&~

SILICON LABODORATORIES

AN112

UART IN-APPLICATION CODE LOADING EXAMPLES

Relevant Devices

This application note applies to the following
devices:

C8051F020, C8051F021, C8051F022,
C8051F023, C8051F300, C8051F301,
C8051F302, and C8051F303.

Introduction

A UART code loader provides in-system repro-
grammability of program code space (FLASH)
through the serial port. This application note gives
an overview of in-application code loading on Sili-
con Labs devices and provides two complete exam-
ples. The examples included are a selective code
loader and a firmware updater. This document also
discusses design considerations related to in-appli-
cation code loading.

Key Points

* FLASH memory locations must be erased
before the new program code is written.

* An Intel Hexadecimal Object File (“HEX" file)
is an ASCII file containing a complete or par-
tial image of the programmable device’s pro-
gram code space (FLASH). An OMF-51
(binary linker output file) to Intel HEX con-
verter is provided with the Silicon Labs IDE.

* A UART code loader can be controlled by a PC
running a terminal program or any other
embedded device that has a UART.

In-Application Code Loading
Overview

To load code into a device through the UART, the
device needs to run an application that manages the

transfer of code from the host to its program mem-
ory. This application needs the ability to do the fol-
lowing tasks:

1. Configure the device for UART communica-
tion at a specified baud rate.

2. Erase program memory (FLASH) prior to
receiving the download.

3. Download the new code and store it in program
memory.

4. Execute the newly downloaded code.

Configuring the Device for
UART communication

When using UART to communicate between two
devices, both ends must be configured to run at the
same baud rate, in 8-bit or 9-bit data mode, and
with or without parity. The examples in this docu-
ment use 8-bit data with no parity at a baud rate of
115200 bits per second. If a terminal program is
used on the host, it should be configured as shown
in the following table:

Table 1. Terminal Program Configuration

bits per second 115200
data bits 8
parity none
stop bits 1
flow control none

Erasing and Writing to FLASH

The program memory on all Silicon Labs 8051F
devices is FLASH. In general, a code loader will
need to erase one or more 512-byte FLASH pages

Rev. 2.1 12/03

Copyright © 2003 by Silicon Laboratories

AN112-DS21

AN112

before storing the new downloaded code. The
method of erasing and writing to FLASH varies by
device family. Refer to the FLASH Memory sec-
tion of the device data sheet for details regarding
the specific device family. Additionally, the Silicon
Labs website contains application notes with code
examples.

Downloading the New Code

Once the code loader has erased one or more
FLASH pages, it will prompt the user to send the
new code. There are many ways the host can
encode the new code as long as the code loader can
decode and interpret the information. A good for-
mat to use is the Intel Hexadecimal Object File for-
mat. An Intel HEX file is an ASCII file containing
a complete or partial image of the programmable
device’s program code space (FLASH). This file is
generated from the linker output file using the
OHS51 utility provided with the Silicon Labs IDE
installation. The details of generating an Intel HEX
file will be discussed later on in this document.

This example provides some error detection capa-
bility in that checksums are calculated on the
received HEX records and compared with the
record checksums. If an error is detected, the
download operation is aborted.

Running the New Code

Once the new code is stored in FLASH, it can be
called using a function pointer. Function pointers
are implemented differently by different compilers.

See the compiler documentation for specific infor-
mation reguarding the compiler being used. A
function pointer in the KEIL C51 compiler is a 3-
byte generic pointer and is used as shown in
Figure 1. The first byte of a generic pointer speci-
fies the memory segment and the remaining two
bytes specify the address. For example, a pointer to
address 0x1000 in code space would be 0xFF1000.
Consult the compiler documentation for additional
information about function pointers.

Code Loader Considerations

Any code loading application will consist of at
least two projects — one for the code loader and one
for the code to be loaded. There is a certain level of
difficulty when dealing with two separate projects
that share the same resources. The considerations
in this application note will attempt to address
some of these difficulties and pitfalls, but be aware
that it cannot cover them all. Make sure you are
familiar with your compiler and linker documenta-
tion before starting any multi-project application.
Pay special attention to the linker chapter regarding
locating segments.

The main things to watch out for when using multi-
ple projects is not to allow the data and code seg-

Figure 1. Using Function Pointers

// declaring a function pointer
void (*f) ();
void (*g) (int 1i);
// assigning a function pointer
£ =
g =

// calling a function using a function pointer

£();
g(5);

// can point to a function that takes
// can point to a function that takes

(void code *)0x1000;// f points to a function located
(void code *)0x1100;// g points to a function located

no arguments
one argument

at 0x1000 in
at 0x1100 in

code space
code space

2 Rev. 2.1

SILICON LABORATORIES

AN112

ments from the projects to overlap, as shown in
Figure 2. The code segments should not share the
same FLASH pages to allow downloading the sec-
ond project without erasing the first. The data seg-
ments should not be allowed to overlap because
code from either project can be executing at any
given time. If both projects’ variables were located
at the same memory locations, they would corrupt
each other’s data. It is fairly simple to keep the
code segments from overlapping; however, keeping
the data segments from ovelapping is more chal-
lenging and can be harder to debug. Three methods
for keeping segments from ovelapping are dis-
cussed below. An example using Method 3 is
included in this document.

Method 1

The first method involves absolutely locating code
segments with ‘CODE’ linker command line
parameters. To keep the ‘DATA’ segments from
overlapping, the function call trees are manually
edited using the ‘OVERLAY" linker command line
parameter. This method is complex and should be
reserved for large projects that need the extra mem-
ory capacity provided by overlaying.

Figure 2. Project Map

Code Loader Project Loaded Code Project

loader.c blink_fast.c

DATA SPACE - RAM DATA SPACE - RAM

RESERVED MEMORY N

LOCAL VARIABLES N

CODE SPACE - FLASH

LOCAL VARIABLES

RESERVED MEMORY

CODE SPACE - FLASH

CODE TO MANAGE THE

CODE LOADING OPERATION [\ RESERVEDICODEISEACE

N

RESERVED CODE SPACE

> APPLICATION SPECIFIC CODE

Method 2

The second method involves declaring and abso-
lutely locating a set of global variables in both
projects that is used only by the project that will be
loaded. An easy way to accomplish this is by
including a header file containg these declarations
in both projects. Code segments are absolutely
located using the linker’s ‘CODE’ parameter. This
method should be reserved for small projects where
all variables declared in the loaded code are easy to
keep track of.

Method 3

The third method of data management involves
declaring all local variables as static. Once the
projects for the loaded code are built, the MAP file
is examined for the data segment size. Space for
this segment is reserved in the loader project by
declaring and absolutely locating an array of the
same size as the segment. As an added precaution,
the data segment may be absolutly located using
the ‘DATA’ parameter to ensure that it will not
move around. Code segments are also absolutely
located using the linker’s ‘CODE’ parameter. This
is the preferred method if overlaying is not required
and is used in the following example code.

In-application Code Loading
Examples

The following examples show how in-application
code loading can be used in various situations.

Selective Code Loader

This example contains three projects and uses the
method 3 to manage memory. The main project
named ‘Loader’ contains the code loader and is
downloaded using the IDE. The other two projects,
‘Blink Fast’ and ‘Blink Slow’, contain functions
that blink the green LED at different rates and are
selectively downloaded using a terminal program.

SILICON LABORATORIES

Rev. 2.1 3

AN112

The loader project takes the following items into
account:

1. It sets aside a block of RAM at a specific
address for use by global and static local vari-
ables in the loaded code.

2. It sets aside one or more pages of FLASH to
store the loaded code. (These pages start at
location 0x1000 in code space)

3. It predetermines the function locations and the
number of functions defined in the loaded code.

The two projects that are selectively loaded take
the following factors into account:

1. They only use RAM which has been set aside
by the code loader project.

2. They absolutely locate all functions on one or
more contiguous FLASH pages set aside by the
loader project (at address 0x1000). This
involves use of the ‘CODE’ linker command
line parameter as shown in Figure 3.

Figure 3. Locating Functions Using
the linker ‘CODE’ directive.

The CODE directive is specified at
the linker command line. The command
line parameters are accessed from the
Silicon Labs IDE in the ‘Project-
>Tool Chain Integration...’ menu
under the ‘linker’ tab.

To locate a segment at 0x1000:
CODE (?PR?*?FILENAME (1000h))

To locate a function at 0x1050:
CODE (?PR?FUNCTIONAME?FILENAME (1050h))

As a word of caution, when locating functions or
segments manually, one should always examine the
MAP file (projectname.M51) for each project to
make sure that the linker has done what was
intended and that there are no overlapping sections.

Firmware Updating Example

The software in this example can load any indepen-
dently developed project through the UART. The
code for the loader is located at addresses higher
than 0x1000 in FLASH. This allows the loaded
project the first 4096 bytes of flash to work with. It
is not neccessary to keep the data segments from
overlapping in this project because only one project
will be running at any given time. The following
list shows the steps taken to update the firmware.

1. Initially, the ‘updater’ project is downloaded
using the IDE.

2. Any other project may be downloaded into the
target any number of times using the IDE or the
‘updater’ as long as it does not write over the
‘updater’ project.

3. The ‘updater’ can be called from the firmware
using a function pointer. The ‘updater’ erases
the first 8 pages of FLASH, receives the
updated firmware through the UART, and
resets the device, which executes the newly
downloaded code.

Step-by-Step to Building and
Running the Example
Selective Code Loader

The following list will guide you through getting
the example selective code loader up and running.
There are two versions of the application, one for
the C8051F02x and one for the C8051F30x.
Instructions for the ‘F30x are shown.

NOTE: The ‘CODE’ directive takes
multiple parameters separated by a
comma .
®
4 Rev. 2.1 @

SILICON LABORATORIES

AN112

1. Start the Silicon Labs IDE and add
‘loader F30x.c’ to a new project. Compile,
link, and download this project to the target.

2. Open a new Silicon Labs IDE project and add
‘blink fast F30x.c’.

3. Now we need to locate the new project’s data
segment at 0x08 in RAM. This is the location
of the reserved buffer in the ‘loader’ project. If
either project uses the ‘USING’ directive,
change the 0x08 to an unused area of memory.
We can locate the new project’s data segment
by adding the following directive to the com-
mand line parameters found in the ‘Project-
>Tool Chain Integration...” menu under the
‘linker’ tab.

DATA (08h)

We also need to locate all functions in the
project at addresses higher than 0x1000 and
locate the ‘blink fast’ function at 0x1000. Add
the following argument to the linker command
line parameters.

CODE (1000h,
?PR?BLINK FAST?BLINK FAST F30x
(1000h))

4. Compile and link the project. Examine the
MAP file (blink fast F30x.M51) to ensure that
the data segment does not exceed the number of
bytes reserved by the ‘loader’ project.

5. Run the ‘OHS51.EXE’ utility with the linker
output file (BLINK FAST F30x) as its argu-
ment. The OHS51 utility can be found in the
‘C:\SILICONLABS\IDEfiles\C51\Bin’
folder.

6. Repeat steps 2 for

‘blink_slow_ F30x’

through 5

7. Start the terminal program and configure it as
shown in the previous sections. Hit ‘go’ in the
‘loader F30x’ project. Go through the series of

commands to erase, load, and execute the
‘blink fast’ function. When prompted to send a
HEX file, use the ‘send text file’ command to
send the appropriate ‘*.hex’ file.

Step-by-Step to Building and
Running the Example
Firmware Updater

1. Start the Silicon Labs IDE
‘updater F30x.c’ to a new project.

and add

2. Add the following to the command line param-
eters found in the ‘Project->Tool Chain Inte-
gration...” menu under the ‘linker’ tab. This
argument defines the location of the CODE
segment and locates the main routine at
0x1000.

CODE (1000h,
(1000h))

?PR?MAIN?UPDATER F30x

3. Compile, link, and download this project to the
target. Once the project is downloaded, discon-
nect the IDE.

4. Start a new instance of the Silicon Labs IDE
and add the correct version of ‘blink F30x.c’ to
a new project. Compile, link, and download this
project to the target. The green LED should be
blinking.

5. Run the ‘OHS51.EXE’ utility with the linker
output file (BLINK F30x) as its argument. The
OHS51 utility can be found in the ‘C:\SILI-
CONLABS\IDEfiles\C51\Bin’ folder.

6. Start the terminal program and configure it as
shown in the previous sections. Press the P0.3
switch for the ‘F30x. When prompted to send a
HEX file, use the ‘send text file’ command to
send ‘blink F30x.hex’ or a different HEX file.

SILICON LABORATORIES

Rev. 2.1 5

AN112

Example Software for the C8051F02x Family

Selective Code Loader//-

// loader F02x.c
// Copyright 2002 Cygnal Integrated Products, Inc.

// AUTH: FB
// DATE: 28 JUN 02

// This program shows an example ‘selective code loader’ using the ‘F02x. It
// designates the FLASH page at 0x1000 for the code loaded through the UART.

// Control Function:

// The system is controlled via the hardware UART, operating at a baud rate
// determined by the constant <BAUDRATE>, using Timerl overflows as the baud
// rate source.

// Received File Type:

// This example receives Intel HEX files which are OMF51 (linker output files)
// passed through the OH51 utility in the ‘CYGNAL\IDEfiles\C51\Bin’ folder.

// Note: Because this program writes to FLASH, the MONEN pin should be tied
// high.

// Target: C8051F02x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

[e
// Includes

[mm e
#include <c8051f020.h> // SFR declarations

#include <stdio.h> // printf () and getchar ()

#include <ctype.h> // tolower () and toint ()

/e
// 16-bit SFR Definitions for ‘F02x

[mm e e
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6e TMR3 = 0x94; // Timer3 counter

sfrlé ADCO = Oxbe; // ADCO data

sfrl6 ADCOGT = Oxc4; // ADCO greater than window

sfrl6 ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = Oxca; // Timer2 capture/reload

sfrl6é T2 = Oxcc; // Timer?2

sfrl6 RCAP4 = 0Oxed; // Timerd capture/reload

sfrleo T4 = 0xf4; // Timeri4

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

[

6 Rev. 2.1

SILICON LABORATORIES

AN112

// Global CONSTANTS

#define TRUE 1
#define FALSE 0
#define SYSCLK 22118400
#define BAUDRATE 115200

sbit LED P176;
sbit SW2 = P3"7;

char reserved memory bank[Z2]

volid main (void);

// Support Subroutines

void print menu(void) ;

void erase flash page(void);
void receive code (void);
unsigned char hex2char();

// Initialization Subroutines
void SYSCLK Init (void);

void PORT Init (void);
void UARTO Init (void);

#define input str len 4
char input str[input str len];

void (*f) ();
bit code erased = FALSE;

bit f valid = FALSE;

void main (void)

!/
//

//
//

_ 0x08;//

!/
//
!/
//
//
//

//

//
//
//

//

SYSCLK frequency in Hz
Baud rate of UART in bps

LED='1’ means ON
SW2='0" means switch pressed

This memory bank is used by the
functions that will be loaded
through the UART.

The memory bank location and size
are based on values from the M51 map
file generated when the loaded code
is linked.

buffer to hold characters entered
at the command prompt

function pointer declaration

flag used to indicate that the FLASH
erase operation is complete

flag to indicate that the FLASH
programming operation is complete

SILICON LABORATORIES

Rev. 2.1

AN112

WDTICN = Oxde; // disable watchdog timer

WDTCN = Oxad;

PORT Init (); // initialize crossbar and GPIO
SYSCLK Init (); // initialize oscillator

UARTO Init (); // initialize UARTO

print menu(); // print the command menu

while (1) {

printf ("\nEnter a command > “);
gets (input str, input str len);

switch (input str[0]) {

case ‘l’: erase flash page();
printf (“"\nFlash page 0x1000 has been erased.\n”);

break;

case ‘2’: printf (“"\nReady to receive HEX file...\n”);
receive code();
break;

case ‘'3’: 1if(f valid){
f = (void code *) 0x1000;
£();
printf ("\nFinished\n”) ;
} else {
printf ("\n*** No function exists at 0x1000.\n”);
}

break;

case ‘?’: print menu();
break;

default: printf(“\n*** Unknown Command.\n”);

break;
}
} // end while
} // end main
e e Bttt kb
// Support Subroutines
i e e Rl
/=
// print_menu
/e
//
// This routine uses prints the command menu to the UART.
//

void print menu(void)

{

printf ("M\n\nC8051F02x Selective Code Loader Example\n”);

8 Rev. 2.1

SILICON LABORATORIES

AN112

1/
//

printf (""" \n”) ;
printf (1. Erase the flash page at 0x1000\n”);

printf (“2. Receive HEX file\n”);

printf (“3. Execute the function at 0x1000\n”);

printf (“?. Print Command List\n”);

This routine converts a two byte ascii representation of a char to an

8-bit variable;

unsigned char hex2char ()

{

unsigned char retval;
char byteH, byteL;

// get a two-byte ASCII representation of a char from the UART

byteH = getkey();
bytel _getkey ()

// convert to a single 8 bit result
retval = (char) toint (byteH) * 16;
retval += (char) toint (bytel);
return retval;

This routine erases the FLASH page located at 0x1000

void erase flash page(void)

{

bit EA state;

char xdata* data pagePointer = 0x1000; // pointer to xdata space located
// in data space

EA state = EA; // holds interrupt state

EA = 0; // disable interrupts

FLSCL |= 0x01; // enable FLASH write/erase
PSCTL = 0x03; // MOVX erases FLASH

// Erase the FLASH page at 0x1000

*pagePointer = 0; // initiate the erase

PSCTL = 0x00; // MOVX writes target XRAM

FLSCL &= ~0x01; // disable FLASH write/erase

EA = EA state; // restore interrupt state

f valid = FALSE; // indicate that code is no longer valid
code_erased = TRUE; // indicate that FLASH has been erased

Rev. 2.1

SILICON LABORATORIES

AN112

// receive code

/mm e e
//

// This routine receives HEX records through the UART and writes the

// function located at 0x1000.

//
// Hex Record Format:
//
/] A=—————— Fo————— F—————- Fm———— Fo————— t————— (n bytes)------ Fo——————— +
// | RECORD | RECLEN | OFFSET | RECORD | | CHECKSUM |
// | MARK | (n) | (2 BYTES) | TYPE | DATA | |
VA | | | | \ \
A Fomm = to————= o Fomm = o= (n bytes)------ tommm +
//
void receive code(void)
{
char xdata* data pwrite; // pointer used for writing FLASH
char code* data pread; // pointer used for reading FLASH
unsigned int 1len; // holds the HEX record length field
char record type; // holds the HEX record type field
unsigned int offset; // holds the HEX record offset field
// this is the starting address of
// the code image contained in the
// record
char checksum; // holds the HEX record checksum field
char flash checksum; // holds the checksum calculated after
// the FLASH has been programmed
bit EA state; // temporary holder used to restore

// interrupts to their previous state

char c; // temporary char
int 1i; // temporary int

// make sure the FLASH page has been erased

if (!code erased) {
printf ("\n*** At least one FLASH page must be erased prior”);
printf (Y to this operation.\n”);
return;

// wait for the user to send HEX file

do{

while(¢ = getkey() != Y:7); // ignore all characters until
// reaching the record mark field

// get the record length
len = hex2char();

// get the starting address (offset field in HEX record)
offset = hex2char();

offset <<= 8;

offset |= hex2char();

10 Rev. 2.1

SILICON LABORATORIES

AN112

// get the record type
record type = hex2char();

if(record type != 0 && record type != 1){

printf ("\n*** Cannot decode HEX file.\n”);

return;
}
EA state = EA; // save the interrupt enable bit state
EA = 0; // disable interrupts (precautionary)
FLSCL |= 0x01; // enable FLASH write/erase
PSCTL = 0x01; // MOVX writes FLASH
pwrite = (char xdata*) offset; // initialize the write pointer
code_erased = FALSE; // clear the code erased flag

// write the record into FLASH
for(i = 0; 1 < len; i++){

*pwrite = hex2char () ; // write one byte to FLASH
pwrite++; // increment FLASH write pointer
}
PSCTL = 0x00; // MOVX writes target XRAM
FLSCL &= ~0x01; // disable FLASH write/erase
EA = EA state; // restore interrupts to previous state

// verify the checksum

pread = (char code*) offset; // initialize the read pointer
checksum = hex2char(); // get the HEX record checksum field
flash checksum = 0; // set the flash checksum to zero

// add the data field stored in FLASH to the checksum
for(i = 0; 1 < len; 1i++){
flash checksum += *pread++;

// add the remaining fields

flash_checksum += len;

flash checksum += (char) (offset >> 8);
flash checksum += (char) (offset & OxOO0FF);
flash checksum += record type;

flash checksum += checksum;

// verify the checksum (the flash checksum should equal zero)

if (flash checksum != 0) {
printf (“*** Checksum failed, try again.”);
return;
}
} while(record type != 1);
f valid = TRUE; // flag that the “f()” function is wvalid
_getkey () ; // remove carriage return from input

// stream

printf (“"\nReceived OK\n”);

Rev. 2.1 11

SILICON LABORATORIES

AN112

// Initialization Subroutines

/==

/=

// SYSCLK Init

/==

//

// This routine initializes the system clock to use an 22.1184MHz crystal

// as its clock source.

1/

void SYSCLK Init

{

int i;

OSCXCN = 0x67;

for (i=0; 1 < 256;

while (! (OSCXCN & 0x80))

OSCICN = 0x88;

//

!/
!/

//
//
!/

//
//

// Configure the Crossbar and GPIO ports

// PORT Init

//

//

void PORT Init

{
XBRO = 0x04;
XBR1 = 0x00;
XBR2 = 0x40;
POMDOUT |= 0x01;
P1MDOUT |= 0x40;

// Configure the UARTO using Timerl,

void UARTO

{
SCONO
TMOD
TH1 =
TR1 =
CKCON |=
PCON |=
TIO =

Init (void)

= 0x50;
0x20;

- (SYSCLK/BAUDRATE/16) ;

1;
0x10;
0x80;
1;

//

//
//
//

//
//
1/
!/
//
//
//

delay counter

start external oscillator with
22.1184MHz crystal

wait for osc to start
Wait for crystal osc. to settle
select external oscillator as SYSCLK

source and enable missing clock
detector

Enable UARTO

Enable
enable
enable

SCONO :
TMOD:

crossbar and weak pull-ups
TX0 as a push-pull output
P1.6 (LED) as push-pull output

for <baudrate> and 8-N-1.

mode 1, 8-bit UART, enable RX

timer 1, mode 2, 8-bit reload

set Timerl reload value for baudrate
start Timerl

Timerl uses SYSCLK as time base
SMOD0O0O = 1
Indicate TX0 ready

12

Rev. 2.1

SILICON LABORATORIES

AN112

/e e
// blink fast F02x.c

[
// Copyright 2002 Cygnal Integrated Products, Inc.

//

// AUTH: FB

// DATE: 21 JUN 02

//

// This program shows an example function that can be used with the

// ‘selective code loader example’ for the ‘F02x family.

//

//

//

// Target: C8051F02x

// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

[
// Includes

/e e
#include <c8051f020.h> // SFR declarations

[
// 16-bit SFR Definitions for ‘F02x

[mm e e
sfrl6 DP = 0x82; // data pointer

sfrle TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrl6 ADCOGT = Oxc4; // BADCO greater than window

sfrl6 ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = Oxca; // Timer2 capture/reload

sfrleo T2 = Oxcc; // Timer2

sfrl16 RCAP4 = 0Oxed; // Timerd capture/reload

sfrleoc T4 = 0xf4; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

[
// Global CONSTANTS
e
#define TRUE 1

#define FALSE 0

#define SYSCLK 22118400 // SYSCLK frequency in Hz

sbit LED = P176; // LED=’"1’ means ON

sbit SW2 = P3"7; // SW1=’'0’' means switch pressed

[
// Function PROTOTYPES
e it
// Subroutines that will be loaded at address 0x1000

VO
VO

id blink fast();
id wait ms(int ms);

Rev. 2.1 13

SILICON LABORATORIES

AN112

void Timer2 Init (int counts);

1/

// This routine uses blinks the LED twice

//
void blink fast (void)

{

static int 1i;

Timer2 Init (SYSCLK/12/1000); //
//

for(i = 0; i < 10; i++){
LED = 0; //
wait ms(150); //
LED = 1; //
wait ms(150); //

every second for five seconds.

initialize Timer2 to overflow
every millisecond

turn LED off
execute delay loop
turn LED on
execute delay loop

// This routine uses Timer 2 to insert a delay of <ms> milliseconds.
// Timer 2 overflows once every millisecond

//
void wait ms (int ms)
{
TF2 = 0; //
TR2 = 1; //
while (ms != 0){
1f (TF2) {
TF2 = 0;
ms—-;
}
}
TR2 = 0; //

clear Timer 2 overflow flag
turn Timer 2 On

turn Timer 2 Off

// This routine initializes Timer2 to 16 bit auto reload mode

void Timer2 Init (int counts)

{

CKCON &= ~0x20; //
RCAP2 = - (counts); //
T2 = RCAP2; //
ET2 = 0; //
TR2 = 0; //

Timer 2 counts SYSCLK/12
set the reload value

init Timer2

disable Timer2 interrupts
Timer 2 OFF

14

Rev. 2.1

SILICON LABORATORIES

AN112

/e e
// blink slow F02x.c

[
// Copyright 2002 Cygnal Integrated Products, Inc.

//

// AUTH: FB

// DATE: 21 JUN 02

//

// This program shows an example function that can be used with the

// ‘selective code loader example’ for the ‘F02x family.

//

//

//

// Target: C8051F02x

// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

[
// Includes

/e e
#include <c8051f020.h> // SFR declarations

[
// 16-bit SFR Definitions for ‘F02x

[mm e e
sfrl6 DP = 0x82; // data pointer

sfrle TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrl6 ADCOGT = Oxc4; // BADCO greater than window

sfrl6 ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = Oxca; // Timer2 capture/reload

sfrleo T2 = Oxcc; // Timer2

sfrl16 RCAP4 = 0Oxed; // Timerd capture/reload

sfrleoc T4 = 0xf4; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

[
// Global CONSTANTS
e
#define TRUE 1

#define FALSE 0

#define SYSCLK 22118400 // SYSCLK frequency in Hz

sbit LED = P176; // LED=’"1’ means ON

sbit SW2 = P3"7; // SW1=’'0’' means switch pressed

[
// Function PROTOTYPES

[
// Subroutines that will be loaded at address 0x1000

VO
vO
VO

id blink slow();
id wait ms(int ms);
id Timer2 Init (int counts);

Rev. 2.1 15

SILICON LABORATORIES

AN112

!/

// This routine uses blinks the LED once every second for five seconds.

//

void blink slow(void)

{

//

static int 1i;

Timer2 Init (SYSCLK/12/1000);

for(i = 0; i < 10; i++){
LED = 0;
wait ms (500);

!/
1/

//
//
!/
!/

initialize Timer2 to overflow
every millisecond

turn LED off
execute delay loop
turn LED on
execute delay loop

This routine uses Timer 2 to insert a delay of <ms> milliseconds.
// Timer 2 overflows once every millisecond

void wait ms (int ms)

{

void Timer2 Init

{

TF2 = 0;
TR2 = 1;
while (ms != 0) {
1f (TF2) {
TF2 = 0;
ms—-;
}
}
TR2 = 0;

This routine initializes Timer2 to 16 bit auto reload

(int counts)

CKCON &= ~0x20;

RCAP2 = -(counts);
T2 = RCAP2;

ET2 = 0;

TR2 = 0;

//
//

//

1/
!/
//
//
//

clear Timer 2 overflow flag
turn Timer 2 On

turn Timer 2 Off

SYSCLK/12
value

Timer 2 counts
set the reload
init Timer2
disable Timer2
Timer 2 OFF

interrupts

16

Rev. 2.1

SILICON LABORATORIES

AN112

Example Firmware Updater

//
!/
1/
//
//
//
//
!/
!/
1/
//
//
//
!/
!/
//
//

Copyright 2002 Cygnal Integrated Products, Inc.

AUTH: FB
DATE: 28 JUN 02

This program shows an example Firmware Updater using the ‘F02x. It resides
in FLASH at addresses above 0x1000 and is accessed through a function

pointer casted as (void code*) 0x1000.

Once the firmware update has taken place, the a software reset is issued
and the updated firmware takes control of the system.

Control Function:

The system is controlled via the hardware UART, operating at a baud rate

// determined by the constant <BAUDRATE>, using Timerl overflows as the baud

// rate source.

//

// Note: Because this program writes to FLASH, the MONEN pin should be tied

// high.

//

// Target: C8051F02x

// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

/e e e
// Includes

[mm e
#include <c8051f020.h> // SFR declarations

#include <stdio.h> // printf () and getchar ()

#include <stdlib.h>

#include <ctype.h> // tolower () and toint ()

[
// 16-bit SFR Definitions for ‘F02x

[
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrle ADCOGT = Oxc4; // ADCO greater than window

sfrle ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = Oxca; // Timer2 capture/reload

sfrl6 T2 = Oxcc; // Timer?2

sfrl6 RCAP4 = Oxed; // Timer4 capture/reload

sfrl6 T4 = 0xf4; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6é DAC1 = 0xd5; // DAC1 data

/e
// Global CONSTANTS

Rev. 2.1 17

SILICON LABORATORIES

AN112

#define TRUE 1
#define FALSE 0
#define SYSCLK 22118400
#define BAUDRATE 115200

sbit LED = P176;
sbit SW2 P377;

void main (void);

// Support Subroutines
void print menu(void) ;
void erase flash(void);
void receive code (void);
unsigned char hex2char();

// Initialization Subroutines

void SYSCLK Init (void);
void PORT Init (void);
void UARTO Init (void);

// Global VARIABLES
void (*f) ();

bit code erased = FALSE;

bit f valid = FALSE;

void main (void)

{
char input;

WDTCN Oxde;
WDTCN = Oxad;

EA = 0;

PORT Init ();
SYSCLK Init ();
UARTO Init ();

//
!/

//
//

//

//
//
!/
//

!/

//
//
!/
!/

//
//
//

SYSCLK frequency in Hz
Baud rate of UART in bps

LED='1’ means ON
SW2='0’ means switch pressed

function pointer declaration

flag used to indicate that the FLASH
erase operation is complete

flag to indicate that the FLASH
programming operation is complete

disable watchdog timer

disable interrupts (this statement
is needed because the device is not
neccesarily in a reset state prior
to executing this code)

initialize crossbar and GPIO
initialize oscillator
initialize UARTO

18

Rev. 2.1

SILICON LABORATORIES

AN112

print menu(); // print the command menu

while (1) {

printf (“Enter a command > “);
input = getchar();

switch (input) {

case ‘1’: erase flash();
printf ("M\n*** Flash pages erased.\n”);
receive code();

case ‘2': printf (“\n** RESETTING **\n\n”);
RSTSRC = 0x10; // reset the device

case ‘?’: print menu();
break;

default: print menu();
printf ("\n*** Unknown Command\n”);
break;

} // end while

} // end main

//

// This routine prints the command menu to the UART.

//
void print menu(void)

{

printf ("M\n\nC8051F02x Firmware Updater\n”);
printf (M--mmmmm \n") ;
printf (“1. Erase FLASH and Update Firmware\n”);
printf (“2. Cancel Firmware Update\n”);

printf (“?. Print Command List\n”);

// This routine converts a two byte ascii representation of a char to an

// 8-bit wvariable;
//

unsigned char hex2char ()

Rev. 2.1

SILICON LABORATORIES

19

AN112

unsigned char retval;
char byteH, bytel;

// get a two-byte ASCII representation of a char from the UART
byteH = getkey();
byteL = getkey();

// convert to a single 8 bit result
retval = (char) toint(byteH) * 16;
retval += (char) toint (bytel);
return retval;

//

// This routine erases the first 8 pages of FLASH (0x0000 to OxOFFF).

//

void erase flash(void)

{

char xdata* data pagePointer = 0;// a pointer to xdata located in data space

// points to the first FLASH page that
// will be erased

int i; // temporary int
bit EA state; // holds interrupt state

printf ("\n*** Erasing flash from 0x0000 to OxOFFFE”);

EA state = EA; // save interrupt state

EA = 0; // disable interrupts

FLSCL |= 0x01; // enable FLASH write/erase
PSCTL = 0x03; // MOVX erases FLASH

// Erase the first 8 FLASH pages
for (1 = 0; 1 < 8; 1i++){

*pagePointer = 0; // initiate the erase
pagePointer += 512; // advance to next FLASH page
}
PSCTL = 0x00; // MOVX writes target XRAM
FLSCL &= ~0x01; // disable FLASH write/erase
EA = EA state; // restore interrupt state
f valid = FALSE; // indicate that code is no longer valid
code_erased = TRUE; // indicate that FLASH has been erased
}
e R R R NN
// receive code
et

// This routine receives the new firmware through the UART in HEX record

20 Rev. 2.1

SILICON LABORATORIES

AN112

//
//
//
//
1/
//
1/
//
//
//
!/

format.

Hex Record Format:

fommm - fommm———— fomm— - fom— - +
| RECORD | RECLEN | OFFSET |
| MARK | (n) | (2 BYTES) |
\ A | | |
Fomm - Fomm e fomm +

void receive code(void)

{

char xdata* data pwrite;
char code* data pread;
unsigned char len;
unsigned char record type;
unsigned int offset;

char checksum;
char flash checksum;

bit EA state;

char c;

int 1i;

// make sure FLASH has been erased

if (!code erased) {
printf ("\n*** At least one

printf (Y to this operation.\n”);
return;
} else {
printf (“"\nReady to receive...\n
}
// wait for the user send HEX file
do{
while(c = getkey() != ‘:7);

// get the record length

len = hex2char();

// get the starting address
offset = hex2char();

offset <<= 8;

offset |= hex2char();

// get the record type

record type hex2char () ;

if (record type != 0 && record type

(offset

/7
/7
//
/7
/7
/7
/7
/7

//
//
//
/7
/7

//
//

’

n) .
’

//
/7

//

//

F————- (n bytes)-—----- Fomm +
| | CHECKSUM |
| DATA \ \
| \ \
t-———- (n bytes)-—-—---- t-—m——— +
pointer used for writing FLASH

pointer used for reading FLASH
holds the HEX record length field
holds the HEX record type field
holds the HEX record offset field
this is the starting address of
the code image contained in the
record

holds the HEX record checksum field
holds the checksum calculated after
the FLASH has been programmed
temporary holder used to restore
interrupts to their previous state

temporary char
temporary int

FLASH page must be erased prior”);

ignore all characters until
reaching the record mark field

field in HEX record)

get the MSB

get the LSB

1){

SILICON LABORATORIES

Rev. 2.1

21

AN112

printf (“"\n*** Cannot decode HEX file.\n”);

return;
}
EA state = EA; // save the interrupt enable bit state
EA = 0; // disable interrupts (precautionary)
FLSCL |= 0x01; // enable FLASH write/erase
PSCTL = 0x01; // MOVX writes FLASH
pwrite = (char xdata*) offset; // initialize the write pointer
code erased = FALSE; // clear the code erased flag

// write the record into flash
for(i = 0; 1 < len; 1i++){

// check for valid pointer
if (pwrite < 0x1000) {

*pwrite = hex2char () ; // write one byte to FLASH
pwrite++; // increment FLASH write pointer
} else {

printf ("\n\nExceeded Code Space.\n”); // print error message

PSCTL = 0x00; // MOVX writes target XRAM
FLSCL &= ~0x01; // disable FLASH write/erase
EA = EA state; // restore interrupts to previous state

// verify the checksum

pread = (char code*) offset; // initialize the read pointer
checksum = hex2char () ; // get the HEX record checksum field
flash checksum = 0; // set the flash checksum to zero

// add the data field stored in FLASH to the checksum
for(i = 0; i < len; i++)
{

flash checksum += *pread++;

// add the remaining fields

flash checksum += len;

flash checksum += (char) (offset >> 8);
flash checksum += (char) (offset & OxO00FF);
flash checksum += record type;

flash checksum += checksum;

// verify the checksum (the flash checksum should equal zero)

if (flash checksum != 0){
printf (“*** Checksum failed, try again”);
return;
}
} while(record type != 1);
f valid = TRUE; // indicate that download is valid

printf ("\n** Firmware Update Complete. **\n”);

22 Rev. 2.1

SILICON LABORATORIES

AN112

//
!/

//
//
//
//
!/
!/
1/

VO

{

//
!/
vo

{

vO

{

This routine initializes the system clock to use an 22.1184MHz crystal
as its clock source.
id SYSCLK Init (void)

int 1i; // delay counter

OSCXCN = 0x67; // start external oscillator with

// 22.1184MHz crystal

for (i=0; i < 256; i++) ; // wait for osc to start
while (! (OSCXCN & 0x80)) ; // Wait for crystal osc. to settle
OSCICN = 0x88; // select external oscillator as SYSCLK

// source and enable missing clock
// detector

PORT Init

Configure the Crossbar and GPIO ports
id PORT Init (void)

XBRO = 0x04; // Enable UARTO

XBR1 = 0x00;

XBR2 = 0x40; // Enable crossbar and weak pull-ups
POMDOUT |= 0x01; // enable TX0 as a push-pull output
P1IMDOUT |= 0x40; // enable P1.6 (LED) as push-pull output

UARTO Tnit

Configure the UARTO using Timerl, for <baudrate> and 8-N-1.
id UARTO Tnit (void)

SCONO = 0x50; // SCONO: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = - (SYSCLK/BAUDRATE/16) ; // set Timerl reload value for baudrate
TR1 =1; // start Timerl

CKCON |= 0x10; // Timerl uses SYSCLK as time base

PCON |= 0x80; // SMODO0O = 1

TIO = 1; // Indicate TX0 ready

31

Rev. 2.1

LICON LABORATORIES

23

AN112

F e R
// blink F02x.c

/e
// Copyright 2002 Cygnal Integrated Products, Inc.

//

// AUTH: BW, FB

// DATE: 28 JUN 02

//

// This program flashes the green LED on the C8051F020 target board about five times
// a second using the interrupt handler for Timer3.

// Target: C8051F02x

//

// Tool chain: KEIL Eval ‘c’

//
e
// Includes

[e
#include <c8051f020.h> // SFR declarations

/e
// 16-bit SFR Definitions for ‘F02x
e
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR3RL = 0x92; // Timer3 reload value

sfrl6 TMR3 = 0x94; // Timer3 counter

sfrl6 ADCO = Oxbe; // ADCO data

sfrle ADCOGT = Oxc4; // ADCO greater than window

sfrle ADCOLT = 0xc6; // ADCO less than window

sfrl6 RCAP2 = 0Oxca; // Timer2 capture/reload

sfrl6e T2 = Oxcc; // Timer2

sfrl6 RCAP4 = Oxe4; // Timer4 capture/reload

sfrl6 T4 = 0xf4; // Timer4

sfrl6 DACO = 0xd2; // DACO data

sfrl6 DAC1 = 0xd5; // DAC1l data

[m e
// Global CONSTANTS

[
#define SYSCLK 2000000 // approximate SYSCLK frequency in Hz

sbit LED = P176; // green LED: ‘1’ = ON; ‘0’ = OFF

sbit SW2 = P3"7; // SW2='0’ means switch pressed

[
// Function PROTOTYPES

/e

void PORT Init (void);
void Timer3 Init (int counts);
void Timer3 ISR (void);

void main (void) {

void (*update firmware) (); // function pointer to firmware updating

24 Rev. 2.1

SILICON LABORATORIES

AN112

// code that is located at 0x1000;

// disable watchdog timer
WDTCN = Oxde;
WDTCN = Oxad;

PORT Init ();
Timer3 Init (SYSCLK / 12 / 10); // Init Timer3 to generate interrupts
// at a 10Hz rate.

EA = 1; // enable global interrupts
update firmware = (void code*)0x1000; // assign the function pointer
while (1) { // spin forever

if (!'SW2) { // wait for switch before calling

// the firmware update procedure
update firmware();

e R S
// PORT Init
/e -
//
// Configure the Crossbar and GPIO ports
//
void PORT Init (void)
{
XBR2 = 0x40; // Enable crossbar and weak pull-ups
P1IMDOUT |= 0x40; // enable Pl1.6 (LED) as push-pull output

// Configure Timer3 to auto-reload and generate an interrupt at interval
// specified by <counts> using SYSCLK/12 as its time base.

void Timer3 Init (int counts)

{

TMR3CN = 0x00; // Stop Timer3; Clear TF3;
// use SYSCLK/12 as timebase

TMR3RL = -counts; // Init reload values

TMR3 = Oxffff; // set to reload immediately

EIE2 |= 0x01; // enable Timer3 interrupts

TMR3CN |= 0x04; // start Timer3

Rev. 2.1

SILICON LABORATORIES

25

AN112

// Timer3 ISR

// This routine changes the state of the LED whenever Timer3 overflows.
//
void Timer3 ISR (void) interrupt 14
{
TMR3CN &= ~ (0x80) ; // clear TF3

LED = ~LED; // change state of LED

®
26 Rev. 2.1 @

SILICON LABORATORIES

AN112

Example Software For the C8051F30x Family

Selective Code Loader

// Copyright 2002 Cygnal Integrated Products, Inc.

// AUTH: FB
// DATE: 28 JUN 02

// This program shows an example ‘selective code loader’ using the ‘F30x. It
// designates the flash page at 0x1000 for the code loaded through the UART.

// Control Function:

// The system is controlled via the hardware UART, operating at a baud rate
// determined by the constant <BAUDRATE>, using Timerl overflows as the baud
// rate source.

// Received File Type:

// This example receives Intel HEX files which are OMF51 (linker output files)
// passed through the OH51 utility in the ‘CYGNAL\IDEfiles\C51\Bin’ folder.

// Note: Because this program writes to FLASH, the VDD monitor is enabled in
// in the initialization routine.

// Target: C8051F30x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

[mm e
// Includes

[
#include <c8051£300.h> // SFR declarations

#include <stdio.h> // printf () and getchar ()

#include <ctype.h> // tolower () and toint ()

[
// 16-bit SFR Definitions for ‘F30x

[
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR2RL = Oxca; // Timer2 reload value

sfrl6 TMR2 = Oxcc; // Timer2 counter

sfrl6 PCAOCP1 = 0xe9; // PCAO Module 1 Capture/Compare

sfrl6 PCAOCP2 = Oxeb; // PCAO Module 2 Capture/Compare

sfrl6 PCAQ = 0xf9; // PCAO counter

sfrl6 PCAOCPO = Oxfb; // PCAO Module 0 Capture/Compare

[
// Global CONSTANTS

[
#define TRUE 1

Rev. 2.1 27

SILICON LABORATORIES

AN112

#define FALSE 0

#define SYSCLK 24500000 // SYSCLK frequency in Hz

#define BAUDRATE 115200 // Baud rate of UART in bps

sbit LED = P0"2; // LED=’"1’ means ON

sbit SW2 = P0"3; // SW2='0’ means switch pressed

sbit TX0 = P0"4; // UARTO TX pin

sbit RX0 = P0"5; // UARTO RX pin

[mm e e -
// Reserved Memory Space
e

char reserved memory bank[2] _at 0x08;// This memory bank is used by the
// functions that will be loaded
// through the UART
// The memory bank location and size
// are based on values from the M51 map
// file generated when the loaded code
// 1s linked.

volid main (void);

// Support Subroutines

void print menu(void) ;

void erase flash page(void);
void receive code (void);
unsigned char hex2char();

// Initialization Subroutines
void SYSCLK Init (void);

void PORT Init (void);

void UARTO Init (void);

et
// Global VARIABLES
e
#define input str len 4 // buffer to hold characters entered
char input str([input str len]; // at the command prompt
void (*f) (); // function pointer declaration
bit code erased = FALSE; // flag used to indicate that the FLASH
// erase operation is complete
bit f valid = FALSE; // flag to indicate that the FLASH
// programming operation is complete
[m e -
// MAIN Routine
/e

28 Rev. 2.1

SILICON LABORATORIES

AN112

void main (void)

{

// Disable Watchdog timer

PCAOMD &= ~0x40;

PORT Init ();

SYSCLK Init ();

UARTO Init ();
print menu();

while (1) {

// WDTE = 0 (clear watchdog timer
// enable)

// initialize crossbar and GPIO
// initialize oscillator

// initialize UARTO

// print the command menu

printf ("\nEnter a command > “);
gets (input str, input str len);

switch (input str[0]) {

case ‘1':

case ‘2':

case ‘3':

case ‘?':

default:

} // end while

} // end main

1/

erase flash page();
printf (“"\nFlash page 0x1000 has been erased.\n”);
break;

printf (“"\nReady to receive HEX file...\n”);
receive code();
break;

if (f valid){

f = (void code *) 0x1000;

£0) 7

printf ("\nFinished\n”);
} else {

printf ("\n*** No function exists at 0x1000.\n”);
}

break;

print menu();
break;

printf ("\n*** Unknown Command.\n”);
break;

// This routine uses prints the command menu to the UART.

//

void print menu (void)

Rev. 2.1 29

SILICON LABORATORIES

AN112

//
!/

printf ("M\n\nC8051F30x Selective Code Loader Example\n”);
printf(N-------mmmm \n") ;
printf (1. Erase the flash page at 0x1000\n”);

printf (2. Receive HEX file\n”);

printf (3. Execute the function at 0x1000\n”);

printf (“?. Print Command List\n”);

This routine converts a two byte ascii representation of a char to an

8-bit variable;

unsigned char hex2char ()

{

unsigned char retval;
char byteH, bytel;

// get a two-byte ASCII representation of a char from the UART

byteH = getkey();
byteL = getkey();

// convert to a single 8 bit result
retval = (char) toint(byteH) * 16;
retval += (char) toint (bytel);
return retval;

This routine erases the FLASH page located at 0x1000

void erase flash page(void)

{

char xdata* data pagePointer = 0x1000; // pointer to xdata space located

// in data space

bit EA state; // holds interrupt state

PSCTL = 0x03; // MOVX erases FLASH

FLKEY = 0xA5; // FLASH lock and key sequence 1
FLKEY = 0xF1; // FLASH lock and key sequence 2

// Erase the FLASH page at 0x1000

*pagePointer = 0; // initiate the erase
PSCTL = 0; // MOVX writes target XRAM
EA = EA state; // restore interrupt state
f valid = FALSE; // indicate that code is no longer valid
code_erased = TRUE; // indicate that FLASH has been erased
®
30 Rev. 2.1

SILICON LABORATORIES

AN112

[
// receive code
[/ m e
//
// This routine receives HEX records through
// function located at 0x1000.
//
// Hex Record Format:
//
/] A=—————— Fo————— F————— Fm———— Fo—————
// | RECORD | RECLEN | OFFSET | RECORD
// | MARK | (n) | (2 BYTES) | TYPE
VA | | |
// +———————- - - Fo—————— -
//
void receive code(void)
{
char xdata* data pwrite; //
char code* data pread; //
unsigned int len; //
char record type; //
unsigned int offset; //
//
//
//
char checksum; //
char flash checksum; //
//
bit EA state; //
//
char c; //
int 1i; //

the UART and writes the

—t—————- (n bytes)-—----- Fomm +
| | CHECKSUM |
| DATA | |
| \ \

s (n bytes)-—----- fommm +
pointer used for writing FLASH

pointer used for reading FLASH
holds the HEX record length field
holds the HEX record type field
holds the HEX record offset field
this is the starting address of
the code image contained in the
record

holds the HEX record checksum field
holds the checksum calculated after
the FLASH has been programmed
temporary holder used to restore
interrupts to their previous state

temporary char
temporary int

// make sure the flash page has been erased

if (!code erased) {
printf ("\n*** At least one FLASH page
printf (“this operation.\n”);
return;

// wait for the user to send HEX file

do{

while(¢ = I= Y7),

_getkey ()

// get the length
len hex2char () ;

// get the offset

offset = hex2char();
offset <<= 8;
offset |= hex2char();

must be erased prior to “);

SILICON LABORATORIES

Rev. 2.1

31

AN112

// get the record type
record type = hex2char();

if(record type != 0 && record type != 1){

printf (“"\n*** Cannot decode HEX file.\n”);

return;
}
EA state = EA; // save the interrupt enable bit state
EA = 0; // disable interrupts (precautionary)
PSCTL = 1; // MOVX writes to FLASH
pwrite = (char xdata*) offset; // initialize the write pointer
code_erased = FALSE; // clear the code erased flag

// write the record into flash
for(i = 0; 1 < len; i++){

FLKEY = O0xA5; // FLASH lock and key sequence 1
FLKEY = O0xF1; // FLASH lock and key sequence 2
*pwrite = hex2char () ; // write one byte to FLASH
pwrite++; // increment FLASH write pointer
}
PSCTL = 0; // MOVX writes target XRAM
EA = EA state; // restore interrupts to previous state

// verify the checksum

pread = (char code*) offset; // initialize the read pointer
checksum = hex2char(); // get the HEX record checksum field
flash checksum = 0; // set the flash checksum to zero

// add the data field stored in FLASH to the checksum
for(i = 0; i < len; i++)
{

flash checksum += *pread++;

// add the remaining fields

flash checksum += len;

flash checksum += (char) (offset >> 8);
flash checksum += (char) (offset & OxO0FF);
flash checksum += record type;

flash checksum += checksum;

// verify the checksum (the flash checksum should equal zero)

if (flash checksum != 0) {
printf (“*** Checksum failed, try again.”);
return;
}
} while(record type != 1);
f valid = TRUE; // flag that f() is valid

32 Rev. 2.1

SILICON LABORATORIES

AN112

_getkey ()7

printf ("\nReceived OK.\n”);

// clear carriage return
// from the input stream

// This routine initializes the system clock to use the internal 24.5MHz

// oscillator as its clock source.

Enables missing clock detector reset. Also

// configures and enables the external crystal oscillator.

void SYSCLK Init (void)
{

OSCICN |= 0x03;

RSTSRC = 0x06;

// configure internal oscillator for
// its maximum frequency

// enable missing clock detector and
// VDD monitor

// P0.2 skipped by the crossbar

// UARTO TX and RX pins enabled

// Enable crossbar and weak pull-ups
// no analog inputs

[/ mmm e
// PORT Init
[/ m e
//
// Configure the Crossbar and GPIO ports.
// P0O.0 -
// PO.1 -
// P0.2 - LED (push-pull)
// P0.3 - SW2
// P0.4 - UART TX (push-pull)
// P0O.5 - UART RX
// PO.6 -
// P0.7 - C2D
//
void PORT Init (void)
{
XBRO = 0x04;
XBR1 = 0x03;
XBR2 = 0x40;
POMDIN &= ~0x00;
POMDOUT |= 0x14;

//
// Configure the UARTO using Timerl,

//
void UARTO Init (void)

// enable TX0 and P0.2 as
// push-pull output

for <BAUDRATE> and 8-N-1.

SILICON LABORATORIES

Rev. 2.1 33

AN112

SCONO = 0x10;

if (SYSCLK/BAUDRATE/2/256 < 1) {

//
//
//
!/
1/

//

TH1 = - (SYSCLK/BAUDRATE/2) ;
CKCON |= 0x10;

} else if (SYSCLK/BAUDRATE/2/256 < 4)
TH1 = - (SYSCLK/BAUDRATE/2/4);
CKCON |= 0x01;

CKCON &= ~0x12;

//

} else if (SYSCLK/BAUDRATE/2/256 < 12)

TH1 = - (SYSCLK/BAUDRATE/2/12);
CKCON &= ~0x13;

} else {
TH1 = - (SYSCLK/BAUDRATE/2/48);
CKCON |= 0x02;

CKCON &= ~0x11;

TL1l = Oxff;
TMOD &= ~0xfO0;

TMOD |= 0x20;
TR1 = 1;
TIO = 1;

//

!/

!/
//

//
//

SCONO: 8-bit variable bit rate
level of STOP bit is ignored
RX enabled
ninth bits are zeros
clear RIO and TIO bits

TIM = 1; SCAl1:0 = xx
TIM = 0; SCAl1:0 = 01
{

T1M = 0; SCAl1:0 = 00
TiIM = 0; SCAl1:0 = 10

set Timerl to overflow immediately
TMOD: timer 1 in 8-bit autoreload

START Timerl
Indicate TX0 ready

34

Rev. 2.1

SILICON LABORATORIES

/e
// blink fast F30x.c
et
// Copyright 2002 Cygnal Integrated Products, Inc.

//

// AUTH: FB
// DATE: 28 JUN 02

// This program shows an example function that can be used with the
// ‘selective code loader example’ for the ‘F30x family.

// Target: C8051F30x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

[
// Includes

/e e
#include <c8051£f300.h> // SFR declarations

[
// 16-bit SFR Definitions for ‘F30x

[mm e e
sfrl6 DP = 0x82; // data pointer

sfrle TMR2RL = Oxca; // Timer2 reload value

sfrle TMR2 = Oxcc; // Timer2 counter

sfrl6 PCAOCP1 = 0xe9; // PCAO Module 1 Capture/Compare

sfrl6 PCAOCP2 = 0Oxeb; // PCAO Module 2 Capture/Compare

sfrl6 PCAO = 0x£f9; // PCAQ counter

sfrl6 PCAOCPO = Oxfb; // PCAO Module 0 Capture/Compare

[
// Global CONSTANTS

/e e
#define TRUE 1

#define FALSE 0

#define SYSCLK 24500000 // SYSCLK frequency in Hz

sbit LED = P0"2; // LED='"1’ means ON

sbit SW2 = P0"3; // SW2='0' means switch pressed

sbit TX0 = P0"4; // UARTO TX pin

sbit RX0 = PO0"5; // UARTO RX pin

/e e
// Function PROTOTYPES

[m e

// Subroutines that will be loaded at address 0x1000
void blink fast();

void wait ms(int ms);

void Timer2 Init (int counts);

Rev. 2.1

SILICON LABORATORIES

AN112

1/

// This routine uses blinks the LED twice every second for five seconds.

//
void blink fast (void)
{

static int 1i;

Timer2 Init (SYSCLK/12/1000); // Initialize timer 2 to overflow every
// millisecond
for(i = 0; i < 10; i++){

LED = 0; // turn LED off

wait ms(150); // execute delay loop

LED = 1; // turn LED on

wait ms(150); // execute delay loop

}

}
[
// wait ms
s
//

// This routine uses Timer 2 to insert a delay of <ms> milliseconds.
// Timer 2 overflows once every millisecond

void wait ms(int ms)

{

TF2H = 0; // clear Timer 2 overflow flag
TR2 = 1; // turn Timer 2 on
while (ms != 0) {
if (TF2H) {
TF2H = 0;
ms—-;
}
}
TR2 = 0; // turn Timer 2 Off
}
[
// Timer2 Init
/e e
//
// This routine initializes Timer2 to 16 bit auto reload mode
//

void Timer2 Init (int counts)

{

TMR2CN = 0x00; // Clear TF2H, TF2L; disable TF2L
// interrupts; T2 in 16-bit mode;
// Timer2 stopped; Timer2 prescaler
// is set to EXTCLK/12

CKCON &= ~0x60; // Timer 2 uses T2 prescaler as clock
// source

TMR2RL = - (counts); // set the reload value

TMR2 = TMR2RL; // init Timer2

ET2 = 0; // disable Timer2 interrupts

36 Rev. 2.1

SILICON LABORATORIES

AN112

/e
// blink slow F30x.c
et
// Copyright 2002 Cygnal Integrated Products, Inc.

//

// AUTH: FB
// DATE: 28 JUN 02

// This program shows an example function that can be used with the
// ‘selective code loader example’ for the ‘F30x family.

// Target: C8051F30x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//

[
// Includes

/e e
#include <c8051£f300.h> // SFR declarations

[
// 16-bit SFR Definitions for ‘F30x

[mm e e
sfrl6 DP = 0x82; // data pointer

sfrle TMR2RL = Oxca; // Timer2 reload value

sfrle TMR2 = Oxcc; // Timer2 counter

sfrl6 PCAOCP1 = 0xe9; // PCAO Module 1 Capture/Compare

sfrl6 PCAOCP2 = 0Oxeb; // PCAO Module 2 Capture/Compare

sfrl6 PCAO = 0x£f9; // PCAQ counter

sfrl6 PCAOCPO = Oxfb; // PCAO Module 0 Capture/Compare

[
// Global CONSTANTS

[m e e
#define TRUE 1

#define FALSE 0

#define SYSCLK 24500000 // SYSCLK frequency in Hz

sbit LED = P0"2; // LED='"1’ means ON

sbit SW2 = P0"3; // SW2='0' means switch pressed

sbit TX0 = P0"4; // UARTO TX pin

sbit RX0 = PO0"5; // UARTO RX pin

[m e
// Function PROTOTYPES

[

// Subroutines that will be loaded at address 0x1000
void blink slow();

void wait ms(int ms);

void Timer2 Init (int counts);

Rev. 2.1

SILICON LABORATORIES

37

AN112

//

// This routine uses blinks the LED once every second for five seconds.

//

void blink slow (void)

{

//

{

static int 1i;
Timer2 Init (SYSCLK/12/1000);

for(i = 0; 1 < 10; i++){

LED = 0;
wait ms(500);
LED = 1;

wait ms(500);

//
//

//
//
//
//

Initialize timer 2 to overflow every
millisecond

turn LED off
execute delay loop
turn LED on
execute delay loop

This routine uses Timer 2 to insert a delay of <ms> milliseconds.

//
//

clear Timer 2 overflow flag
turn Timer 2 on

wait ms
// Timer 2 overflows once every millisecond
void wait ms (int ms)
TF2H = 0;
TR2 = 1;
while (ms != 0){
1f (TF2H) {
TF2H = 0;
ms--;
}
}
TR2 = 0;

VO

{

//

turn Timer 2 Off

This routine initializes Timer2 to

id Timer2 Init (int counts)

TMR2CN = 0x00;

CKCON &= ~0x60;

16 bit auto reload mode

//
1/
!/
//
//
//

Clear TF2H, TF2L; disable TF2L
interrupts; T2 in 16-bit mode;
Timer2 stopped; Timer2 prescaler
is set to EXTCLK/12

Timer 2 uses T2 prescaler as clock
source

38

Rev. 2.1

SILICON LABORATORIES

AN112

TMR2RL = - (counts);
TMR2 = TMR2RL;
ET2 = 0;

// set the reload value
// init Timer?2
// disable Timer2 interrupts

SILICON LABORATORIES

Rev. 2.1

39

AN112

Example Firmware Updater

// updater F30x.c

e e T
// Copyright 2002 Cygnal Integrated Products, Inc.

//

// AUTH: FB

// DATE: 28 JUN 02

//

// This program shows an example Firmware Updater using the ‘F300. It resides
// in FLASH at addresses above 0x1000 and is accessed through a function

// pointer casted as (void code*) 0x1000.

//

// Once the firmware update has taken place, the a software reset is issued
// and the updated firmware takes control of the system.

//

// Control Function:

//

// The system is controlled via the hardware UART, operating at a baud rate
// determined by the constant <BAUDRATE>, using Timerl overflows as the baud
// rate source.

//

// Note: Because this program writes to FLASH, the VDD monitor is enabled in
// in the initialization routine.

//

//

// Target: C8051F30x

// Tool chain: KEIL C51 6.03 / KEIL EVAL C51

//
et
// Includes

[
#include <c8051£300.h> // SFR declarations

#include <stdio.h> // printf () and getchar ()

#include <stdlib.h>

#include <ctype.h> // tolower () and toint ()

[
// 16-bit SFR Definitions for ‘F30x

/e e
sfrl6 DP = 0x82; // data pointer

sfrl6 TMR2RL = Oxca; // Timer2 reload value

sfrle TMR2 = Oxcc; // Timer2 counter

sfrl6 PCAOCP1 = 0xe9; // PCAO Module 1 Capture/Compare

sfrl6 PCAOCP2 = Oxeb; // PCAO Module 2 Capture/Compare

sfrl6 PCAO = 0x£f9; // PCAQ counter

sfrl6 PCAOCPO = Oxfb; // PCAO Module 0 Capture/Compare

[
// Global CONSTANTS

/e e
#define TRUE 1

#define FALSE 0

#define SYSCLK 24500000 // SYSCLK frequency in Hz

40 Rev. 2.1

SILICON LABORATORIES

AN112

#define BAUDRATE 115200

sbit LED = P0"2;
sbit SW2 P0"3;
sbit TXO P0"4;
sbit RX0 = P0"5;

void main (void);

// Support Subroutines
void print menu(void) ;
void erase flash(void);
void receive code(void);
unsigned char hex2char();

// Initialization Subroutines

void SYSCLK_Init (void) ;
void PORT Init (void);
void UARTO Init (void);

// Global VARIABLES
void (*f) ();

bit code erased = FALSE;

bit f valid = FALSE;

void main (void)

{

char input;

EA = 0;

PCAOMD &= ~0x40;
PORT Tnit ();
SYSCLK Init ();
UARTO Init ();

print menu();

while (1) {

!/

//
//
!/
!/

!/

//
//
//
//

//

//
//

//
//
//

//

Baud rate of UART in bps

LED='1’ means ON

SW2='0" means switch pressed
UARTO TX pin

UARTO RX pin

function pointer declaration

flag used to indicate that the FLASH
erase operation is complete

flag to indicate that the FLASH
programming operation is complete

Disable interrupts (precautionary)

WDTE = 0 (clear watchdog timer
enable)

initialize crossbar and GPIO
initialize oscillator

initialize UARTO

print the command menu

SILICON LABORATORIES

Rev. 2.1 41

AN112

printf (“Enter a command > “);
input = getchar();

switch (input) {

case ‘l’: erase flash();
printf ("M\n*** Flash pages erased\n”);
receive code();
printf ("\n** Firmware Update Complete **\n”);

case ‘2’: printf (“\n** RESETTING **\n\n”);
RSTSRC = 0x10; // reset the device

case ‘?’': print menu();
break;

default: print menu();
printf (“"\n*** Unknown Command\n”) ;

} // end while

} // end main

//

// This routine prints the command menu to the UART.

//
void print menu(void)

{

printf ("M\n\nC8051F30x Firmware Updater\n”);

printf (V"------- \n”) ;

printf (“1. Erase FLASH and Update Firmware\n”);

printf (“2. Cancel Firmware Update\n”);

printf (“?. Print Command List\n”);
}
[
// hex2char
/s
//

// This routine converts a two byte ascii representation of a char to an
// 8-bit variable;

//

unsigned char hex2char ()

{

unsigned char retval;
char byteH, bytel;

42 Rev. 2.1

SILICON LABORATORIES

AN112

VO

{

// get a two-byte ASCII representation of a char from the UART

byteH
bytelL

= getkey();
_getkey ()

// convert to a single 8 bit result
retval (char) toint (byteH) * 16;
retval += (char) toint (bytel);
return retval;

This routine erases the first 8 pages of FLASH

id erase flash(void)

char xdata* data pagePointer = 0;//

/7
/7
int i; //
bit EA state; //

printf (“"\n*** Erasing flash from

EA state = EA; //
PSCTL = 3; /7
// Erase the first 8 FLASH pages
for (1 = 0; 1 < 8; i++){
FLKEY = 0xA5; //
FLKEY = 0xF1; //
*pagePointer = 0; //
pagePointer += 512;
}
PSCTL = 0; /7
EA = EA state; /7
f valid = FALSE; //
code erased = TRUE; //

(0x0000 to OxOFFF).

a pointer to xdata located in data space
points to the first FLASH page that
will be erased

temporary int
holds interrupt state

0x0000 to OxOFFF”);

save interrupt state

MOVX erases FLASH

FLASH lock and key sequence 1
FLASH lock and key sequence 2

initiate the erase

MOVX writes target XRAM
restore interrupt state

indicate that code is no longer valid
indicate that FLASH has been erased

This routine receives the new firmware through the UART in HEX record

format.

Hex Record Format:

(n bytes)-—----- fommm +

31

LICON LABORATORIES

Rev. 2.1 43

AN112

// | RECORD | RECLEN | OFFSET | RECORD

// | MARK | (n) | (2 BYTES) | TYPE

VA | | |

/] A== Fm————— - Fm———— tm——————

//

//

void receive code (void)

{
char xdata* data pwrite; //
char code* data pread; //
unsigned char len; //
unsigned char record type; //

unsigned int offset;

char checksum;
char flash checksum;

bit EA state;
char c;
int 1i;

// make sure FLASH has been erased
if (!code erased) {

/7
/7
/7
//

/7
/7
/7
/7
//

//
//

| | CHECKSUM
| DATA |

| \

tomm——= (n bytes)-—----- +

pointer used for writing FLASH

pointer used for reading FLASH
holds the HEX record length field
holds the HEX record type field
holds the HEX record offset field
this is the starting address of
the code image contained in the

record

holds the HEX record checksum field
holds the checksum calculated after
the FLASH has been programmed
temporary holder used to restore
interrupts to their previous state

temporary char
temporary int

printf ("\n*** At least one FLASH page must be erased prior to this operation\n”);

return;
} else {

printf (“"\nReady to receive...\n”);

// wait for the user send HEX file

do{

while(¢ = getkey() != ‘:7);

// get the record length
len = hex2char();

// ignore all characters until

// reaching the record mark field

// get the starting address (offset field in HEX record)

offset = hex2char();
offset <<= 8;
offset |= hex2char();

// get the record type
record type = hex2char();

//

//

get the MSB

get the LSB

if (record type != 0 && record type != 1){
printf (“"\n*** Cannot decode HEX file.\n”);

return;

44

Rev. 2.1

SILICON LABORATORIES

AN112

EA state = EA; // save the interrupt enable bit state
EA = 0; // disable interrupts (precautionary)
PSCTL = 1; // MOVX writes to FLASH

pwrite = (char xdata*) offset; // initialize the write pointer

code erased = FALSE; // clear the code erased flag

// write the record into FLASH
for(i = 0; 1 < len; 1i++){

// check for valid pointer
if (pwrite < 0x1000) {

FLKEY = 0xA5; // FLASH lock and key sequence 1
FLKEY = 0xF1; // FLASH lock and key sequence 2
*pwrite = hex2char(); // write one byte to FLASH
pwrite++; // increment FLASH write pointer
} else {
printf ("\n\nExceeded Code Space.\n”); // print error message
}
}
PSCTL = 0; // MOVX writes target XRAM
EA = EA state; // restore interrupts to previous state

// verify the checksum

pread = (char code*) offset; // initialize the read pointer
checksum = hex2char () ; // get the HEX record checksum field
flash checksum = 0; // set the flash checksum to zero

// add the data field stored in FLASH to the checksum
for(i = 0; 1 < len; i++)
{

flash checksum += *pread++;

// add the remaining fields

flash_checksum += len;

flash checksum += (char) (offset >> 8);
flash checksum += (char) (offset & OxOO0FF);
flash checksum += record type;

flash checksum += checksum;

// verify the checksum (the flash checksum should equal zero)

if (flash checksum != 0) {
printf (“*** checksum failed, try again”);
return;
}
} while(record type != 1);
f valid = TRUE; // indicate that download is valid

Rev. 2.1 45

SILICON LABORATORIES

AN112

// This routine initializes the system clock to use the internal 24.5MHz

// oscillator as its clock source.
// VDD monitor.

void SYSCLK Init (void)
{

OSCICN |= 0x03;

RSTSRC = 0x06;

//
!/
!/
!/

//
//
//
//

// PORT Init
//
// Configure the Crossbar and GPIO ports.
// P0.0 -
// PO.1 -
// P0.2 - LED (push-pull)
// P0.3 - SW2
// P0.4 — UART TX (push-pull)
// P0O.5 - UART RX
// P0.6 -
// P0.7 - C2D
//
void PORT Init (void)
{
XBRO = 0x04;
XBR1 = 0x03;
XBR2 = 0x40;
POMDIN &= ~0x00;
POMDOUT |= 0x14;

// Configure the UARTO using Timerl,

void UARTO Init (void)

{
SCONO = 0x10;

//
//

Enables missing clock detector reset and

configure internal oscillator for
its maximum frequency

enable missing clock detector and
VDD monitor

P0.2 skipped by the crossbar
UARTO TX and RX pins enabled
Enable crossbar and weak pull-ups
no analog inputs

enable TX0 and P0.2 as

push-pull output

for <BAUDRATE> and 8-N-1.

1/
!/
//
//
//

SCONO: 8-bit variable bit rate
level of STOP bit is ignored
RX enabled
ninth bits are zeros
clear RIO and TIO bits

46

Rev. 2.1

SILICON LABORATORIES

AN112

if (SYSCLK/BAUDRATE/2/256 < 1) {

//

TH1 = - (SYSCLK/BAUDRATE/2) ;
CKCON |= 0x10;

} else if (SYSCLK/BAUDRATE/2/256 < 4)
TH1 = - (SYSCLK/BAUDRATE/2/4);
CKCON |= 0x01;

CKCON &= ~0x12;

1/

} else if (SYSCLK/BAUDRATE/2/256 < 12)

TH1 = - (SYSCLK/BAUDRATE/2/12);
CKCON &= ~0x13;

} else {
TH1 = - (SYSCLK/BAUDRATE/2/48);
CKCON |= 0x02;

CKCON &= ~0x11;

TL1l = Oxff;
TMOD &= ~0xfO0;

TMOD |= 0x20;
TR1 = 1;
TIO = 1;

//

1/

!/
!/

//
//

TIM = 1;
TIM = 0;
{

TIM = 0;
TIM = 0;

set Timerl to

SCAl:

SCAl:

SCAl:

SCAl:

TMOD: timer 1

START Timerl
Indicate TX0 ready

0 = xx
0 =01
0 = 00
0 =10

overflow immediately
in 8-bit autoreload

SILICON LABORATORIES

Rev. 2.1

47

AN112

// blink F30x.c

J /e

// Copyright 2002 Cygnal Integrated Products, Inc.

//

// AUTH: BW, FB

// DATE: 28 JUN 02
//

// This program flashes the green LED on the C8051F30x target board about
// five times a second using the interrupt handler for Timer2.

//

// Target: C8051F30x

//

// Tool chain: KEIL Eval ‘c’
//

[/ m e
// Includes

[/ mmmmm e
#include <c8051f300.h>

[
// 16-bit SFR Definitions for ‘F30x

[/ m e
sfrle DP = 0x82;

sfrle TMR2RL = Oxca;

sfrl6 TMR2 = Oxcc;

sfrl6 PCAOCP1 = 0xe9;
sfrl6 PCAOCP2 = 0Oxeb;
sfrl6 PCAO = 0xf9;
sfrle PCAOCPO = Oxfb;

#define SYSCLK 24500000 / 8

sbit LED =
sbit SW2 = P0"3;

|
g
o

>
N
~

void SYSCLK_Init (void) ;

void PORT Init (void);

void Timer2 Init (int counts);
void Timer2 ISR (void);

void main (void) {

void (*update firmware) ();

// data pointer

// Timer2 reload value

// Timer2 counter

// PCAO Module 1 Capture/Compare
// PCAO Module 2 Capture/Compare
// PCAO counter

// PCAO Module 0 Capture/Compare

// SYSCLK frequency in Hz

// LED='1' means ON
// SW2="0' means switch pressed

// function pointer to firmware
// updating code that is located
// at 0x1000;

48

Rev. 2.1

SILICON LABORATORIES

AN112

// disable watchdog timer

PCAOMD &= ~0x40; // WDTE = 0 (clear watchdog timer
// enable)
SYSCLK Init (); // Initialize system clock to

// 24.5MHz internal oscillator

PORT Init (); // Initialize crossbar and GPIO
Timer2 Init (SYSCLK / 12 / 10); // Init Timer2 to generate
// interrupts at a 10Hz rate.

EA = 1; // enable global interrupts
update firmware = (void code*) 0x1000; // assign the function pointer
while (1) { // spin forever

if (!sw2) {

update firmware();

// SYSCLK Init

/= o
//

// This routine initializes the system clock to use the internal 24.5MHz / 8

// oscillator as its clock source. Also enables missing clock detector reset
// and the VDD Monitor.

//
// NOTE: This program must not disable the VDD monitor since it is enabled by
// Firmware Updater. If this program disables the VDD monitor, there is

// potential for going into an infinite loop turning the VDD monitor on
// and off.

//

void SYSCLK Init (void)

{

OSCICN = 0x04; // configure internal oscillator for
// its lowest frequency
RSTSRC = 0x06; // enable missing clock detector

// and VDD Monitor.

// Configure the Crossbar and GPIO ports.
// P0O.0 -

// PO.
// PO.
// PO.
// PO.
// PO.
// PO.
// PO.

- LED (push-pull)
- SW2

~N o U W N
I

- C2D

Rev. 2.1 49

SILICON LABORATORIES

AN112

void PORT Init (void)
{

XBRO = 0x04;
XBR1 = 0x00;
XBR2 = 0x40;
POMDOUT |= 0x04;

//
//
/7
//
//

skip P0.2 (LED) in crossbar pin
assignments

no digital peripherals selected
Enable crossbar and weak pull-ups
enable LED as a push-pull output

// Configure Timer2 to 16-bit auto-reload and generate an interrupt at
// interval specified by <counts> using SYSCLK/12 as its time base.

void Timer2 Init (int counts)

{
TMR2CN = 0x00;

CKCON &= ~0x60;

TMR2RL = -counts;
TMR2 = Oxffff;
ET2 = 1;
TR2 = 1;

/7
/7
/7

//
//
//
//

Stop Timer2; Clear TF2;
use SYSCLK/12 as timebase
Timer2 clocked based on T2XCLK;

Init reload wvalues

set to reload immediately
enable Timer2 interrupts
start Timer?2

// This routine changes the state of the LED whenever Timer2 overflows.

// Interrupt Service Routines
// Timer2 ISR
//
void Timer2 ISR (void) interrupt 5
{
TE2H = 0;
LED = ~LED;

//
//

clear Timer2 interrupt flag
change state of LED

50

Rev. 2.1

SILICON LABORATORIES

AN112

Notes:

SILICON LABORATORIES

Rev. 2.1

51

AN112

Contact Information

Silicon Laboratories Inc.
4635 Boston Lane

Austin, TX 78735

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: productinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

52 Rev. 2.1

SILICON LABORATORIES

	Relevant Devices
	Introduction
	Key Points
	In-Application Code Loading Overview
	Configuring the Device for UART communication
	Erasing and Writing to FLASH
	Downloading the New Code
	Running the New Code

	Code Loader Considerations
	Method 1
	Method 2
	Method 3

	In-application Code Loading Examples
	Selective Code Loader
	Firmware Updating Example

	Step-by-Step to Building and Running the Example Selective Code Loader
	Step-by-Step to Building and Running the Example Firmware Updater
	Example Software for the C8051F02x Family
	Selective Code Loader//-- -----------------
	Example Firmware Updater

	Example Software For the C8051F30x Family
	Selective Code Loader
	Example Firmware Updater

	Notes:

