&~

SILICON LABODORATORIES

AN113

SERIAL COMMUNICATION WITH THE SMBUS

Relevant Devices

This application note applies to the following
devices:

C8051F000, C8051F001, C8051F002,
C8051F005, C8051F006, C8051F010, C8051F011,
C8051F012, C8051F020, C8051F021,
C8051F022, and C8051F023.

Introduction

C8051F0xx devices are equipped with an SMBus
serial I/O device that is compliant with the System
Management Bus Specification version 1.1, as well

as the I°C serial bus. The SMBus is a bi-direc-
tional, 2-wire interface capable of communication
with multiple devices. SMBus is a trademark of

Intel; I°C is a trademark of Philips Semiconductor.

This application note describes configuration and
operation of the SMBus. Example assembly and C
code is given: (1) Interfacing a single EEPROM
with 1-byte address space, in assembly; (2) Inter-
facing multiple EEPROMs with 2-byte address
space, in C; and (3) Peer-to-peer communication
between two C8051F0xx devices, in C.

SMBus Specification

This section presents a description of the SMBus
protocol. The SMBus discussion begins in the next
section--Using the SMBus.

SMBus Structure

An SMBus system is a 2-wire network, where each
device has a unique address and may be addressed
by any other device on the network. All transfers
are initiated by a master device; if a device recog-

nizes its own address and responds, it becomes the
slave device for that transfer. It is important to note
that assigning one specified master device is not
necessary. Any device may assume the role of mas-
ter or slave for any particular transfer. In the case
that two devices attempt to initiate a transfer simul-
taneously, an arbitration scheme forces one device
to give up the bus. This arbitration scheme is non-
destructive (one device wins and no information is
lost). Arbitration is discussed in depth in the arbi-
tration section.

Two wires are used in SMBus communication:
SDA (serial data), and SCL (serial clock). Each
line is bi-directional, with direction depending on
what modes the devices are in. The master always
supplies SCL; either device may transmit on SDA.
Both lines should be connected to a positive power
supply through a pull-up circuit. All devices on the
SMBus line should have an open-drain or open col-
lector output, so that the lines may remain high
when the bus is free. The line is pulled low if one or
more devices attempts to output a LOW signal. All
devices must output a HIGH for the line to stay
high. A typical SMBus configuration is shown in
Figure 1 on page 2.

Rev. 1.3 12/03

Copyright © 2003 by Silicon Laboratories

AN113-DS13

AN113

VDD = +5V/+3V

Device 1

Device 2 Device 3

SDA |

! |

SCL

Figure 1. Typical SMBus Configuration

Handshaking

SMBus employs various line conditions as hand-
shaking between devices. Note that during a data
transfer, SDA is only allowed to change levels
while SCL is low. Changes on SDA while SCL is
high represent START and STOP signals, as fol-
lows:

START: This initiates a transfer. It consists of a
falling edge on SDA while SCL is high.

STOP: This ends a transfer. It consists of a rising
edge on SDA while SCL is high.

ACKNOWLEDGE: Also referred to as an ACK,
this is transmitted by a receiving device as a confir-
mation. For example, after device X receives a
byte, it transmits an ACK to confirm the transfer.
An ACK consists of a low level on SDA sampled
when SCL is high.

NOT_ACKNOWLEDGE: Also referred to as a
NACK, this is a high SDA while SCL is high.

SCL

When a receiving device fails to ACK, the sending
device sees a NACK. In typical transfers, a
received NACK indicates that the addressed slave
is not ready for transfer, or is not present on the
bus. A receiving master may transmit a NACK to
indicate the last byte of a transfer. Both of these sit-
uations are discussed further in the next section.
Figure 2 illustrates the handshaking signals.

Transfer Modes

Two types of transfers are possible: a WRITE
(transfer from master to slave) and a READ (trans-
fer from slave to master). During a transfer, any
device may assume one of four roles. These four
roles are explained below. Note that ‘slave address
+ R/W’ refers to an 8 bit transfer (7 address, 1 R/
W).

1) Master Transmitter: In this mode, the device
transmits serial data on SDA and drives the clock
on SCL. The device initiates the transfer with a
START condition, sends the slave address + W, and
waits for an ACK from the slave. After the ACK,

SDA

SLA6 SLA5-0 R/W

D7 D6-0

START Slave Address + R/W

ACK Data Byte NACK STOP

Figure 2. SMBus Timing

Rev.

®

SILICON LABORATORIES

AN113

the device transmits one or more bytes of data, with
each byte ACK’ed by the slave. After the last byte,
the device transmits a STOP.

2) Master Receiver: In this role, the device receives
serial data on SDA while driving the clock on SCL.
The device initiates the transfer with a START fol-
lowed by the slave address + R. After the slave
ACK’s the address, the device will output the clock
on SCL, and receive data on SDA. After the last
byte, the device will issue a NACK followed by a
STOP.

3) Slave Transmitter: In this role, a device outputs
serial data on SDA and receives the clock on SCL.
The device receives a START followed by its own
slave address + R, then ACK’s, and enters slave
transmitter mode. The device transmits serial data
on SDA and receives an ACK after each byte. After

the last byte, the master will issue a NACK fol-
lowed by a STOP.

4) Slave Receiver: In this role, a device receives a
START followed by its own slave address + W
from a master device. The device sends an ACK
and enters slave receiver mode. The device now
receives serial data on SDA and the clock on SCL.
The device ACK’s after each byte is received, and
exits slave mode after the master issues a STOP.
Figure 3 shows the typical WRITE scenarios. (1)
shows a successful transfer.

In (2), the master receives a NACK after sending
the slave address + W. This occurs when a slave is
‘offline’, meaning it is not responding to its own
address. In this case, the master should issue a
STOP or repeated START. To retry the transfer, the
master follows the STOP with a START and the
slave address + W again. The master will repeat the

——»——— bytes and acknowledges

(1)Successful WRITE |S |SLA+W|A| Data |A| Data A P
(2) NACK received after SLA+W |A | P
A
(3) Repeat start issued after Acknowledge S SLA+R|A
(4) NACK received after data A P
From Master S = Start
to Slave SLA = Slave Address (7 bits)
W = Write (1 bit)
From Slave R = Read (1 bit)
to Master Data = Serial data (8 bits)
A = Acknowledge
Data Any number of data A = Not-Acknowledge

P = Stop

Figure 3. Typical WRITE Transfer Scenarios

SILICON LABORATORIES

Rev. 1.3 3

AN113

cycle until it receives an ACK. This is referred to as
“acknowledge polling”.

In (3), the master issues a repeated START after an
ACK. This process allows the master to initiate a
new transfer without giving up the bus (to switch
from a WRITE to a READ, for example). The
repeated START is commonly used in EEPROM
memory access applications, where a memory
READ must be directly preceded by a WRITE of
the desired memory location. The repeated START
is demonstrated in all three code examples.

In (4), a NACK is received after a data byte. In typ-
ical SMBus systems, this is how the receiving
device indicates an error. The master sends a STOP,
and retries the transfer as in (2), or gives up the
transfer. Note that the use of NACKs is not
restricted to error situations; the acknowledge level
is a user-definable characteristic, and may vary in
different applications.

Figure 4 shows the typical READ scenarios. (1)
shows a successful READ operation. In (2), the

master receives a NACK after sending the slave
address + R. This situation is handled in the same
fashion as in (2) of the WRITE discussion. The
master can use acknowledge polling to retry the
transfer, or it can give up the transfer. (3) Shows the
master sending a repeated START after sending a
byte of data. This is the same repeated START state
as in the WRITE discussion. A master may send a
repeated START after any data byte, and may ini-
tiate a READ or a WRITE following the repeated
START. Generally a repeated START is used to
change direction (R/W) or to change addresses
(slave devices).

Note that the READ and WRITE diagrams show
only the typical scenarios. Bus errors, time outs,
and arbitration are also possible occurrences. Time-
outs are used to detect when a transfer has stalled
or when the bus is free. Often a device may hold
SCL low until it is ready to continue a transfer. This
process allows a slower slave device to communi-
cate with a faster master, since stalling the bus
effectively reduces the SCL frequency. The SMBus
protocol specifies that all devices on the SMBus

——»—— bytes and acknowledges

(1) SuccessfulREAD |S | SLA+R|A| Data |A| Data |A|P
(2) NACK received after SLA + R A P
y
(3) Repeat start issued after ACK S|SLA+R A
From Master S = Start
to Slave SLA = Slave Address (7 bits)
W = Write (1 bit)
From Slave R = Read (1 bit)
to Master Data = Serial data (8 bits)
A = Acknowledge
Data Any number of data A = Not-Acknowledge

P = Stop

Figure 4. Typical Read Scenarios

Rev.

®

SILICON LABORATORIES

AN113

must declare any SCL signal held low for more
than 25 ms a “timeout”. In this case, all devices on
the bus must reset communication. A high SCL
timeout may also occur. If both SDA and SCL
remain high for more than 50 psec, the bus is des-
ignated as free.

Arbitration

If multiple masters are configured on the same
SMBus system, it is possible that two will attempt
to initiate a transfer at the same time. If this hap-
pens, an arbitration scheme is employed to force
one device to give up the bus.

What the scheme is: both masters continue to trans-
mit until one attempts a HIGH while the other
attempts a LOW. Due to the open-drain bus, the
device attempting a LOW will win the bus. The
HIGH device gives up the bus, and the other device
continues its transfer. Note that the collision is non-
destructive: one device always wins.

How it works: Assume device X and device Y
contend for the bus. The winner, device X, is not
affected at all by the arbitration. Since data is
shifted into the SMBus data register as it is shifted
out, device Y does not miss any data. Figure 5
shows an example output sequence between two
devices during arbitration. Note that Device Y
begins receiving data after it gives up the bus.

Using the SMBus

The SMBus can operate in both master and slave
modes. The hardware provides timing and shifting
control for the serial transfers; byte-wise control is
user-defined. The SMBus hardware performs the
following application-independent tasks:

Timing Control: In master mode, the hardware gen-
erates the clock signal on SCL and synchronizes
the data on SDA. Hardware also recognizes time-
outs and bus errors.

Serial Data Transfers: The hardware controls all
shifting of data to and from SDA, including the
acknowledge level. The acknowledge level is user-
defined, as explained in the register definitions
below.

Slave Address Recognition: The hardware recog-
nizes a START from another device, and reads the
following slave address. If the slave address
matches the contents of the SMBus Address Regis-
ter (defined below), then the hardware acknowl-
edges the address. Note that this features is only
enabled if AA (Address Acknowledge) is set.

Configuration and Control

SMBus operation is determined by the contents of
the following registers.

Figure 5. Arbitration Sequence

Device_X —
1 0 1 1 0 1 1 0
Device_Y
1\ 0 / 1 1 1
Seen on the Bus —
1 0 1 1 0 1 1 0
Device_Y
gives up
the bus
@ Rev. 1.3 5

SILICON LABORATORIES

AN113

SMBOSTA. The SMBus Status Register holds an
8-bit status code for the current state of the SMBus.
The contents of SMBOSTA are only defined when
the SI bit is set. There are 28 possible states, all of
which have a unique code (the codes are multiples
of 8). SMBOSTA should never be written to. The
28 possible states and their descriptions are given
in Table 1 on page 12.

SMBOCN. The SMBus control register is used to
enable the SMBus and navigate the possible
SMBus states. This register includes START and
STOP control, as well as interrupt, acknowledge,
and timeout control.

A transfer is initiated by setting the STA bit. The
SMBus hardware will wait until the bus is free,
then transmit a START. Note that STA is not
cleared by hardware. User software must manu-
ally clear STA so that an unwanted repeated
START is not generated. User software must also
manually clear STO prior to setting STA.

A transfer is ended by setting the STO bit. In mas-
ter mode, setting STO will cause a STOP condition
to be generated. If STA is set when STO is set, a
STOP followed by a START will be transmitted. In
slave mode, setting STO will cause the hardware to
act as if a STOP was received, though no STOP
condition is transmitted.

The SI bit is set when any of the possible 28
SMBus states are entered (excluding the idle state).
This bit is not automatically cleared by hardware.
Note that SCL is held low while SI is set. This
means that the bus is stalled until SI is cleared, syn-
chronizing the master with the slave.

The AA bit determines the type of acknowledge
returned during the acknowledge cycle. If AA=I,
an ACK will be sent; if AA=0, a NACK will be
sent. This means the device will respond to its slave
address only if AA is set.

SCL high and low timeout detection is enabled by
setting the FTE and TOE bits, respectively.

The SMBus is enabled by setting the SMBus
enable bit, ENSMB.

SMBOCR. The SMBus clock register is used to
control the SCL clock rate when the device is in
master mode. The 8 bits held in the SMBOCR reg-
ister determine the clock rate as follows:

_ SYSCLK

SMBOCR =
2 x FSCL

<1>

Where SMBOCR is a 2’s complement negative
number. So for a SCL frequency of 100 kHz and a
SYSCLK of 16 MHz, SMBOCL should be loaded
with -80, or 0xBO.

SMBOCR also defines the limit for the bus free
time period (high SCL timeout). The bus free time
is defined by the following equation, where
SMBOCR is a 2’s complement negative number.
Note that T, is about 5 bit periods.

_ (10 x SMBOCR) + 1

= <2>
SYSCLK

TFree

SMBOADR. The SMBus Address Register holds
the slave address that the device will respond to in
slave mode. Bits(7:1) hold the slave address; bit0 is
the General Call Enable. If bitO is set, the device
will respond to the general call address (0x00).

SMBODAT. The SMBus Data Register is used to
hold data to be transmitted or data that has just
been received by the SMBus. Data read from this
register is only valid while SI = 1. When SI is not
set, the SMBus may be in the process of shifting
data in or out of SMBODAT. Note that when trans-
mitting, data shifted out of the most significant bit
of SMBODAT is shifted back into the least signifi-
cant bit, so that after a transmit the original data is
still contained in SMBODAT.

6 Rev. 1.3

SILICON LABORATORIES

AN113

Implementation Choices

User software controls the SMBus on a state-by-
state basis. Upon each state change, the SI bit is set
by hardware, and an interrupt generated if inter-
rupts are enabled. The SMBus is then halted until
user software services the state change and clears
the SI bit. The SMBus operation is most easily
defined in a state table; however, note that it is not
necessary to define all 28 states. For example, if the
SMBus is the only master in the system, the slave
and arbitration states may be left undefined. If the
SMBus will never operate as a master, the master
states may be left undefined. If states are left unde-
fined, a default response should be programmed to
account for unexpected or error situations.

The SMBus state table lends itself to a case-switch
statement definition in C. However, for simple or
time-restricted systems, an assembly state decoding
can be more efficient. Note that the status codes
held in SMBOSTA are multiples of 8. If the SMBus
states are programmed in 8-byte segments,
SMBOSTA may be used as a software index. In this
case, a status code is decoded in 3 assembly com-
mands. However, only 8 bytes of code space are
available for each state definition. For states that
require more than 8 bytes, the program must branch
out of the state table so that subsequent states are
not disturbed.

Examples

Three examples are provided: a single EEPROM
with 1-byte address space, in assembly; multiple
EEPROMs with 2-byte address space, in C; and a
peer-to-peer interface between two devices, in C.
Each example uses interrupt-driven operation.

Single EEPROM

This is a simple interface between the SMBus and a
256-byte EEPROM. The SMBus acts as the master
at all times. The transfer procedure is similar to that
of any 2-wire EEPROM interface.

The Send operation is a 1-byte random WRITE.
The SMBus sends a START followed by three
bytes: the EEPROM’s device address + W (this
address is found in the EEPROM datasheet), the
memory location to be written, and then the data
byte. The slave should ACK after each byte. If the
master receives an ACK after each byte, it sends a
STOP and the transfer is over. If at any time the
master receives a NACK, it will retry the transfer
using acknowledge polling. It is common for an
EEPROM to NACK if multiple read/write opera-
tions are performed sequentially, since most self-
timed EEPROMs go offline to actually perform the
memory write. Figure 6 shows SDA for the Single
EEPROM send operation.

Figure 6. Single EERPOM Send

Sequence
8-bit
s| sta WAl PV |A| DataByte AF

The Receive operation is a 1-byte random READ.
The transfer begins, as in the WRITE function,
with the master sending a START followed by the
EEPROM device address + W (a WRITE is used to
set the EEPROM’s “current address”). After the
slave ACK’s, the master sends the memory location
to be read. Upon receipt of an ACK, the master
then issues a repeated START followed by the
slave address + R. Now after the slave ACK’s, it
will send the data byte read from the location given
in the preceding “aborted” WRITE. The master
sends a NACK (since this data is the last and only
byte), followed by a STOP. The repeated START is
used in this case so that no other transfers may
begin between the WRITE of the memory address
and the READ of the data byte. Figure 7 shows
SDA for a Single EEPROM Receive operation.

The software for this example was written in
assembly to demonstrate the advantage of using
SMBOSTA as a software index. The SMBus state
table written in 8-byte memory segments (8 bytes
for each state). This is accomplished through the
use of an ‘org’ statement for each state, offset from
the beginning of the table by the corresponding sta-

SILICON LABORATORIES

Rev. 1.3 7

AN113

tus code. For example, if the state table is labeled
STATE TABLE, and State 1 is 0x08, the code seg-
ment for State 1 should begin with:

; State 1
org STATE TABLE + 08h
; State 1 code

Now when SMBOSTA holds 0x80, State 1 may be
accessed with the following:

; Load current State
mov A, SMBOSTA;

; Point DPTR to start of table
mov DPTR, #STATE_TABLE;

; Jump to indexed state
jmp @A+DPTR;

This process allows for very efficient state decod-
ing. However, it is important to note that only 8
bytes of code space are available for each state. If a
state requires more than 8 bytes, the program must
jump to a segment outside of the state table, so that
the next state definition is not disturbed.

To keep the states simple and understandable, the
SMBus is assumed to be the only master in the sys-
tem. The slave states are not defined, and the arbi-
tration states ignore any received data. Also, the
repeated START state may assume the transfer is a
READ. The code listing begins on page 14.

Figure 7. Single EEPROM Receive Sequence

8-bit

W[A
Address

S SLA

SLA R|A| DataByte [N|P

Figure 8. Multiple EEPROM Receive Sequence

High Low Address

R|A N|P
|S| SLA |\N|A Address Byte Byte AlS SLA Data Byte
8 Rev. 1.3

SILICON LABORATORIES

AN113

Multiple EEPROMs

Example 2 uses multiple EEPROMs with 2-byte
address space. The software is written in C. The
three EEPROMs used are 8k-bytes. Note that three
identical EEPROMs are used. The EEPROMs have
three address selection pins, AO - A2, that are used
to set the slave address for the devices. The four
high bits of the device address are set in EEPROM
to “0101”; the lower three bits of the slave address
are determined by the setting of the address pins
(VDD for 1, GND for 0). Figure 9 shows the device
configuration.

The distinction with this example is that the
EEPROMs have a 2-byte address space. This
means that the READ and WRITE operations must
send an extra address byte for each transfer (see
Figure 8) When the Interrupt Service Routine
reaches the “Data Transmitted, ACK Received”
state, it must know which byte was transmitted--the
high address byte, the low address byte, or the data
byte. This information 1is kept in the
BYTE NUMBER state variable.

The SMBus ISR is implemented as a case-switch
statement, with the SMBus status code
(SMBOSTA) used as the switch variable. The code

listing for this example begins on page 23.

CHIP_A CHIP_B

A2 [A1 |AO A2 | A1 10
VDD L
7k

VDD VDD
A2 Tm A0
CHIP_C
Addr = 010

Addr = 000 Addr = 001

CF000

SDA ‘

f

SCL

Figure 9. Multiple EEPROM Configuration

®
@ Rev. 1.3

SILICON LABORATORIES

AN113

Peer-to-Peer Interface

The final example features two C8051F0xx devices
configured to communicate as peers. The peer-to-
peer interface uses a set of op codes to perform the
set of tasks below. Either device may initiate a
transfer.

Write to slave DAC: The master device sends a
WRITE DAC op code followed by a byte of data.
Upon receipt, the slave device writes the data to its
DACO port.

Write to buffer: The master device sends a
WRITE BUF op code, followed by a byte of data
for the receiving device to store in a buffer. The
upper 4 bits of the WRITE BUF op code hold the
buffer index. Figure 10 shows a peer-to-peer
WRITE sequence (same for both DAC and buffer
writes).

Figure 10. Peer-to-Peer Write Sequence

START. The slave reads its ADC input, and places
the data in its SMBODAT register. In this case, the
slave clears AA to go ‘offline’ during the ADC
conversion. While the slave is offline, the master
receives a NACK after the repeated START and
slave address. The master continues acknowledge
polling until the slave responds. This technique is
useful if the slave’s operation is time-consuming,
since other devices may use the bus while the slave
is offline. The slave sets AA=1 when it is ready,
and the transfer continues. The master requests a
READ after the slave acknowledges. See Figure 11
for the transmission sequence.

Read buffer: The master sends a READ BUF op
code followed by a repeated START. The upper 4
bits of the op code hold the buffer index. In this
case the slave holds the SCL line low while it
decodes the op code. While SCL is held low, the
master cannot attempt to continue the transfer.
Additionally, no other masters on the bus may
attempt a transfer. This bus stalling technique is
useful when the slave’s delay is short. The slave

|S SLA W|A Ozvg“jde A Data Byte AIF releases SCL when it has finished decoding the op
code and is ready to transmit the data. The master

R issues the repeated START and the slave address +

ere until slave X
decodes the R. See Flgure 11.
Op Code
The SMBus operation in this example is defined as
Read ADC: The master device sends a @ case-switch statement in the SMBus ISR. All pos-

READ ADC op code followed by a repeated

sible states are defined, including the arbitration
states. If arbitration occurs, the losing device stores

Figure 11. Peer-to-Peer Read Sequence

Read_Buf

S Op Code

SLA WA

Buffer Read

A S SLA R|A N|P

Data Byte

Bus stalled

here until slave

decodes the
Op Code

Read ADC
Op Code

ADC Read |S SLA

A|S| SLA

Data Byte

Slave goes
'offline' here
until ADC
conversion is
complete.

10 Rev. 1.3

SILICON LABORATORIES

AN113

its current transfer data (target slave address, op
code, relevant data) and responds to the received op
code. After the transfer is finished, the losing
device retries the transfer by reverting to the saved
transfer data.

An OP_CODE HANDLER function runs in polled
mode to process received data. When the device
receives a valid op code, the
OP _CODE_HANDLER decodes it and reacts
appropriately.

To test the bus, comment out the
OP CODE HANDLER call in the code for
CHIP_A. This will allow CHIP_A to run the pro-
vided test code. Note that the constant MY _ADD
must be unique to each device on the bus.

The code listing for this example begins on
page 29.

®
@ Rev. 1.3

SILICON LABORATORIES

11

AN113

Table 1. SMBus Status Codes and States

Status . .
Mode SMBus State Typical Action
Code
0x08 START condition transmitted. Load SMBODAT with Slave Address +
— R/W
=
== 0x10 Repeated START condition transmitted. Load SMBODAT with Slave Address +
R/W
0x18 Slave Address + W transmitted. ACK Load SMBODAT with data to be transmit-
received. ted. Clear STA
—
S 0x20 Slave Address + W transmitted. NACK Acknowledge poll to retry. Set STO + STA
= received.
:
c 1) Load SMBODAT with next byte, OR
= 0x28 Data byte transmitted. ACK received. 2) Set STO, OR
': 3) Clear STO, then set STA for repeated
Q START
7]
g 0x30 Data byte transmitted. NACK received. 1) Retry transfer OR
2) Set STO
0x38 Arbitration Lost. Save current data
’6 0x40 Slave Address + R transmitted. ACK received. | Clear STA. Wait for received data.
>
‘O 0x48 Slave Address + R transmitted. NACK Acknowledge poll to retry. Set STO + STA
(&) .
o) received.
o
- 0x50 Data byte received. ACK transmitted. Read SMBODAT. Wait for next byte. If
() .
5 next byte is last byte, clear AA
©
> 0x58 Data byte received. NACK transmitted. Set STO
12 Rev. 1.3

SILICON LABORATORIES

AN113

Table 1. SMBus Status Codes and States

Status . .
Mode SMBus State Typical Action
Code
0x60 Own slave address + W received. ACK trans- | Wait for data
mitted.
0x68 Arbitration lost in sending SLA + R/W as mas- | Save current data for retry when bus is
ter. Own address + W received. ACK transmit- | free. Wait for data
ted.
0x70 General call address received. ACK transmit- Wait for data
ted.
o
= 0x78 Arbitration lost in sending SLA + R/W as mas- | Save current data for retry when bus is
8 ter. General call address received. ACK trans- | free.
&J mitted.
°>J 0x80 Data byte received. ACK transmitted. Read SMBODAT. Wait for next byte or
3 STOP
(7))
0x88 Data byte received. NACK transmitted. Set STO to reset SMBus
0x90 Data byte received after general call address. Read SMBODAT. Wait for next byte or
ACK transmitted. STOP
0x98 Data byte received after general call address. | Set STO to reset SMBus
NACK transmitted.
0xAQ STOP or repeated START received. No action necessary
0xA8 Own address + R received. ACK transmitted. Load SMBODAT with data to transmit.
|
g 0xBO Arbitration lost in transmitting SLA + R/W as Save current data for retry when bus is
= master. Own address + R received. ACK free. Load SMBODAT with data to trans-
£
2 transmitted. mit.
g 0xB8 Data byte transmitted. ACK received. Load SMBODAT with data to transmit.
‘;’ 0xCO0 Data byte transmitted. NACK received. Wait for STOP
©
N 0xC8 Last data byte transmitted (AA=0). ACK Set STO to reset SMBus
received.
()
% 0xDO SCL Clock High Timer per SMBOCR timed out | Set STO to reset SMBus
(7))
_ 0x00 Bus Error (illegal START or STOP) Set STO to reset SMBus
< OxF8 Idle State does not set Si

Rev. 1.3

SILICON LABORATORIES

13

AN113

Software Examples for the C8051F00x and C8051F01x
series

; Copyright 2001 Cygnal Integrated Products, Inc.

; Program: SMBus EXI.asm

; Created on: 2/21/01

; Last mod : 27 AUG 03 -- BW
; Created by: JS

; Example code to interface a single 256-byte EEPROM to a C8051F00x via the SMBus
; Code assumes a single EEPROM with slave address 1010000 is connected on
; the SDA and SCL lines, and no other masters are on the bus.

; The SEND routine performs a l-byte write to the EEPROM. This consists of (1) START,
; (2) slave address + W, (3) memory location byte write, and (4) a data byte write.

; STEPS FOR WRITING TO EEPROM:

; 1) Load slave address into SLA ADD

; 2) Load memory address into MEM ADD

; 3) Load data byte into TRANSMIT BYTE.
4) Call SEND

; The RECEIVE routine performs a l-byte read from the EEPROM. This consists of (1)
; START, (2) slave address + W, (3) memory location byte write, (4) repeated START,
; (5) slave address + R, (6) data byte read.

; STEPS FOR RECEIVING DATA:
; 1) Load slave address into SLA ADD
; 2) Load memory address into MEM ADD
; 3) Call RECEIVE

4) Read RECEIVE_BYTE

; The SMBus state table is broken into 8-byte state segments, allowing the SMBus
; status code (SMBOSTA) to be used as a state index. Note that this leaves only
; 8 bytes of code space per SMBus state definition. As a result, certain tasks

; have been altered to limit state definition lengths:

; 1) The SMB MTDBACK state (Master transmitter, data byte sent, ACK received) is
; reduced to a bit-check and branch operation. The branch is outside of the state
; table, so that a larger code segment may be executed for this state.

;7 2) Three data bytes are used for slave address storage: SLA ADD, WRI ADD, READ ADD.
; Rather than using bit-wise operations in the SMBus states, each transfer routine

; pre-loads the address values. Since a RECEIVE includes both a WRITE and READ

; transfer, two address bytes are necessary - WRI _ADD and READ ADD. SLA ADD is used
; as a generic slave chip select before a function call.

; Note that SLA ADD is equivalent to WRI ADD, since WRI ADD = SLA ADD + W (W=0).
; The two are left separate to clarify the demonstration.

14 Rev. 1.3

SILICON LABORATORIES

Sinclude (c8051£f000.1inc)

WRITE EQU
READ EQU
CHIP A EQU
; SMBus States

SMB_BUS_ ERROR EQU
SMB_START EQU
SMB_RP START EQU
SMB_MTADDACK EQU
SMB_MTADDNACK EQU
SMB_MTDBACK EQU
SMB_MTDBNACK EQU
SMB_MTARBLOST EQU
SMB_MRADDACK EQU
SMB_MRADDNACK EQU
SMB_MRDBACK EQU
SMB_MRDBNACK EQU

00h
0lh

0AOh

00h
08h
10h
18h

20h
28h
30h
38h
40h
48h

50h
58h

Inclu

SMBus
SMBus

de register definition file.

WRITE command
READ command

EEPROM slave address

all modes) BUS ERROR

MT &
MT)
ACK
(MT)

(
(MT &
(
(

MR) START transmitted

MR) repeated START

Slave address + W transmitted;
received

Slave address + W transmitted;

NACK received

(MT) data byte transmitted; ACK rec’vd
(MT) data byte transmitted; NACK rec’vd
(MT) arbitration lost

(MR) Slave address + R transmitted;

ACK received

(MR) Slave address + R transmitted;

NACK received

(MR)
(MR)

data byte rec’vd; ACK transmitted
data byte rec’vd; NACK transmitted

MYDATA

SEGMENT DATA
RSEG MYDATA

TRANSMIT BYTE: DS
RECEIVE BYTE: DS
SLA_ADD: DS
WRI_ADD: DS
READ ADD: DS
MEM_ADD: DS

; Variables used for testing.

TEST COUNT: DS

TEST BYTE: DS

TEST ADDR: DS
MYBITS SEGMENT BIT

RW:
SM_BUSY:

BYTE SENT:

RSEG MYBITS

DBIT
DBIT
DBIT

e e

1
1
1

=

declare DATA segment
select DATA segment

Holds
Holds
Holds
Holds
Holds

a byte to be transmitted by the SMBus
a byte just received by the SMBus

the slave address

the slave address + WRITE

the slave address + READ

EEPROM memory location to be accessed

Test
Test

counter variable
data

Test memory location

R/W command bit. 1=READ, O=WRITE

SMBus Busy flag (kept in software)

Used to indicate what byte was just sent:
1: EEPROM memory address sent
0: Data byte sent

SILICON LABORATORIES

Rev. 1.3 15

SEGMENT IDATA
RSEG STACK
DS 80h

; declare STACK segment

; reserve 128 bytes for stack

CSEG

; Reset
org
1jmp

; SMBus
org
1jmp

MYCODE

Vector
00h
Reset Vector

Interrupt Vector
03Bh
SMBus ISR

SEGMENT CODE
RSEG MYCODE
USING 0

; Reset

Vector

; — Disables Watchdog Timer
; - Routes SDA and SCL to GPIO pins via the crossbar
; — Enables crossbar
; — Jumps to MAIN

Reset Vector:

mov
mov

mov

orl

mov
mov

WDTCN, #O0DEh
WDTCN, #O0ADh

SP, #STACK

OSCICN, #03h

XBRO, #01h
XBR2, #40h

; Disable Watchdog Timer

; Initialize Stack Pointer

; Set internal oscillator to highest setting
; (16 MHz)

; Route SMBus to GPIO pins through crossbar
; Enable crossbar and weak pull-ups

MAIN:

acall SMBus Init

setb

mov

EA

TEST BYTE, #0ffh

; Initialize SMBus
; Enable global interrupts

16

Rev. 1.3

SILICON LABORATORIES

AN113

mov TEST ADDR, #00h ; Load initial test values

mov TEST _COUNT, #0feh ;

7 TEST CODE - == m — = oo o m o o o

TEST:

; Send TEST BYTE to memory location TEST ADDR

mov SLA ADD, #CHIP A ; Load slave address

mov TRANSMIT BYTE, TEST BYTE ; Load transmit data into TRANSMIT BYTE
mov MEM ADD, TEST ADDR ; Load memory address into MEM ADD
acall SEND ; Call send routine

; Read memory location TEST ADDR into RECEIVE BYTE

mov SLA ADD, #CHIP A ; Load slave address
mov MEM ADD, TEST ADDR ; Load memory address into MEM ADD
acall RECEIVE ; Call receive routine

; Compare byte received to byte sent

A, RECEIVE BYTE ; Load received byte into accumulator

A, TEST BYTE, END TEST ; Compare sent byte to received byte
; Jump to END TEST if not equal

mov
cjne

; Change test variables
dec TEST BYTE ;
inc TEST_ ADDR ;

If sent=received, change test variables
and cycle through again.

; Cycle through again if TEST COUNTER not zero

djnz TEST COUNT, TEST ; Decrement counter, loop back to beginning

mov A, #9%9h ; Load accumulator with 99h if test successful.
END TEST:

jmp $; Spin

; SEND subroutine. Assumes that the slave address, memory location,
; data have all been loaded into their associated variables.

and transmit

; the SM BUSY bit, sets RW=WRITE,

’

SEND:
push ACC ;
jb SM _BUSY, $;
clr RW ;
mov A, SLA ADD ;
orl A, #WRITE ;
mov WRI_ADD, A ;
setb SM_BUSY ;
setb STA ;
pop ACC ;

loads the WRI ADD,

This routine manages
and initiates the transfer.

Preserve accumulator
Wait for SMBus to be free
RW = 0 (WRITE)

Store SLA ADD + WRITE
in WRI_ADD

Occupy SMBus
Initiate Transfer
Restore accumulator

SILICON LABORATORIES

Rev. 1.3 17

; RECEIVE subroutine.
; loaded into their associated variables. This routine manages the SM BUSY bit, sets

; RW=READ,

Assumes that the slave address and memory location have been

loads the READ ADD and WRI ADD, and initiates the transfer.

; Note that the RECEIVE transfer consists of a WRITE of the memory location to be accessed,
; followed by a repeated START and a READ operation. Therefore, both WRI_ADD

; and READ ADD are used by this routine.

RECEIVE:

push
b
setb
mov

orl
mov

mov
orl

mowv

setb
setb

jb
pop

ret

AcCC
SM_BUSY, $
RW

A, SLA ADD
A, #WRITE
WRI_ADD, A

A, SLA ADD
A, #READ
READ ADD, A

SM_BUSY
STA

SM_BUSY, $
ACC

Preserve accumulator
Wait for SMBus to be free
RW = 1 (READ)

Store SLA ADD + WRITE

in WRITE ADD

Store SLA ADD + READ
in READ ADD

Occupy SMBus
Initiate Transfer

Wait for receive to finish
Restore accumulator

; SMBus Init

; SMbus initialization routine

; — Configures and enables the SMBus.
; — Sets SMBus clock rate.
; — Enables SMBus interrupt.

; Clears SM Busy flag for first transfer.

SMBus Init:
mov SMBOCN, #04h
mov SMBOCR, #0BOh
orl SMBOCN, #40h
orl EIE1, #02h
clr SM BUSY
ret

Configure SMBus to send ACKs on acknowledge cycle
SMBus clock rate = 100KHz, per SMBOCR equation:
SMBOCR = - (SYSCLK) / (2*Fscl)

Enable SMBus

Enable SMBus interrupts

18

Rev. 1.3

SILICON LABORATORIES

; SMBus ISR

; Implemented as a state table lookup, with the SMBus status register as the index.
; SMBus status codes are multiples of 8; thus the status code can be used to index
; program segments that are spaced by 8 bytes. Each ‘org’ command indicates

; a new state, offset from the beginning of the table by its status code wvalue.

; Note that only 8 bytes are available to process each state. In the cases where
; more than 8 bytes are necessary, the code jumps to a program location outside
; of the state table. This is only necessary in the state ‘SMB MTDBACK'.

SMBus_ISR:
push PSW ;
push ACC ;
push DPH ; Resource preservation
push DPL ;
push ACC ;
mov A, SMBOSTA ; Load accumulator with current SMBus state.
; State corresponds to the address offset
; for each state execution
anl A, #7Fh ; Mask out upper bit, since any states that
; set this bit are not defined in this code.
mov DPTR, #SMB STATE TABLE ; Point DPTR to the beginning of the state table
Jmp @A+DPTR ; Jump to the current state

; SMBus State Table-———--—--"""""""""""-"—"-"-"—"—"—"—"—"—~—~—~—~ "~~~ ————
SMB STATE TABLE:
; SMB_BUS_ERROR

; All Modes: Bus Error
; Reset hardware by setting STOP bit

org SMB_STATE TABLE + SMB_BUS ERROR
setb STO
Jmp SMB ISR END ; Jump to exit ISR
; SMB_START

; Master Transmitter/Receiver: START transmitted.

; The R/W bit will always be a zero (W) in this state because

; for both write and read, the memory address must first be written.
org SMB_STATE TABLE + SMB_START

mov SMBODAT, WRI ADD ; Load slave address + W
clr STA ; Manually clear START bit
jmp SMB_ ISR _END ; Jump to exit ISR

; SMB_RP_START

; Master Transmitter/Receiver: Repeated START transmitted.

; This state should only occur during a read, after the memory
; address has been sent and acknowledged.

org SMB_STATE TABLE + SMB RP START

Rev. 1.3

SILICON LABORATORIES

19

AN113

mov SMBODAT, READ ADD ; Load slave address + R
clr STA ; Manually clear START bit
jmp SMB_ ISR END

; SMB_MTADDACK

; Master Transmitter: Slave address + WRITE transmitted.
; ACK received

org SMB_STATE TABLE + SMB MTADDACK

mov SMBODAT, MEM ADD ; Load memory address

setb BYTE SENT ; BYTE SENT=1: In the next ISR call,
; the memory address will have just been
; sent.

jmp SMB_ISR END

; SMB_MTADDNACK

; Master Transmitter: Slave address + WRITE transmitted.

; NACK received. The slave is not responding. Try again with
; acknowledge polling. Send STOP + START.

org SMB STATE TABLE + SMB_ MTADDNACK

setb STO
setb STA
jmp SMB ISR END

; SMB_MTDBACK

; Master Transmitter: Data byte transmitted. ACK received.

; This state is used in both read and write operations.

; Check BYTE SENT; if 1, memory address has just been sent. Else,
; data has been sent.

org SMB STATE TABLE + SMB MTDBACK
Jjbc BYTE SENT, ADDRESS SENT ; If BYTE SENT=1, clear bit and
; jump to ADDRESS SENT to process
; outside of state table.
jmp DATA SENT ; If BYTE SENT=0, data has just been sent,

; transfer is finished.
; Jump to end transfer

; SMB MTDBNACK

; Master Transmitter: Data byte transmitted. NACK received.

; Slave not responding. Send STOP followed by START to try again.
org SMB STATE TABLE + SMB MTDBNACK

setb STO
setb STA
jmp SMB ISR END

; SMB_MTARBLOST

; Master Transmitter: Arbitration Lost.

; Should not occur. If so, restart transfer.
org SMB_STATE_TABLE + SMB_MTARBLOST

setb STO
setb STA
jmp SMB ISR END

20 Rev. 1.3

SILICON LABORATORIES

AN113

; SMB MRADDACK

; Master Receiver: Slave address + READ transmitted. ACK received.
; Set to transmit NACK after next transfer since it will be the

; last (only) byte.
org SMB_STATE_TABLE + SMB_MRADDACK

clr AA ; NACK sent on acknowledge cycle

jmp SMB_ISR END

; SMB_MRADDNACK

; Master Receiver: Slave address + READ transmitted. NACK received.

; Slave not responding. Send repeated START to try again.

org SMB STATE TABLE + SMB MRADDNACK
clr STO
setb STA
jmp SMB ISR END

; SMB_ MRDBACK

; Master Receiver: Data byte received. ACK transmitted.
; Should not occur because AA is cleared in previous state.

; Send STOP if state does occur.
org SMB_STATE_TABLE + SMB_MRDBACK

setb STO
jmp SMB_ ISR END

; SMB_MRDBNACK

; Master Receiver: Data byte received. NACK transmitted.

; Read operation completed. Read data register and send STOP

org SMB STATE TABLE + SMB MRDBNACK

mov RECEIVE BYTE, SMBODAT
setb STO

setb AA ; Set AA for next transfer

clr SM BUSY
jmp SMB ISR END

; End of State Table-——-——----"-"-"-"""""""""""""""""""“"—“" "~~~ ————

; Program segment to handle SMBus states that require more than 8 bytes of program

; space.

; Address byte has just been sent. Check RW. If R (1), Jjump to RW READ.

; If W, load data to transmit into SMBODAT.
ADDRESS_SENT:

jb RW, RW_ READ
mov SMBODAT, TRANSMIT BYTE ; Load
Jmp SMB_ISR_END ; Jump

; Operation is a READ, and the address byte
; repeated START to initiate memory read.
RW_READ:

clr STO
setb STA ; Send
Jmp SMB_ ISR _END ; Jump

data
to exit ISR

has just been sent.

repeated START
to exit ISR

Send

SILICON LABORATORIES

Rev. 1.3

21

AN113

; Operation is a WRITE,
; 1s finished. Send STOP,
DATA SENT:

setb
clr

STO
SM_BUSY
SMB ISR _END

and the data byte has just been sent.
free the bus,

Transfer
and exit the ISR.

Send STOP and exit ISR.
Free SMBus
Jump to exit ISR

; SMBus ISR exit.
; Restore registers,
SMB ISR END:

clear SI bit,

clr ST
pop ACC
pop DPL
pop DPH
pop ACC
pop PSW
reti
END

and

return from interrupt.

22

Rev. 1.3

SILICON LABORATORIES

/e
//
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// FILE NAME : SMB Ex2.c
// TARGET DEVICE : C8051F000
// CREATED ON : 2/20/01
// CREATED BY : JS
//
//
// Example code for interfacing a C8051F0xx to three EEPROMs via the SMBus.
// Code assumes that three 16-bit address space EEPROMs are connected
// on the SCL and SDA lines, and configured so that their slave addresses
// are as follows:
// CHIP A = 1010000
// CHIP_B = 1010001
// CHIP_C = 1010010
//
// Slave and arbitration states are not defined. Assume the CF000 is the only
// master in the system.
// Functions: SM Send performs a l-byte write to the specified EEPROM
// SM_Receive performs a l-byte read of the specified EEPROM address (both include
// memory address references).
//
// Includes test code section.
[e
// Includes
[e
#include <c8051£f000.h> // SFR declarations
/e
// Global CONSTANTS
[e
#define WRITE 0x00 // SMBus WRITE command
#define READ 0x01 // SMBus READ command
// Device addresses (7 bits, lsb is a don’t care)
#define CHIP_ A 0xAO0 // Device address for chip A
#define CHIP B 0xA2 // Device address for chip B
#define CHIP C OxA4 // Device address for chip C
// SMBus states:
// MT = Master Transmitter
// MR = Master Receiver
#define SMB BUS ERROR 0x00 // (all modes) BUS ERROR
#define SMB START 0x08 // (MT & MR) START transmitted
#define SMB_RP_START 0x10 // (MT & MR) repeated START
#define SMB MTADDACK 0x18 // (MT) Slave address + W transmitted;
// ACK received
#define SMB_MTADDNACK 0x20 // (MT) Slave address + W transmitted;
// NACK received
#define SMB MTDBACK 0x28 // (MT) data byte transmitted; ACK rec’vd
#define SMB_MTDBNACK 0x30 // (MT) data byte transmitted; NACK rec’vd
#define SMB MTARBLOST 0x38 // (MT) arbitration lost
#define SMB MRADDACK 0x40 // (MR) Slave address + R transmitted;
// ACK received
#define SMB MRADDNACK 0x48 // (MR) Slave address + R transmitted;

Rev. 1.3 23

SILICON LABORATORIES

AN113

// NACK received

#define SMB_MRDBACK 0x50 // (MR) data byte rec’vd; ACK transmitted
#define SMB MRDBNACK 0x58 // (MR) data byte rec’vd; NACK transmitted
ettt i
//Global VARIABLES
/e o
char COMMAND; // Holds the slave address + R/W bit for

// use in the SMBus ISR.
char WORD; // Holds data to be transmitted by the SMBus

// OR data that has just been received.
char BYTE NUMBER; // Used by ISR to check what data has just been

// sent - High address byte, Low byte, or data

// byte
unsigned char HIGH ADD, LOW_ADD; // High & Low byte for EEPROM memory address
bit SM BUSY; // This bit is set when a send or receive

// is started. It is cleared by the

// ISR when the operation is finished.
/e e o
// Function PROTOTYPES
[mm e e
void SMBus ISR (void);

vo
ch

1/
//
//
VO

{

id SM Send (char chip select, unsigned int byte address, char out byte);
ar SM Receive (char chip select, unsigned int byte address);

Main routine configures the crossbar and SMBus, and tests
the SMBus interface between the three EEPROMs
id main (void)
unsigned char check; // Used for testing purposes
WDTCN = Oxde; // disable watchdog timer
WDTCN = Oxad;
OSCICN |= 0x03; // Set internal oscillator to highest setting
// (16 MHz)
XBRO = 0x01; // Route SMBus to GPIO pins through crossbar
XBR2 = 0x40; // Enable crossbar and weak pull-ups
SMBOCN = 0x44; // Enable SMBus with ACKs on acknowledge
// cycle
SMBOCR = -80; // SMBus clock rate = 100kHz.
EIEl |= 2; // SMBus interrupt enable
EA = 1; // Global interrupt enable

24

Rev. 1.3

SILICON LABORATORIES

AN113

SM BUSY = 0; // Free SMBus for first transfer.
// TEST CODE-——————————————mmmm e
SM Send (CHIP_A, 0x0088, 0x53); // Send 0x53(data) to address 0x88 on CHIP A
SM Send(CHIP B, 0x0001, 0x66); // Send 0x66(data) to address 0x0l1 on CHIP B
SM Send (CHIP C, 0x0010, 0x77);
SM_Send (CHIP B, 0x0333, 0xF0);
SM_Send (CHIP A, 0x0242, O0xF0);
check = SM Receive (CHIP A, 0x0088); // Read address 0x88 on CHIP A
check = SM Receive (CHIP B, 0x0001); // Read address 0x0l1 on CHIP B
check = SM Receive (CHIP _C, 0x0010);
check = SM Receive (CHIP B, 0x0333);
check = SM Receive (CHIP A, 0x0242);
// END TEST CODE-———————————— = m - m e e
}
// SMBus byte write function--------------"-"-"-""-"--————
// Writes a single byte at the specified memory location.
//
// out byte = data byte to be written
// byte address = memory location to be written into (2 bytes)
// chip select = device address of EEPROM chip to be written to
void SM Send (char chip select, unsigned int byte address, char out byte)
{
while (SM BUSY); // Wait for SMBus to be free.
SM BUSY = 1; // Occupy SMBus (set to busy)
SMBOCN = 0x44; // SMBus enabled,
// ACK on acknowledge cycle
BYTE NUMBER = 2; // 2 address bytes.
COMMAND = (chip_select | WRITE); // Chip select + WRITE
HIGH ADD = ((byte address >> 8) & 0x00FF);// Upper 8 address bits
LOW ADD = (byte address & Ox00FF); // Lower 8 address bits
WORD = out byte; // Data to be writen
STO = 0;
STA = 1; // Start transfer
}
// SMBus random read function-------------------——————— -
// Reads 1 byte from the specified memory location.
//
// byte address = memory address of byte to read

// chip select
char SM Receive

{

while (SM BUSY);
SM_BUSY = 1;
SMBOCN = 0x44;

BYTE NUMBER =
COMMAND =

2;
(chip select

device address of EEPROM to be
(char chip select, unsigned int

READ) ;

read from
byte address)

//
1/
//

Wait for bus to be free.
Occupy SMBus (set to busy)
SMBus enabled, ACK on acknowledge cycle

//
//

2 address bytes
Chip select + READ

SILICON LABORATORIES

Rev. 1.3 25

AN113

HIGH ADD = ((byte address >> 8) & 0x00FF);// Upper 8 address bits

LOW _ADD = (byte address & O0x00FF); // Lower 8 address bits

STO = 0;

STA = 1; // Start transfer

while (SM_BUSY) ; // Wait for transfer to finish

return WORD;

// SMBus interrupt service routine:

void SMBUS ISR (void) interrupt 7

{
switch (SMBOSTA) { // Status code for the SMBus (SMBOSTA register)

// Master Transmitter/Receiver: START condition transmitted.
// The R/W bit of the COMMAND word sent after this state will
// always be a zero (W) because for both read and write,

// the memory address must be written first.

case SMB_ START:

SMBODAT = (COMMAND & OxFE) ; // Load address of the slave to be accessed.
STA = 0; // Manually clear START bit
break;

// Master Transmitter/Receiver: Repeated START condition transmitted.
// This state should only occur during a read, after the memory address has been
// sent and acknowledged.
case SMB RP START:
SMBODAT = COMMAND; // COMMAND should hold slave address + R.
STA = 0;
break;

// Master Transmitter: Slave address + WRITE transmitted. ACK received.
case SMB MTADDACK:
SMBODAT = HIGH ADD; // Load high byte of memory address
// to be written.
break;

// Master Transmitter: Slave address + WRITE transmitted. NACK received.
// The slave is not responding. Send a STOP followed by a START to try again.
case SMB MTADDNACK:

STO = 1;
STA = 1;
break;

// Master Transmitter: Data byte transmitted. ACK received.
// This state is used in both READ and WRITE operations. Check BYTE NUMBER
// for memory address status - if only HIGH ADD has been sent, load LOW_ADD.
// If LOW ADD has been sent, check COMMAND for R/W value to determine
// next state.
case SMB MTDBACK:

switch (BYTE NUMBER) {

26 Rev. 1.3

SILICON LABORATORIES

AN113

case 2: // If BYTE NUMBER=2, only HIGH ADD
SMBODAT = LOW_ADD; // has been sent.
BYTE NUMBER--; // Decrement for next time around.
break;
case 1: // If BYTE NUMBER=1, LOW ADD was just sent.
if (COMMAND & 0x01) { // If R/W=READ, sent repeated START.
STO = 0;
STA = 1;
} else {
SMBODAT = WORD; // If R/W=WRITE, load byte to write.
BYTE NUMBER--;
}
break;
default: // If BYTE NUMBER=0, transfer is finished.
STO = 1;
SM BUSY = 0; // Free SMBus
}
break;
// Master Transmitter: Data byte transmitted. NACK received.
// Slave not responding. Send STOP followed by START to try again.
case SMB MTDBNACK:
STO = 1;
STA = 1;
break;
// Master Transmitter: Arbitration lost.
// Should not occur. If so, restart transfer.
case SMB MTARBLOST:
STO = 1;
STA = 1;
break;
// Master Receiver: Slave address + READ transmitted. ACK received.
// Set to transmit NACK after next transfer since it will be the last (only)

// byte.

case SMB MRADDACK:
AA = 0; // NACK sent on acknowledge cycle.
break;

// Master Receiver: Slave address + READ transmitted. NACK received.
// Slave not responding. Send repeated start to try again.
case SMB MRADDNACK:

STO = 0;
STA = 1;
break;

// Data byte received. ACK transmitted.
// State should not occur because AA is set to zero in previous state.
// Send STOP if state does occur.
case SMB MRDBACK:
STO = 1;
SM BUSY = 0;
break;

// Data byte received. NACK transmitted.
// Read operation has completed. Read data register and send STOP.

Rev. 1.3

SILICON LABORATORIES

27

AN113

case SMB MRDBNACK:
WORD = SMBODAT;
STO = 1;
SM _BUSY = 0; // Free SMBus
break;

// All other status codes meaningless in this application. Reset communication.

default:
STO = 1; // Reset communication.
SM_BUSY = 0;
break;
}
SI=0; // clear interrupt flag

28 Rev. 1.3

SILICON LABORATORIES

/T -
//

// Copyright 2001 Cygnal Integrated Products, Inc.

//

// FILE NAME : SMB Ex3.c

// TARGET DEVICE : C8051F000

// CREATED ON : 2/20/01

// CREATED BY : JS

//

// Example code to demonstrate the use of the SMBus interface between two CF000 devices.
// The devices operate in a peer-to-peer configuration.

// Demonstration includes use of op codes for each device to command the other to:

// 1) Write a byte to DACO

// 2) Write a byte to a data buffer
// 3) Perform an ADC conversion

// 4) Read a byte from a data buffer

// These op codes are can be tested easily if each chip has DACO routed to AINO.
// With this configuration, a READ ADC command can be used to test the output
// of a WRITE DAC command.

// Code assumes that two CFOxx devices are connected via SCL and SDA, with
// slave addresses (held by register SMBOADR)

// CHIP A = 1111000

// CHIP B = 1110000

//
// Test code is included. For testing purposes, the test code should be omitted
// in one device, and run in the other. This can be accomplished by commenting

// the OP CODE HANDLER() call before the test code in the device that will assume
// the master role.

// PLEASE NOTE that the constant MY ADD must correspond with the
// current device - change it to CHIP B when downloading code to CHIP B.

[m e
/mm e e
// Includes

[mm e e e
#include <c8051f000.h> // SFR declarations
it
// Global CONSTANTS
e
#define WRITE 0x00 // WRITE direction bit

#define READ 0x01 // READ direction bit

// Device addresses

#define CHIP_A 0xFO0
#define CHIP_B 0xEOQ
#define MY ADD CHIP A // Corresponds to the chip currently

// being programmed.

// Peer-to-Peer OP_CODEs
#define READ_ADC 0x01 // OP_CODE to read from slave ADC
#define WRITE DAC 0x02 // OP_CODE to write to slave DAC

Rev. 1.3 29

SILICON LABORATORIES

AN113

#define WRITE BUF 0x03 // OP_CODE to write to slave buffer
#define READ BUF 0x04 // OP_CODE to read from slave buffer

//SMBus states:

// MT = Master Transmitter
// MR = Master Receiver

// ST = Slave Transmitter
// SR = Slave Receiver

#define SMB _BUS ERROR 0x00 // (all modes) BUS ERROR

#define SMB START 0x08 // (MT & MR) START transmitted
#define SMB RP_START 0x10 // (MT & MR) repeated START

#define SMB_MTADDACK 0x18 // (MT) Slave address + W transmitted;

// ACK received
#define SMB MTADDNACK 0x20 // (MT) Slave address + W transmitted;
// NACK received

#define SMB MTDBACK 0x28 // (MT) data byte transmitted; ACK rec’vd
#define SMB MTDBNACK 0x30 // (MT) data byte transmitted; NACK rec’vd
#define SMB MTARBLOST 0x38 // (MT) arbitration lost
#define SMB MRADDACK 0x40 // (MR) Slave address + R transmitted;
// ACK received
#define SMB MRADDNACK 0x48 // (MR) Slave address + R transmitted;
// NACK received
#define SMB MRDBACK 0x50 // (MR) data byte rec’vd; ACK transmitted
#define SMB_MRDBNACK 0x58 // (MR) data byte rec’vd; NACK transmitted
#define SMB_SROADACK 0x60 // (SR) SMB’s own slave address + W rec’vd;
// ACK transmitted
#define SMB_ SROARBLOST 0x68 // (SR) SMB’s own slave address + W rec’vd;
// arbitration lost
#define SMB SRGADACK 0x70 // (SR) general call address rec’vd;
// ACK transmitted
#define SMB SRGARBLOST 0x78 // (SR) arbitration lost when transmitting

// slave addr + R/W as master; general
// call address rec’vd; ACK transmitted

#define SMB SRODBACK 0x80 // (SR) data byte received under own slave
// address; ACK returned

#define SMB_ SRODBNACK 0x88 // (SR) data byte received under own slave
// address; NACK returned

#define SMB SRGDBACK 0x90 // (SR) data byte received under general
// call address; ACK returned

#define SMB SRGDBNACK 0x98 // (SR) data byte received under general
// call address; NACK returned

#define SMB SRSTOP 0xa0 // (SR) STOP or repeated START received
// while addressed as a slave

#define SMB_STOADACK 0Oxa8 // (ST) SMB’s own slave address + R rec’vd;
// ACK transmitted

#define SMB STOARBLOST 0xbO // (ST) arbitration lost in transmitting

// slave address + R/W as master; own
// slave address rec’vd; ACK transmitted

#define SMB STDBACK 0xb8 // (ST) data byte transmitted; ACK rec’ed
#define SMB STDBNACK 0xcO // (ST) data byte transmitted; NACK rec’ed
#define SMB_STDBLAST 0Oxc8 // (ST) last data byte transmitted (AA=0);
// ACK received
#define SMB SCLHIGHTO 0xd0 // (ST & SR) SCL clock high timer per
// SMBOCR timed out (FTE=1)
#define SMB_IDLE 0x£f8 // (all modes) Idle
/e

30 Rev. 1.3

SILICON LABORATORIES

//Global VARIABLES

e
char COMMAND; // Holds the slave address + R/W bit for
// use in the SMBus ISR.
char WORD; // Holds data to be transmitted by the SMBus
// OR data that has just been received.
char OP_CODE; // Holds an op code to be sent or one

// that has just been received.

char LOST_COMMAND, LOST_WORD, LOST_CODE; // Used to hold relevant data after a
// lost arbitration.

char DATA BUF[16]; // Data buffer accessed by OP CODE_HANDLER

bit LOST; // Arbitration lost flag, set when
// arbitration is lost while in master mode.
// Used to resume a failed transfer.

bit SM BUSY; // This bit is set when a send or receive
// is started. It is cleared by the
// ISR when the operation is finished.

bit VALID OP; // Flag used to determine if byte received
// as a slave is an OP_CODE or data.

bit DATA READY; // Used by OP_CODE handler to flag when
// valid data has been received from the
// master

void SMBUS ISR (void);

char SLA READ(char chip select, char out op);

void SLA SEND (char chip select, char out op, char out data);
void OP CODE HANDLER (void) ;

void MAIN (void)
{

char i, check 1, check 2; // Variables used for testing purposes only.
WDTCN = Oxde; // disable watchdog timer

WDTCN = Oxad;

XBRO = 0x01; // Route SMBus to GPIO pins through crossbar
XBR2 = 0x40; // Enable crossbar and weak pull-ups

SMBOCN = 0x44; // Enable SMBus with acknowledge low (RA = 1)
SMBOCR = -80; // SMBus clock rate = 100 kHz

SMBOADR = MY ADD; // Set own slave address.

Rev. 1.3 31

SILICON LABORATORIES

AN113

ADCOCN = 0x80; // Enable ADC, conversions to start with
// write to ADBUSY.

ADCOCN |= 0x01; // ADC data registers left-justified.

DACOCN = 0x84; // enable DACO, with left justified data
// registers.

REFOCN = 0x03; // reference voltage enabled.

EIELl |= 2; // SMBus interrupt enable

EA = 1; // Global interrupt enable

SM BUSY = 0; // Free bus for first transfer.

ST = 0; //

// OP_CODE_HANDLER() ; // This line should be commented in only

// one of the two peer devices. It is

// for testing purposes only.

// In a normal setup, the OP_CODE HANDLER
// would be running at all times in order
// to react to OP_CODES being sent to the
// device.

/) TEST CODE === — = = o oo o
// This code is used only to test the interface between the two devices. If

// the above OP_CODE_HANDLER line is commented out, this device assumes the master

// role. The other device should be running the OP_CODE HANDLER at all times, to

// respond to the OP CODEs below.

SLA SEND(CHIP B, (0x40 | WRITE BUF), 0x24); // Write to index 4
// in the data buffer
SLA SEND(CHIP B, (0x60 | WRITE BUF), 0x25); // Write to index 6
SLA_SEND(CHIP B, (0x80 | WRITE BUF), 0x26); // Write to index 8
SLA SEND(CHIP B, (0x10 | WRITE BUF), 0x27); // Write to index 1
check 1 = SLA READ(CHIP B, (0x40 READ BUF)); // Read index from the buffer

(([)i 4
check 1 = SLA READ(CHIP B, (0x60 | READ BUF)); // Read index 6
check 1 = SLA READ(CHIP B, (0x80 | READ BUF)); // Read index 8
check 1 ((0x10 | READ BUF)); // Read index 1

SLA READ (CHIP B,

// Loop to continuously increase the DAC output on CHIP B, and read its
// ADC each round. DAC output on CHIP B should ramp.

for (i=0;1<50;1i++) {

SLA SEND(CHIP B, WRITE DAC, 2*i); // Write 2*i to DACO on CHIP B
check 1 = SLA READ(CHIP B, READ ADC); // Read AINO on CHIP B
check 2 = 2*i;} // check 1 should be approximately

// the same as check 2.
// END TEST CODE === = = o o e e e

// Send to slave.

32 Rev. 1.3

SILICON LABORATORIES

AN113

// The send function transmits two bytes to the slave device: an op code, and a data
// byte. There are two op code choices for sending data: WRITE DAC and WRITE BUF.
// If the op code is WRITE BUF, then the upper 4 bits of the op code should contain
// the buffer index. For example, to write to index 2 of the data buffer, the
// op_code parameter should be (0x20 | WRITE BUF).
//
// chip select = address of slave device.
// out_op = OP _CODE to be sent.
// out _data = data byte to be sent.
void SLA SEND(char chip select, char out op, char out data) {
while (SM BUSY); // Wait while SMBus is busy.
SM BUSY = 1; // SMBus busy flag set.
SMBOCN = 0x44; // SMBus enabled, ACK low.
COMMAND = (chip select | WRITE); // COMMAND = 7 address bits + WRITE.
OP_CODE = out_op; // WORD = OP CODE to be transmitted.
WORD = out data; // DATA = data to be transmitted.
STO = 0;
STA = 1; // Start transfer.

//
//
//
//
//
//
//
// chip select = address of slave device.
// out_op = OP _CODE to be sent.
char SLA READ(char chip select,

Read from slave.

to request a l-byte read.
If the op code is READ BUF,
contain the buffer index. For example,
the op code should be (0x50 | READ BUF) .

while (SM_BUSY) ; //
SM_BUSY = 1; //
SMBOCN = 0x44; //
COMMAND = (chip select | READ); //
OP_CODE = out op;

STO = 0;

STA = 1; //

//
//

while (SM BUSY) ;
return WORD;

The read function transmits a l-byte op code,

The two op code choices are READ ADC and READ BUF.
then the upper 4 bits of the op code should

to read index 5 of the data buffer,

char out op) {

then issues a repeated start

Wait while SMBus is busy.

Set busy flag.

Enable SMBus, ACK low.

COMMAND = 7 address bits + READ

Start transfer.
Wait for transfer to finish.
Return received word.

Upon receipt,

// OP_CODE handler.
// Decodes incoming op codes and performs tasks according to those op codes.
// A call to this function runs forever.
//
// The VALID OP bit flags when a valid op code has been received.
// the handler decodes the op code, performs the task, then clears
// VALID OP to wait for another code.
void OP CODE HANDLER (void) {
char index; // data buffer index
while (1) { // run forever
VALID OP = 0; // Wait for a valid OP CODE
while (!VALID OP); //

Rev. 1.3

SILICON LABORATORIES

33

AN113

// The lower 4 bits of the OP CODE are used to determine the action, while the
// upper 4 bits are used to index the DATA BUF array when the READ BUF or

// WRITE BUF OP_CODEs are received. Note that the SMBus is stalled until the
// OP_CODE is decoded.

switch (OP _CODE & OxOF) { // Decode OP CODE

// OP_CODE = READ ADC - Perform an ADC conversion, and place data in
// output buffer.

// Read only ADC high byte.

case READ ADC:

ST = 0; // Free the bus

AA = 0; // Take slave ‘offline’

ADCINT = 0; // Clear ADC interrupt flag.
ADBUSY = 1; // Start conversion.

while (!'ADCINT) ; // Wait for conversion to finish.
WORD = ADCOH; // Put data in output buffer.

AA = 1; // Put slave back ‘online’
VALID OP = 0; // Look for a new OP_ CODE

break;

// OP_CODE = WRITE DAC - Wait for a valid data byte, and write it to high
// byte of DACO.
case WRITE DAC:

ST = 0; // Free the bus

DATA READY = 0; // Wait for valid data.
while (!DATA READY); /7

DACOL = 0; // DAC low byte

DACOH = WORD; // DAC high byte

VALID OP = 0; // Look for new OP_CODE

SI = 0; // Free bus when finished.
break;

// OP_CODE = WRITE BUF - Wait for valid data byte, then place data in
// DATA BUF array. Index data according to upper 4 bits of OP_CODE.
case WRITE BUF:

ST = 0; // Free the bus

index = (OP_CODE & OxFO); // Use upper 4 bits as array index.
DATA READY = 0; // Wait for valid data.

while (!DATA READY); //

DATA BUF[index] = WORD; // Store data in array.

VALID OP = 0; // Look for new OP_CODE

ST = 0; // Free the bus when finished.
break;

// OP_CODE = READ BUF - Read DATA BUF array and place byte in output buffer.
// Array index determined by upper 4 bits of OP_CODE.
case READ BUF:

index = (OP_CODE & O0xFO0); // Use upper 4 bits as array index.
WORD = DATA BUF[index]; // Place indexed data in output buffer.
VALID OP = 0; // Look for new OP_CODE
ST = 0; // Free the bus when finished.
break;
}
if (LOST) { // If LOST is set, the device has recently
COMMAND = LOST COMMAND; // lost an arbitration. Load saved values
WORD = LOST_ WORD; // back into transfer variables, and retry
OP_CODE = LOST CODE; // transfer.

34 Rev. 1.3

SILICON LABORATORIES

AN113

LOST = 0;
STO = 0;
STA = 1;

void SMBUS ISR (void)
{

interrupt 7

(SMBOSTA) { //
//

switch

// Master Transmitter/Receiver: START
// Load SMBODAT with slave device addr
// start with an OP_CODE write.

case SMB_ START:

SMBODAT = (COMMAND & OXFE); //
//
//
STA = 0; //
SI = 0; //
break;

Status code for the SMBus
(SMBOSTA register)

condition transmitted.
ess.

Load address of the slave to be accessed.
Mask out R/W bit because first transfer
will always be a write of the OP_CODE.
Manually clear STA bit

Clear interrupt flag

// Master Transmitter/Receiver: Repeated START condition transmitted.

// This state only occurs during a READ, after the OP_CODE has been sent.

// device address + READ into SMBODAT.
case SMB RP START:
SMBODAT = COMMAND;

STA = 0; //
ST = 0;
break;

// Master Transmitter: Slave address + WRITE transmitted.

// Load OP CODE into SMBODAT.
case SMB MTADDACK:

SMBODAT = OP CODE;

SI = 0;

break;

// Master Transmitter: Slave address + WRITE transmitted.
Use ACK polling to retry.

// The slave is not responding.
case SMB MTADDNACK:

STO = 1;
STA = 1;
SI = 0;
break;

// Master Transmitter: Data byte transmitted.
// Check OP CODE - If it is a READ code,

// read. If it is a WRITE code, load

Load

Manually clear START bit.

ACK received.

// Clear interrupt flag

NACK received.

// Clear interrupt flag

ACK received.
send repeated START to begin
WORD into SMBODAT for transfer.

// If it is not a valid code, then either 1) data has been transmitted

// and the transfer is finished, or 2)
// send STOP and end transfer.

there is an error. 1In either case,

Mask out R/W bit since all transfers

SILICON LABORATORIES

Rev. 1.3

35

AN113

case SMB MTDBACK:
switch (OP_CODE & O0xOF) { // Check only lower 4 bits.

// OP_CODE is a READ. Send repeated START.
case READ BUF:
case READ ADC:
OP CODE = 0; // Current OP CODE no longer useful
STO = 0;
STA = 1;
break;

// OP_CODE is a WRITE. Load output data into SMBODAT.
case WRITE BUF:
case WRITE DAC:

SMBODAT = WORD;
OP_CODE = 0; // Clear OP_CODE so transfer ends the next
break; // time this state occurs
// (after data is sent).
default: // No valid OP _CODE. End transfer.

STO = 1;
SM_BUSY = 0;
break;

}

SI = 0;

break;

// Master Transmitter: Data byte transmitter. NACK received.
// Use ACK polling to retry transfer.
case SMB MTDBNACK:

STO = 1;

STA = 1;

SI = 0; // Clear interrupt flag
break;

// Master Transmitter: Arbitration lost.
case SMB MTARBLOST:

LOST COMMAND = COMMAND; //
LOST_WORD = WORD; // Store variables for use when bus 1is free.
LOST _CODE = OP_CODE; //
LOST = 1; // Set flag to retry transfer
// when bus is free.
SI = 0; // Clear interrupt flag
break;

// Master Receiver: Slave address + READ transmitted. ACK received.

// Set to transmit NACK after next transfer since it will be the

// last (only) byte.

case SMB MRADDACK:
AA = 0; // NACK sent during acknowledge cycle.
SI = 0;
break;

// Master Receiver: Slave address + READ transmitted. NACK received.
// Slave not responding. Send repeated START to try again.
case SMB MRADDNACK:

STO = 0;

STA = 1;

36 Rev. 1.3

SILICON LABORATORIES

AN113

SI = 0;
break;

// Master Receiver: Data byte received. ACK transmitted.
// State should not occur because AA is cleared in previous state.
// Send STOP if state does occur.
case SMB MRDBACK:
STO = 1;
SM _BUSY = 0;
SI = 0;
break;

// Master Receiver: Data byte received. NACK transmitted.
// Read operation has completed. Read data register and send STOP.
case SMB MRDBNACK:

WORD = SMBODAT;

STO = 1;

SM_BUSY = 0;

AA = 1; // Set AA for next transfer

SI = 0;

break;

// Slave Receiver: Arbitration lost, general call address received.
// Set LOST flag to retry transfer when bus is free. Fall through.
case SMB SRGARBLOST:

// Slave Receiver: Arbitration lost, own slave address + WRITE received.
// Set LOST flag to retry transfer when bus is free.

// Set STO bit to get out of master mode.

case SMB SROARBLOST:

LOST7COMMAND = COMMAND; //

LOST_WORD = WORD; // Store variables for use when bus 1is free.
LOST CODE = OP_ CODE; //

LOST = 1; // Retry transfer when bus is free.

ST = 0;

break;

// Slave Receiver: Slave address + WRITE received. ACK transmitted.
// Fall through.
case SMB SROADACK:

// Slave Receiver: General call address received. ACK transmitted.
case SMB SRGADACK:

SI = 0;

break;

// Slave Receiver: Data byte received after addressed by general
// call address + WRITE.

// ACK transmitted. Fall through.

case SMB SRGDBACK:

// Slave Receiver: Data byte received after addressed by own
// slave address + WRITE.

// ACK transmitted.

// Take action depending on OP_CODE or data received.

case SMB SRODBACK:

if (!VALID OP){ // if VALID OP=0, this byte is an OP_CODE.
OP CODE = SMBODAT; // Store OP_CODE
VALID OP = 1; // Next byte is not an OP_CODE

Rev. 1.3 37

SILICON LABORATORIES

AN113

} else {
DATA READY = 1; // Valid data has been received. Process
// in OP_CODE handler.
WORD = SMBODAT;
ST = 0;
}

break;

// Slave Receiver: Data byte received while addressed as slave.

// NACK transmitted. Should not occur since AA will not be cleared
// as slave. Fall through to next state.

case SMB SRODBNACK:

// Slave Receiver: Data byte received while addressed by general call.

// NACK transmitted.

// Should not occur since AA will not be cleared as slave.

case SMB SRGDBNACK:
AA =
SI =
break;

’

o

’

// Slave Receiver: STOP or repeated START received while addressed as slave.
case SMB SRSTOP:

SI = 0;

break;

// Slave Transmitter: Own slave address + READ received. ACK transmitted.
// Load SMBODAT with data to be output.
case SMB STOADACK:

SMBODAT = WORD;

SI = 0;

break;

// Slave Transmitter: Arbitration lost as master. Own address + READ received.
// ACK transmitted.
case SMB STOARBLOST:

LOST COMMAND = COMMAND; //

LOST_WORD = WORD; // Store variables for use when bus
LOST _CODE = OP_CODE; // is free.

LOST = 1; // Retry when bus is free.

SI = 0;

break;

// Slave Transmitter: Data byte transmitted. ACK received. Fall through.
case SMB_ STDBACK:

// Slave Transmitter: Data byte transmitted. NACK received. Fall through.
case SMB STDBNACK:

// Slave Transmitter: Last data byte transmitted. ACK received.
// No action necessary.
case SMB STDBLAST:

SI = 0;

break;

// All other status codes invalid. Reset communication.
default:
STO = 1;

38 Rev. 1.3

SILICON LABORATORIES

AN113

SM BUSY = 0;
break;

SILICON LABORATORIES

Rev. 1.3

39

AN113

Software Example for the C8051F02x series

!/
//
1/
//
//
//
!/
!/
1/
//
//
//
!/
!/
!/
//
//
//
!/
!/
1/
//
//
//
!/
!/
1/
//
//
//
!/
!/
1/
//
//
//

1/
//

st
st
st
st
sf
sf
st
st
st

Copyright 2001 Cygnal Integrated Products, Inc.
FILE NAME : SMB Ex3.c
TARGET DEVICE : C8051F020
CREATED ON : 6/5/02
CREATED BY : JS / FB
Example code to demonstrate the use of the SMBus interface between two CF000 devices.
The devices operate in a peer-to-peer configuration.
Demonstration includes use of op codes for each device to command the other to:
1) Write a byte to DACO
2) Write a byte to a data buffer
3) Perform an ADC conversion
4) Read a byte from a data buffer
These op codes are can be tested easily if each chip has DACO routed to AINO.
With this configuration, a READ ADC command can be used to test the output
of a WRITE DAC command.
Code assumes that two CFOxx devices are connected via SCL and SDA, with
slave addresses (held by register SMBOADR)
CHIP A = 1111000
CHIP B = 1110000
Test code is included. For testing purposes, the test code should be omitted
in one device, and run in the other. This can be accomplished by commenting
the OP CODE HANDLER() call before the test code in the device that will assume
the master role.
PLEASE NOTE that the constant MY ADD must correspond with the
current device - change it to CHIP B when downloading code to CHIP_ B.
Includes
nclude <c8051£020.h> // SFR declarations
16-bit SFR Definitions for ‘F02x
rl6 DP = 0x82; // data pointer
rl6 TMR3RL = 0x92; // Timer3 reload value
rl6 TMR3 = 0x94; // Timer3 counter
rl6 ADCO = Oxbe; // ADCO data
rl6 ADCOGT = Oxc4; // ADCO greater than window
rl6 ADCOLT = 0xc6; // ADCO less than window
rl6 RCAP2 = Oxca; // Timer2 capture/reload
rl6 T2 = Oxcc; // Timer2
rl6 RCAP4 = Oxed; // Timer4 capture/reload

40

Rev. 1.3

SILICON LABORATORIES

AN113

sfrle T4 = 0xf4; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1 data

[e e
// Global CONSTANTS

/e
#define WRITE 0x00 // WRITE direction bit

#define READ 0x01 // READ direction bit

// Device addresses

#define CHIP A 0xFO
#define CHIP B 0xEOQ
#define MY ADD CHIP_A // Corresponds to the chip currently

// being programmed.

// Peer-to-Peer OP_ CODEs

#define READ ADC 0x01 // OP CODE to read from slave ADC
#define WRITE DAC 0x02 // OP_CODE to write to slave DAC
#define WRITE BUF 0x03 // OP_CODE to write to slave buffer
#define READ BUF 0x04 // OP_CODE to read from slave buffer

//SMBus states:

// MT = Master Transmitter
// MR = Master Receiver

// ST = Slave Transmitter
// SR = Slave Receiver

#define SMB BUS ERROR 0x00 // (all modes) BUS ERROR

#define SMB_START 0x08 // (MT & MR) START transmitted
#define SMB RP START 0x10 // (MT & MR) repeated START

#define SMB MTADDACK 0x18 // (MT) Slave address + W transmitted;

// ACK received
#define SMB MTADDNACK 0x20 // (MT) Slave address + W transmitted;
// NACK received

#define SMB_MTDBACK 0x28 // (MT) data byte transmitted; ACK rec’vd
#define SMB MTDBNACK 0x30 // (MT) data byte transmitted; NACK rec’vd
#define SMB MTARBLOST 0x38 // (MT) arbitration lost
#define SMB MRADDACK 0x40 // (MR) Slave address + R transmitted;
// ACK received
#define SMB MRADDNACK 0x48 // (MR) Slave address + R transmitted;
// NACK received
#define SMB MRDBACK 0x50 // (MR) data byte rec’vd; ACK transmitted
#define SMB MRDBNACK 0x58 // (MR) data byte rec’vd; NACK transmitted
#define SMB_ SROADACK 0x60 // (SR) SMB’s own slave address + W rec’vd;
// ACK transmitted
#define SMB SROARBLOST 0x68 // (SR) SMB’s own slave address + W rec’vd;
// arbitration lost
#define SMB SRGADACK 0x70 // (SR) general call address rec’vd;
// ACK transmitted
#define SMB_ SRGARBLOST 0x78 // (SR) arbitration lost when transmitting

// slave addr + R/W as master; general
// call address rec’vd; ACK transmitted

#define SMB_SRODBACK 0x80 // (SR) data byte received under own slave
// address; ACK returned

#define SMB SRODBNACK 0x88 // (SR) data byte received under own slave
// address; NACK returned

#define SMB_ SRGDBACK 0x90 // (SR) data byte received under general

Rev. 1.3 41

SILICON LABORATORIES

AN113

// call address; ACK returned

#define SMB SRGDBNACK 0x98 // (SR) data byte received under general
// call address; NACK returned

#define SMB_SRSTOP 0xal // (SR) STOP or repeated START received
// while addressed as a slave

#define SMB_STOADACK Oxa8 // (ST) SMB’s own slave address + R rec’vd;
// ACK transmitted

#define SMB STOARBLOST 0xb0 // (ST) arbitration lost in transmitting

// slave address + R/W as master; own
// slave address rec’vd; ACK transmitted

#define SMB STDBACK 0xb8 // (ST) data byte transmitted; ACK rec’ed
#define SMB STDBNACK 0xcO // (ST) data byte transmitted; NACK rec’ed
#define SMB_STDBLAST Oxc8 // (ST) last data byte transmitted (AA=0);
// ACK received
#define SMB SCLHIGHTO 0xd0 // (ST & SR) SCL clock high timer per
// SMBOCR timed out (FTE=1)
#define SMB IDLE 0xf8 // (all modes) Idle
/e e
//Global VARIABLES
it
char COMMAND; // Holds the slave address + R/W bit for

// use in the SMBus ISR.

char WORD; // Holds data to be transmitted by the SMBus
// OR data that has just been received.

char OP_CODE; // Holds an op code to be sent or one
// that has just been received.

char LOST_COMMAND, LOST_WORD, LOST CODE; // Used to hold relevant data after a
// lost arbitration.

char DATA BUF[16]; // Data buffer accessed by OP CODE HANDLER
bit LOST; // Arbitration lost flag, set when
// arbitration is lost while in master mode.
// Used to resume a failed transfer.
bit SM BUSY; // This bit is set when a send or receive
// 1is started. It is cleared by the
// ISR when the operation is finished.

bit VALID OP; // Flag used to determine if byte received
// as a slave is an OP_CODE or data.

bit DATA READY; // Used by OP CODE handler to flag when

// valid data has been received from the
// master

void SYSCLK Init (void);

void SMBUS ISR (void);

42 Rev. 1.3

SILICON LABORATORIES

AN113

char SLA READ(char chip select, char out op);
void SLA SEND (char chip select, char out op, char out data);
void OP CODE HANDLER (void) ;

void MAIN (void)
{

char i, check 1, check 2; // Variables used for testing purposes only.

WDTCN Oxde; // disable watchdog timer
WDTCN = Oxad;

SYSCLK_Init(); // turn on the external oscillator

XBRO = 0x01; // Route SMBus to GPIO pins through crossbar
XBR2 = 0x40; // Enable crossbar and weak pull-ups

SMBOCN = 0x44; // Enable SMBus with acknowledge low (AA = 1)
SMBOCR = -80; // SMBus clock rate = 100 kHz

SMBOADR = MY ADD; // Set own slave address.

ADCOCN = 0x80; // Enable ADC, conversions to start with

// write to ADOBUSY.

ADCOCN |= 0x01; // ADC data registers left-justified.

DACOCN 0x84; // enable DACO, with left justified data

// registers.

REFOCN = 0x03; // reference voltage enabled.
EIELl |= 2; // SMBus interrupt enable
EA = 1; // Global interrupt enable
SM BUSY = 0; // Free bus for first transfer.
ST = 0; //
// OP_CODE_HANDLER() ; // This line should be commented in only
// one of the two peer devices. It is

// for testing purposes only.

// In a normal setup, the OP_CODE HANDLER
// would be running at all times in order
// to react to OP_CODES being sent to the
// device.

/) TEST CODE—— === = m oo o o
// This code is used only to test the interface between the two devices. If

// the above OP_CODE_HANDLER line is commented out, this device assumes the master

// role. The other device should be running the OP_CODE HANDLER at all times, to

// respond to the OP CODEs below.

SLA SEND(CHIP B, (0x40 | WRITE BUF), 0x24); // Write to index 4
// in the data buffer
SLA SEND(CHIP B, (0x60 | WRITE BUF), 0x25); // Write to index 6
SLA SEND(CHIP B, (0x80 | WRITE BUF), 0x26); // Write to index 8
SLA_SEND(CHIP B, (0x10 | WRITE BUF), 0x27); // Write to index 1
®
Rev. 1.3 43

SILICON LABORATORIES

AN113

//
//

!/

//
//
!/

//
//
//
//
!/
!/
//

VO

{

//
//

//
//
!/
1/
!/
//
//
//

check 1 = SLA READ(CHIP B, (0x40 | READ BUF)); // Read index 4 from the buffer
check 1 = SLA READ(CHIP B, (0x60 | READ BUF)); // Read index 6
check 1 = SLA READ(CHIP B, (0x80 | READ BUF)); // Read index 8
check 1 = SLA READ(CHIP B, (0x10 | READ BUF)); // Read index 1

Loop to continuously increase the DAC output on CHIP B, and read its
ADC each round. DAC output on CHIP B should ramp.
for (1=0;1<50;1i++) {
SLA SEND(CHIP B, WRITE DAC, 2*i); // Write 2*i to DACO on CHIP B
check 1 = SLA READ(CHIP B, READ ADC); // Read AINO on CHIP B
check 2 = 2*i; // check 1 should be approximately
} // the same as check 2.

END TEST CODE == === == == m o o o o o

This routine initializes the system clock to use an 22.1184MHz crystal
as its clock source.

id SYSCLK Init (void)
int i; // delay counter

OSCXCN = 0x67; // start external oscillator with
// 22.1184MHz crystal

for (i=0; 1 < 256; i++) ; // XTLVLD blanking interval (>1ms)
while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK

// source and enable missing clock
// detector

Send to slave.

The send function transmits two bytes to the slave device: an op code, and a data
byte. There are two op code choices for sending data: WRITE DAC and WRITE BUF.
If the op code is WRITE BUF, then the upper 4 bits of the op code should contain
the buffer index. For example, to write to index 2 of the data buffer, the
op_code parameter should be (0x20 | WRITE BUF) .

chip select = address of slave device.

44

Rev. 1.3

SILICON LABORATORIES

AN113

//
//

out op = OP CODE to be sent.
out data = data byte to be sent.

void SLA SEND(char chip select, char out op, char out data) {

//
!/
!/
!/
//
//
//
!/
!/

while (SM BUSY); // Wait while SMBus is busy.

SM BUSY = 1; // SMBus busy flag set.

SMBOCN = 0x44; // SMBus enabled, ACK low.

COMMAND = (chip select | WRITE); // COMMAND = 7 address bits + WRITE.
OP_CODE = out_op; // WORD = OP CODE to be transmitted.
WORD = out data; // DATA = data to be transmitted.
STO = 0;

STA = 1; // Start transfer.

Read from slave.

The read function transmits a l-byte op code, then issues a repeated start
to request a l-byte read. The two op code choices are READ ADC and READ BUF.
If the op code is READ BUF, then the upper 4 bits of the op code should
contain the buffer index. For example, to read index 5 of the data buffer,
the op code should be (0x50 | READ BUF) .

chip select = address of slave device.
out op = OP CODE to be sent.

char SLA READ(char chip select, char out op) {

//
!/
!/
1/
//
//
//

while (SM_BUSY) ; // Wait while SMBus is busy.
SM_BUSY = 1; // Set busy flag.

SMBOCN = 0x44; // Enable SMBus, ACK low.

COMMAND = (chip_select | READ); // COMMAND = 7 address bits + READ
OP_CODE = out op;

STO = 0;

STA = 1; // Start transfer.

while (SM_BUSY) ; // Wait for transfer to finish.
return WORD; // Return received word.

OP CODE handler.
Decodes incoming op codes and performs tasks according to those op codes.
A call to this function runs forever.

The VALID OP bit flags when a valid op code has been received. Upon receipt,
the handler decodes the op code, performs the task, then clears
VALID OP to wait for another code.

void OP CODE HANDLER (void) {

char index; // data buffer index

while (1) { // run forever
VALID OP = 0; // Wait for a valid OP_CODE
while (!VALID OP); //

// The lower 4 bits of the OP CODE are used to determine the action, while the
// upper 4 bits are used to index the DATA BUF array when the READ BUF or

// WRITE BUF OP CODEs are received. Note that the SMBus is stalled until the
// OP_CODE is decoded.

switch (OP_CODE & O0xOF) { // Decode OP_CODE

Rev. 1.3 45

SILICON LABORATORIES

AN113

// OP_CODE = READ ADC - Perform an ADC conversion, and place data in
// output buffer.

// Read only ADC high byte.

case READ ADC:

ST = 0; // Free the bus

AA = 0; // Take slave ‘offline’

ADOINT = 0O; // Clear ADC interrupt flag.
ADOBUSY = 1; // Start conversion.

while (!ADOINT); // Wait for conversion to finish.
WORD = ADCOH; // Put data in output buffer.

AA = 1; // Put slave back ‘online’
VALID OP = 0; // Look for a new OP CODE

break;

// OP_CODE = WRITE DAC - Wait for a valid data byte, and write it to high
// byte of DACO.
case WRITE DAC:

ST = 0; // Free the bus

DATA READY = 0; // Wait for valid data.
while (IDATA_READY); //

DACOL = 0; // DAC low byte

DACOH = WORD; // DAC high byte

VALID OP = 0; // Look for new OP_CODE

ST = 0; // Free bus when finished.
break;

// OP_CODE = WRITE BUF - Wait for valid data byte, then place data in
// DATA BUF array. Index data according to upper 4 bits of OP_CODE.
case WRITE BUF:

ST = 0; // Free the bus

index = (OP_CODE & O0xFO0); // Use upper 4 bits as array index.
DATA READY = 0; // Wait for valid data.

while (!DATA READY); //

DATA BUF [index] = WORD; // Store data in array.

VALID OP = 0; // Look for new OP_CODE

ST = 0; // Free the bus when finished.
break;

// OP_CODE = READ BUF - Read DATA BUF array and place byte in output buffer.
// Array index determined by upper 4 bits of OP_CODE.
case READ BUF:

index = (OP _CODE & O0xFO0); // Use upper 4 bits as array index.
WORD = DATA BUF [index]; // Place indexed data in output buffer.
VALID OP = 0; // Look for new OP_CODE
SI = 0; // Free the bus when finished.
break;
}
if (LOST) { // If LOST is set, the device has recently
COMMAND = LOST COMMAND; // lost an arbitration. Load saved values
WORD = LOST_WORD; // back into transfer variables, and retry
OP_CODE = LOST CODE; // transfer.
LOST = 0;
STO = 0;
STA = 1;

}

46 Rev. 1.3

SILICON LABORATORIES

void SMBUS ISR (void) interrupt 7
{
switch (SMBOSTA) { // Status code for the SMBus
// (SMBOSTA register)

// Master Transmitter/Receiver: START condition transmitted.
// Load SMBODAT with slave device address. Mask out R/W bit since all transfers
// start with an OP_CODE write.
case SMB START:
SMBODAT = (COMMAND & OxFE); // Load address of the slave to be accessed.
// Mask out R/W bit because first transfer
// will always be a write of the OP_CODE.

STA = 0; // Manually clear STA bit
SI = 0; // Clear interrupt flag
break;

// Master Transmitter/Receiver: Repeated START condition transmitted.
// This state only occurs during a READ, after the OP CODE has been sent. Load
// device address + READ into SMBODAT.
case SMB RP START:
SMBODAT = COMMAND;

STA = 0; // Manually clear START bit.
SI = 0;
break;

// Master Transmitter: Slave address + WRITE transmitted. ACK received.
// Load OP_CODE into SMBODAT.
case SMB MTADDACK:

SMBODAT = OP_CODE;

SI = 0; // Clear interrupt flag

break;

// Master Transmitter: Slave address + WRITE transmitted. NACK received.
// The slave is not responding. Use ACK polling to retry.
case SMB MTADDNACK:

STO = 1;

STA = 1;

SI = 0; // Clear interrupt flag
break;

// Master Transmitter: Data byte transmitted. ACK received.
// Check OP_CODE - If it is a READ code, send repeated START to begin
// read. If it is a WRITE code, load WORD into SMBODAT for transfer.
// If it is not a valid code, then either 1) data has been transmitted
// and the transfer is finished, or 2) there is an error. In either case,
// send STOP and end transfer.
case SMB MTDBACK:
switch (OP_CODE & O0xOF) { // Check only lower 4 bits.

// OP_CODE is a READ. Send repeated START.
case READ BUF:
case READ ADC:
OP_CODE = 0; // Current OP_CODE no longer useful

Rev. 1.3 47

SILICON LABORATORIES

AN113

STO = 0;
STA = 1;
break;

// OP_CODE is a WRITE. Load output data into SMBODAT.
case WRITE BUF:
case WRITE DAC:

SMBODAT = WORD;
OP_CODE = 0; // Clear OP_CODE so transfer ends the next
break; // time this state occurs
// (after data is sent).
default: // No valid OP CODE. End transfer.

STO = 1;
SM_BUSY = 0;
break;

}

SI = 0;

break;

// Master Transmitter: Data byte transmitter. NACK received.
// Use ACK polling to retry transfer.
case SMB MTDBNACK:

STO = 1;

STA = 1;

SI = 0; // Clear interrupt flag
break;

// Master Transmitter: Arbitration lost.
case SMB MTARBLOST:

LOST7COMMAND = COMMAND; //
LOST_WORD = WORD; // Store variables for use when bus 1is free.
LOST CODE = OP_ CODE; //
LOST = 1; // Set flag to retry transfer
// when bus is free.
SI = 0; // Clear interrupt flag
break;

// Master Receiver: Slave address + READ transmitted. ACK received.
// Set to transmit NACK after next transfer since it will be the

// last (only) byte.

case SMB MRADDACK:

AA = 0; // NACK sent during acknowledge cycle.
SI = 0;
break;

// Master Receiver: Slave address + READ transmitted. NACK received.
// Slave not responding. Send repeated START to try again.
case SMB MRADDNACK:

STO = 0;
STA = 1;
SI = 0;
break;

// Master Receiver: Data byte received. ACK transmitted.

// State should not occur because AA is cleared in previous state.
// Send STOP if state does occur.

case SMB MRDBACK:

48 Rev. 1.3

SILICON LABORATORIES

AN113

STO = 1;
SM_BUSY = 0;
SI = 0;
break;

// Master Receiver: Data byte received.
// Read operation has completed. Read data register and send STOP.

case SMB MRDBNACK:
WORD = SMBODAT;
STO = 1;
SM BUSY = 0;
AA = 1;
SI = 0;
break;

// Slave Receiver: Arbitration lost,

// Set AA for next transfer

general call address received.

// Set LOST flag to retry transfer when bus is free.

case SMB SRGARBLOST:

// Slave Receiver: Arbitration lost,

own slave address + WRITE received.

// Set LOST flag to retry transfer when bus is free.
// Set STO bit to get out of master mode.

case SMB SROARBLOST:
LOST_COMMAND = COMMAND;
LOST WORD = WORD;
LOST CODE = OP_CODE;
LOST = 1;
SI = 0;
break;

// Slave Receiver: Slave address + WRITE received.

// Fall through.
case SMB SROADACK:

// Slave Receiver: General call address received.

case SMB SRGADACK:
SI = 0;
break;

// Slave Receiver: Data byte received after addressed by general

// call address + WRITE.
// ACK transmitted. Fall through.
case SMB SRGDBACK:

// Slave Receiver: Data byte received after addressed by own

// slave address + WRITE.
// ACK transmitted.

//
// Store variables for use when bus is free.
//

// Retry transfer when bus is free.

// Take action depending on OP CODE or data received.

case SMB SRODBACK:
if (!VALID OP) {
OP CODE = SMBODAT;
VALID OP = 1;
} else {

DATA READY = 1;
WORD = SMBODAT;
ST = 0;

}

break;

//

//

//
//

NACK transmitted.

Fall through.

ACK transmitted.

ACK transmitted.

Valid data has been received.
in OP CODE handler.

if VALID Op=0, this byte is an OP CODE.
// Store OP_CODE
Next byte is not an OP_CODE

Process

SILICON LABORATORIES

Rev. 1.3

49

AN113

// Slave Receiver: Data byte received while addressed as slave.

// NACK transmitted. Should not occur since AA will not be cleared
// as slave. Fall through to next state.

case SMB SRODBNACK:

// Slave Receiver: Data byte received while addressed by general call.
// NACK transmitted.

// Should not occur since AA will not be cleared as slave.

case SMB SRGDBNACK:

AA = 1;
ST = 0;
break;

// Slave Receiver: STOP or repeated START received while addressed as slave.
case SMB_SRSTOP:

SI = 0;

break;

// Slave Transmitter: Own slave address + READ received. ACK transmitted.
// Load SMBODAT with data to be output.
case SMB STOADACK:

SMBODAT = WORD;

ST = 0;

break;

// Slave Transmitter: Arbitration lost as master. Own address + READ received.
// ACK transmitted.
case SMB STOARBLOST:

LOST COMMAND = COMMAND; //

LOST WORD = WORD; // Store variables for use when bus
LOST CODE = OP_CODE; // is free.

LOST = 1; // Retry when bus is free.

SI = 0;

break;

// Slave Transmitter: Data byte transmitted. ACK received. Fall through.
case SMB STDBACK:

// Slave Transmitter: Data byte transmitted. NACK received. Fall through.
case SMB STDBNACK:

// Slave Transmitter: Last data byte transmitted. ACK received.
// No action necessary.
case SMB STDBLAST:

SI = 0;

break;

// All other status codes invalid. Reset communication.
default:

STO = 1;

SM_BUSY = 0;

break;

50 Rev. 1.3

SILICON LABORATORIES

AN113

Notes:

SILICON LABORATORIES

Rev. 1.3

51

AN113

Contact Information

Silicon Laboratories Inc.
4635 Boston Lane

Austin, TX 78735

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: productinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

52 Rev. 1.3

SILICON LABORATORIES

	Relevant Devices
	Introduction
	SMBus Specification
	SMBus Structure
	Handshaking
	Transfer Modes
	Arbitration

	Using the SMBus
	Configuration and Control
	Implementation Choices

	Examples
	Single EEPROM
	Multiple EEPROMs
	Peer-to-Peer Interface

	Software Examples for the C8051F00x and C8051F01x series
	Software Example for the C8051F02x series
	Notes:

