
Rev. 0.3 6/10 Copyright © 2010 by Silicon Laboratories AN358

AN358

OPTIMIZING LOW POWER OPERATION OF THE ‘F9XX

1.  Introduction

The C8051F9xx family of low voltage/low power MCUs
is an excellent choice for battery powered embedded
systems. Below are some of the key features of this
product family:

 Low Active and Inactive Mode Current
160uA/MHz Active Mode Current @ 25 MHz 

(C8051F912/11/02/01 devices) or 170 uA/MHz @ 
25 MHz (C8051F930/31/20/21 devices) 

< 1 uA Sleep Mode Current

 Fast Wakeup Time and Fast Code Execution
400 ns Suspend Mode Wakeup (using the low power 

internal oscillator)
2 us Sleep Mode Wakeup (two-cell mode) or

10 us Sleep Mode Wakeup (one-cell mode)
Up to 25 MIPs Operation

 Fast ADC Acquisition Time
1.7 us VREF turn-on time, occurs while ADC is tracking
3.3 us back-to-back analog acquisition time

 Support for 1 and 2 Cell Battery Configurations
0.9–1.8 V supply voltage range allows the system to be 

powered from a single alkaline or silver oxide battery
1.8–3.6 V supply voltage range allows the system to be 

powered from a single lithium battery or two alkaline 
batteries placed in series

The ‘F9xx MCU family is very flexible and provides
application software control over many factors that
affect device power consumption. This application note
describes how to achieve maximum efficiency in each
power mode and how to optimize application code to
take advantage of the low power features on the ‘F9xx.

Included with this application note is example software
that can be used to place the ‘F9xx MCU into each of its
power modes for supply current measurement. Also
included is a low power software template that may be
used as a starting point for new code development. The
software can be found in the AN358SW.zip archive
which is distributed with this application note.

2.  Key Points

 Two regions of operation - ‘F9xx devices have two 
distinct regions of operation. The Flash one-shot 
circuit must be disabled (bypassed) for system 
clocks above 10 MHz and enabled for system clocks 
below 10 MHz in order to minimize supply current in 
the normal power mode. The optimum crossover 
frequency on ‘F912/11/02/01 devices is 14 MHz.

 Sleep mode supply current - The current in Sleep 
mode should always be < 1uA at room temperature 
even when the SmaRTClock is running. If the current 
meter is measuring a current higher than 1 uA, then 
the device is not configured properly, one or more 
GPIO pins are sourcing current to an external circuit, 
or a high speed signal is being applied to a port pin 
(e.g., an external CMOS clock).

 Software Considerations - The proper entry and 
exit procedures should be used when entering and 
exiting a low power mode. This ensures that the 
device will work in a reliable and predictable manner.

 SmaRTClock Alarm Events - The SmaRTClock 
ALRM flag is not persistent and is automatically 
cleared by hardware after 1 SmaRTClock cycle. The 
RTCAWK flag in the PMU0CF register is persistent 
and can be used to detect a SmaRTClock alarm 
event after the ALRM flag has been cleared. 

 Flash Memory Operations - If erasing Flash 
memory, be sure to set the SmaRTClock alarm 
interval to a value longer than 36 ms to ensure that 
you do not miss an alarm. When writing Flash 
memory, ensure that the alarm interval is longer than 
71 us.

 Measuring Current - The software supplied with 
this application note allows the digital supply current 
specification in the data sheet to be achieved. Any 
current flowing through the GPIO pins is in addition 
to the digital supply current required to operate the 
device. For example, driving a 24.5 MHz clock signal 
on a GPIO pin with a 3.3 V supply voltage can 
increase the supply current by 3 mA.

Relevant Devices
This application note applies to the following devices:
C8051F930, C8051F931, C8051F920, C8051F921, C8051F912, C8051F911, C8051F902, C8051F901, 
C8051F990, C8051F991, C8051F996, C8051F997, C8051F980, C8051F981, C8051F982, C8051F983, 
C8051F985, C8051F986, C8051F987, C8051F988, C8051F989



AN358

2 Rev. 0.3

3.  Power Modes Overview

The ‘F9xx family of MCUs supports five power modes:
Normal, Idle, Stop, Suspend and Sleep. A summary of
the power modes can be found in Table 1. Detailed
descriptions of each mode can be found in the Power
Management chapter of the device data sheet.

Normal and Idle modes are classified as Active Power
Modes because the system clock is active and power
consumption scales with the clock frequency. Typical
supply currents for each of the three different system
clock sources (24.5 MHz Precision Oscillator, 20 MHz
Low Power Oscillator, and 32.768 kHz SmaRTClock

Oscillator) are provided in Table 1. Stop, Suspend, and
Sleep modes are classified as Inactive Power Modes
because the system clock is stopped. 

Since the system clock in most low power applications
is not always present, the ‘F9xx MCUs have an ultra low
power SmaRTClock that can be used for timekeeping.
The SmaRTClock oscillator requires less than 1 uA of
supply current and can remain functional even when the
MCU goes into its lowest power Sleep mode.

Table 1. Power Mode Summary (Two-Cell Mode)

Power

Mode

Functionality Wake-Up Sources

and Wake-Up Time

Typical Supply 
Current

(C8051F930/31/20/21)

Typical Supply 
Current

(C8051F912/11/02/01)

Normal Device fully 
functional

N/A 4.1 mA @ 24.5 MHz
3.5 mA @ 20.0 MHz
90 uA @ 32.768 kHz
(+/– 10 uA for supply
voltage variations)

4.0 mA @ 24.5 MHz
3.4 mA @ 20.0 MHz
84 uA @ 32.768 kHz
(+/– 10 uA for supply
voltage variations)

Idle All clocks and 
peripherals fully 
functional.
Code execution 
paused.

Any Interrupt.
(2–3 system clocks)

2.5 mA @ 24.5 MHz 
1.9 mA @ 20.0 MHz
84 uA @ 32.768 kHz
(+/– 10 uA for supply
voltage variations)

2.1 mA @ 24.5 MHz 
1.6 mA @ 20.0 MHz
82 uA @ 32.768 kHz
(+/– 10 uA for supply
voltage variations)

Stop Legacy 8051 low 
power mode.

Any Reset. Greater than or equal to Suspend Mode

Suspend All clocks stopped. 
Code execution 
paused. 

smaRTClock, Port Match, 
Comparator0, RST pin.
(400 ns w/ Low Power Osc)

75 uA @ 1.8 V
90 uA @ 3.6 V
(Low Power Osc.)

75 uA @ 1.8 V
90 uA @ 3.6 V
(Low Power Osc.)

Sleep Internal regulator 
disabled, memory 
preserved. Code 
execution paused. 
Comparator0 only 
functional in two-
cell mode.

smaRTClock, Port Match, 
Comparator0, RST pin.
(2 us in two-cell mode)
(10 us in one-cell mode)

w/ SmaRTClock Crystal
0.600 uA

w/o SmaRTClock
0.050 uA

w/ SmaRTClock Crystal
0.600 uA
w/ SmaRTClock LFO
0.300 uA
w/o SmaRTClock
0.050 uA
w/o VBAT Supply 
Monitor
0.010 uA

BLUE refers to power modes only available on ‘F912 and ‘F902 devices.



AN358

Rev. 0.3 3

4.  Minimizing Active Mode Current

The active modes in a low power system typically
require the most supply current; however, they are the
modes in which the most critical system tasks are
completed. Minimizing Active mode time is one of the
best power saving strategies. This can be achieved by
operating at the fastest possible system clock
frequency. Since the MCU is most efficient at fast
system clocks, minimizing active mode time results in
greater overall benefit than reducing peak current.

Figure 1 shows the typical supply current in Normal
mode as a function of the system clock frequency.
There are two observations of note: 1) at 10 MHz, the
slope of the supply current vs. frequency curve
changes. This divides the curve into two piece wise
linear regions. 2) The absolute current per MHz
decreases as the system clock frequency increases. At
low frequencies, the CPU operates with a supply
current of 300 uA/MHz. At high frequencies, the supply
current drops to 170 uA/MHz. 

The Active supply current can be influenced by a
number of factors including supply voltage,
temperature, system clock frequency, power mode, and
by other factors under the control of application
software.

4.1.  Effect of Supply Voltage
In most CMOS circuits, supply voltage has the greatest
effect on supply current. However, since the ‘F9xx
MCUs have an on-chip LDO for regulating the voltage
supplied to the digital circuitry, supply voltage has a
minimal effect on supply current. In fact, the supply
current variation over the entire input voltage range
(1.8–3.6 V) is typically less than ±10 uA from the
midpoint voltage of 2.7 V.

4.2.  Effect of Temperature
Changes in temperature can affect the active supply
current. As temperatures rise, the supply current will
also increase and as temperatures drop, the supply
current decreases. The supply current variation over the
entire operating temperature range (–40 to +85 °C) is
typically less than ±5% from the supply current
measured at 25 °C.

4.3.  Effect of System Clock Frequency
The system clock frequency has the most significant
effect on the active supply current. As the clock
frequency increases, supply current and power
efficiency both increase, as shown in Figure 1 and
Figure 3. When executing a task that requires a fixed
number of instructions, the system clock should be set
as fast as possible. The limiting factor in increasing the
system clock should be the ability of the power supply to
handle the increased peak currents. 

For tasks that require a fixed amount of time to
complete (e.g., waiting for a UART byte to be clocked
in), increasing the system clock actually decreases
power efficiency because the peak current increases
while no additional work is being completed. In these
situations, the system clock frequency should be
minimized and the CPU should be placed in Idle mode.

4.4.  Effect of Power Mode
The ‘F9xx MCUs have two Active Power Modes in
which the system clock is running. Normal mode power
consumption is shown in Figure 1 and Figure 3 and Idle
mode power consumption is shown in Figure 2 and
Figure 4. As a rule of thumb, placing the CPU in Idle
mode will typically reduce the supply current by
approximately 50%.

4.5.  Optimizing Application Software
To achieve the supply current measurements listed in
this application note and in the device data sheet,
application software must properly configure the device
into its optimum power setting. These low power
optimizations for Active Power Modes are:

1. For system clock frequencies greater than 10 MHz, 
disable (bypass) the one-shot circuit by setting the 
BYPASS bit (FLSCL.6) to logic 1. For system clock 
frequencies less than 10 MHz, enable the one-shot 
circuit by clearing the BYPASS bit (FLSCL.6) to 
logic 0 and immediately following this operation with 
a write of a non-zero value to the FLWR register. A 
detailed description of the one-shot circuit can be 
found in the Flash chapter of the device data sheet. 
Leaving the one-shot enabled for frequencies higher 
than 10 MHz could result in 40% higher supply 
current. Leaving the one-shot bypassed for 
frequencies less than 10 MHz could result in greater 
than 500% increase in supply current.

Note: The optimum one-shot crossover frequency is
14 MHz on C8051F912/11/02/01 devices.



AN358

4 Rev. 0.3

2. If the Low Power Oscillator is not selected as the 
system clock source, clear all wake-up source flags 
by writing 0x20 to the PMU0CF register. Always use 
direct writes or reads when accessing this register. 
Clearing the wake-up source flags allows the Low 
Power Oscillator to be automatically disabled by 
hardware when it is not needed. This optimization 
reduces the supply current by 100 uA.

3. If the Precision Oscillator is not selected as the 
system clock source, disable the Precision Oscillator 
Bias by clearing the OSCBIAS bit (REG0CN.4) to 
logic 0. This optimization reduces the supply current 
by 85 uA.

4. When using one of the internal oscillators as the 
system clock source, disable the missing clock 
detector reset source in the RSTSRC register. 
Always use direct writes or reads when accessing 
this register and be careful not to disable the VDD 
Monitor as a reset source. This optimization reduces 
the supply current by 10 uA.

5. Disable the VDD/DC+ Supply Monitor in systems 
that use an external supply monitor or when a proper 
supply voltage is guaranteed (e.g., a system that 
uses a permanent battery where behavior at battery 
end of life is a don’t care). This optimization reduces 
the supply current by 5 to 20 uA depending on 
supply voltage.

6. Whenever possible, try to execute code at the 
fastest possible clock frequency and use Idle mode 
to pause code execution when waiting for a specific 
event to occur (e.g., timer overflow flag in a software 
delay loop, GPIO pin changing state, UART 
transmission or ADC conversion to complete, etc.).

7. If software contains small loops, such as a while(1) 
statement, ensure that the loop does not straddle a 
flash row boundary. Devices with 1024 byte Flash 
pages have a row boundary of 128 bytes and 
devices with 512 byte Flash pages have a row 
boundary of 64 bytes. Supply current can increase 
by up to 30% when a short loop straddles a Flash 
row boundary. See the Flash chapter of the MCU 
data sheet for more details about minimizing Flash 
read current.



AN358

Rev. 0.3 5

Figure 1. Typical Supply Current vs. Frequency (Normal Mode, External CMOS Clock, 
C8051F912/11/02/01)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Frequency (MHz)

Su
pp

ly
 C

ur
re

nt
 (u

A
) 

F < 14 MHz
Oneshot Enabled

F > 14 MHz
Oneshot Bypassed

< 160 uA/MHz

185 uA/MHz

215 uA/MHz

300 uA/MHz

200 uA/MHz



AN358

6 Rev. 0.3

Figure 2. Typical Supply Current vs. Frequency (Idle Mode, External CMOS Clock, 
C8051F912/11/02/01)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Frequency (MHz)

Su
pp

ly
 C

ur
re

nt
 (u

A
) 



AN358

Rev. 0.3 7

Figure 3. Typical Supply Current vs. Frequency (Normal Mode, External CMOS Clock, 
C8051F930/31/20/21)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Frequency (MHz)

Su
pp

ly
 C

ur
re

nt
 (u

A
) 

F < 10 MHz
Oneshot Enabled

F > 10 MHz
Oneshot Bypassed

< 170 uA/MHz

200 uA/MHz

240 uA/MHz

300 uA/MHz

215 uA/MHz

250 uA/MHz



AN358

8 Rev. 0.3

Figure 4. Typical Supply Current vs. Frequency (Idle Mode, External CMOS Clock, 
C8051F930/31/20/21)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Frequency (MHz)

Su
pp

ly
 C

ur
re

nt
 (u

A
) 



AN358

Rev. 0.3 9

5.  Minimizing Inactive Mode Current

In most low power applications, the MCU spends most
of its time in the Inactive Power Modes. The ‘F9xx
devices have an ultra low power Sleep mode in which
the supply current drops to below 1 uA. Two additional
power modes, Suspend and Stop, are supported and
allow the supply current to drop to 75–90 uA (two-cell
mode) or 250–500 uA (one-cell mode). These power
modes will be discussed in the following sections.

5.1.  Choosing an Inactive Power Mode
For two-cell applications operating from a supply
voltage of 1.8–3.6 V, Sleep mode should be selected as
the inactive power mode if the system can tolerate a
typical wake-up time of 2 us. This provides an inactive
mode current less than 1 uA. If the application requires
a faster wake-up, then Suspend mode can provide a
400 ns wake-up time at the expense of increased
inactive mode current (75–90 uA). 

For one-cell applications operating from a supply
voltage of 0.9–1.8 V, if the system can tolerate a typical
wake-up time of 10 us and the I/O voltage falling below
1.8 V, then Sleep mode should be selected as the
inactive power mode. This provides an inactive mode
current less than 1 uA. If the application requires a
faster wake-up or cannot tolerate an I/O voltage below
1.8 V during the inactive state, then Suspend mode can
provide a 400 ns wake-up time and a constant I/O
voltage above 1.8 V at the expense of increased
inactive mode current (75–90 uA plus any input current
required by the dc-dc converter to maintain the
VDD/DC+ supply rail at its programmed voltage). 

When the dc-dc converter output voltage is
programmed to 1.9 V, the Suspend mode current will
range from 250–500 uA depending on the input voltage
and the dc-dc converter settings. See "8. Minimizing
One-Cell Mode Current" on page 15 for more
information on how to configure the dc-dc converter to
maximize power efficiency.

Stop mode is a legacy power mode that may be used in
two-cell or one-cell applications. The inactive mode
current in Stop mode is identical to that in Suspend
mode, however, the MCU requires a reset in order to
wake up from Stop mode. This makes the wake-up time
from Stop mode very long when compared to the 400 ns
required to wake up from Suspend mode. Under all
circumstances, choosing Sleep or Suspend as the
inactive power mode will provide more benefit to the
system than Stop mode.

5.2.  Achieving a < 1 uA Supply Current
Once the MCU is placed in Sleep mode, the current
meter should display a value below 1 uA in one-cell or
two-cell mode. If the current meter is capable of
resolving currents smaller than 1 uA, it should display a
value between 50 nA and 110 nA depending on supply
voltage (0.9–3.6 V) with the SmaRTClock disabled. If
the SmaRTClock is enabled, the current meter should
display and a value between 420 and 815 nA
depending on supply voltage (0.9–3.6 V). 

If the current measured falls outside these ranges, then
the MCU is not entering Sleep mode or is
sourcing/sinking current through its GPIO pins. Below
are some suggestions for achieving a < 1 uA supply
current:

1. Ensure that the USB Debug Adapter’s ribbon cable 
is removed from the 10-pin debug socket on the 
target board. Leaving the USB Debug Adapter 
connected adds between 2–4 uA to the supply 
current measurement.

2. Ensure that all shorting blocks (with the exception of 
J11) are removed from the target board and that 
current is being measured across J17 or H2.

Figure 5. Current Measurement Setup on a 
C8051F930 Target Board

3. Ensure that digital inputs are driven or pulled to a 
HIGH logic state. Digital inputs in a LOW logic state 
can increase supply current by 0.2–20 uA depending 
on supply voltage due to the on-chip weak pull-up. If 
the logic state of the input cannot be controlled, the 
GPIO pin may be placed in Analog mode to disable 
the weak pull-up.



AN358

10 Rev. 0.3

4. Ensure that analog signals are not applied to digital 
inputs. This can cause both the top and bottom 
transistors of CMOS logic gates to weakly turn on 
(i.e., Crowbar), causing the supply current to 
increase.

5. Ensure that all capacitors being used in the system 
are low leakage ceramic capacitors. To demonstrate 
the effect of capacitor leakage, a 1 uF ceramic 
capacitor can increase the inactive supply current by 
approximately 3 nA at 3.0 V. An equal valued 
tantalum capacitor at the same voltage can increase 
the inactive supply current by up to 1 uA. 

6. Ensure that application code is properly placing the 
device in Sleep mode. We recommend using the 
software supplied with this application note to place 
the device in its various power modes for measuring 
supply current.

5.3.  Entering and Exiting the Sleep and 
Suspend Inactive Power Modes

In order to ensure proper entry and exit from the Sleep
and Suspend inactive power modes, software should
follow the recommendations in this section.

Sleep and Suspend Mode Entry Procedure:

1. Save the contents of the CLKSEL register then force 
the global clock divider to its divide-by-1 setting and 
ensure that either the Low Power Oscillator or the 
Precision Oscillator is selected as the system clock 
source. The two valid values for CLKSEL at this 
point are: 0x00 and 0x04. Using C: 

CLKSEL_save = CLKSEL;
CLKSEL = 0x04;

Note: Per the C8051F930/31/20/21 errata, on Revision
D and the earlier silicon, the value of CLKSEL
should be 0x14 when entering Sleep or Suspend
Mode. This errata item does not apply to
C8051F912/11/02/01 devices or to Revision E of
C8051F930/31/20/21 devices. 

2. Wait for the clock divider value to be applied by 
polling CLKSEL until the CLKRDY bit is set to 1. This 
can be achieved using the following C statement:

while((CLKSEL & 0x80) == 0);

Note: Step 1 and Step 2 may be omitted if the system
clock used in the system is already set to the
value required for entering Suspend or Sleep
mode or when using C8051F912/11/02/01
devices. 

3. Enable the Flash read one-shot timer if entering 
Suspend mode. This can be achieved with the 
following C statement:

FLSCL &= ~0x40;
FLWR  =  0x01;

Note: Writing a dummy value to FLWR after clearing the
BYPASS bit (FLSCL.6) is not required for
C8051F912/11/02/01 devices.

Note: Enabling the Flash read one-shot timer is not
required when entering Sleep mode. It is required
for all other low power modes.

4. Clear all wake-up source flags in PMU0CF. Be sure 
to enable interrupts for transient events before 
clearing the wake-up source flags. Using C:

PMU0CF = 0x20;

5. Place the device in the selected power mode and 
specify the desired wake-up sources. 

The power modes are:
#define SLEEP 0x80
#define SUSPEND 0x40

The wake up sources are: 
#define CP0 0x01
#define PORT_MATCH 0x02
#define RTC_ALRM 0x04
#define RTC_FAIL 0x08
#define RST 0x10

PMU0CF = (SLEEP + (PORT_MATCH | RTC_ALRM));

Sleep and Suspend Mode Exit Procedure:

1. Execute 4 NOP instructions. This can be done with 
the following C statement:
NOP(); NOP(); NOP(); NOP();

Note: This step is only required for Sleep mode on
C8051F912/11/02/01 devices and may be omitted
when exiting from Suspend mode or when 
running on C8051F930/31/20/21 devices. 

2. Restore the contents of the CLKSEL register. This 
can be done with the following C statement:
CLKSEL = CLKSEL_save;

3. Wait for the clock divider value to be applied by 
polling CLKSEL until the CLKRDY bit is set to 1. This 
can be achieved using the following C statement:

while((CLKSEL & 0x80) == 0);

Note: Step 2 and Step 3 of the Exit Procedure may be
omitted if Step 1 and Step 2 of have been omitted
upon entry into the low power mode.



AN358

Rev. 0.3 11

4. If the system clock is greater than 14 MHz
(C8051F912/11/02/01) or 10 MHz
(C8051F930/31/20/21), bypass (disable) the
Flash read one-shot timer. This can be achieved with 
the following C statement:
#if(SYSCLK > 10000000)
FLSCL |= 0x40;
#endif 

Note: The Flash read one-shot enabled/bypassed state
is preserved. In most cases, this step can be 
omitted if step 3 was omitted during entry into
Sleep mode.

5. Decode the wake-up source flags. If the cause of 
wake-up is a falling edge on /RST, then the MCU 
must not be allowed to enter the low power mode for 
a period of 15 us. This provides the MCU sufficient 
time to respond to a pin reset event or synchronize 
with the debugger. Failing to insert a 15 us delay 
before re-entering the low power mode could result 
in the MCU becoming non-responsive to the reset 
pin or disconnecting from the IDE.
wakeup_source = PMU0CF & 0x1F;
if (wakeup_source & RST) 
{ 

Wait_US(15);
} 
if (wakeup_source & PORT_MATCH){}
if (wakeup_source & RTC_ALRM){}
if (wakeup_source & RTC_FAIL){}
if (wakeup_source & CP0){}

Additional Step for High Current Applications:

Applications that have high current requirements in their
active mode may experience a power-fail reset upon
waking up from Sleep mode. This occurs more
frequently for one-cell applications. For these
applications, we recommend adding the following step:

Immediately before entering Sleep mode:
RSTSRC = 0x00; // Disable VDD Monitor Reset

Immediately after waking from Sleep mode:

#define VDDOK 0x20 // Bit 5 of VDM0CN

// Poll the VDD Monitor Early Warning Bit
while((VDM0CN & VDDOK) == 0);
RSTSRC = 0x02; // Enable VDD Monitor Reset

Note: Constants written to RSTSRC used to enable and
disable the VDD Monitor may vary depending on
the enabled reset sources in the system.



AN358

12 Rev. 0.3

6.  An Event Driven Architecture

In order to minimize average current and prolong
battery life in portable embedded systems, attention
must be given to how the application code is structured.
An event-driven software architecture in which the MCU
spends most of its time in the inactive state and only
waking to handle specific events, has proven to be one
of the most power-efficient ways to organize application
code. Figure 6 shows a typical event-driven program
flow.

Figure 6. Event Driven Program Flow

6.1.  Periodic and Random Tasks
All tasks performed by the MCU can be classified as
periodic or random. Periodic tasks, such as a real time
clock function, generate events that periodically wake
up the MCU from its inactive power mode. These tasks
typically require the use of the SmaRTClock to generate
periodic wake-up events. Random tasks, such as a
switch press, can generate wake-up events using Port
Match, which allows any rising or falling edge on a
GPIO pin to wake the device from its inactive power
mode. The inactive supply current for random tasks is
lower than the inactive current for periodic tasks since
the SmaRTClock oscillator can be turned off.

The ‘F9xx MCU family also supports one additional type
of wake-up, Comparator 0. When the VDD/DC+ supply
is present (two-cell Sleep mode or one-cell Suspend
mode) Comparator 0 may be used to wake the device
from Suspend or Sleep. Comparator 0 requires 0.4 uA
in its lowest power setting and may be used to wake up
the MCU upon crossing of an analog threshold. 

6.2.  Transient and Persistent Events
All wake-up events (whether random or periodic) will
either be transient or persistent. Transient events are
only present for a finite duration and persistent events
remain present indefinitely until the event handler
responds to the event. 

In order to reliably and effectively handle transient
events, the ‘F9xx MCUs have a power management unit
(PMU0) which captures wake-up events and maintains
wake-up source flags located in the PMU0CF register.
All wake-up events captured by PMU0 are edge-
triggered. This allows events to be captured without any
clocks being active. The wake-up source flags in the
PMU0CF register are persistent, and will remain
asserted until cleared by software. 

6.3.  Handling SmaRTClock Events
The SmaRTClock can generate two events:
SmaRTClock Alarm or SmaRTClock Oscillator Fail.
SmaRTClock alarms are considered transient because
the alarm event flag (ALRM) remains asserted for only
one SmaRTClock oscillator cycle and SmaRTClock
oscillator fail events are persistent because the
oscillator fail event flag (OSCFAIL) can only be cleared
by software. The wake-up source flags in PMU0CF that
capture these SmaRTClock events are persistent and
will remain asserted until cleared by software.

The recommended method of handling a SmaRTClock
alarm event is to create a software flag that indicates
that this event is pending. The software flag should be
set any time the SmaRTClock alarm wake-up source
flag in the PMU0CF register is set. This provides a
99.9% guarantee that all SmaRTClock events will be
captured. 

To achieve 100% coverage, we must check for
SmaRTClock events that occur in the same instruction
cycle in which the PMU0CF register is cleared. This can
be done by enabling SmaRTClock interrupts before the
clear operation begins and disabling them after the clear
operation completes. If a SmaRTClock event happens
during this brief period of time, the interrupt service
routine should simply set the software <alarm_pending>
flag to indicate that a SmaRTClock event has occurred.

The main application loop should use the software flag
to detect when a SmaRTClock alarm has occurred.
Upon entry into the event handler, the <alarm_pending>
flag, the ALRM flag, and the PMU0CF register should
be cleared to prevent the same event from being
handled more than once. Figure 7 shows an example of
how to handle SmaRTClock alarm events. Figure 8
shows an example of how to handle SmaRTClock

// Device Initialization
MCU_Init();

// Main Application Loop
while(1)
{

1. Perform Task A (Event Handler)
2. Perform Task B (Event Handler)
3. Perform Task C (Event Handler)
...
Final Task:
Enter Sleep Mode
~ MCU Sleeping ~
~ Event Occurs ~
Exit Sleep Mode

}



AN358

Rev. 0.3 13

oscillator fail events. Note the difference in
implementation is due to the alarm being a transient
event and the oscillator fail being a persistent event.

In these examples, there is only one transient event
which is detected using the wake-up source flags in
PMU0CF. If there was a second transient event (e.g., a
transient port match event), then additional care should
be taken when clearing PMU0CF. The clear operation
would consist of the following steps:

1. Enable interrupts for all transient events.

2. Read the PMU0CF register to ensure no transient 
event has already occurred before enabling the 
interrupt.

3. Clear the PMU0CF register.

4. Disable interrupts for the transient events.

If multiple asynchronous events are enabled, be sure to
test the firmware routines under worst case conditions
to ensure that all events are properly captured and
handled.

6.4.  Handling Port Match Events
Depending on the application, changes in GPIO state
can be transient or persistent. For example, the
detection of a switch press is a transient phenomenon;
however, once the switch is pressed, it is typically not
released for a few hundred milliseconds. If the
application code can guarantee that the event handler
can be reached before the user removes their finger
from the switch, then the event can be treated as
persistent.

Port match events should be handled similar to
SmaRTClock events—transient port match events
should be detected using the PMU0CF register and
persistent port match events can be detected by reading
the GPIO pin state directly.

Figure 7. Handling a Transient Event

Figure 8. Handling a Persistent Event

// Main Application Loop
while(1)
{

//----------------------------------
// SmaRTClock Alarm Task
//----------------------------------
if(PMU0CF & 0x04)
alarm_pending = 1;

// Alarm Handler
if(alarm_pending)
{
// Clear the <alarm_pending> flag
alarm_pending = 0;

// Clear the ALRM flag by disabling
// then re-enabling the alarm
RTC_Write(RTC0CN, 0xD4); // Disable
RTC_Write(RTC0CN, 0xDC); // Re-enable

// Clear PMU0CF wakeup source flags
EIE1 |= 0x02; // Enable Alarm Int.
PMU0CF = 0x20; // Clear wake-up flags
EIE1 &= ~0x02; // Disable Alarm Int. 

// Additional Actions
...

}
}
void ALARM_ISR (void) interrupt 8
{

// Disable the Alarm interrupt
   EIE1 &= ~0x02; 

// Set the <alarm_pending> software flag
alarm_pending = 1; 

}

// Main Application Loop
while(1)
{

//----------------------------------
// SmaRTClock Osc. Fail Task
//----------------------------------
if(RTC_Read(RTC0CN) & 0x20)
smaRTClock_fail = 1;

// Osc. Fail Handler
if(smaRTClock_fail)
{
// Clear the <smaRTClock_fail> flag
smaRTClock_fail = 0;

// Clear the OSCFAIL flag
// by writing to the RTC0CN register
RTC_Write(RTC0CN, 0xDC); 

// Additional Action
...

}
}



AN358

14 Rev. 0.3

7.  Low Power Software Template

To jump start the process of software development, a
low power software template is distributed with this
application note. The software template is a good
starting point for any ‘F9xx firmware project that will be
using Suspend or Sleep mode in an event driven
application that is structured as shown in Figure 6. 

The software template is divided into two primary
modules, a “smartclock” module and a “power” module.
The “smartclock” module handles all software
interaction with the SmaRTClock peripherals and
provides the following API functions:

 RTC_Init() - Starts the SmaRTClock oscillator in 
crystal or self-oscillate/LFO mode. 

 RTC_WriteAlarm() - Writes a 32-bit value to the 
ALARM registers.

 RTC_GetCurrentTime() - Reads the 32-bit value 
representing the current time.

 RTC_SetCurrentTime() - Writes the passed 32-bit 
value to the main SmaRTClock counter.

 RTC_SleepTicks() - Places the device in Sleep 
mode for the specified number of SmaRTClock 
cycles. This function should only be used when the 
SmaRTClock is configured for Auto Reset mode.

 RTC0CN_SetBits() - Used to set bits in the 
SmaRTClock control register.

 RTC0CN_ClearBits() - Used to clear bits in the 
SmaRTClock control register.

 RTC_Write() - Used to write to an indirect 
SmaRTClock register.

 RTC_Read() - Used to read from an indirect 
SmaRTClock register.

The “power” module handles entry and exit of low power
modes. It provides the following API functions:

 LPM_Init() - Initializes the low power mode API.

 LPM_Enable_Wakeup() - Enables the 
SmaRTClock, Port Match, or Comparator as a wake-
up source from Sleep or Suspend Mode.

 LPM_Disable_Wakeup() - Disables the 
SmaRTClock, Port Match, or Comparator as a wake-
up source from Sleep or Suspend Mode.

 LPM() - Called with an argument SLEEP or 
SUSPEND to place the device in a low power mode. 
Device will wake up once an enabled wake-up 
source event occurs.

7.1.  Software Template Example
A software example that uses the software template is
bundled with this application note. The example
configures the SmaRTClock to generate an alarm every
100 ms. On every alarm, a 1 ms pulse is generated to
be used as an oscilloscope trigger and an ADC
conversion is initiated. The software template example
can be easily modified to fulfill the requirements of the
end application.

7.2.  Configuring the Software Template
The software template has a number of compile-time
configuration options that can be used to customize the
software. 

7.2.1. Configuration Options in C8051F930_lib.h

 SYSCLK - Defines the system clock frequency in 
Hertz. Used to calculate timer reload values and to 
determine if the Flash read one-shot should be 
enabled or disabled.

 SMARTCLOCK_ENABLED - Enables SmaRTClock 
functionality. When set to 0, the SmaRTClock 
routines will be excluded from the project build.

7.2.2. Configuration Options in SmaRTClock.h

 RTC_CLKSRC - Set to CRYSTAL to operate the 
SmaRTClock with a 32.768 kHz crystal or set to 
SELFOSC to operate the SmaRTClock in self-
oscillate mode.

 LOADCAP_VALUE - Sets the programmed value of 
load capacitance for the SmaRTClock.

 WAKE_INTERVAL - The number of milliseconds 
between SmaRTClock alarms.

7.3.  Additional Examples
Additional examples that use the software template can
be found in the MCU examples folder for the device
being used. The default path is:

C:\Silabs\MCU\Examples\C8051F93x_92x\SleepMode\

or

C:\Silabs\MCU\Examples\C8051F91x_90x\SleepMode\



AN358

Rev. 0.3 15

8.  Minimizing One-Cell Mode Current

In one-cell mode, the MCU may be powered from a 0.9
to 1.8 V supply. An on-chip dc-dc converter is used to
boost the supply voltage up to a programmed value
between 1.8 and 3.3 V. This voltage appears on the
VDD/DC+ supply pin. The supply current taken from the
VDD/DC+ supply pin to operate the MCU is equal to the
supply current in two-cell mode.

From a power conservation standpoint, it is important to
note that the input power (battery voltage x battery
current) will always be equal to the output power
(voltage x current at the VDD/DC+ pin) scaled by the
efficiency factor. Since the battery voltage must be 0.2 V
less than the output voltage, the battery current will
always be higher than the two-cell mode supply current.

The battery current can be calculated from the two-cell
mode supply current using Equation 1. Table 2 shows
typical one-cell mode battery current as compared to
two-cell mode supply current.

Equation 1. Calculating One-Cell Battery Current

The following factors can help reduce battery current:

 Maximize the input battery voltage.

 Minimize the output supply voltage.

 Minimize the output supply current.

 Maximize the dc-dc converter efficiency.

 Battery Current (one-cell mode) = 

 Supply Voltage Supply Current (two-cell mode)
DC-DC Converter Efficiency VBAT Voltage

-----------------------------------------------------------------------------------------------------------------------------------

Table 2. Power Mode Summary (One-Cell Mode)

Power 
Mode

Typical Two-Cell

Supply Current

(C8051F930/31/20/21)

Typical One-Cell 
Battery Current

(C8051F930/31/20/21)

VBAT = 1.5V

Typical Two-Cell 
Supply Current

(C8051F912/11/02/01)

Typical One-Cell 
Battery Current

(C8051F912/11/02/01)

VBAT = 1.5V

Normal 4.1 mA @ 24.5 MHz
3.5 mA @ 20.0 MHz
90 uA @ 32.768 kHz
(+/– 10 uA for supply
voltage variations)

6.3 mA @ 24.5 MHz
5.4 mA @ 20.0 MHz
360 uA @ 32.768 kHz

4.0 mA @ 24.5 MHz
3.4 mA @ 20.0 MHz
84 uA @ 32.768 kHz
(+/– 10 uA for supply
voltage variations)

6.2 mA @ 24.5 MHz
5.2 mA @ 20.0 MHz
320 uA @ 32.768 kHz
w/ LPM Enabled
285 uA @ 1.9V

Idle 2.5 mA @ 24.5 MHz 
1.9 mA @ 20.0 MHz
84 uA @ 32.768 kHz
(+/– 10 uA for supply
voltage variations)

3.7 mA @ 24.5 MHz 
2.9 mA @ 20.0 MHz
350uA @ 32.768 kHz

2.1 mA @ 24.5 MHz 
1.6 mA @ 20.0 MHz
82 uA @ 32.768 kHz
(+/– 10 uA for supply
voltage variations)

3.3 mA @ 24.5 MHz 
2.5 mA @ 20.0 MHz
316uA @ 32.768 kHz
w/ LPM Enabled
280 uA @ 1.9V

Suspend 75 uA @ 1.8 V
90 uA @ 3.6 V
(Low Power Osc.)

330 uA @ 1.9 V 75 uA @ 1.8 V
90 uA @ 3.6 V
(Low Power Osc.)

310 uA @ 1.9 V
(Low Power Osc.)
w/ LPM Enabled
275 uA @ 1.9V

Sleep w/ SmaRTClock 
Crystal
0.600 uA

w/o SmaRTClock
0.050 uA

w/ SmaRTClock 
Crystal
0.600 uA

w/o SmaRTClock
0.050 uA

w/ SmaRTClock 
Crystal
0.600 uA
w/ SmaRTClock LFO
0.300 uA
w/o SmaRTClock
0.050 uA
w/o VBAT Supply 
Monitor
0.010 uA

w/ SmaRTClock Crystal
0.600 uA
w/ SmaRTClock LFO
0.300 uA
w/o SmaRTClock
0.050 uA
w/o VBAT Supply 
Monitor
0.010 uA

BLUE refers to power modes only available on ‘F912 and ‘F902 devices.



AN358

16 Rev. 0.3

8.1.  Input Battery Voltage
Battery voltage has a large effect on the battery current.
Since the dc-dc converter maintains a constant power
output, the input current increases as the input voltage
decreases. If the system is powered by a regulator, the
ideal VBAT voltage is 1.7 V; however, when powered by
a battery, the only control the system designer has over
the VBAT voltage is in the selection of a battery
chemistry. 

To see the effect of battery chemistry on battery current,
compare an Alkaline AAA to Lithium AAA at 50%
remaining capacity. The Alkaline battery has a voltage
of approximately 1.25 V while the Lithium battery has a
voltage of approximately 1.5 V. When operating the
MCU at 24.5 MHz, the Lithium battery needs to supply
20% less current than the Alkaline battery (6.3 vs.
7.8 mA) in order to maintain the same output power.
This results in a significant boost in battery life. Other
benefits of Lithium over Alkaline batteries are higher
charge densities resulting in high capacity AA and AAA
batteries, very low self-discharge currents resulting in
prolonged shelf life, and the ability to support high drain
applications without a significant reduction in battery
capacity.

8.2.  Output Supply Voltage
The output supply voltage (VDD/DC+) can be
programmed to values between 1.8 and 3.3 V using the
DC0CN Register. The recommended supply voltage
that provides the most power efficient operation is 1.9 V.
This is the default supply voltage at reset. Higher supply
voltages should only be used when required (e.g., the
system needs to turn on a blue or white LED).

The following example demonstrates the effect of output
supply voltage on the battery current when operating
the MCU at 24.5 MHz. A 60% increase in battery
current (6.3 to 10 mA) is experienced when the supply
voltage is increased from 1.9 to 2.7 V. 

8.3.  Output Supply Current
The output supply current (equivalent to the two-cell
mode supply current) has a direct impact on battery
current. The change in battery current as a result of an
increase in supply current is typically 30–50% higher
than the actual change in supply current. The supply
current can be minimized using the same techniques
described in this application note for two-cell mode.

8.4.  DC-DC Converter Efficiency
The dc-dc converter efficiency depends on the input
battery voltage, output supply current, component
selection and software settings. Figure 9 through
Figure 11 show the typical dc-dc converter efficiencies
for various input battery voltages and output supply
currents. When optimizing dc-dc converter efficiency,
the system designer typically has little control over
these parameters since they are usually determined by
other constraints in the system.

The parameters which the system designer has the
most control over are component selection, PCB layout,
and software settings. The inductor should be chosen to
have minimum dc resistance and a high current rating.
The input and output capacitors should be low leakage
ceramic capacitors. Recommended parameters for the
required inductor and decoupling capacitors can be
found in Table 4.14 of the MCU data sheet.

The PCB layout can have an effect on the dc-dc
converter efficiency. In order to maximize efficiency, the
inductor should be placed as close as possible to the
DCEN pin and the capacitance of the trace connecting
the inductor to DCEN should be minimized. The current
loop consisting of the input capacitor, inductor, DCEN
pin and the ground plane should be made as small as
possible. On the output side, the traces connecting the
VDD/DC+ pin to the output capacitor and the output
capacitor to the GND/DC– pin should be as short and
thick as possible in order to minimize parasitic
inductance.

The software settings that affect dc-dc converter
efficiency can be found in the DC0CN and DC0CF
registers. The ideal setting for each of these parameters
depends on the power requirements of the application.
The system designer should experiment with the
following settings until the optimum setting is
determined for any particular application.

 Output Voltage Select - The output voltage select 
bits allow the output voltage to be programmed 
between 1.8 to 3.3 V. The lower the setting, the 
higher the efficiency. We recommend not setting the 
target value lower than 1.9 V to allow some margin 
above the VDD Monitor Threshold.

 Switch Select - The dc-dc converter provides two 
switches (large and small) for use under different 
load conditions. For small loads, the small switch 
should provide higher efficiency. For large loads, the 
large switch should provide higher efficiency. Under 
some conditions (e.g., when minimum pulse width is 
enabled), the large switch may provide higher 
efficiency at low currents. 



AN358

Rev. 0.3 17

 Minimum Pulse Width - The minimum pulse width 
forces the dc-dc converter to use a minimum duty 
cycle. For low current applications (e.g., MCU in 
suspend mode), a single pulse provides enough 
charge to keep the output above the target voltage 
for several clock pulses. The dc-dc converter 
remains idle during these clock cycles. This causes 
an improvement in efficiency due to a reduction in 
switching losses. Figure 12 shows the effect of 
minimum pulse width on suspend mode current.

 Peak Current Limit Threshold - The peak current 
through the inductor can be set to 125 or 500 mA. 
For low current applications, the lower setting should 
provide the highest efficiency. For high current 
applications, increasing the peak current should 
improve efficiency and reduce ripple.

 VDD/DC+ Sleep Mode Connection - In Sleep 
mode, the VDD/DC+ supply can be shorted to VBAT 
or allowed to float. If the application will be asleep for 
a short duration (not long enough to discharge the 
output capacitor), then the VDD/DC+ supply should 
be left floating. If the VDD/DC+ decoupling capacitor 
is expected to experience significant discharge while 
the MCU is asleep, then VDD/DC+ should be 
internally shorted to VBAT during sleep mode.

 Low Power Mode- On ‘F912 and ‘F902 devices, the 
dc-dc converter supports a low power mode that 
reduces bias currents. This mode will help improve 
efficiency when optimal transient response is not 
required.



AN358

18 Rev. 0.3

Figure 9. Typical DC-DC Converter Efficiency (High Current, VDD/DC+ = 2 V)

60.0

61.0

62.0

63.0

64.0

65.0

66.0

67.0

68.0

69.0

70.0

71.0

72.0

73.0

74.0

75.0

76.0

77.0

78.0

79.0

80.0

81.0

82.0

83.0

84.0

85.0

86.0

87.0

88.0

89.0

90.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Load Current (mA)

Ef
fic

ie
nc

y 
(%

)

VBAT = 1.5 V

VBAT = 1.4 V

VBAT = 1.3 V

VBAT = 1.2 V

VBAT = 1.1 V

VBAT = 1.0 V

VBAT = 0.9 V

SWSEL = 1 SWSEL = 0

0.68 uH Inductor, 1008 package, ESR = 0.4 Ohms
VDD/DC+ = 2V, Minimum Pulse Width = 0ns (Pulse Skipping Disabled)

Note: Efficiency at high currents may be improved by choosing an 
inductor with a lower ESR.



AN358

Rev. 0.3 19

Figure 10. Typical DC-DC Converter Efficiency (High Current, VDD/DC+ = 3 V)

50.0

51.0

52.0

53.0

54.0

55.0

56.0

57.0

58.0

59.0

60.0

61.0

62.0

63.0

64.0

65.0

66.0

67.0

68.0

69.0

70.0

71.0

72.0

73.0

74.0

75.0

76.0

77.0

78.0

79.0

80.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Load current (mA)

Ef
fic

ie
nc

y 
(%

)

VBAT = 1.5V
VBAT = 1.4V
VBAT = 1.3V
VBAT = 1.2V
VBAT = 1.1V
VBAT = 1.0V
VBAT = 0.9V

SWSEL = 1 SWSEL = 0

0.68 uH Inductor, 1008 package, ESR = 0.4 Ohms
VDD/DC+ = 3V, Minimum Pulse Width = 0ns 
(Pulse Skipping Disabled)
Note: Efficiency at high currents may be improved by 
choosing an inductor with a lower ESR.



AN358

20 Rev. 0.3

Figure 11. Typical DC-DC Converter Efficiency (Low Current, VDD/DC+ = 2 V)

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00

Load current (mA)

Ef
fic

ie
nc

y 
(%

)

VBAT = 1.5V
VBAT = 1.4V
VBAT = 1.3V
VBAT = 1.2V
VBAT = 1.1V
VBAT = 1.0V
VBAT = 0.9V

0.68 uH Inductor, 1008 package, ESR = 0.4 Ohms
SWSEL = 1,  VDD/DC+ = 2V, Minimum Pulse Width = 40ns



AN358

Rev. 0.3 21

Figure 12. Typical Suspend Mode Supply Current

200

250

300

350

400

450

500

550

600

650

700

750

800

850

900

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

VBAT (V)

V
B

A
T 

C
ur

re
nt

 (u
A

)

Min Pulse Width: 0 ns

Min Pulse Width: 20 ns

Min Pulse Width: 40 ns

Min Pulse Width: 80 ns

0.68 uH Inductor, 1008 package, ESR = 0.4 Ohms
SWSEL = 1,  VDD/DC+ = 1.9V, Load Current = 75 uA



AN358

22 Rev. 0.3

9.  Analog Peripherals

Analog peripherals such as the ADC and Comparators
can significantly increase supply current when enabled.
Below are a few suggestions that can reduce supply
current when using analog peripherals.

 Use the ADC at its maximum sampling rate. This 
allows the system to take the required samples 
quickly and turn off the ADC. When oversampling, 
use Burst Mode to automatically accumulate 
samples independently of the CPU.

 When using the temperature sensor, enable it 
immediately before starting a conversion and disable 
it immediately after the conversion is complete. The 
typical settling time for the temperature sensor is 
1.7 us, which is the same as the required ADC 
tracking time.

 Use the on-chip high speed voltage reference. This 
voltage reference has a settling time of 1.7 us, which 
is the same as the required ADC tracking time. The 
high speed VREF is automatically enabled and 
disabled by hardware at the beginning and end of an 
ADC conversion.

 When comparing an analog voltage to 1/2 the supply 
voltage, use the on-chip resistors supplied with the 
comparator instead of an external voltage divider. 
The on-chip voltage divider can be disconnected 
once the comparison is complete, however, an off 
chip voltage divider continues to draw a static 
current as long as the device is powered.

 The comparators have four speed settings. Using 
the slowest speed setting results in longer response 
time, but can cause a significant decrease in supply 
current. This is particularly true when the device is in 
Sleep mode waiting on an analog signal to cross a 
certain threshold.

 Disable all analog peripherals (unless used to wake 
up) before going into Sleep mode.

 The current reference IREF0 in combination with an 
external resistor can be used to create an ultra low 
power reference voltage. The IREF0 output can be 
disabled or controlled to the nearest 1 uA up to 
63 uA and to the nearest 8 uA up to 504 uA. 

10.  Using the Software Example

This application note is bundled with example software
to place the device in its most efficient power state for
each of its operating modes. The user configured
constants are located in the “F9xx_Config.h” header file. 

10.1.  Configuring the Power Mode
The software defines two active power modes:
NORMAL and IDLE, and four inactive power modes:
STOP, SUSPEND, RTCSLEEP, and SLEEP. The
difference between RTCSLEEP and SLEEP is whether
the SmaRTClock oscillator is enabled or disabled in
sleep mode. The POWER_MODE constant should be
set to one of the power modes defined above.

10.2.  Configuring the Clock Source
Any combination of the MCU’s four clock sources and
eight clock divide values may be configured using the
CLOCK_SELECTION constant. The constants for the
clock sources are PRECISION_OSC,
LOW_POWER_OSC, SMARTCLOCK_OSC, and
EXTERNAL_OSC. There is also an option to enable the
missing clock detector. 

If the external oscillator is selected as the clock source,
the software assumes that a CMOS clock is present at
P0.3 and that the EXTERNAL_OSC_FREQ constant
contains the proper CMOS clock frequency. When
sweeping the system clock frequency, two sweeps need
to be performed. The first one is for the range of
frequencies between dc and 10 MHz, and the second
one is for the range of frequencies between 10 MHz and
25 MHz. The EXTERNAL_OSC_FREQ constant must
be updated between the two sweeps in order to result in
the optimum operating current.

10.3.  Location of the SJMP $ Instruction
When measuring current in normal mode, the most
common practice is to insert an infinite loop (SJMP $) to
hold CPU execution in one place. Since digital supply
current is dependent on the Flash address, placing the
infinite loop at the incorrect address can cause supply
current to increase beyond its typical value. 

The example project includes an “Imeasure.h” and
“Imeasure.a51” header and source file that allow current
to be properly measured. The Imeasure.h header file
allows the user to locate the address of the SJMP $
instruction for minimum, typical, and maximum current.
These two files can be added to any project to get an
accurate supply current measurement. The function in
the assembly file can be called using a function pointer
as demonstrated in “F9xx_Main.c”.



AN358

Rev. 0.3 23

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 0.2
 Added support for C8051F912/11/02/01 devices.

 Updated recommended procedure for entering and 
exiting the Sleep/Suspend power modes.

 Added information about the low power software 
template.

 Updated the software examples.



AN358

24 Rev. 0.3

CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.

Silicon Laboratories, Silicon Labs, and USBXpress are trademarks of Silicon Laboratories Inc.

Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. 
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from 
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features 
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability 
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to 
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages. 

https://www.silabs.com/support/pages/contacttechnicalsupport.aspx

	1. Introduction
	2. Key Points
	3. Power Modes Overview
	Table 1. Power Mode Summary (Two-Cell Mode)

	4. Minimizing Active Mode Current
	4.1. Effect of Supply Voltage
	4.2. Effect of Temperature
	4.3. Effect of System Clock Frequency
	4.4. Effect of Power Mode
	4.5. Optimizing Application Software
	Figure 1. Typical Supply Current vs. Frequency (Normal Mode, External CMOS Clock, C8051F912/11/02/01)
	Figure 2. Typical Supply Current vs. Frequency (Idle Mode, External CMOS Clock, C8051F912/11/02/01)
	Figure 3. Typical Supply Current vs. Frequency (Normal Mode, External CMOS Clock, C8051F930/31/20/21)
	Figure 4. Typical Supply Current vs. Frequency (Idle Mode, External CMOS Clock, C8051F930/31/20/21)


	5. Minimizing Inactive Mode Current
	5.1. Choosing an Inactive Power Mode
	5.2. Achieving a < 1 uA Supply Current
	Figure 5. Current Measurement Setup on a C8051F930 Target Board

	5.3. Entering and Exiting the Sleep and Suspend Inactive Power Modes

	6. An Event Driven Architecture
	Figure 6. Event Driven Program Flow
	6.1. Periodic and Random Tasks
	6.2. Transient and Persistent Events
	6.3. Handling SmaRTClock Events
	6.4. Handling Port Match Events
	Figure 7. Handling a Transient Event
	Figure 8. Handling a Persistent Event


	7. Low Power Software Template
	7.1. Software Template Example
	7.2. Configuring the Software Template
	7.2.1. Configuration Options in C8051F930_lib.h
	7.2.2. Configuration Options in SmaRTClock.h

	7.3. Additional Examples

	8. Minimizing One-Cell Mode Current
	Table 2. Power Mode Summary (One-Cell Mode)
	8.1. Input Battery Voltage
	8.2. Output Supply Voltage
	8.3. Output Supply Current
	8.4. DC-DC Converter Efficiency
	Figure 9. Typical DC-DC Converter Efficiency (High Current, VDD/DC+ = 2 V)
	Figure 10. Typical DC-DC Converter Efficiency (High Current, VDD/DC+ = 3 V)
	Figure 11. Typical DC-DC Converter Efficiency (Low Current, VDD/DC+ = 2 V)
	Figure 12. Typical Suspend Mode Supply Current


	9. Analog Peripherals
	10. Using the Software Example
	10.1. Configuring the Power Mode
	10.2. Configuring the Clock Source
	10.3. Location of the SJMP $ Instruction

	Document Change List
	Contact Information

