
Rev. 2.1 12/03 Copyright © 2003 by Silicon Laboratories AN112-DS21

AN112

UART IN-APPLICATION CODE LOADING EXAMPLES

Relevant Devices
This application note applies to the following
devices:

C8051F020, C8051F021, C8051F022,
C8051F023, C8051F300, C8051F301,
C8051F302, and C8051F303.

Introduction
A UART code loader provides in-system repro-
grammability of program code space (FLASH)
through the serial port. This application note gives
an overview of in-application code loading on Sili-
con Labs devices and provides two complete exam-
ples. The examples included are a selective code
loader and a firmware updater. This document also
discusses design considerations related to in-appli-
cation code loading.

Key Points
• FLASH memory locations must be erased

before the new program code is written.
• An Intel Hexadecimal Object File (“HEX” file)

is an ASCII file containing a complete or par-
tial image of the programmable device’s pro-
gram code space (FLASH). An OMF-51
(binary linker output file) to Intel HEX con-
verter is provided with the Silicon Labs IDE.

• A UART code loader can be controlled by a PC
running a terminal program or any other
embedded device that has a UART.

In-Application Code Loading
Overview
To load code into a device through the UART, the
device needs to run an application that manages the

transfer of code from the host to its program mem-
ory. This application needs the ability to do the fol-
lowing tasks:

1. Configure the device for UART communica-
tion at a specified baud rate.

2. Erase program memory (FLASH) prior to
receiving the download.

3. Download the new code and store it in program
memory.

4. Execute the newly downloaded code.

Configuring the Device for
UART communication
When using UART to communicate between two
devices, both ends must be configured to run at the
same baud rate, in 8-bit or 9-bit data mode, and
with or without parity. The examples in this docu-
ment use 8-bit data with no parity at a baud rate of
115200 bits per second. If a terminal program is
used on the host, it should be configured as shown
in the following table:

Erasing and Writing to FLASH
The program memory on all Silicon Labs 8051F
devices is FLASH. In general, a code loader will
need to erase one or more 512-byte FLASH pages

Table 1. Terminal Program Configuration

bits per second 115200
data bits 8

parity none
stop bits 1

flow control none

AN112

2 Rev. 2.1

before storing the new downloaded code. The
method of erasing and writing to FLASH varies by
device family. Refer to the FLASH Memory sec-
tion of the device data sheet for details regarding
the specific device family. Additionally, the Silicon
Labs website contains application notes with code
examples.

Downloading the New Code
Once the code loader has erased one or more
FLASH pages, it will prompt the user to send the
new code. There are many ways the host can
encode the new code as long as the code loader can
decode and interpret the information. A good for-
mat to use is the Intel Hexadecimal Object File for-
mat. An Intel HEX file is an ASCII file containing
a complete or partial image of the programmable
device’s program code space (FLASH). This file is
generated from the linker output file using the
OH51 utility provided with the Silicon Labs IDE
installation. The details of generating an Intel HEX
file will be discussed later on in this document.

This example provides some error detection capa-
bility in that checksums are calculated on the
received HEX records and compared with the
record checksums. If an error is detected, the
download operation is aborted.

Running the New Code
Once the new code is stored in FLASH, it can be
called using a function pointer. Function pointers
are implemented differently by different compilers.

See the compiler documentation for specific infor-
mation reguarding the compiler being used. A
function pointer in the KEIL C51 compiler is a 3-
byte generic pointer and is used as shown in
Figure 1. The first byte of a generic pointer speci-
fies the memory segment and the remaining two
bytes specify the address. For example, a pointer to
address 0x1000 in code space would be 0xFF1000.
Consult the compiler documentation for additional
information about function pointers.

Code Loader Considerations
Any code loading application will consist of at
least two projects – one for the code loader and one
for the code to be loaded. There is a certain level of
difficulty when dealing with two separate projects
that share the same resources. The considerations
in this application note will attempt to address
some of these difficulties and pitfalls, but be aware
that it cannot cover them all. Make sure you are
familiar with your compiler and linker documenta-
tion before starting any multi-project application.
Pay special attention to the linker chapter regarding
locating segments.

The main things to watch out for when using multi-
ple projects is not to allow the data and code seg-

Figure 1. Using Function Pointers

// declaring a function pointer
void (*f)(); // can point to a function that takes no arguments
void (*g)(int i); // can point to a function that takes one argument

// assigning a function pointer
f = (void code *)0x1000;// f points to a function located at 0x1000 in code space
g = (void code *)0x1100;// g points to a function located at 0x1100 in code space

// calling a function using a function pointer
f();
g(5);

AN112

Rev. 2.1 3

ments from the projects to overlap, as shown in
Figure 2. The code segments should not share the
same FLASH pages to allow downloading the sec-
ond project without erasing the first. The data seg-
ments should not be allowed to overlap because
code from either project can be executing at any
given time. If both projects’ variables were located
at the same memory locations, they would corrupt
each other’s data. It is fairly simple to keep the
code segments from overlapping; however, keeping
the data segments from ovelapping is more chal-
lenging and can be harder to debug. Three methods
for keeping segments from ovelapping are dis-
cussed below. An example using Method 3 is
included in this document.

Method 1
The first method involves absolutely locating code
segments with ‘CODE’ linker command line
parameters. To keep the ‘DATA’ segments from
overlapping, the function call trees are manually
edited using the ‘OVERLAY’ linker command line
parameter. This method is complex and should be
reserved for large projects that need the extra mem-
ory capacity provided by overlaying.

Method 2
The second method involves declaring and abso-
lutely locating a set of global variables in both
projects that is used only by the project that will be
loaded. An easy way to accomplish this is by
including a header file containg these declarations
in both projects. Code segments are absolutely
located using the linker’s ‘CODE’ parameter. This
method should be reserved for small projects where
all variables declared in the loaded code are easy to
keep track of.

Method 3
The third method of data management involves
declaring all local variables as static. Once the
projects for the loaded code are built, the MAP file
is examined for the data segment size. Space for
this segment is reserved in the loader project by
declaring and absolutely locating an array of the
same size as the segment. As an added precaution,
the data segment may be absolutly located using
the ‘DATA’ parameter to ensure that it will not
move around. Code segments are also absolutely
located using the linker’s ‘CODE’ parameter. This
is the preferred method if overlaying is not required
and is used in the following example code.

In-application Code Loading
Examples
The following examples show how in-application
code loading can be used in various situations.

Selective Code Loader
This example contains three projects and uses the
method 3 to manage memory. The main project
named ‘Loader’ contains the code loader and is
downloaded using the IDE. The other two projects,
‘Blink_Fast’ and ‘Blink_Slow’, contain functions
that blink the green LED at different rates and are
selectively downloaded using a terminal program.

`

loader.c blink_fast.c

RESERVED MEMORY LOCAL VARIABLES

RESERVED MEMORYLOCAL VARIABLES

Code Loader Project Loaded Code Project

CODE TO MANAGE THE
CODE LOADING OPERATION

DATA SPACE - RAM

RESERVED CODE SPACE APPLICATION SPECIFIC CODE

RESERVED CODE SPACE

CODE SPACE - FLASHCODE SPACE - FLASH

DATA SPACE - RAM

Figure 2. Project Map

AN112

4 Rev. 2.1

The loader project takes the following items into
account:

1. It sets aside a block of RAM at a specific
address for use by global and static local vari-
ables in the loaded code.

2. It sets aside one or more pages of FLASH to
store the loaded code. (These pages start at
location 0x1000 in code space)

3. It predetermines the function locations and the
number of functions defined in the loaded code.

The two projects that are selectively loaded take
the following factors into account:

1. They only use RAM which has been set aside
by the code loader project.

2. They absolutely locate all functions on one or
more contiguous FLASH pages set aside by the
loader project (at address 0x1000). This
involves use of the ‘CODE’ linker command
line parameter as shown in Figure 3.

As a word of caution, when locating functions or
segments manually, one should always examine the
MAP file (projectname.M51) for each project to
make sure that the linker has done what was
intended and that there are no overlapping sections.

Firmware Updating Example
The software in this example can load any indepen-
dently developed project through the UART. The
code for the loader is located at addresses higher
than 0x1000 in FLASH. This allows the loaded
project the first 4096 bytes of flash to work with. It
is not neccessary to keep the data segments from
overlapping in this project because only one project
will be running at any given time. The following
list shows the steps taken to update the firmware.

1. Initially, the ‘updater’ project is downloaded
using the IDE.

2. Any other project may be downloaded into the
target any number of times using the IDE or the
‘updater’ as long as it does not write over the
‘updater’ project.

3. The ‘updater’ can be called from the firmware
using a function pointer. The ‘updater’ erases
the first 8 pages of FLASH, receives the
updated firmware through the UART, and
resets the device, which executes the newly
downloaded code.

Step-by-Step to Building and
Running the Example
Selective Code Loader
The following list will guide you through getting
the example selective code loader up and running.
There are two versions of the application, one for
the C8051F02x and one for the C8051F30x.
Instructions for the ‘F30x are shown.

Figure 3. Locating Functions Using
the linker ‘CODE’ directive.

The CODE directive is specified at
the linker command line. The command
line parameters are accessed from the
Silicon Labs IDE in the ‘Project-
>Tool Chain Integration...’ menu
under the ‘linker’ tab.

To locate a segment at 0x1000:
CODE(?PR?*?FILENAME(1000h))

To locate a function at 0x1050:
CODE(?PR?FUNCTIONAME?FILENAME(1050h))

NOTE: The ‘CODE’ directive takes
multiple parameters separated by a
comma.

AN112

Rev. 2.1 5

1. Start the Silicon Labs IDE and add
‘loader_F30x.c’ to a new project. Compile,
link, and download this project to the target.

2. Open a new Silicon Labs IDE project and add
‘blink_fast_F30x.c’.

3. Now we need to locate the new project’s data
segment at 0x08 in RAM. This is the location
of the reserved buffer in the ‘loader’ project. If
either project uses the ‘USING’ directive,
change the 0x08 to an unused area of memory.
We can locate the new project’s data segment
by adding the following directive to the com-
mand line parameters found in the ‘Project-
>Tool Chain Integration...’ menu under the
‘linker’ tab.

DATA(08h)

We also need to locate all functions in the
project at addresses higher than 0x1000 and
locate the ‘blink_fast’ function at 0x1000. Add
the following argument to the linker command
line parameters.

CODE(1000h,
?PR?BLINK_FAST?BLINK_FAST_F30x
(1000h))

4. Compile and link the project. Examine the
MAP file (blink_fast_F30x.M51) to ensure that
the data segment does not exceed the number of
bytes reserved by the ‘loader’ project.

5. Run the ‘OH51.EXE’ utility with the linker
output file (BLINK_FAST_F30x) as its argu-
ment. The OH51 utility can be found in the
‘C:\SILICONLABS\IDEfiles\C51\Bin’
folder.

6. Repeat steps 2 through 5 for
‘blink_slow_F30x’

7. Start the terminal program and configure it as
shown in the previous sections. Hit ‘go’ in the
‘loader_F30x’ project. Go through the series of

commands to erase, load, and execute the
‘blink_fast’ function. When prompted to send a
HEX file, use the ‘send text file’ command to
send the appropriate ‘*.hex’ file.

Step-by-Step to Building and
Running the Example
Firmware Updater
1. Start the Silicon Labs IDE and add

‘updater_F30x.c’ to a new project.

2. Add the following to the command line param-
eters found in the ‘Project->Tool Chain Inte-
gration...’ menu under the ‘linker’ tab. This
argument defines the location of the CODE
segment and locates the main routine at
0x1000.

CODE(1000h, ?PR?MAIN?UPDATER_F30x
(1000h))

3. Compile, link, and download this project to the
target. Once the project is downloaded, discon-
nect the IDE.

4. Start a new instance of the Silicon Labs IDE
and add the correct version of ‘blink_F30x.c’ to
a new project. Compile, link, and download this
project to the target. The green LED should be
blinking.

5. Run the ‘OH51.EXE’ utility with the linker
output file (BLINK_F30x) as its argument. The
OH51 utility can be found in the ‘C:\SILI-
CONLABS\IDEfiles\C51\Bin’ folder.

6. Start the terminal program and configure it as
shown in the previous sections. Press the P0.3
switch for the ‘F30x. When prompted to send a
HEX file, use the ‘send text file’ command to
send ‘blink_F30x.hex’ or a different HEX file.

AN112

6 Rev. 2.1

Example Software for the C8051F02x Family

Selective Code Loader//--

// loader_F02x.c
//---
// Copyright 2002 Cygnal Integrated Products, Inc.
//
// AUTH: FB
// DATE: 28 JUN 02
//
// This program shows an example ‘selective code loader’ using the ‘F02x. It
// designates the FLASH page at 0x1000 for the code loaded through the UART.
//
// Control Function:
//
// The system is controlled via the hardware UART, operating at a baud rate
// determined by the constant <BAUDRATE>, using Timer1 overflows as the baud
// rate source.
//
// Received File Type:
//
// This example receives Intel HEX files which are OMF51 (linker output files)
// passed through the OH51 utility in the ‘CYGNAL\IDEfiles\C51\Bin’ folder.
//
// Note: Because this program writes to FLASH, the MONEN pin should be tied
// high.
//
// Target: C8051F02x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51
//

//---
// Includes
//---
#include <c8051f020.h> // SFR declarations
#include <stdio.h> // printf() and getchar()
#include <ctype.h> // tolower() and toint()

//---
// 16-bit SFR Definitions for ‘F02x
//---
sfr16 DP = 0x82; // data pointer
sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 TMR3 = 0x94; // Timer3 counter
sfr16 ADC0 = 0xbe; // ADC0 data
sfr16 ADC0GT = 0xc4; // ADC0 greater than window
sfr16 ADC0LT = 0xc6; // ADC0 less than window
sfr16 RCAP2 = 0xca; // Timer2 capture/reload
sfr16 T2 = 0xcc; // Timer2
sfr16 RCAP4 = 0xe4; // Timer4 capture/reload
sfr16 T4 = 0xf4; // Timer4
sfr16 DAC0 = 0xd2; // DAC0 data
sfr16 DAC1 = 0xd5; // DAC1 data

//---

AN112

Rev. 2.1 7

// Global CONSTANTS
//---
#define TRUE 1
#define FALSE 0

#define SYSCLK 22118400 // SYSCLK frequency in Hz
#define BAUDRATE 115200 // Baud rate of UART in bps

sbit LED = P1^6; // LED=’1’ means ON
sbit SW2 = P3^7; // SW2=’0’ means switch pressed

//---
// Reserved Memory Space
//---

char reserved_memory_bank[2] _at_ 0x08;// This memory bank is used by the
 // functions that will be loaded
 // through the UART.
 // The memory bank location and size
 // are based on values from the M51 map
 // file generated when the loaded code
 // is linked.

//---
// Function PROTOTYPES
//---

void main (void);

// Support Subroutines
void print_menu(void);
void erase_flash_page(void);
void receive_code(void);
unsigned char hex2char();

// Initialization Subroutines
void SYSCLK_Init (void);
void PORT_Init (void);
void UART0_Init (void);

//---
// Global VARIABLES
//---

#define input_str_len 4 // buffer to hold characters entered
char input_str[input_str_len]; // at the command prompt

void (*f)(); // function pointer declaration

bit code_erased = FALSE; // flag used to indicate that the FLASH
 // erase operation is complete
bit f_valid = FALSE; // flag to indicate that the FLASH
 // programming operation is complete

//---
// MAIN Routine
//---

void main (void)

AN112

8 Rev. 2.1

{

 WDTCN = 0xde; // disable watchdog timer
 WDTCN = 0xad;

 PORT_Init (); // initialize crossbar and GPIO
 SYSCLK_Init (); // initialize oscillator
 UART0_Init (); // initialize UART0

 print_menu(); // print the command menu

 while (1){

 printf(“\nEnter a command > “);
 gets(input_str, input_str_len);

 switch (input_str[0]){

 case ‘1’: erase_flash_page();
 printf(“\nFlash page 0x1000 has been erased.\n”);
 break;

 case ‘2’: printf(“\nReady to receive HEX file...\n”);
 receive_code();
 break;

 case ‘3’: if(f_valid){
 f = (void code *) 0x1000;
 f();
 printf(“\nFinished\n”);
 } else {
 printf(“\n*** No function exists at 0x1000.\n”);
 }
 break;

 case ‘?’: print_menu();
 break;

 default: printf(“\n*** Unknown Command.\n”);
 break;
 }

 } // end while

} // end main

//---
// Support Subroutines
//---
//---
// print_menu
//---
//
// This routine uses prints the command menu to the UART.
//
void print_menu(void)
{

 printf(“\n\nC8051F02x Selective Code Loader Example\n”);

AN112

Rev. 2.1 9

 printf(“--\n”);
 printf(“1. Erase the flash page at 0x1000\n”);
 printf(“2. Receive HEX file\n”);
 printf(“3. Execute the function at 0x1000\n”);
 printf(“?. Print Command List\n”);
}

//---
// hex2char
//---
//
// This routine converts a two byte ascii representation of a char to an
// 8-bit variable;
//
unsigned char hex2char()
{

 unsigned char retval;
 char byteH, byteL;

 // get a two-byte ASCII representation of a char from the UART
 byteH = _getkey();
 byteL = _getkey();

 // convert to a single 8 bit result
 retval = (char) toint(byteH) * 16;
 retval += (char) toint(byteL);
 return retval;
}

//---
// erase_flash_page
//---
//
// This routine erases the FLASH page located at 0x1000
//
void erase_flash_page(void)
{
 bit EA_state;
 char xdata* data pagePointer = 0x1000; // pointer to xdata space located
 // in data space

 EA_state = EA; // holds interrupt state

 EA = 0; // disable interrupts
 FLSCL |= 0x01; // enable FLASH write/erase
 PSCTL = 0x03; // MOVX erases FLASH

 // Erase the FLASH page at 0x1000
 *pagePointer = 0; // initiate the erase

 PSCTL = 0x00; // MOVX writes target XRAM
 FLSCL &= ~0x01; // disable FLASH write/erase

 EA = EA_state; // restore interrupt state

 f_valid = FALSE; // indicate that code is no longer valid
 code_erased = TRUE; // indicate that FLASH has been erased
}

AN112

10 Rev. 2.1

//---
// receive_code
//---
//
// This routine receives HEX records through the UART and writes the
// function located at 0x1000.
//
// Hex Record Format:
//
// +--------+--------+------+-------+--------+------(n bytes)------+----------+
// | RECORD | RECLEN | OFFSET | RECORD | | CHECKSUM |
// | MARK | (n) | (2 BYTES) | TYPE | DATA | |
// | ‘:’ | | | | | |
// +--------+--------+------+-------+--------+------(n bytes)------+----------+
//
void receive_code(void)
{

 char xdata* data pwrite; // pointer used for writing FLASH
 char code* data pread; // pointer used for reading FLASH
 unsigned int len; // holds the HEX record length field
 char record_type; // holds the HEX record type field
 unsigned int offset; // holds the HEX record offset field
 // this is the starting address of
 // the code image contained in the
 // record

 char checksum; // holds the HEX record checksum field
 char flash_checksum; // holds the checksum calculated after
 // the FLASH has been programmed
 bit EA_state; // temporary holder used to restore
 // interrupts to their previous state

 char c; // temporary char
 int i; // temporary int

 // make sure the FLASH page has been erased
 if(!code_erased){
 printf(“\n*** At least one FLASH page must be erased prior”);
 printf(“ to this operation.\n”);
 return;
 }

 // wait for the user to send HEX file

 do{

 while(c = _getkey() != ‘:’); // ignore all characters until
 // reaching the record mark field

 // get the record length
 len = hex2char();

 // get the starting address (offset field in HEX record)
 offset = hex2char();
 offset <<= 8;
 offset |= hex2char();

AN112

Rev. 2.1 11

 // get the record type
 record_type = hex2char();
 if(record_type != 0 && record_type != 1){
 printf(“\n*** Cannot decode HEX file.\n”);
 return;
 }

 EA_state = EA; // save the interrupt enable bit state

 EA = 0; // disable interrupts (precautionary)
 FLSCL |= 0x01; // enable FLASH write/erase
 PSCTL = 0x01; // MOVX writes FLASH

 pwrite = (char xdata*) offset; // initialize the write pointer

 code_erased = FALSE; // clear the code_erased flag

 // write the record into FLASH
 for(i = 0; i < len; i++){
 *pwrite = hex2char(); // write one byte to FLASH
 pwrite++; // increment FLASH write pointer

 }

 PSCTL = 0x00; // MOVX writes target XRAM
 FLSCL &= ~0x01; // disable FLASH write/erase
 EA = EA_state; // restore interrupts to previous state

 // verify the checksum
 pread = (char code*) offset; // initialize the read pointer
 checksum = hex2char(); // get the HEX record checksum field
 flash_checksum = 0; // set the flash_checksum to zero

 // add the data field stored in FLASH to the checksum
 for(i = 0; i < len; i++){
 flash_checksum += *pread++;
 }

 // add the remaining fields
 flash_checksum += len;
 flash_checksum += (char) (offset >> 8);
 flash_checksum += (char) (offset & 0x00FF);
 flash_checksum += record_type;
 flash_checksum += checksum;

 // verify the checksum (the flash_checksum should equal zero)
 if(flash_checksum != 0){
 printf(“*** Checksum failed, try again.”);
 return;
 }

 } while(record_type != 1);

 f_valid = TRUE; // flag that the “f()” function is valid

 _getkey(); // remove carriage return from input
 // stream

 printf(“\nReceived OK\n”);

AN112

12 Rev. 2.1

}

//---
// Initialization Subroutines
//---

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use an 22.1184MHz crystal
// as its clock source.
//
void SYSCLK_Init (void)
{
 int i; // delay counter

 OSCXCN = 0x67; // start external oscillator with
 // 22.1184MHz crystal

 for (i=0; i < 256; i++) ; // wait for osc to start

 while (!(OSCXCN & 0x80)) ; // Wait for crystal osc. to settle

 OSCICN = 0x88; // select external oscillator as SYSCLK
 // source and enable missing clock
 // detector
}

//---
// PORT_Init
//---
//
// Configure the Crossbar and GPIO ports
//
void PORT_Init (void)
{
 XBR0 = 0x04; // Enable UART0
 XBR1 = 0x00;
 XBR2 = 0x40; // Enable crossbar and weak pull-ups
 P0MDOUT |= 0x01; // enable TX0 as a push-pull output
 P1MDOUT |= 0x40; // enable P1.6 (LED) as push-pull output
}

//---
// UART0_Init
//---
//
// Configure the UART0 using Timer1, for <baudrate> and 8-N-1.
//
void UART0_Init (void)
{
 SCON0 = 0x50; // SCON0: mode 1, 8-bit UART, enable RX
 TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
 TH1 = -(SYSCLK/BAUDRATE/16); // set Timer1 reload value for baudrate
 TR1 = 1; // start Timer1
 CKCON |= 0x10; // Timer1 uses SYSCLK as time base
 PCON |= 0x80; // SMOD00 = 1
 TI0 = 1; // Indicate TX0 ready
}

AN112

Rev. 2.1 13

//---
// blink_fast_F02x.c
//---
// Copyright 2002 Cygnal Integrated Products, Inc.
//
// AUTH: FB
// DATE: 21 JUN 02
//
// This program shows an example function that can be used with the
// ‘selective code loader example’ for the ‘F02x family.
//
//
//
// Target: C8051F02x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51
//

//---
// Includes
//---

#include <c8051f020.h> // SFR declarations

//---
// 16-bit SFR Definitions for ‘F02x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 TMR3 = 0x94; // Timer3 counter
sfr16 ADC0 = 0xbe; // ADC0 data
sfr16 ADC0GT = 0xc4; // ADC0 greater than window
sfr16 ADC0LT = 0xc6; // ADC0 less than window
sfr16 RCAP2 = 0xca; // Timer2 capture/reload
sfr16 T2 = 0xcc; // Timer2
sfr16 RCAP4 = 0xe4; // Timer4 capture/reload
sfr16 T4 = 0xf4; // Timer4
sfr16 DAC0 = 0xd2; // DAC0 data
sfr16 DAC1 = 0xd5; // DAC1 data

//---
// Global CONSTANTS
//---
#define TRUE 1
#define FALSE 0

#define SYSCLK 22118400 // SYSCLK frequency in Hz

sbit LED = P1^6; // LED=’1’ means ON
sbit SW2 = P3^7; // SW1=’0’ means switch pressed

//---
// Function PROTOTYPES
//---

// Subroutines that will be loaded at address 0x1000
void blink_fast();
void wait_ms(int ms);

AN112

14 Rev. 2.1

void Timer2_Init (int counts);

//---
// blink_fast
//---
//
// This routine uses blinks the LED twice every second for five seconds.
//
void blink_fast(void)
{
 static int i;

 Timer2_Init (SYSCLK/12/1000); // initialize Timer2 to overflow
 // every millisecond
 for(i = 0; i < 10; i++){
 LED = 0; // turn LED off
 wait_ms(150); // execute delay loop
 LED = 1; // turn LED on
 wait_ms(150); // execute delay loop
 }
}

//---
// wait_ms
//---
//
// This routine uses Timer 2 to insert a delay of <ms> milliseconds.
// Timer 2 overflows once every millisecond
//
void wait_ms(int ms)
{
 TF2 = 0; // clear Timer 2 overflow flag
 TR2 = 1; // turn Timer 2 On

 while (ms != 0){
 if(TF2){
 TF2 = 0;
 ms--;
 }
 }

 TR2 = 0; // turn Timer 2 Off

}

//---
// Timer2_Init
//---
//
// This routine initializes Timer2 to 16 bit auto reload mode
//
void Timer2_Init (int counts)
{

 CKCON &= ~0x20; // Timer 2 counts SYSCLK/12
 RCAP2 = -(counts); // set the reload value
 T2 = RCAP2; // init Timer2
 ET2 = 0; // disable Timer2 interrupts
 TR2 = 0; // Timer 2 OFF
}

AN112

Rev. 2.1 15

//---
// blink_slow_F02x.c
//---
// Copyright 2002 Cygnal Integrated Products, Inc.
//
// AUTH: FB
// DATE: 21 JUN 02
//
// This program shows an example function that can be used with the
// ‘selective code loader example’ for the ‘F02x family.
//
//
//
// Target: C8051F02x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51
//

//---
// Includes
//---

#include <c8051f020.h> // SFR declarations

//---
// 16-bit SFR Definitions for ‘F02x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 TMR3 = 0x94; // Timer3 counter
sfr16 ADC0 = 0xbe; // ADC0 data
sfr16 ADC0GT = 0xc4; // ADC0 greater than window
sfr16 ADC0LT = 0xc6; // ADC0 less than window
sfr16 RCAP2 = 0xca; // Timer2 capture/reload
sfr16 T2 = 0xcc; // Timer2
sfr16 RCAP4 = 0xe4; // Timer4 capture/reload
sfr16 T4 = 0xf4; // Timer4
sfr16 DAC0 = 0xd2; // DAC0 data
sfr16 DAC1 = 0xd5; // DAC1 data

//---
// Global CONSTANTS
//---
#define TRUE 1
#define FALSE 0

#define SYSCLK 22118400 // SYSCLK frequency in Hz

sbit LED = P1^6; // LED=’1’ means ON
sbit SW2 = P3^7; // SW1=’0’ means switch pressed

//---
// Function PROTOTYPES
//---

// Subroutines that will be loaded at address 0x1000
void blink_slow();
void wait_ms(int ms);
void Timer2_Init (int counts);

AN112

16 Rev. 2.1

//---
// blink_slow
//---
//
// This routine uses blinks the LED once every second for five seconds.
//
void blink_slow(void)
{
 static int i;

 Timer2_Init (SYSCLK/12/1000); // initialize Timer2 to overflow
 // every millisecond
 for(i = 0; i < 10; i++){
 LED = 0; // turn LED off
 wait_ms(500); // execute delay loop
 LED = 1; // turn LED on
 wait_ms(500); // execute delay loop
 }
}

//---
// wait_ms
//---
//
// This routine uses Timer 2 to insert a delay of <ms> milliseconds.
// Timer 2 overflows once every millisecond
//
void wait_ms(int ms)
{
 TF2 = 0; // clear Timer 2 overflow flag
 TR2 = 1; // turn Timer 2 On

 while (ms != 0){
 if(TF2){
 TF2 = 0;
 ms--;
 }
 }

 TR2 = 0; // turn Timer 2 Off

}

//---
// Timer2_Init
//---
//
// This routine initializes Timer2 to 16 bit auto reload mode
//
void Timer2_Init (int counts)
{

 CKCON &= ~0x20; // Timer 2 counts SYSCLK/12
 RCAP2 = -(counts); // set the reload value
 T2 = RCAP2; // init Timer2
 ET2 = 0; // disable Timer2 interrupts
 TR2 = 0; // Timer 2 OFF
}

AN112

Rev. 2.1 17

Example Firmware Updater
//---
// updater_F02x.c
//---
// Copyright 2002 Cygnal Integrated Products, Inc.
//
// AUTH: FB
// DATE: 28 JUN 02
//
// This program shows an example Firmware Updater using the ‘F02x. It resides
// in FLASH at addresses above 0x1000 and is accessed through a function
// pointer casted as (void code*) 0x1000.
//
// Once the firmware update has taken place, the a software reset is issued
// and the updated firmware takes control of the system.
//
// Control Function:
//
// The system is controlled via the hardware UART, operating at a baud rate
// determined by the constant <BAUDRATE>, using Timer1 overflows as the baud
// rate source.
//
// Note: Because this program writes to FLASH, the MONEN pin should be tied
// high.
//
// Target: C8051F02x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51
//

//---
// Includes
//---

#include <c8051f020.h> // SFR declarations
#include <stdio.h> // printf() and getchar()
#include <stdlib.h>
#include <ctype.h> // tolower() and toint()

//---
// 16-bit SFR Definitions for ‘F02x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 TMR3 = 0x94; // Timer3 counter
sfr16 ADC0 = 0xbe; // ADC0 data
sfr16 ADC0GT = 0xc4; // ADC0 greater than window
sfr16 ADC0LT = 0xc6; // ADC0 less than window
sfr16 RCAP2 = 0xca; // Timer2 capture/reload
sfr16 T2 = 0xcc; // Timer2
sfr16 RCAP4 = 0xe4; // Timer4 capture/reload
sfr16 T4 = 0xf4; // Timer4
sfr16 DAC0 = 0xd2; // DAC0 data
sfr16 DAC1 = 0xd5; // DAC1 data

//---
// Global CONSTANTS
//---

AN112

18 Rev. 2.1

#define TRUE 1
#define FALSE 0

#define SYSCLK 22118400 // SYSCLK frequency in Hz
#define BAUDRATE 115200 // Baud rate of UART in bps

sbit LED = P1^6; // LED=’1’ means ON
sbit SW2 = P3^7; // SW2=’0’ means switch pressed

//---
// Function PROTOTYPES
//---

void main (void);

// Support Subroutines
void print_menu(void);
void erase_flash(void);
void receive_code(void);
unsigned char hex2char();

// Initialization Subroutines
void SYSCLK_Init (void);
void PORT_Init (void);
void UART0_Init (void);

//---
// Global VARIABLES
//---

void (*f)(); // function pointer declaration

bit code_erased = FALSE; // flag used to indicate that the FLASH
 // erase operation is complete
bit f_valid = FALSE; // flag to indicate that the FLASH
 // programming operation is complete

//---
// MAIN Routine
//---

void main (void)
{

 char input;

 WDTCN = 0xde; // disable watchdog timer
 WDTCN = 0xad;

 EA = 0; // disable interrupts (this statement
 // is needed because the device is not
 // neccesarily in a reset state prior
 // to executing this code)

 PORT_Init (); // initialize crossbar and GPIO
 SYSCLK_Init (); // initialize oscillator
 UART0_Init (); // initialize UART0

AN112

Rev. 2.1 19

 print_menu(); // print the command menu

 while (1){

 printf(“Enter a command > “);
 input = getchar();

 switch (input){

 case ‘1’: erase_flash();
 printf(“\n*** Flash pages erased.\n”);
 receive_code();

 case ‘2’: printf(“\n** RESETTING **\n\n”);
 RSTSRC = 0x10; // reset the device

 case ‘?’: print_menu();
 break;

 default: print_menu();
 printf(“\n*** Unknown Command\n”);
 break;
 }

 } // end while

} // end main

//---
// Support Subroutines
//---

//---
// print_menu
//---
//
// This routine prints the command menu to the UART.
//
void print_menu(void)
{

 printf(“\n\nC8051F02x Firmware Updater\n”);
 printf(“---------------------------------\n”);
 printf(“1. Erase FLASH and Update Firmware\n”);
 printf(“2. Cancel Firmware Update\n”);
 printf(“?. Print Command List\n”);

}

//---
// hex2char
//---
//
// This routine converts a two byte ascii representation of a char to an
// 8-bit variable;
//
unsigned char hex2char()

AN112

20 Rev. 2.1

{

 unsigned char retval;
 char byteH, byteL;

 // get a two-byte ASCII representation of a char from the UART
 byteH = _getkey();
 byteL = _getkey();

 // convert to a single 8 bit result
 retval = (char) toint(byteH) * 16;
 retval += (char) toint(byteL);
 return retval;
}

//---
// erase_flash
//---
//
// This routine erases the first 8 pages of FLASH (0x0000 to 0x0FFF).
//
void erase_flash(void)
{
 char xdata* data pagePointer = 0;// a pointer to xdata located in data space
 // points to the first FLASH page that
 // will be erased

 int i; // temporary int
 bit EA_state; // holds interrupt state

 printf(“\n*** Erasing flash from 0x0000 to 0x0FFF”);

 EA_state = EA; // save interrupt state

 EA = 0; // disable interrupts
 FLSCL |= 0x01; // enable FLASH write/erase
 PSCTL = 0x03; // MOVX erases FLASH

 // Erase the first 8 FLASH pages
 for (i = 0; i < 8; i++){

 *pagePointer = 0; // initiate the erase

 pagePointer += 512; // advance to next FLASH page
 }

 PSCTL = 0x00; // MOVX writes target XRAM
 FLSCL &= ~0x01; // disable FLASH write/erase

 EA = EA_state; // restore interrupt state

 f_valid = FALSE; // indicate that code is no longer valid
 code_erased = TRUE; // indicate that FLASH has been erased
}

//---
// receive_code
//---
// This routine receives the new firmware through the UART in HEX record

AN112

Rev. 2.1 21

// format.
//
// Hex Record Format:
//
// +--------+--------+------+-------+--------+------(n bytes)------+----------+
// | RECORD | RECLEN | OFFSET | RECORD | | CHECKSUM |
// | MARK | (n) | (2 BYTES) | TYPE | DATA | |
// | ‘:’ | | | | | |
// +--------+--------+------+-------+--------+------(n bytes)------+----------+
//
//
void receive_code(void)
{
 char xdata* data pwrite; // pointer used for writing FLASH
 char code* data pread; // pointer used for reading FLASH
 unsigned char len; // holds the HEX record length field
 unsigned char record_type; // holds the HEX record type field
 unsigned int offset; // holds the HEX record offset field
 // this is the starting address of
 // the code image contained in the
 // record

 char checksum; // holds the HEX record checksum field
 char flash_checksum; // holds the checksum calculated after
 // the FLASH has been programmed
 bit EA_state; // temporary holder used to restore
 // interrupts to their previous state

 char c; // temporary char
 int i; // temporary int

 // make sure FLASH has been erased
 if(!code_erased){
 printf(“\n*** At least one FLASH page must be erased prior”);
 printf(“ to this operation.\n”);
 return;
 } else {

 printf(“\nReady to receive...\n”);
 }

 // wait for the user send HEX file

 do{

 while(c = _getkey() != ‘:’); // ignore all characters until
 // reaching the record mark field

 // get the record length
 len = hex2char();

 // get the starting address (offset field in HEX record)
 offset = hex2char(); // get the MSB
 offset <<= 8;
 offset |= hex2char(); // get the LSB

 // get the record type
 record_type = hex2char();
 if(record_type != 0 && record_type != 1){

AN112

22 Rev. 2.1

 printf(“\n*** Cannot decode HEX file.\n”);
 return;
 }

 EA_state = EA; // save the interrupt enable bit state

 EA = 0; // disable interrupts (precautionary)
 FLSCL |= 0x01; // enable FLASH write/erase
 PSCTL = 0x01; // MOVX writes FLASH

 pwrite = (char xdata*) offset; // initialize the write pointer

 code_erased = FALSE; // clear the code_erased flag

 // write the record into flash
 for(i = 0; i < len; i++){

 // check for valid pointer
 if(pwrite < 0x1000){
 *pwrite = hex2char(); // write one byte to FLASH
 pwrite++; // increment FLASH write pointer
 } else {
 printf(“\n\nExceeded Code Space.\n”); // print error message
 }
 }

 PSCTL = 0x00; // MOVX writes target XRAM
 FLSCL &= ~0x01; // disable FLASH write/erase
 EA = EA_state; // restore interrupts to previous state

 // verify the checksum
 pread = (char code*) offset; // initialize the read pointer
 checksum = hex2char(); // get the HEX record checksum field
 flash_checksum = 0; // set the flash_checksum to zero

 // add the data field stored in FLASH to the checksum
 for(i = 0; i < len; i++)
 {
 flash_checksum += *pread++;
 }

 // add the remaining fields
 flash_checksum += len;
 flash_checksum += (char) (offset >> 8);
 flash_checksum += (char) (offset & 0x00FF);
 flash_checksum += record_type;
 flash_checksum += checksum;

 // verify the checksum (the flash_checksum should equal zero)
 if(flash_checksum != 0){
 printf(“*** Checksum failed, try again”);
 return;
 }

 } while(record_type != 1);

 f_valid = TRUE; // indicate that download is valid

 printf(“\n** Firmware Update Complete. **\n”);

AN112

Rev. 2.1 23

}

//---
// Initialization Subroutines
//---

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use an 22.1184MHz crystal
// as its clock source.
//
void SYSCLK_Init (void)
{
 int i; // delay counter

 OSCXCN = 0x67; // start external oscillator with
 // 22.1184MHz crystal

 for (i=0; i < 256; i++) ; // wait for osc to start

 while (!(OSCXCN & 0x80)) ; // Wait for crystal osc. to settle

 OSCICN = 0x88; // select external oscillator as SYSCLK
 // source and enable missing clock
 // detector
}

//---
// PORT_Init
//---
//
// Configure the Crossbar and GPIO ports
//
void PORT_Init (void)
{
 XBR0 = 0x04; // Enable UART0
 XBR1 = 0x00;
 XBR2 = 0x40; // Enable crossbar and weak pull-ups
 P0MDOUT |= 0x01; // enable TX0 as a push-pull output
 P1MDOUT |= 0x40; // enable P1.6 (LED) as push-pull output
}

//---
// UART0_Init
//---
//
// Configure the UART0 using Timer1, for <baudrate> and 8-N-1.
//
void UART0_Init (void)
{
 SCON0 = 0x50; // SCON0: mode 1, 8-bit UART, enable RX
 TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
 TH1 = -(SYSCLK/BAUDRATE/16); // set Timer1 reload value for baudrate
 TR1 = 1; // start Timer1
 CKCON |= 0x10; // Timer1 uses SYSCLK as time base
 PCON |= 0x80; // SMOD00 = 1
 TI0 = 1; // Indicate TX0 ready
}

AN112

24 Rev. 2.1

//--
// blink_F02x.c
//--
// Copyright 2002 Cygnal Integrated Products, Inc.
//
// AUTH: BW, FB
// DATE: 28 JUN 02
//
// This program flashes the green LED on the C8051F020 target board about five times
// a second using the interrupt handler for Timer3.
// Target: C8051F02x
//
// Tool chain: KEIL Eval ‘c’
//

//--
// Includes
//--
#include <c8051f020.h> // SFR declarations

//--
// 16-bit SFR Definitions for ‘F02x
//--

sfr16 DP = 0x82; // data pointer
sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 TMR3 = 0x94; // Timer3 counter
sfr16 ADC0 = 0xbe; // ADC0 data
sfr16 ADC0GT = 0xc4; // ADC0 greater than window
sfr16 ADC0LT = 0xc6; // ADC0 less than window
sfr16 RCAP2 = 0xca; // Timer2 capture/reload
sfr16 T2 = 0xcc; // Timer2
sfr16 RCAP4 = 0xe4; // Timer4 capture/reload
sfr16 T4 = 0xf4; // Timer4
sfr16 DAC0 = 0xd2; // DAC0 data
sfr16 DAC1 = 0xd5; // DAC1 data

//--
// Global CONSTANTS
//--

#define SYSCLK 2000000 // approximate SYSCLK frequency in Hz

sbit LED = P1^6; // green LED: ‘1’ = ON; ‘0’ = OFF
sbit SW2 = P3^7; // SW2=’0’ means switch pressed

//--
// Function PROTOTYPES
//--
void PORT_Init (void);
void Timer3_Init (int counts);
void Timer3_ISR (void);

//--
// MAIN Routine
//--
void main (void) {

 void (*update_firmware)(); // function pointer to firmware updating

AN112

Rev. 2.1 25

 // code that is located at 0x1000;

 // disable watchdog timer
 WDTCN = 0xde;
 WDTCN = 0xad;

 PORT_Init ();
 Timer3_Init (SYSCLK / 12 / 10); // Init Timer3 to generate interrupts
 // at a 10Hz rate.

 EA = 1; // enable global interrupts

 update_firmware = (void code*)0x1000; // assign the function pointer

 while (1) { // spin forever

 if (!SW2){ // wait for switch before calling
 // the firmware update procedure
 update_firmware();

 }
 }
}

//--
// PORT_Init
//--
//
// Configure the Crossbar and GPIO ports
//
void PORT_Init (void)
{
 XBR2 = 0x40; // Enable crossbar and weak pull-ups
 P1MDOUT |= 0x40; // enable P1.6 (LED) as push-pull output
}

//--
// Timer3_Init
//--
//
// Configure Timer3 to auto-reload and generate an interrupt at interval
// specified by <counts> using SYSCLK/12 as its time base.
//
void Timer3_Init (int counts)
{
 TMR3CN = 0x00; // Stop Timer3; Clear TF3;
 // use SYSCLK/12 as timebase
 TMR3RL = -counts; // Init reload values
 TMR3 = 0xffff; // set to reload immediately
 EIE2 |= 0x01; // enable Timer3 interrupts
 TMR3CN |= 0x04; // start Timer3
}

//--
// Interrupt Service Routines
//--

//--

AN112

26 Rev. 2.1

// Timer3_ISR
//--
// This routine changes the state of the LED whenever Timer3 overflows.
//
void Timer3_ISR (void) interrupt 14
{
 TMR3CN &= ~(0x80); // clear TF3
 LED = ~LED; // change state of LED
}

AN112

Rev. 2.1 27

Example Software For the C8051F30x Family

Selective Code Loader
//---
// loader_F30x.c
//---
// Copyright 2002 Cygnal Integrated Products, Inc.
//
// AUTH: FB
// DATE: 28 JUN 02
//
// This program shows an example ‘selective code loader’ using the ‘F30x. It
// designates the flash page at 0x1000 for the code loaded through the UART.
//
// Control Function:
//
// The system is controlled via the hardware UART, operating at a baud rate
// determined by the constant <BAUDRATE>, using Timer1 overflows as the baud
// rate source.
//
// Received File Type:
//
// This example receives Intel HEX files which are OMF51 (linker output files)
// passed through the OH51 utility in the ‘CYGNAL\IDEfiles\C51\Bin’ folder.
//
// Note: Because this program writes to FLASH, the VDD monitor is enabled in
// in the initialization routine.
//
// Target: C8051F30x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51
//

//---
// Includes
//---

#include <c8051f300.h> // SFR declarations
#include <stdio.h> // printf() and getchar()
#include <ctype.h> // tolower() and toint()

//---
// 16-bit SFR Definitions for ‘F30x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR2RL = 0xca; // Timer2 reload value
sfr16 TMR2 = 0xcc; // Timer2 counter
sfr16 PCA0CP1 = 0xe9; // PCA0 Module 1 Capture/Compare
sfr16 PCA0CP2 = 0xeb; // PCA0 Module 2 Capture/Compare
sfr16 PCA0 = 0xf9; // PCA0 counter
sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 Capture/Compare

//---
// Global CONSTANTS
//---
#define TRUE 1

AN112

28 Rev. 2.1

#define FALSE 0

#define SYSCLK 24500000 // SYSCLK frequency in Hz
#define BAUDRATE 115200 // Baud rate of UART in bps

sbit LED = P0^2; // LED=’1’ means ON
sbit SW2 = P0^3; // SW2=’0’ means switch pressed
sbit TX0 = P0^4; // UART0 TX pin
sbit RX0 = P0^5; // UART0 RX pin

//---
// Reserved Memory Space
//---

char reserved_memory_bank[2] _at_ 0x08;// This memory bank is used by the
 // functions that will be loaded
 // through the UART
 // The memory bank location and size
 // are based on values from the M51 map
 // file generated when the loaded code
 // is linked.

//---
// Function PROTOTYPES
//---

void main (void);

// Support Subroutines
void print_menu(void);
void erase_flash_page(void);
void receive_code(void);
unsigned char hex2char();

// Initialization Subroutines
void SYSCLK_Init (void);
void PORT_Init (void);
void UART0_Init (void);

//---
// Global VARIABLES
//---

#define input_str_len 4 // buffer to hold characters entered
char input_str[input_str_len]; // at the command prompt

void (*f)(); // function pointer declaration

bit code_erased = FALSE; // flag used to indicate that the FLASH
 // erase operation is complete
bit f_valid = FALSE; // flag to indicate that the FLASH
 // programming operation is complete

//---
// MAIN Routine
//---

AN112

Rev. 2.1 29

void main (void)
{

 // Disable Watchdog timer
 PCA0MD &= ~0x40; // WDTE = 0 (clear watchdog timer
 // enable)

 PORT_Init (); // initialize crossbar and GPIO
 SYSCLK_Init (); // initialize oscillator
 UART0_Init (); // initialize UART0

 print_menu(); // print the command menu

 while (1){

 printf(“\nEnter a command > “);
 gets(input_str, input_str_len);

 switch (input_str[0]){

 case ‘1’: erase_flash_page();
 printf(“\nFlash page 0x1000 has been erased.\n”);
 break;

 case ‘2’: printf(“\nReady to receive HEX file...\n”);
 receive_code();
 break;

 case ‘3’: if(f_valid){
 f = (void code *) 0x1000;
 f();
 printf(“\nFinished\n”);
 } else {
 printf(“\n*** No function exists at 0x1000.\n”);
 }
 break;

 case ‘?’: print_menu();
 break;

 default: printf(“\n*** Unknown Command.\n”);
 break;
 }

 } // end while

} // end main

//---
// Support Subroutines
//---
//---
// print_menu
//---
//
// This routine uses prints the command menu to the UART.
//
void print_menu(void)

AN112

30 Rev. 2.1

{

 printf(“\n\nC8051F30x Selective Code Loader Example\n”);
 printf(“--\n”);
 printf(“1. Erase the flash page at 0x1000\n”);
 printf(“2. Receive HEX file\n”);
 printf(“3. Execute the function at 0x1000\n”);
 printf(“?. Print Command List\n”);

}
//---
// hex2char
//---
//
// This routine converts a two byte ascii representation of a char to an
// 8-bit variable;
//
unsigned char hex2char()
{

 unsigned char retval;
 char byteH, byteL;

 // get a two-byte ASCII representation of a char from the UART
 byteH = _getkey();
 byteL = _getkey();

 // convert to a single 8 bit result
 retval = (char) toint(byteH) * 16;
 retval += (char) toint(byteL);
 return retval;
}

//---
// erase_flash_page
//---
//
// This routine erases the FLASH page located at 0x1000
//
void erase_flash_page(void)
{
 char xdata* data pagePointer = 0x1000; // pointer to xdata space located
 // in data space
 bit EA_state; // holds interrupt state

 PSCTL = 0x03; // MOVX erases FLASH

 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2

 // Erase the FLASH page at 0x1000
 *pagePointer = 0; // initiate the erase

 PSCTL = 0; // MOVX writes target XRAM

 EA = EA_state; // restore interrupt state

 f_valid = FALSE; // indicate that code is no longer valid
 code_erased = TRUE; // indicate that FLASH has been erased

AN112

Rev. 2.1 31

}

//---
// receive_code
//---
//
// This routine receives HEX records through the UART and writes the
// function located at 0x1000.
//
// Hex Record Format:
//
// +--------+--------+------+-------+--------+------(n bytes)------+----------+
// | RECORD | RECLEN | OFFSET | RECORD | | CHECKSUM |
// | MARK | (n) | (2 BYTES) | TYPE | DATA | |
// | ‘:’ | | | | | |
// +--------+--------+------+-------+--------+------(n bytes)------+----------+
//
void receive_code(void)
{
 char xdata* data pwrite; // pointer used for writing FLASH
 char code* data pread; // pointer used for reading FLASH
 unsigned int len; // holds the HEX record length field
 char record_type; // holds the HEX record type field
 unsigned int offset; // holds the HEX record offset field
 // this is the starting address of
 // the code image contained in the
 // record

 char checksum; // holds the HEX record checksum field
 char flash_checksum; // holds the checksum calculated after
 // the FLASH has been programmed
 bit EA_state; // temporary holder used to restore
 // interrupts to their previous state

 char c; // temporary char
 int i; // temporary int

 // make sure the flash page has been erased
 if(!code_erased){
 printf(“\n*** At least one FLASH page must be erased prior to “);
 printf(“this operation.\n”);
 return;
 }

 // wait for the user to send HEX file

 do{

 while(c = _getkey() != ‘:’);

 // get the length
 len = hex2char();

 // get the offset
 offset = hex2char();
 offset <<= 8;
 offset |= hex2char();

AN112

32 Rev. 2.1

 // get the record type
 record_type = hex2char();
 if(record_type != 0 && record_type != 1){
 printf(“\n*** Cannot decode HEX file.\n”);
 return;
 }

 EA_state = EA; // save the interrupt enable bit state

 EA = 0; // disable interrupts (precautionary)
 PSCTL = 1; // MOVX writes to FLASH

 pwrite = (char xdata*) offset; // initialize the write pointer

 code_erased = FALSE; // clear the code_erased flag

 // write the record into flash
 for(i = 0; i < len; i++){
 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2
 *pwrite = hex2char(); // write one byte to FLASH
 pwrite++; // increment FLASH write pointer
 }

 PSCTL = 0; // MOVX writes target XRAM
 EA = EA_state; // restore interrupts to previous state

 // verify the checksum
 pread = (char code*) offset; // initialize the read pointer
 checksum = hex2char(); // get the HEX record checksum field
 flash_checksum = 0; // set the flash_checksum to zero

 // add the data field stored in FLASH to the checksum
 for(i = 0; i < len; i++)
 {
 flash_checksum += *pread++;
 }

 // add the remaining fields
 flash_checksum += len;
 flash_checksum += (char) (offset >> 8);
 flash_checksum += (char) (offset & 0x00FF);
 flash_checksum += record_type;
 flash_checksum += checksum;

 // verify the checksum (the flash_checksum should equal zero)
 if(flash_checksum != 0){
 printf(“*** Checksum failed, try again.”);
 return;
 }

 } while(record_type != 1);

 f_valid = TRUE; // flag that f() is valid

AN112

Rev. 2.1 33

 _getkey(); // clear carriage return
 // from the input stream

 printf(“\nReceived OK.\n”);
}

//---
// Initialization Subroutines
//---

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use the internal 24.5MHz
// oscillator as its clock source. Enables missing clock detector reset. Also
// configures and enables the external crystal oscillator.
//
void SYSCLK_Init (void)
{

 OSCICN |= 0x03; // configure internal oscillator for
 // its maximum frequency
 RSTSRC = 0x06; // enable missing clock detector and
 // VDD monitor

}

//---
// PORT_Init
//---
//
// Configure the Crossbar and GPIO ports.
// P0.0 -
// P0.1 -
// P0.2 - LED (push-pull)
// P0.3 - SW2
// P0.4 - UART TX (push-pull)
// P0.5 - UART RX
// P0.6 -
// P0.7 - C2D
//
void PORT_Init (void)
{
 XBR0 = 0x04; // P0.2 skipped by the crossbar
 XBR1 = 0x03; // UART0 TX and RX pins enabled
 XBR2 = 0x40; // Enable crossbar and weak pull-ups
 P0MDIN &= ~0x00; // no analog inputs
 P0MDOUT |= 0x14; // enable TX0 and P0.2 as
 // push-pull output
}

//---
// UART0_Init
//---
//
// Configure the UART0 using Timer1, for <BAUDRATE> and 8-N-1.
//
void UART0_Init (void)

AN112

34 Rev. 2.1

{
 SCON0 = 0x10; // SCON0: 8-bit variable bit rate
 // level of STOP bit is ignored
 // RX enabled
 // ninth bits are zeros
 // clear RI0 and TI0 bits
 if (SYSCLK/BAUDRATE/2/256 < 1) {
 TH1 = -(SYSCLK/BAUDRATE/2);
 CKCON |= 0x10; // T1M = 1; SCA1:0 = xx
 } else if (SYSCLK/BAUDRATE/2/256 < 4) {
 TH1 = -(SYSCLK/BAUDRATE/2/4);
 CKCON |= 0x01; // T1M = 0; SCA1:0 = 01
 CKCON &= ~0x12;
 } else if (SYSCLK/BAUDRATE/2/256 < 12) {
 TH1 = -(SYSCLK/BAUDRATE/2/12);
 CKCON &= ~0x13; // T1M = 0; SCA1:0 = 00
 } else {
 TH1 = -(SYSCLK/BAUDRATE/2/48);
 CKCON |= 0x02; // T1M = 0; SCA1:0 = 10
 CKCON &= ~0x11;
 }

 TL1 = 0xff; // set Timer1 to overflow immediately
 TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
 TMOD |= 0x20;
 TR1 = 1; // START Timer1
 TI0 = 1; // Indicate TX0 ready
}

AN112

Rev. 2.1 35

//---
// blink_fast_F30x.c
//---
// Copyright 2002 Cygnal Integrated Products, Inc.
//
// AUTH: FB
// DATE: 28 JUN 02
//
// This program shows an example function that can be used with the
// ‘selective code loader example’ for the ‘F30x family.
//
//
//
// Target: C8051F30x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51
//

//---
// Includes
//---

#include <c8051f300.h> // SFR declarations

//---
// 16-bit SFR Definitions for ‘F30x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR2RL = 0xca; // Timer2 reload value
sfr16 TMR2 = 0xcc; // Timer2 counter
sfr16 PCA0CP1 = 0xe9; // PCA0 Module 1 Capture/Compare
sfr16 PCA0CP2 = 0xeb; // PCA0 Module 2 Capture/Compare
sfr16 PCA0 = 0xf9; // PCA0 counter
sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 Capture/Compare

//---
// Global CONSTANTS
//---
#define TRUE 1
#define FALSE 0

#define SYSCLK 24500000 // SYSCLK frequency in Hz

sbit LED = P0^2; // LED=’1’ means ON
sbit SW2 = P0^3; // SW2=’0’ means switch pressed
sbit TX0 = P0^4; // UART0 TX pin
sbit RX0 = P0^5; // UART0 RX pin

//---
// Function PROTOTYPES
//---

// Subroutines that will be loaded at address 0x1000
void blink_fast();
void wait_ms(int ms);
void Timer2_Init (int counts);

//---
// blink_fast
//---

AN112

36 Rev. 2.1

//
// This routine uses blinks the LED twice every second for five seconds.
//
void blink_fast(void)
{
 static int i;

 Timer2_Init(SYSCLK/12/1000); // Initialize timer 2 to overflow every
 // millisecond
 for(i = 0; i < 10; i++){
 LED = 0; // turn LED off
 wait_ms(150); // execute delay loop
 LED = 1; // turn LED on
 wait_ms(150); // execute delay loop
 }
}

//---
// wait_ms
//---
//
// This routine uses Timer 2 to insert a delay of <ms> milliseconds.
// Timer 2 overflows once every millisecond
//
void wait_ms(int ms)
{
 TF2H = 0; // clear Timer 2 overflow flag
 TR2 = 1; // turn Timer 2 on

 while (ms != 0){
 if(TF2H){
 TF2H = 0;
 ms--;
 }
 }

 TR2 = 0; // turn Timer 2 Off

}

//---
// Timer2_Init
//---
//
// This routine initializes Timer2 to 16 bit auto reload mode
//
void Timer2_Init (int counts)
{

 TMR2CN = 0x00; // Clear TF2H, TF2L; disable TF2L
 // interrupts; T2 in 16-bit mode;
 // Timer2 stopped; Timer2 prescaler
 // is set to EXTCLK/12
 CKCON &= ~0x60; // Timer 2 uses T2 prescaler as clock
 // source
 TMR2RL = -(counts); // set the reload value
 TMR2 = TMR2RL; // init Timer2
 ET2 = 0; // disable Timer2 interrupts

}

AN112

Rev. 2.1 37

//---
// blink_slow_F30x.c
//---
// Copyright 2002 Cygnal Integrated Products, Inc.
//
// AUTH: FB
// DATE: 28 JUN 02
//
// This program shows an example function that can be used with the
// ‘selective code loader example’ for the ‘F30x family.
//
//
//
// Target: C8051F30x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51
//

//---
// Includes
//---

#include <c8051f300.h> // SFR declarations

//---
// 16-bit SFR Definitions for ‘F30x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR2RL = 0xca; // Timer2 reload value
sfr16 TMR2 = 0xcc; // Timer2 counter
sfr16 PCA0CP1 = 0xe9; // PCA0 Module 1 Capture/Compare
sfr16 PCA0CP2 = 0xeb; // PCA0 Module 2 Capture/Compare
sfr16 PCA0 = 0xf9; // PCA0 counter
sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 Capture/Compare

//---
// Global CONSTANTS
//---
#define TRUE 1
#define FALSE 0

#define SYSCLK 24500000 // SYSCLK frequency in Hz

sbit LED = P0^2; // LED=’1’ means ON
sbit SW2 = P0^3; // SW2=’0’ means switch pressed
sbit TX0 = P0^4; // UART0 TX pin
sbit RX0 = P0^5; // UART0 RX pin

//---
// Function PROTOTYPES
//---

// Subroutines that will be loaded at address 0x1000
void blink_slow();
void wait_ms(int ms);
void Timer2_Init (int counts);

AN112

38 Rev. 2.1

//---
// blink_slow
//---
//
// This routine uses blinks the LED once every second for five seconds.
//
void blink_slow(void)
{
 static int i;

 Timer2_Init(SYSCLK/12/1000); // Initialize timer 2 to overflow every
 // millisecond
 for(i = 0; i < 10; i++){
 LED = 0; // turn LED off
 wait_ms(500); // execute delay loop
 LED = 1; // turn LED on
 wait_ms(500); // execute delay loop
 }

}

//---
// wait_ms
//---
//
// This routine uses Timer 2 to insert a delay of <ms> milliseconds.
// Timer 2 overflows once every millisecond
//
void wait_ms(int ms)
{
 TF2H = 0; // clear Timer 2 overflow flag
 TR2 = 1; // turn Timer 2 on

 while (ms != 0){
 if(TF2H){
 TF2H = 0;
 ms--;
 }
 }

 TR2 = 0; // turn Timer 2 Off

}

//---
// Timer2_Init
//---
//
// This routine initializes Timer2 to 16 bit auto reload mode
//
void Timer2_Init (int counts)
{

 TMR2CN = 0x00; // Clear TF2H, TF2L; disable TF2L
 // interrupts; T2 in 16-bit mode;
 // Timer2 stopped; Timer2 prescaler
 // is set to EXTCLK/12
 CKCON &= ~0x60; // Timer 2 uses T2 prescaler as clock
 // source

AN112

Rev. 2.1 39

 TMR2RL = -(counts); // set the reload value
 TMR2 = TMR2RL; // init Timer2
 ET2 = 0; // disable Timer2 interrupts

}

AN112

40 Rev. 2.1

Example Firmware Updater
//---
// updater_F30x.c
//---
// Copyright 2002 Cygnal Integrated Products, Inc.
//
// AUTH: FB
// DATE: 28 JUN 02
//
// This program shows an example Firmware Updater using the ‘F300. It resides
// in FLASH at addresses above 0x1000 and is accessed through a function
// pointer casted as (void code*) 0x1000.
//
// Once the firmware update has taken place, the a software reset is issued
// and the updated firmware takes control of the system.
//
// Control Function:
//
// The system is controlled via the hardware UART, operating at a baud rate
// determined by the constant <BAUDRATE>, using Timer1 overflows as the baud
// rate source.
//
// Note: Because this program writes to FLASH, the VDD monitor is enabled in
// in the initialization routine.
//
//
// Target: C8051F30x
// Tool chain: KEIL C51 6.03 / KEIL EVAL C51
//

//---
// Includes
//---

#include <c8051f300.h> // SFR declarations
#include <stdio.h> // printf() and getchar()
#include <stdlib.h>
#include <ctype.h> // tolower() and toint()

//---
// 16-bit SFR Definitions for ‘F30x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR2RL = 0xca; // Timer2 reload value
sfr16 TMR2 = 0xcc; // Timer2 counter
sfr16 PCA0CP1 = 0xe9; // PCA0 Module 1 Capture/Compare
sfr16 PCA0CP2 = 0xeb; // PCA0 Module 2 Capture/Compare
sfr16 PCA0 = 0xf9; // PCA0 counter
sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 Capture/Compare

//---
// Global CONSTANTS
//---
#define TRUE 1
#define FALSE 0

#define SYSCLK 24500000 // SYSCLK frequency in Hz

AN112

Rev. 2.1 41

#define BAUDRATE 115200 // Baud rate of UART in bps

sbit LED = P0^2; // LED=’1’ means ON
sbit SW2 = P0^3; // SW2=’0’ means switch pressed
sbit TX0 = P0^4; // UART0 TX pin
sbit RX0 = P0^5; // UART0 RX pin

//---
// Function PROTOTYPES
//---

void main (void);

// Support Subroutines
void print_menu(void);
void erase_flash(void);
void receive_code(void);
unsigned char hex2char();

// Initialization Subroutines
void SYSCLK_Init (void);
void PORT_Init (void);
void UART0_Init (void);

//---
// Global VARIABLES
//---

void (*f)(); // function pointer declaration

bit code_erased = FALSE; // flag used to indicate that the FLASH
 // erase operation is complete
bit f_valid = FALSE; // flag to indicate that the FLASH
 // programming operation is complete

//---
// MAIN Routine
//---

void main (void)
{

 char input;

 EA = 0; // Disable interrupts (precautionary)

 PCA0MD &= ~0x40; // WDTE = 0 (clear watchdog timer
 // enable)

 PORT_Init (); // initialize crossbar and GPIO
 SYSCLK_Init (); // initialize oscillator
 UART0_Init (); // initialize UART0

 print_menu(); // print the command menu

 while (1){

AN112

42 Rev. 2.1

 printf(“Enter a command > “);
 input = getchar();

 switch (input){

 case ‘1’: erase_flash();
 printf(“\n*** Flash pages erased\n”);
 receive_code();
 printf(“\n** Firmware Update Complete **\n”);

 case ‘2’: printf(“\n** RESETTING **\n\n”);
 RSTSRC = 0x10; // reset the device

 case ‘?’: print_menu();
 break;

 default: print_menu();
 printf(“\n*** Unknown Command\n”);
 }

 } // end while

} // end main

//---
// Support Subroutines
//---

//---
// print_menu
//---
//
// This routine prints the command menu to the UART.
//
void print_menu(void)
{

 printf(“\n\nC8051F30x Firmware Updater\n”);
 printf(“---------------------------------\n”);
 printf(“1. Erase FLASH and Update Firmware\n”);
 printf(“2. Cancel Firmware Update\n”);
 printf(“?. Print Command List\n”);

}

//---
// hex2char
//---
//
// This routine converts a two byte ascii representation of a char to an
// 8-bit variable;
//
unsigned char hex2char()
{

 unsigned char retval;
 char byteH, byteL;

AN112

Rev. 2.1 43

 // get a two-byte ASCII representation of a char from the UART
 byteH = _getkey();
 byteL = _getkey();

 // convert to a single 8 bit result
 retval = (char) toint(byteH) * 16;
 retval += (char) toint(byteL);
 return retval;
}

//---
// erase_flash
//---
//
// This routine erases the first 8 pages of FLASH (0x0000 to 0x0FFF).
//
void erase_flash(void)
{
 char xdata* data pagePointer = 0;// a pointer to xdata located in data space
 // points to the first FLASH page that
 // will be erased

 int i; // temporary int
 bit EA_state; // holds interrupt state

 printf(“\n*** Erasing flash from 0x0000 to 0x0FFF”);

 EA_state = EA; // save interrupt state

 PSCTL = 3; // MOVX erases FLASH

 // Erase the first 8 FLASH pages
 for (i = 0; i < 8; i++){
 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2

 *pagePointer = 0; // initiate the erase

 pagePointer += 512;
 }

 PSCTL = 0; // MOVX writes target XRAM

 EA = EA_state; // restore interrupt state

 f_valid = FALSE; // indicate that code is no longer valid
 code_erased = TRUE; // indicate that FLASH has been erased
}

//---
// receive_code
//---
// This routine receives the new firmware through the UART in HEX record
// format.
//
// Hex Record Format:
//
// +--------+--------+------+-------+--------+------(n bytes)------+----------+

AN112

44 Rev. 2.1

// | RECORD | RECLEN | OFFSET | RECORD | | CHECKSUM |
// | MARK | (n) | (2 BYTES) | TYPE | DATA | |
// | ‘:’ | | | | | |
// +--------+--------+------+-------+--------+------(n bytes)------+----------+
//
//
void receive_code(void)
{
 char xdata* data pwrite; // pointer used for writing FLASH
 char code* data pread; // pointer used for reading FLASH
 unsigned char len; // holds the HEX record length field
 unsigned char record_type; // holds the HEX record type field
 unsigned int offset; // holds the HEX record offset field
 // this is the starting address of
 // the code image contained in the
 // record

 char checksum; // holds the HEX record checksum field
 char flash_checksum; // holds the checksum calculated after
 // the FLASH has been programmed
 bit EA_state; // temporary holder used to restore
 // interrupts to their previous state

 char c; // temporary char
 int i; // temporary int

 // make sure FLASH has been erased
 if(!code_erased){
 printf(“\n*** At least one FLASH page must be erased prior to this operation\n”);
 return;
 } else {

 printf(“\nReady to receive...\n”);
 }

 // wait for the user send HEX file

 do{

 while(c = _getkey() != ‘:’); // ignore all characters until
 // reaching the record mark field

 // get the record length
 len = hex2char();

 // get the starting address (offset field in HEX record)
 offset = hex2char(); // get the MSB
 offset <<= 8;
 offset |= hex2char(); // get the LSB

 // get the record type
 record_type = hex2char();
 if(record_type != 0 && record_type != 1){
 printf(“\n*** Cannot decode HEX file.\n”);
 return;
 }

AN112

Rev. 2.1 45

 EA_state = EA; // save the interrupt enable bit state
 EA = 0; // disable interrupts (precautionary)

 PSCTL = 1; // MOVX writes to FLASH

 pwrite = (char xdata*) offset; // initialize the write pointer

 code_erased = FALSE; // clear the code_erased flag

 // write the record into FLASH
 for(i = 0; i < len; i++){

 // check for valid pointer
 if(pwrite < 0x1000){
 FLKEY = 0xA5; // FLASH lock and key sequence 1
 FLKEY = 0xF1; // FLASH lock and key sequence 2
 *pwrite = hex2char(); // write one byte to FLASH
 pwrite++; // increment FLASH write pointer
 } else {
 printf(“\n\nExceeded Code Space.\n”); // print error message
 }
 }

 PSCTL = 0; // MOVX writes target XRAM
 EA = EA_state; // restore interrupts to previous state

 // verify the checksum
 pread = (char code*) offset; // initialize the read pointer
 checksum = hex2char(); // get the HEX record checksum field
 flash_checksum = 0; // set the flash_checksum to zero

 // add the data field stored in FLASH to the checksum
 for(i = 0; i < len; i++)
 {
 flash_checksum += *pread++;
 }

 // add the remaining fields
 flash_checksum += len;
 flash_checksum += (char) (offset >> 8);
 flash_checksum += (char) (offset & 0x00FF);
 flash_checksum += record_type;
 flash_checksum += checksum;

 // verify the checksum (the flash_checksum should equal zero)
 if(flash_checksum != 0){
 printf(“*** checksum failed, try again”);
 return;
 }

 } while(record_type != 1);

 f_valid = TRUE; // indicate that download is valid

}

AN112

46 Rev. 2.1

//---
// Initialization Subroutines
//---

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use the internal 24.5MHz
// oscillator as its clock source. Enables missing clock detector reset and
// VDD monitor.
//
void SYSCLK_Init (void)
{

 OSCICN |= 0x03; // configure internal oscillator for
 // its maximum frequency
 RSTSRC = 0x06; // enable missing clock detector and
 // VDD monitor

}

//---
// PORT_Init
//---
//
// Configure the Crossbar and GPIO ports.
// P0.0 -
// P0.1 -
// P0.2 - LED (push-pull)
// P0.3 - SW2
// P0.4 - UART TX (push-pull)
// P0.5 - UART RX
// P0.6 -
// P0.7 - C2D
//
void PORT_Init (void)
{
 XBR0 = 0x04; // P0.2 skipped by the crossbar
 XBR1 = 0x03; // UART0 TX and RX pins enabled
 XBR2 = 0x40; // Enable crossbar and weak pull-ups
 P0MDIN &= ~0x00; // no analog inputs
 P0MDOUT |= 0x14; // enable TX0 and P0.2 as
 // push-pull output
}

//---
// UART0_Init
//---
//
// Configure the UART0 using Timer1, for <BAUDRATE> and 8-N-1.
//
void UART0_Init (void)
{
 SCON0 = 0x10; // SCON0: 8-bit variable bit rate
 // level of STOP bit is ignored
 // RX enabled
 // ninth bits are zeros
 // clear RI0 and TI0 bits

AN112

Rev. 2.1 47

 if (SYSCLK/BAUDRATE/2/256 < 1) {
 TH1 = -(SYSCLK/BAUDRATE/2);
 CKCON |= 0x10; // T1M = 1; SCA1:0 = xx
 } else if (SYSCLK/BAUDRATE/2/256 < 4) {
 TH1 = -(SYSCLK/BAUDRATE/2/4);
 CKCON |= 0x01; // T1M = 0; SCA1:0 = 01
 CKCON &= ~0x12;
 } else if (SYSCLK/BAUDRATE/2/256 < 12) {
 TH1 = -(SYSCLK/BAUDRATE/2/12);
 CKCON &= ~0x13; // T1M = 0; SCA1:0 = 00
 } else {
 TH1 = -(SYSCLK/BAUDRATE/2/48);
 CKCON |= 0x02; // T1M = 0; SCA1:0 = 10
 CKCON &= ~0x11;
 }

 TL1 = 0xff; // set Timer1 to overflow immediately
 TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
 TMOD |= 0x20;
 TR1 = 1; // START Timer1
 TI0 = 1; // Indicate TX0 ready
}

AN112

48 Rev. 2.1

//---
// blink_F30x.c
//---
// Copyright 2002 Cygnal Integrated Products, Inc.
//
// AUTH: BW, FB
// DATE: 28 JUN 02
//
// This program flashes the green LED on the C8051F30x target board about
// five times a second using the interrupt handler for Timer2.
//
// Target: C8051F30x
//
// Tool chain: KEIL Eval ‘c’
//

//---
// Includes
//---
#include <c8051f300.h> // SFR declarations

//---
// 16-bit SFR Definitions for ‘F30x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR2RL = 0xca; // Timer2 reload value
sfr16 TMR2 = 0xcc; // Timer2 counter
sfr16 PCA0CP1 = 0xe9; // PCA0 Module 1 Capture/Compare
sfr16 PCA0CP2 = 0xeb; // PCA0 Module 2 Capture/Compare
sfr16 PCA0 = 0xf9; // PCA0 counter
sfr16 PCA0CP0 = 0xfb; // PCA0 Module 0 Capture/Compare

//---
// Global CONSTANTS
//---

#define SYSCLK 24500000 / 8 // SYSCLK frequency in Hz

sbit LED = P0^2; // LED=’1’ means ON
sbit SW2 = P0^3; // SW2=’0’ means switch pressed

//---
// Function PROTOTYPES
//---
void SYSCLK_Init (void);
void PORT_Init (void);
void Timer2_Init (int counts);
void Timer2_ISR (void);

//---
// MAIN Routine
//---
void main (void) {

 void (*update_firmware)(); // function pointer to firmware
 // updating code that is located
 // at 0x1000;

AN112

Rev. 2.1 49

 // disable watchdog timer
 PCA0MD &= ~0x40; // WDTE = 0 (clear watchdog timer
 // enable)

 SYSCLK_Init (); // Initialize system clock to
 // 24.5MHz internal oscillator

 PORT_Init (); // Initialize crossbar and GPIO
 Timer2_Init (SYSCLK / 12 / 10); // Init Timer2 to generate
 // interrupts at a 10Hz rate.

 EA = 1; // enable global interrupts

 update_firmware = (void code*) 0x1000; // assign the function pointer

 while (1) { // spin forever

 if (!SW2){
 update_firmware();

 }
 }
}

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use the internal 24.5MHz / 8
// oscillator as its clock source. Also enables missing clock detector reset
// and the VDD Monitor.
//
// NOTE: This program must not disable the VDD monitor since it is enabled by
// Firmware Updater. If this program disables the VDD monitor, there is
// potential for going into an infinite loop turning the VDD monitor on
// and off.
//
void SYSCLK_Init (void)
{
 OSCICN = 0x04; // configure internal oscillator for
 // its lowest frequency
 RSTSRC = 0x06; // enable missing clock detector
 // and VDD Monitor.
}

//---
// PORT_Init
//---
//
// Configure the Crossbar and GPIO ports.
// P0.0 -
// P0.1 -
// P0.2 - LED (push-pull)
// P0.3 - SW2
// P0.4 -
// P0.5 -
// P0.6 -
// P0.7 - C2D
//

AN112

50 Rev. 2.1

void PORT_Init (void)
{
 XBR0 = 0x04; // skip P0.2 (LED) in crossbar pin
 // assignments
 XBR1 = 0x00; // no digital peripherals selected
 XBR2 = 0x40; // Enable crossbar and weak pull-ups
 P0MDOUT |= 0x04; // enable LED as a push-pull output
}

//---
// Timer2_Init
//---
//
// Configure Timer2 to 16-bit auto-reload and generate an interrupt at
// interval specified by <counts> using SYSCLK/12 as its time base.
//
void Timer2_Init (int counts)
{
 TMR2CN = 0x00; // Stop Timer2; Clear TF2;
 // use SYSCLK/12 as timebase
 CKCON &= ~0x60; // Timer2 clocked based on T2XCLK;

 TMR2RL = -counts; // Init reload values
 TMR2 = 0xffff; // set to reload immediately
 ET2 = 1; // enable Timer2 interrupts
 TR2 = 1; // start Timer2
}

//---
// Interrupt Service Routines
//---

//---
// Timer2_ISR
//---
// This routine changes the state of the LED whenever Timer2 overflows.
//
void Timer2_ISR (void) interrupt 5
{
 TF2H = 0; // clear Timer2 interrupt flag
 LED = ~LED; // change state of LED
}

AN112

Rev. 2.1 51

Notes:

AN112

52 Rev. 2.1

Contact Information
Silicon Laboratories Inc.
4635 Boston Lane
Austin, TX 78735
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: productinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

	Relevant Devices
	Introduction
	Key Points
	In-Application Code Loading Overview
	Configuring the Device for UART communication
	Erasing and Writing to FLASH
	Downloading the New Code
	Running the New Code

	Code Loader Considerations
	Method 1
	Method 2
	Method 3

	In-application Code Loading Examples
	Selective Code Loader
	Firmware Updating Example

	Step-by-Step to Building and Running the Example Selective Code Loader
	Step-by-Step to Building and Running the Example Firmware Updater
	Example Software for the C8051F02x Family
	Selective Code Loader//-- -----------------
	Example Firmware Updater

	Example Software For the C8051F30x Family
	Selective Code Loader
	Example Firmware Updater

	Notes:

