&~

SILICON LABODORATORIES

AN110

16-BIT PWM USING AN ON-

CHIP TIMER

Relevant Devices

This application note applies to the following
devices:

C8051F000, C8051F001, C8051F002,
C8051F005, C8051F006, C8051F007,
C8051F010,C8051F011, C8051F012, C8051F015,
C8051F016, C8051F017, C8051F220,
C8051F221, C8051F226, C8051F230,
C8051F231, and C8051F236.

Note: the C8051F0xx devices have an on-chip
PCA which may be more suitable for PWM gener-
ation. See ANO0O7 for more information.

Introduction

This document describes how to implement a 16-
bit pulse width modulator (PWM) digital-to-analog
converter (DAC). The PWM consists of two parts:

1. A timer to produce a PWM waveform of a
given period and specified duty cycle.

2. A low-pass filter to convert the PWM wave to
an analog voltage level output.

A PWM coupled with a low-pass filter can be used
as a simple, low cost digital to analog converter
(DAC). This output can be used to drive to a volt-
age controlled device, or used in a feedback control
system where an analog-to-digital convertor
(ADC) is used to sample a controlled parameter.
PWM’s are often used in motor control applica-
tions.

Implementation software and hardware is dis-
cussed in this application note. An example of a
PWM using an on-chip timer and a low-pass filter
on the C8051F226-TB target board is provided.

The example also configures the target board to
sample the PWM output using the on-chip ADC.
This DAC implementation may be used to evaluate
the C8051F220/1/6’s ADC.

Key Points

* The C8051F2xx family SoC’s feature three on-
board 16-bit timers that can be used for PWM
generation. This example uses Timer O to pro-
duce the PWM wave which is output to a gen-
eral-purpose port pin.

* The C8051F2xx family of SoC’s have an 8-bit
ADC that is used in the provided example to
sample the output of the PWM DAC.

* The C8051F226-TB target board features a
low-pass filter that can readily be used for the
PWM DAC and configured to be sampled by
the on-chip ADC without soldering or adding
extra wiring. Target board use is assumed in the
provided example.

Generating the PWM Input
Waveform

Pulse-Width Modulation (PWM) is a method of
encoding data by varying the width of a pulse or
changing the duty cycle of a periodic waveform.
Adjusting the duty cycle of this waveform, we con-
trol the voltage output from the low-pass filter. This
can be thought of as a type of digital-to-analog con-
vertor (DAC). In this example, we use Timer 0 to
time the toggling of a general purpose port pin to
create the PWM waveform.

Configuring Timer 0

In order to create a PWM wave with a user speci-
fied duty cycle, we use Timer 0 in 16-bit counter/
timer mode. To do so, we configure the Timer

Rev. 1.2 12/03

Copyright © 2003 by Silicon Laboratories

AN110-DS12

AN110

Mode register (TMOD), and the Clock Control reg-
ister (CKCON), to set Timer 0 to use the system
clock (undivided) as follows:

;Set TIMERO in 16-bit counter ;mode

orl TMOD, #01h

;Set TIMERO to use system clk/1

orl CKCON, #08h

Timer 0 is used to set the amount of time the PWM
wave will be high during one cycle. When the timer
overflows, the program vectors to an interrupt ser-
vice routine (ISR) to take a port pin high or low to
produce the PWM wave. We enable the Timer 0
interrupts by setting the ETO bit to 1 as follows:

;Enable Timer 0 interrupts

setb ETO

Additionally, interrupts must be enabled globally:

;enable interrupts globally

setb EA

The last step in configuring Timer O is to start the
timer by setting the TRO bit:

;start TimerO

setb TRO

A variable called pulse width defines the duty
cycle of the PWM wave. This determines the
amount of time the waveform is high during one
period of the wave, and is loaded into Timer 0. The
duty cycle can be set with 16-bit resolution. How-
ever, due to the number of cycles it takes to execute
the Timer O interrupt service routine (to be dis-
cussed later), the smallest pulse width that can be
assigned is 19 clock cycles. Likewise, the interrupt

service routine takes 14 cycles to take the PWM
wave from high to low. Thus, the maximum value
that can be used is 65,522. The variable
pulse width is defined as follows:

;define variable for user to
;set duty cycle of PWM wave

;input to the low-pass filter
pulse widthEQU 35000d

Note the example code sets pulse width equal to
35,000. As an example, 35,000 will create a duty
cycle of 53.4%. Duty cycle is calculated as follows:

pulsewidth

65536 < 100

dutycycle%=

Equation 1. Calculating Duty Cycle

The duty cycle also describes the average time that
the waveform is high. This time will be converted
into a voltage in the low-pass filter. The average
output voltage for a given pulse width value is cal-
culated as follows:

VDD x pulsewidth

Voutput = 65.536

Equation 2. Calculating Average
Output Voltage

Hardware Configuration

Port pin P2.7 will be used for the PWM waveform
output to the PWM filter. We configure P2.7 as
‘push-pull’ by setting the Port 2 Configuration
Register (PRT2CF):

;Set p2.7 as push-pull

orl PRT2CF, #80h

2 Rev. 1.2

SILICON LABORATORIES

AN110

Additionally, if using Silicon Lab’s C8051F226-TB
target board, a shorting jumper must be placed on
the “PWMIN” jumper in order to connect port pin
P2.7 to the low-pass filter.

Waiting For Interrupts

The Timer O ISR (Timer 0 overflow interrupt ser-
vice routine) is used to generate the PWM wave by
toggling the port pin P2.7. After programming the
various peripherals, one may use a simple jump to
the current address instruction in a loop to wait for
interrupts, which is most common. However, the
ISR is being used to generate a PWM waveform,
and there will be a small amount undesirable of
timing jitter caused by the small variation in delay
due to interrupt latency. This variation occurs
because the C8051 completes the current instruc-
tion before branching to the interrupt service vec-
tor. Thus, the time to branch to the ISR will vary
depending on where in the 2-cycle jump instruction
the MCU is when the interrupt condition occurs. To
avoid this, we make use of the C8051 MCU IDLE
Mode. The MCU will automatically “wake up”
from IDLE Mode when an enabled interrupt
occurs. This removes variations in interrupt latency
because the core is always in the same state when
an interrupt occurs. Note that all peripherals (such
as timers) continue to operate when in IDLE Mode.

Setting the Idle Mode Select bit in the Power Con-
trol Register (PCON) places the C8051 in IDLE
Mode. A jump statement is used to send the pro-
gram counter back to the instruction to set the
IDLE mode upon a return from an interrupt:

;Wait for interrupts in IDLE

;mode

IDLE:

Upon a return from an ISR (refi instruction), the
MCU will jump back to the sjmp instruction. Here,
the program will loop back to set the IDLE Mode
bit and wait for the next interrupt condition to
occur.

Generating the PWM Wave in
Software with Timer 0 ISR

The PWM wave is produced by toggling a port pin
in an interrupt service routine (ISR). This ISR is a
state machine with two states. In one state, the out-
put pin is high (the high part of the PWM wave-
form). In this state, Timer O is loaded with the
value pulse width and the MCU exits the ISR.
Next, the port pin is taken ‘low’ by clearing the bit
P2.7. In the low state, the value -pulse width is
loaded. This sets the low time of the PWM wave-
form. At the next overflow, bit P2.7 is tested and
then set to go to the high part of the waveform for
the next period. In this way, the duty cycle can be
varied but the period of the PWM wave will be the
same.

The Timer O ISR is written as follows:

TIMERO ISR:

;Test to see if low/high in ;wave-

form
Jbc P2.7,L0
setb P2.7

; Set the low time of the
; PWM waveform

; Stop Timer 0 prior to load

clr TRO
orl1PCON, #01h
mov THO, #HIGH (-
simpIDLE
pulse width)
®
@ Rev. 1.2 3

SILICON LABORATORIES

AN110

mov TLO, #LOW (-pulse_width)

; Restart Timer O
setb TRO

;Go to the reti statement

jmp RETURN

;Set low time of PWM Wave
LO:

; Stop Timer O

clr TRO
mov THO, #HIGH (pulse width)
mov TLO, #LOW (pulse width)

; Restart Timer O

setb TRO

;Return to MAIN and wait for
;interrupt

RETURN:reti

The Low-Pass Filter

The PWM wave generated with specified duty
cycle is input into a low-pass filter. This filter will
remove most of the high frequency components of
the PWM wave. In terms of the time domain, the
RC circuit will be charged to a voltage level pro-
portional to the percentage of the period that the
PWM wave input is positive (duty cycle). In short,
the low-pass filter converts the set high time of the
PWM wave to a voltage at the output of the system.
Because the system inputs a digital number and
outputs a desired voltage, the PWM and low-pass
filter may be considered a form of digital-to-analog
convertor (DAC).

In our example, we use a single-pole RC filter
installed on the C8051F226-TB target board by
placing a shorting jumper on the two pin jumper
labeled “PWMIN”. The filter used is shown in
Figure 1..

PWM Wave input
PWM Qutput

J_I_I_I_I_I_%A,F:? Mg

Figure 1. Low-Pass Filter

The filter in Figure 1 is a simple single pole filter.
Its transfer function is:

Vout(s)_ ¢ (w :_1_(:_:)
Vin(s) s+o,\ ¢ R

Equation 3. RC Filter Transfer Function

The RC filter must have a relatively low cutoff fre-
quency in order to remove enough high frequency
components of the wave to give a relatively con-
stant DC voltage level. However, if the RC con-
stant is too large, it will take too long for the RC
voltage to rise to a constant level (i.e., long settling
time.) This trade off can be easily tested in a com-
puter model or a lab to choose good resistor/capac-
itor values.

This filter has only a single pole and so does not fil-
ter out all of the high frequency components of the
rectangular PWM waveform. The capacitor is
undergoing alternating cycles of charge and dis-
charge, so the output will not be a constant DC
voltage. (See Figure 2 below.) The output voltage
will have some “ripple” (Vripple in Figure 2) asso-
ciated with the filter’s time constant t=RC. In the
frequency domain, the voltage ripple can be
thought of as the relationship between the filter’s

4 Rev. 1.2

SILICON LABORATORIES

AN110

cutoff frequency (w=1/RC) and the frequency of
the PWM wave.

When designing the low-pass filter, it may be
important to predict, or characterize the deviation
from the desired constant, DC voltage output. We
refer to this as voltage ripple (Vripple). In order to
characterize the Vripple, we use the formulae that
describes the voltage of a capacitor in an RC cir-
cuit.

Figure 2 illustrates the input PWM wave and the
resulting low-pass filter output. The output wave is
exaggerated to show the alternating charge and dis-
charge of the capacitor in the RC circuit. The ripple
for a 50% duty cycle (worst case ripple) for this fil-
ter is calculated by using the following expression
given R,C, and the period of the PWM wave, T:

Vripple = VDD|1 - ——

Equation 4. Voltage Ripple In Filter
Circuit

Equation 4 is derived using the formulae that
describe the voltage of a capacitor in an RC circuit
and by taking advantage of the symmetry of the
PWM waveform as a square wave (i.e., 50% duty
cycle). Note that the worst case ripple is deter-
mined by both the frequency (/~=1/7), and the RC
time constant (t). This makes sense, as the RC
combination determines the cutoff frequency of the
A

Voltage

r

Vripple

1

/\ PWM Waveform

low-pass filter, and with respect to the PWM wave
frequency this will characterize how much of the
high frequency components will be filtered from
the rectangular PWM waveform.

The RC circuit on the target board uses a 220 kQ
resistor and a 0.47 uF capacitor. These values were
chosen to show a relatively constant voltage level
with 8-bit ADC sampling and still have a reason-
able settling time.

If the ideal output is a constant DC voltage, then
the ripple in the output voltage can be considered
as the error. To calculate this error when designing
the filter (or to evaluate using a simple RC filter),
we must know the frequency of the PWM wave,
and the time constant (t). Using the RC values on
the target board, t=RC=0.1034 seconds. If the 16-
bit timer is running with system clock speed of
16 MHz, the PWM period in this example is:

2" 65,536

= 4ms
sysclk 16x10°

In this example, the predicted Vripple is calculated
to be 200 mV using Equation 4.

Sampling the PWM Output
With the On-Chip ADC

The C8051F226-TB target board includes a
C8051F226 SoC that features an 8-bit analog-to-

LPF Output

Time

Figure 2. PWM Waveform and Filter Output

SILICON LABORATORIES

Rev. 1.2 5

AN110

digital convertor (ADC). In this example, we wish
to sample the output voltage with the ADC. Alter-
natively, the output can also be measured using a
voltmeter at the test point labeled “PWM” on the
target board. To use the ADC we must configure a
port for ADC input and program the ADC to sam-
ple at a desired rate to measure the PWM output.

Configuring the ADC

The C8051F2xx family of devices can use any gen-
eral purpose port pin as an input for analog signals.
The AMXOSL register configures the ADC’s mul-
tiplexer (AMUX) to select which port pin will be
the input to the ADC. The target board used in this
example provides a circuit for easily placing the
PWM output to port pin P3.0, which is configured
as the ADC input as follows:

;enable AMUX and configure for

;P3.0 as an input port pin

mov AMXO0SL, #38h

The ADCOCF configuration register sets the SAR
conversion clock based on the system clock, and
sets the programmable gain amplifier (PGA) gain.
The maximum frequency the SAR clock should be
set to is 2 MHz. The system clock is operating at
16 MHz, thus, the SAR conversion clock is set to 1/
8 of the system clock frequency (i.e., SAR conver-
sion clock = sysclk/8). We also program the PGA
for a gain of one as follows:

;set conv clk at one sys clk and

;PGA at gain =1

mov ADCOCF, #60h

ADCOCN is the ADC control register. This register
is set to configure the ADC to start conversions
upon a Timer 2 overflow and set the ADC to low
power tracking mode (tracking starts with Timer 2
overflow):

; SAR clock = SYSCLK/S8

; PGA gain =1
;Timer 2 overflow

mov ADCOCN, #01001100b

Finally, we enable the ADC. This bit is located in

the ADCOCN register which is bit addressable, and
so we use setb:

;enable ADC

setb ADCEN

In this example, we use the VDD voltage supply as
the ADC voltage reference. This is set in the
REFOCN register:

;set ADC to use VDD as Vref

mov REFOCN, #03h

Before we can use Timer 2 overflows to initiate
ADC conversions, we must configure and start
Timer 2. We place a value called ADCsampl in
Timer 2 to initialize its operation, and place the
same value into the Timer 2 Capture registers,
RCAP2H:RCAP2L, so that it will overflow at the
desired sampling frequency. Timer 2 has an auto-
reload feature making this convenient. A sampling
frequency that is independent of PWM wave fre-
quency is desirable because the output of the filter
will have a periodic variation in the DC level
because the filter is not ideal (charging and dis-
charging of our capacitor causing Vripple.) Sam-
pling at a different frequency will allow us to
observe the voltage ripple with the ADC. In this
example, we use a sampling frequency of 1.6 kHz.

Configuring Timer 2:
;initialize T2 for ADC sampling
;rate of 1.6 kHz with 16 MHz
;sysclk

mov TL2, #LOW (ADCsampl)

6 Rev. 1.2

SILICON LABORATORIES

AN110

mov TH2, #HIGH (ADCsampl)

;Load autoreload wvalues for

pling rate of ADC

; Sam—

mov RCAP2L, #HIGH (ADCsampl)

mov RCAP2H, #HIGH (ADCsampl)

;Set Timer 2 to use sysclk/1

orl CKCON, #20h

;start Timer 2

setb TR2

We must enable ADC end of conversion interrupts
so we can process ADC samples. To enable ADC
interrupts, we configure the Extended Interrupt
Enable 2 register (EIE2):

;enable ADC interrupts

orl EIE2,#00000010b

The ADC is now configured for sampling an input
from P3.0 using Timer 2 to set the sampling fre-
quency. All that is required now is to configure the
port pin for analog use described in the following
section, and connect it to the low-pass filter output.

Configuring the Port For the
ADC

The ADC has been configured to input analog from
P3.0. We now must configure the port for analog
input use.

The port pins default to digital input mode upon
reset. We place port pin P3.0 in analog input mode
by configuring the Port 3 Digital/Analog Port
Mode register, PAMODE:

;Set p3.0 in analog input mode

orl P3MODE, #01h

Note that we must physically connect the PWM
output to the ADC input. One could solder a wire
or design a PCB to provide this connection. The
target board in this example conveniently provides
headers that allow easy configuration using short-
ing jumpers to connect the provided PWM low-
pass filter to port pin P3.0. No soldering or external
wiring is necessary for this demonstration.

To configure external circuitry to input the PWM
output to port pin P3.0 (set for ADC input), place a
shorting jumper onto header J6, connecting
“PWM?” pin to “P3.0AIN”. P3.0AIN is connected
to the P3.0 port pin on the device.

The ADC Interrupt Service
Routine

The ADC interrupt service routine’s only function
in our example is to clear the ADC interrupt flag,
the ADCINT bit. This flag must be cleared in soft-
ware, and we do so as follows:

ADC_ISR:
clr ADCINT

reti ;return from interrupt

The ADC ISR is a convenient place to read the
sampled data from the ADC data registers and pro-
cess the data. This example leaves the data in the
word register (ADCOH) and will be overwritten
with each new sample. This data may be observed
by using Silicon Lab’s Integrated Development
Environment (IDE) tool to view the special func-
tion register, ADCOH which holds the ADC con-
version results.

Interpreting the Results

The PWM outputs a voltage level corresponding to
the pulse width variable which determines the

SILICON LABORATORIES

Rev. 1.2 7

AN110

PWM wave duty cycle. As aforementioned, the
voltage level output can be calculated using
Equation 2 on page 3.

VDD refers to the supply voltage of the device. The
number 65,536 is the highest number that can be
represented in 16 bits (as our PWM timer is a 16 bit
counter/timer). Voutput is the value one would
measure at the output of the PWM'’s low-pass filter.
Note that due to the number of cycles is takes to
execute the Timer 0 ISR, the minimum number that
can be effectively used as the pulse width is 19.
Thus, the lowest Voutput that can be generated is
0.028% of VDD. Any number used for pulse width
less than 19 will yield the same result as entering
19. Similarly, it takes 14 cycles for the Timer 0 ISR
to process the falling edge of the PWM waveform.
Thus, the maximum effective pulse width is
65,522 (65,536-14). Therefore, the resulting output
will be 99.98% of VDD. There are no other limita-
tions due to software inside of the 0.028%-99.98%
range other than the quantization imposed by 16-bit
timer resolution. If, for example, V'DD=3.0V, then
the voltage resolution will be 46 uV with code and
the range of the output voltage values is 0.87 mV to
2.9994 V.

In our example, we measure the PWM output with
the on-chip ADC. The result in the ADC register
(ADCOH) will be a number between 0 and 255 (8-
bit ADC). This example uses VDD as the reference
for the ADC conversion. The ADC output number
can be interpreted as follows:

ADCOH

Vresult = VDD x W

Note that Vresult may not match the ideal Voutput
calculated as output from the PWM. This is due to
the aforementioned Vripple (see section, “The
Low-Pass Filter”).

8 Rev. 1.2

SILICON LABORATORIES

AN110

Software

;Copyright 2003 Cygnal,

Inc.

;Implementing an 16-bit PWM on SA TB4PCB-002 target board and sampling to test

; the 8-bit analog-to-digital convertor

(ADC) .

The following program will

; configure on-chip peripherals and use a low-pass filter on the target board.

;FILE:
; DEVICE:
; TOOL:
; AUTHOR:

PWM 200.asm
C8051F2xx
Cygnal IDE,
LS

8051 assembler (Metalink)

;Reset Vector

00h
MAIN

;ISR Vectors

org
jmp

org

0Bh
TIMERO ISR

7Bh
ADC ISR

7 CONSTANTS
pulse width

ADCsampl

;-Start of MAIN code

org

MAIN:
mov
mov
mov
mov
orl

EQU 35000d

EQU 55536d

0B3h

OSCICN, #07h
WDTCN, #0DEh
WDTCN, #0ADh
P3MODE, #0FEh
PRT2CF, #80h

low-pass filter

orl

CKCON, #28h

Value to load into TIMERO which
adjusts

pulse width (duty cycle)

in PWM and thus sets the

DC bias level output from the

low-pass

filter. Set from 19-65522d.

32768 = VDD/2

Load into TIMER2 for ADC sampling rate

Configure internal OSC for 15MHz

Configure P3.0 for analog input
Configure P2.7 as push-pull input to ;

Set TIMERO and TIMER2 to use SYSCLK/1

Rev. 1.2

SILICON LABORATORIES

AN110

mov TMOD, #01h
mov RCAP2L, #LOW (ADCsampl)
mov RCAP2H, #HIGH (ADCsampl)
mov TL2, #LOW (ADCsampl)
mov TH2, #HIGH (ADCsampl)
mov AMXO0SL, #38h
mov ADCOCF, #60h
mov ADCOCN, #00001100b
orl REFOCN, #03h
orl EIE2,#00000010b
setb ETO
setb EA
setb TRO
setb TR2
setb ADCEN
IDLE:
orl PCON, #01h
sjmp IDLE
;m————— TIMERO ISR-=—====————— e
TIMERO_ISR:
jbe P2.7,L0
setb P2.7
clr TRO
mov TLO, #LOW (-pulse width)
mov THO, #HIGH (-pulse width)
setb TRO
Jmp RETURN
LO: clr TRO
mov TLO, #LOW (pulse width)
mov THO, #HIGH (pulse width)
setb TRO

RETURN:reti

P ADC TSR-———————————m—m—m o
ADC_ISR:

clr ADCINT

reti

Set TIMERO in 16-bit counter mode
Load autoreload values for sampling
rate of ADC

using TIMERZ2 overflow for ADC
conversion start

initialize T2 for ADC sampling
rate=1.6KHz

Set AMUX for P3.0 input/Enable AMUX
SAR clock = SYSCLK/8, and GAIN = 1
Set the ADC to start a conversion on
Timer2 overflow

Set to the internal reference
Enable ADC end of conv. interrupts
Enable timer0O interrupts

Global interrupt enable

Start TIMERO

Start TIMERZ2

Enable the ADC

BWCLD

Test to see if low/high in waveform
Transition low to high

Stop Timer 0 during reload

Set length of pulse for DC bias level

Restart Timer 0

Stop Timer 0 for reload
Set low time of duty cycle

Restart Timer 0

;End of program
;All your base are belong to us.

END

10

Rev. 1.2

SILICON LABORATORIES

AN110

Notes:

SILICON LABORATORIES

Rev. 1.2

11

AN110

Contact Information

Silicon Laboratories Inc.
4635 Boston Lane

Austin, TX 78735

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: productinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

12 Rev. 1.2

SILICON LABORATORIES

	Relevant Devices
	Introduction
	Key Points
	Generating the PWM Input Waveform
	Configuring Timer 0
	Hardware Configuration
	Waiting For Interrupts
	Generating the PWM Wave in Software with Timer 0 ISR

	The Low-Pass Filter
	Sampling the PWM Output With the On-Chip ADC
	Configuring the ADC
	Configuring the Port For the ADC
	The ADC Interrupt Service Routine

	Interpreting the Results
	Software
	Notes:

