.
void SLA_SEND(char chip_select, char out_op, char out_data){

 while(SM_BUSY); // Wait while SMBus is busy.
 SM_BUSY = 1; // SMBus busy flag set.
 SMB0CN = 0x44; // SMBus enabled, ACK low.
 COMMAND = (chip_select | WRITE); // COMMAND = 7 address bits + WRITE.
 OP_CODE = out_op; // WORD = OP_CODE to be transmitted.
 WORD = out_data; // DATA = data to be transmitted.
 STO = 0;
 STA = 1; // Start transfer.

}

// Read from slave.
// The read function transmits a 1-byte op code, then issues a repeated start
// to request a 1-byte read. The two op code choices are READ_ADC and READ_BUF.
// If the op code is READ_BUF, then the upper 4 bits of the op code should
// contain the buffer index. For example, to read index 5 of the data buffer,
// the op code should be (0x50 | READ_BUF).
//
// chip_select = address of slave device.
// out_op = OP_CODE to be sent.
char SLA_READ(char chip_select, char out_op){

 while(SM_BUSY); // Wait while SMBus is busy.
 SM_BUSY = 1; // Set busy flag.
 SMB0CN = 0x44; // Enable SMBus, ACK low.
 COMMAND = (chip_select | READ); // COMMAND = 7 address bits + READ
 OP_CODE = out_op;
 STO = 0;
 STA = 1; // Start transfer.
 while(SM_BUSY); // Wait for transfer to finish.
 return WORD; // Return received word.

}

// OP_CODE handler.
// Decodes incoming op codes and performs tasks according to those op codes.
// A call to this function runs forever.
//
// The VALID_OP bit flags when a valid op code has been received. Upon receipt,
// the handler decodes the op code, performs the task, then clears
// VALID_OP to wait for another code.
void OP_CODE_HANDLER(void){

 char index; // data buffer index
 while (1){ // run forever
 VALID_OP = 0; // Wait for a valid OP_CODE
 while (!VALID_OP); //

 // The lower 4 bits of the OP_CODE are used to determine the action, while the
 // upper 4 bits are used to index the DATA_BUF array when the READ_BUF or
 // WRITE_BUF OP_CODEs are received. Note that the SMBus is stalled until the
 // OP_CODE is decoded.
 switch (OP_CODE & 0x0F){ // Decode OP_CODE

AN113

46 Rev. 1.3

 // OP_CODE = READ_ADC - Perform an ADC conversion, and place data in
 // output buffer.
 // Read only ADC high byte.
 case READ_ADC:
 SI = 0; // Free the bus
 AA = 0; // Take slave ‘offline’
 AD0INT = 0; // Clear ADC interrupt flag.
 AD0BUSY = 1; // Start conversion.
 while (!AD0INT); // Wait for conversion to finish.
 WORD = ADC0H; // Put data in output buffer.
 AA = 1; // Put slave back ‘online’
 VALID_OP = 0; // Look for a new OP_CODE
 break;

 // OP_CODE = WRITE_DAC - Wait for a valid data byte, and write it to high
 // byte of DAC0.
 case WRITE_DAC:
 SI = 0; // Free the bus
 DATA_READY = 0; // Wait for valid data.
 while (!DATA_READY); //
 DAC0L = 0; // DAC low byte
 DAC0H = WORD; // DAC high byte
 VALID_OP = 0; // Look for new OP_CODE
 SI = 0; // Free bus when finished.
 break;

 // OP_CODE = WRITE_BUF - Wait for valid data byte, then place data in
 // DATA_BUF array. Index data according to upper 4 bits of OP_CODE.
 case WRITE_BUF:
 SI = 0; // Free the bus
 index = (OP_CODE & 0xF0); // Use upper 4 bits as array index.
 DATA_READY = 0; // Wait for valid data.
 while (!DATA_READY); //
 DATA_BUF[index] = WORD; // Store data in array.
 VALID_OP = 0; // Look for new OP_CODE
 SI = 0; // Free the bus when finished.
 break;

 // OP_CODE = READ_BUF - Read DATA_BUF array and place byte in output buffer.
 // Array index determined by upper 4 bits of OP_CODE.
 case READ_BUF:
 index = (OP_CODE & 0xF0); // Use upper 4 bits as array index.
 WORD = DATA_BUF[index]; // Place indexed data in output buffer.
 VALID_OP = 0; // Look for new OP_CODE
 SI = 0; // Free the bus when finished.
 break;
 }

 if (LOST){ // If LOST is set, the device has recently
 COMMAND = LOST_COMMAND; // lost an arbitration. Load saved values
 WORD = LOST_WORD; // back into transfer variables, and retry
 OP_CODE = LOST_CODE; // transfer.
 LOST = 0;
 STO = 0;
 STA = 1;
 }
 }
}

AN113

Rev. 1.3 47

//--
// SMBus Interrupt Service Routine
//--

void SMBUS_ISR (void) interrupt 7
{
 switch (SMB0STA){ // Status code for the SMBus
 // (SMB0STA register)

 // Master Transmitter/Receiver: START condition transmitted.
 // Load SMB0DAT with slave device address. Mask out R/W bit since all transfers
 // start with an OP_CODE write.
 case SMB_START:
 SMB0DAT = (COMMAND & 0xFE); // Load address of the slave to be accessed.
 // Mask out R/W bit because first transfer
 // will always be a write of the OP_CODE.
 STA = 0; // Manually clear STA bit
 SI = 0; // Clear interrupt flag
 break;

 // Master Transmitter/Receiver: Repeated START condition transmitted.
 // This state only occurs during a READ, after the OP_CODE has been sent. Load
 // device address + READ into SMB0DAT.
 case SMB_RP_START:
 SMB0DAT = COMMAND;
 STA = 0; // Manually clear START bit.
 SI = 0;
 break;

 // Master Transmitter: Slave address + WRITE transmitted. ACK received.
 // Load OP_CODE into SMB0DAT.
 case SMB_MTADDACK:
 SMB0DAT = OP_CODE;
 SI = 0; // Clear interrupt flag
 break;

 // Master Transmitter: Slave address + WRITE transmitted. NACK received.
 // The slave is not responding. Use ACK polling to retry.
 case SMB_MTADDNACK:
 STO = 1;
 STA = 1;
 SI = 0; // Clear interrupt flag
 break;

 // Master Transmitter: Data byte transmitted. ACK received.
 // Check OP_CODE - If it is a READ code, send repeated START to begin
 // read. If it is a WRITE code, load WORD into SMB0DAT for transfer.
 // If it is not a valid code, then either 1) data has been transmitted
 // and the transfer is finished, or 2) there is an error. In either case,
 // send STOP and end transfer.
 case SMB_MTDBACK:
 switch (OP_CODE & 0x0F){ // Check only lower 4 bits.

 // OP_CODE is a READ. Send repeated START.
 case READ_BUF:
 case READ_ADC:
 OP_CODE = 0; // Current OP_CODE no longer useful

AN113

48 Rev. 1.3

 STO = 0;
 STA = 1;
 break;

 // OP_CODE is a WRITE. Load output data into SMB0DAT.
 case WRITE_BUF:
 case WRITE_DAC:
 SMB0DAT = WORD;
 OP_CODE = 0; // Clear OP_CODE so transfer ends the next
 break; // time this state occurs
 // (after data is sent).

 default: // No valid OP_CODE. End transfer.
 STO = 1;
 SM_BUSY = 0;
 break;
 }
 SI = 0;
 break;

 // Master Transmitter: Data byte transmitter. NACK received.
 // Use ACK polling to retry transfer.
 case SMB_MTDBNACK:
 STO = 1;
 STA = 1;
 SI = 0; // Clear interrupt flag
 break;

 // Master Transmitter: Arbitration lost.
 case SMB_MTARBLOST:
 LOST_COMMAND = COMMAND; //
 LOST_WORD = WORD; // Store variables for use when bus is free.
 LOST_CODE = OP_CODE; //

 LOST = 1; // Set flag to retry transfer
 // when bus is free.
 SI = 0; // Clear interrupt flag
 break;

 // Master Receiver: Slave address + READ transmitted. ACK received.
 // Set to transmit NACK after next transfer since it will be the
 // last (only) byte.
 case SMB_MRADDACK:
 AA = 0; // NACK sent during acknowledge cycle.
 SI = 0;
 break;

 // Master Receiver: Slave address + READ transmitted. NACK received.
 // Slave not responding. Send repeated START to try again.
 case SMB_MRADDNACK:
 STO = 0;
 STA = 1;
 SI = 0;
 break;

 // Master Receiver: Data byte received. ACK transmitted.
 // State should not occur because AA is cleared in previous state.
 // Send STOP if state does occur.
 case SMB_MRDBACK:

AN113

Rev. 1.3 49

 STO = 1;
 SM_BUSY = 0;
 SI = 0;
 break;

 // Master Receiver: Data byte received. NACK transmitted.
 // Read operation has completed. Read data register and send STOP.
 case SMB_MRDBNACK:
 WORD = SMB0DAT;
 STO = 1;
 SM_BUSY = 0;
 AA = 1; // Set AA for next transfer
 SI = 0;
 break;

 // Slave Receiver: Arbitration lost, general call address received.
 // Set LOST flag to retry transfer when bus is free. Fall through.
 case SMB_SRGARBLOST:

 // Slave Receiver: Arbitration lost, own slave address + WRITE received.
 // Set LOST flag to retry transfer when bus is free.
 // Set STO bit to get out of master mode.
 case SMB_SROARBLOST:
 LOST_COMMAND = COMMAND; //
 LOST_WORD = WORD; // Store variables for use when bus is free.
 LOST_CODE = OP_CODE; //
 LOST = 1; // Retry transfer when bus is free.
 SI = 0;
 break;

 // Slave Receiver: Slave address + WRITE received. ACK transmitted.
 // Fall through.
 case SMB_SROADACK:

 // Slave Receiver: General call address received. ACK transmitted.
 case SMB_SRGADACK:
 SI = 0;
 break;

 // Slave Receiver: Data byte received after addressed by general
 // call address + WRITE.
 // ACK transmitted. Fall through.
 case SMB_SRGDBACK:

 // Slave Receiver: Data byte received after addressed by own
 // slave address + WRITE.
 // ACK transmitted.
 // Take action depending on OP_CODE or data received.
 case SMB_SRODBACK:
 if (!VALID_OP){ // if VALID_OP=0, this byte is an OP_CODE.
 OP_CODE = SMB0DAT; // Store OP_CODE
 VALID_OP = 1; // Next byte is not an OP_CODE
 } else {
 DATA_READY = 1; // Valid data has been received. Process
 // in OP_CODE handler.
 WORD = SMB0DAT;
 SI = 0;
 }
 break;

AN113

50 Rev. 1.3

 // Slave Receiver: Data byte received while addressed as slave.
 // NACK transmitted. Should not occur since AA will not be cleared
 // as slave. Fall through to next state.
 case SMB_SRODBNACK:

 // Slave Receiver: Data byte received while addressed by general call.
 // NACK transmitted.
 // Should not occur since AA will not be cleared as slave.
 case SMB_SRGDBNACK:
 AA = 1;
 SI = 0;
 break;

 // Slave Receiver: STOP or repeated START received while addressed as slave.
 case SMB_SRSTOP:
 SI = 0;
 break;

 // Slave Transmitter: Own slave address + READ received. ACK transmitted.
 // Load SMB0DAT with data to be output.
 case SMB_STOADACK:
 SMB0DAT = WORD;
 SI = 0;
 break;

 // Slave Transmitter: Arbitration lost as master. Own address + READ received.
 // ACK transmitted.
 case SMB_STOARBLOST:
 LOST_COMMAND = COMMAND; //
 LOST_WORD = WORD; // Store variables for use when bus
 LOST_CODE = OP_CODE; // is free.
 LOST = 1; // Retry when bus is free.

 SI = 0;
 break;

 // Slave Transmitter: Data byte transmitted. ACK received. Fall through.
 case SMB_STDBACK:

 // Slave Transmitter: Data byte transmitted. NACK received. Fall through.
 case SMB_STDBNACK:

 // Slave Transmitter: Last data byte transmitted. ACK received.
 // No action necessary.
 case SMB_STDBLAST:
 SI = 0;
 break;

 // All other status codes invalid. Reset communication.
 default:
 STO = 1;
 SM_BUSY = 0;
 break;
 }

}

AN113

Rev. 1.3 51

Notes:

AN113

52 Rev. 1.3

Contact Information
Silicon Laboratories Inc.
4635 Boston Lane
Austin, TX 78735
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: productinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

	Relevant Devices
	Introduction
	SMBus Specification
	SMBus Structure
	Handshaking
	Transfer Modes
	Arbitration

	Using the SMBus
	Configuration and Control
	Implementation Choices

	Examples
	Single EEPROM
	Multiple EEPROMs
	Peer-to-Peer Interface

	Software Examples for the C8051F00x and C8051F01x series
	Software Example for the C8051F02x series
	Notes:

