
Rev. 0.3 8/08 Copyright © 2008 by Silicon Laboratories AN292

AN292

EMBEDDED ETHERNET SYSTEM DESIGN GUIDE

1. Introduction
Embedded systems today are small, fast, and very
powerful. Embedded connectivity stands at the forefront
of harnessing the power of today’s embedded systems.
The CP220x is an Ethernet Controller that integrates
Ethernet functionality into a single 5 x 5 mm package.
When placed in an embedded system with an MCU, it
provides the system with Embedded Ethernet
Connectivity as shown in Figure 1.
This design guide discusses the benefits of Embedded
Ethernet and walks you through three easy steps to add
Ethernet connectivity to your embedded system:
System Definition, Hardware Design, and Software
Development. It also provides timesaving tips and
suggestions to simplify the implementation of
Embedded Ethernet. No previous knowledge of
Ethernet or TCP/IP is required to use this guide for
Embedded Ethernet Development.

2. Embedded Ethernet Connectivity
Imagine if you could remotely monitor the status of your
embedded system using a web browser, or if the
vending machine could send out an e-mail alert when it
needs service or is sold out of specific items. These
things are all made possible with Embedded Ethernet.
The key benefits of Embedded Ethernet Connectivity
are described in the following paragraphs.

� Remote Monitoring and Control - Once an
embedded system is on a network, it can be
accessed from any PC on the same network. The
user does not have to be in the same room or
building in order to access and control the
embedded system.

� No PC Software Development Required - In most
systems, the user interface on the PC will use a Web
Browser, HyperTerminal, or the embedded system
will directly send the user an e-mail. Some systems
will implement custom PC applications to perform
specific tasks not easily implemented using
commonly available software.

� Utilizes Existing Infrastructure - Ethernet is the
most widely implemented networking standard. Most
commercial offices and industrial factory workfloors
are already wired for Ethernet connectivity. When
wireless LAN is used across a factory floor, low cost
bridges are available to connect wired Ethernet
devices to a wireless network.

� Low Cost and Easy to Implement - With MCUs
such as the C8051F34x and Ethernet controllers
such as the CP220x, Embedded Ethernet can now
be integrated into cost sensitive applications. Using
the TCP/IP Configuration Wizard and other Silicon
Laboratories development tools, Embedded
Ethernet is now easy to implement.

Figure 1. Embedded Ethernet Connectivity

Relevant Devices
This application note applies to the following devices:
CP2200, CP2201

AN292

2 Rev. 0.3

3. How to Use This Design Guide
This design guide was developed for both beginners
and experienced Embedded Ethernet system
designers. Figure 2 shows the typical system design
flow for Embedded Ethernet development. The
structure of this document is based on Figure 2.
Each of the boxes in Figure 2 is discussed in detail and
additional information about the basics of TCP/IP is
included in the appendix on page 26. Since the content
is modularized, advanced users may skip directly to the
sections that will provide them with the most added
benefit.
In addition to this design guide, the following design
resources are essential for developing Embedded
Ethernet with the CP220x:
� “AN237: TCP/IP Library Programmer’s Guide” -

contains the API reference for the TCP/IP Library
based on the CMX Micronet (TM) TCP/IP Stack.

� Embedded Ethernet Development Kit User’s
Guide - contains information on how to setup the
development kit and gives a hands-on tutorial of
using the TCP/IP Configuration Wizard.

� CP2201 Evaluation Kit User’s Guide - contains
information on how to setup the evaluation kit and
gives walks through the CP2201EK demo. The
CP2201 Evaluation Kit allows you to quickly test
drive the most common network interfaces.

� CP220x Datasheet and the Target MCU Family
Datasheet - Contains the pinout, electrical
characteristics, and specifications of the selected
MCU and Ethernet controller.

Figure 2. Embedded Ethernet System Design
Flow Diagram

Section 4

Section 5

Section 6

Section 7

Hardware
Design

Software
Generation

Application
Development

System Definition

Debugging Embedded Ethernet
Section 9

Section 8

Embedded System
Personalization

AN292

Rev. 0.3 3

4. System Definition
There are four steps to defining a system with
Embedded Ethernet Connectivity. Throughout the four
stages, we will consider the embedded system to be a
black box. Having a clear definition of the properties and
characteristics of the embedded system prior to starting
hardware and software development is essential to
achieving a final result that matches its target
specifications.

4.1. Specifying Required Functionality
The first question that should be answered when
creating the definition is: What do I want my embedded
system to do? The answer to this question varies by
application and can encompass virtually anything that
can be done with a high-speed MCU.
Figure 3 shows the black box representation of the
embedded system. Based on the diagram, an example
answer to question 1 is: Monitor progress of the milling
machine, control a motor, and keep an average of the
number of boxes passing per minute.

Figure 3. System Functionality Example
Please write down your answer to the first question in
the system definition.
Q1: What do I want my embedded system to do?
__
__
__
__
__
__
__

4.2. Specifying Access Method
The second system definition question is: How do I want
to access my embedded system? The answer to this
question can be one or more of the most commonly
used access methods:

�Using a web browser.
�Using HyperTerminal.
�Having the embedded system send e-mail.
�Using a custom application.

Figure 4 shows the black box representation of the
embedded system and how the various access
methods can be used to monitor and control the
embedded system. See the CP2201 Evaluation Kit for a
demonstration of each interface.

Figure 4. User Interface Options
Please write down your answer to the second question
in the system definition.
Q2: How do I want to access my embedded system?
__
__
__
__

Embedded
System

Monitor
Progress
(UART)

Advance Conveyor Belt
(motor control)

Count Boxes
(light sensor)

Embedded
System

Custom
Application

Web Browser
(HTTP)

HyperTerminal
(Telnet)

E-Mail
(SMTP)

Direct Socket Interface
(TCP or UDP)

AN292

4 Rev. 0.3

4.3. Specifying Configuration Method
Every device connected to a network requires both a
MAC address and an IP address to communicate with
other devices. Embedded systems using the CP220x
only need to obtain an IP address because the MAC
address is factory pre-programmed in Flash memory.
The third system definition question is: How do I want to
configure my embedded system? There are four
common configuration methods:
�Automatic Network Configuration.
�Automatic Network Configuration with Netfinder.
�Static Network Configuration.
�Static Network Configuration with Netfinder.

4.3.1. Automatic Network Configuration
Automatic Network Configuration allows a device to use
the Dynamic Host Configuration Protocol (DHCP) to
acquire an address from the network. This assumes
that the network has a DHCP server that can assign an
IP address. DHCP servers are typically found inside
routers or other network equipment.
Embedded systems using automatic network
configuration can access the network (e.g. to send an e-
mail message or log in to a server with a known
address); however, the user will not be able to directly
access the device from a web browser or a telnet client
without knowing the IP address assigned to it. This
limitation can be overcome by adding additional
hardware such as an LCD screen or using Netfinder.

4.3.2. Searching for Automatically Configured
Embedded System Using Netfinder

Enabling Netfinder capability on an embedded system
that uses DHCP allows the user to easily find out the IP
address assigned to the embedded system. This is
done by searching for the embedded system using the
Netfinder PC utility.
When a new search is started, the Netfinder utility
broadcasts an “Identity Request” message to all nodes
on the network. Each embedded system that supports
Netfinder replies with information that identifies and
differentiates itself from similar embedded systems.
This information can include: IP address, Elapsed time
from an event (e.g. Time Powered, Time on Network),
MAC Address, and a text description of the device. This
information can be customized for each application.
4.3.3. Static Network Configuration
For networks that do not have a DHCP server, each
network node including embedded systems must be
assigned a static IP address. To prevent multiple
devices from using the same IP address, the network
administrator keeps a database of each device on the
network and the IP address assigned to it.
There are a number of ways to assign a static IP
address to a device. First, the IP address can be hard
coded in firmware. This method is not user friendly
since the device must be reprogrammed in order to
change its IP address.

Figure 5. Searching for an Automatically Configured Embedded System Using Netfinder

AN292

Rev. 0.3 5

Second, it can be assigned through the serial port and
stored in Flash memory as demonstrated in the
Embedded Ethernet Development Kit User’s Guide.
This method provides the flexibility to change the IP
address after the system is in the field but requires the
embedded system to implement a UART interface.
Unless the UART interface is required by the
application, there are smaller and more cost effective
ways of programming the IP address.
4.3.4. Assigning an IP Address Using Netfinder
Enabling Netfinder capability on an embedded system
that uses static network configuration allows the
Netfinder utility to both search for the embedded system
and assign it an IP address. If the embedded system
does not have an IP address, it will default to the invalid
address “0.0.0.1” until the user assigns it an IP address
using the Netfinder utility.
Design Suggestion: If maximum compatibility with
different networks is desired, the embedded system can
be designed to use multiple configurations. For
example, the CP2201 Evaluation Board first attempts to
acquire an IP address through DHCP. If it fails to
acquire an IP address after 4 attempts, it will go into
static IP address mode and wait for the user to assign it

an address using the Netfinder utility. As a result of
including Netfinder capability in firmware, the embedded
system supporting both static and dynamic network
configuration measures only 1.25” x 1.5”.
Please write down your answer to the third question in
the system definition. If static network configuration is
chosen, then please provide an answer to Part B.
Q3: How do I want to configure my embedded system?
__
__
__
__

Q3B: If a static IP address is assigned, do I want the
embedded system to permanently store the address or
attempt to refresh it each time I plug it into a network?
__
__
__
__

Figure 6. Assigning a Static IP Address Using Netfinder

AN292

6 Rev. 0.3

4.4. Specifying Field Re-Programmability
Requirements

The final part of the system definition is determining the
field re-programmability requirements of the embedded
system. The options for field reprogrammabilty are:
�No support for field re-programmability.
�Re-programmability using a 3 or 5 pin header.
�Re-programmability using a 10-pin header.
�Re-programmability using a bootloader.

Figure 7 shows the black box representation of the
embedded system and the available field re-
programmability options.
4.4.1. Updating Firmware using a Header
Firmware on the device may be updated by placing a
programming header on the board. If a 10-pin header is
used, the USB Debug Adapter can plug directly into the
embedded system for debugging or updating firmware.
If a custom header is used, then C2 devices will need at
least 3 pins (C2CK, C2D, and GND) and JTAG devices
will need at least 5 pins (TCK, TMS, TDI, TDO, and
GND).

Figure 7. Field Re-programmability Options

When designing the embedded system for field
reprogrammability, one criterion that may be used to
select the best field re-programmabily option is the
requirement of the USB Debug Adapter. Depending on
the application and the cost of the embedded system,
end customers may not have access to a USB Debug
Adapter.
For end customers who do not have a USB Debug
Adapter, the only option will be to purchase one or to
send the entire system back to the factory for re-
programming. This may be feasible in low quantities,
but low cost, high volume applications will require an
easier way of updating firmware in the field.
4.4.2. Updating Firmware over the Network
Using a TFTP Bootloader, firmware may be remotely
updated over the network using any PC with a TFTP
client. A TFTP client comes as a core utility in most
operating systems including Windows 2000/XP.
A TFTP bootloader does not have any hardware
requirements and is easy to use by the end customer.
The drawback to using a TFTP bootloader is that it
requires approximately 10 kB of code space. Other
types of bootloaders, such as UART, SMBus, etc. may
also be used to update firmware.

Timesaving Tip: The CP2201EK uses a TFTP
bootloader to allow remote firmware updates over the
network. If you are using the ‘F340, the source code for
the bootloader is available for use in your design. If you
are using a different device, then the TFTP bootloader
may be easily ported.

Please write down your answer to the fourth question in
the system definition.
Q4: How do I want to update firmware in my embedded
system?
__
__
__
__
__
__
__
__
__
__
__
__
__
__

Embedded
System

Network Bootloader
(no hardware required)

3 or 5 pin

Adapter

10-pin

10-pin

Power

Run

USB DEBUG ADAPTER

Stop

10-pin

Power

Run

USB DEBUG ADAPTER

Stop

AN292

Rev. 0.3 7

4.5. Translating the System Definition to
Protocol Requirements

One of the benefits of having a formal definition is that a
list of required protocols can be made and used during
hardware and software development.
Table 1 shows the mapping of protocol acronyms to
requirements in the system definition. Please make a
list of the protocols needed by your embedded system
because they will be used for MCU selection and
software generation.
Note: For simplicity, some advanced protocols have
been omitted from Table 1. They are described in the
appendix on page 26.

Table 1. System Definition to Protocol Mapping

If the System Definition Specifies... You need the following protocol(s):

Automatic Network Configuration DHCP

Netfinder Search or Assign Capability NETFINDER

Web Browser Interface HTTP

HyperTerminal/Telnet Interface TCP

E-mail Interface SMTP

Custom Application Interface TCP or UDP depending on application

AN292

8 Rev. 0.3

5. Hardware Design
With a system definition in place, it is now time to start
designing the hardware. The hardware design flow
consists of 5 steps corresponding to the 5 sections of a
schematic for an embedded system with Ethernet
connectivity. The hardware design flow is shown in
Figure 9. Each schematic section is described below:
� Custom application circuitry - sensors, indicators,

and other application-specific circuitry.
� MCU - the main system controller.
� Ethernet Controller - provides the MCU with the

capability to send and receive data over a network.
� Ethernet Connector - the RJ-45 connector,

magnetics, and link/activity LEDs.
� Power circuit - provides the embedded system with

regulated 3.3 V power.

Timesaving Tip: The CP2201 Evaluation Kit schematic
found in the CP2201EK User’s Guide can be used as a
starting point for most designs. Figure 8 shows the 5
blocks of the CP2201EK schematic. Notice that they
match the 5 sections outlined above.

Figure 8. CP2201EK Schematic Blocks

5.1. Custom Application Circuitry
The custom application circuitry includes any
application-specific sensors, control circuitry, interface
headers, etc. that are required to perform the required
system functions specified in the system definition. As
the circuitry is being designed, the system designer
should estimate the power requirements of this section
for use when designing the power circuit.

5.2. Designing the MCU Section
Designing the MCU section involves determining the
required analog peripherals (such as ADCs, DACs,
Comparators, etc.) and estimating the memory and
speed requirements. Based on these requirements, the
most appropriate MCU can be selected and the circuitry
surrounding the MCU can be designed.

Figure 9. Hardware Design Flow
5.2.1. Determining MCU Peripheral Requirements
The analog peripheral requirements of the MCU will
come directly from the system definition. If the MCU
needs to sense an analog voltage, then an ADC will be
required. If the MCU needs to drive an analog output
such as a speaker, then a DAC will be required.

Power Circuit

Unregulated Supply to 3.3V

MCU

‘F340

Ethernet Controller

CP2201

Ethernet Connector

Integrated RJ-45
with LEDs

Custom Application Circuitry

Light Sensor and Yellow LED

Ethernet Controller Circuit

Custom Application Circuitry

MCU Circuit

Ethernet Connector Circuit

Power Supply Circuit

Hardware
Design

Software
Generation

Application
Development

Embedded System
Personalization

Debug

System
Definition

AN292

Rev. 0.3 9

5.2.2. Determining Flash Memory Requirements
The TCP/IP Library requires 16 to 50 kB Flash
depending on the interfaces selected. Figure 11 shows
the Flash requirements of the TCP/IP Library for various
common configurations. The configuration needed for
your embedded system comes directly directly from
question 2 and 3 in the system definition.
5.2.3. Determining RAM Requirements
The TCP/IP Library also requires 3–5 kB of RAM
depending on the protocols enabled. Since buffer sizes
are configurable by the user, RAM requirements will
depend on the user’s desired performance. All
configurations shown in Figure 11 can be implemented
with less than 4 kB RAM except for the largest
configuration on the far right. The largest configuration
requires 4.5 to 5 kB RAM.
5.2.4. Determining MIPS requirements
Any Silicon Laboratories 25 MIPS or greater MCU will
have more than enough CPU bandwidth to run both the
TCP/IP Library and application code. If the application
being developed will benefit from increased CPU
bandwidth, the TCP/IP Library supports high
performance MCUs with up to 100 MIPS.
5.2.5. Selecting an MCU
Any Silicon Laboratories MCU with 32 kB Flash or
higher can be interfaced with the CP220x from a
hardware standpoint. In order to use the TCP/IP
Configuration Wizard and TCP/IP Library, the MCU
must be in one of the following device families: ‘F12x–
‘F13x, ‘F02x, and ‘F34x.
Figure 10 shows a comparison of the three supported
device families. The most full-featured device from each
family was selected for the comparison. Reduced
functionality devices are also available in each family.

See the MCU family datasheet for a description of the
reduced functionality devices.

Figure 10. MCU Family Comparison
The TCP/IP Configuration Wizard is always being
updated to add features and support for additional
devices. Check the Silicon Laboratories Website at
www.silabs.com/ethernet for the latest updates.
5.2.6. Adding Additional Memory
Some applications require more volatile or nonvolatile
memory than available in the MCU. For such
applications, external memory may be added to the
system. The CP220x has 8 K of on-chip Flash that may
be used for storing web server content or as general
purpose nonvolatile memory. Note that nonvolatile
memory added external to the MCU can be used for
data storage, but cannot be used for code execution.
5.2.7. Adding the MCU to the Embedded System
Once the MCU has been selected, it is time to integrate
it into the embedded system. The MCU integration
guidelines on page 12 list the key points that should be
followed when designing the MCU section of the
schematic.

Figure 11. Flash Requirements for Various Interfaces

64 kB Flash
5 kB RAM
50 MIPS

ADC

128 kB Flash
8 kB RAM
100 MIPS

ADC/DAC

64 kB Flash
4 kB RAM
25 MIPS

ADC/DAC

‘F34x

‘F02x

‘F12x

Custom
Application

Interface
(UDP)

Web Browser
Interface
(HTTP)

HyperTerminal
or Custom
Application

Interface
(Telnet/TCP)

E-Mail
Interface
(SMTP)

Web Browser,
E-mail, and

HyperTerminal
Interfaces

(HTTP, SMTP,
and Telnet)

+
Automatic
Network

Configuration
(DHCP, UDP)

16 kB

25 kB
30 kB 30 kB

50 kB

Web Browser
Interface
(HTTP)

+
Automatic
Network

Configuration
(DHCP, UDP)

38 kB

http://www.silabs.com/ethernet

AN292

10 Rev. 0.3

5.3. Ethernet Controller Section
Designing the Ethernet controller section involves
selecting an Ethernet controller and integrating it into
the embedded system.

5.4. System Level Benefits of the CP220x
The CP220x provides many system level benefits for
embedded systems with Ethernet connectivity. Below
are some of the key features of the CP220x:
� Small (5 x 5 mm) package - minimizes system size.
� High speed parallel interface - minimizes CPU

bandwidth spent on transferring data.
� Autonegotiation - allows the use of full-duplex

communication without manually configuring routers
and switches.

� 8 kB Flash with Pre-Programmed MAC Address -
provides additional non-volatile memory in the
system and simplifies product serialization.

� TCP/IP Configuration Wizard - auto generates a
TCP/IP Library and framework code based on the
CMX Micronet(TM) TCP/IP stack.

Currently, two Ethernet controllers are available in the
CP220x family. Table 2 outlines the differences between
the two devices.

5.4.1. Adding the Ethernet Controller to the Embed-
ded System

After an Ethernet controller has been selected, it is time
to integrate it into the system. The CP220x integration
guidelines on page 13 list the key points to follow when
designing the CP220x section of the schematic.

5.5. Ethernet Connector
The CP220x interfaces to an Ethernet cable through an
RJ-45 connector and isolation transformers as shown in
Figure 12. The connector, transformers, and optional
link/activity LEDs can be discrete components or can be
part of an integrated connector.

Figure 12. CP220x Connector Interface
To achieve the smallest board area, an RJ-45 connector
with integrated magnetics and LEDs can be used. The
following should be checked when selecting a
connector:
� Transformer Turns Ratio: The transformer turns

ratio must be 1:2.5 for the transmit side and 1:1 for
the receive side.

� Availability: Connectors with integrated magnetics
have typical lead times from 4 to 16 weeks
depending on the supplier. Please check connector
availability and lead time before designing the
hardware. Note that connectors from different
vendors typically do not share the same footprint.

Table 3 shows a partial list of Ethernet connectors that
are compatible with the CP220x. It also shows the part
numbers for discrete magnetics in case an integrated
connector is not the best choice for the application.

Table 2. CP220x Comparison

Feature CP2200 CP2201

Package TQFP-48 QFN-28

Footprint 9 x 9 mm 5 x 5 mm

Parallel
Interface

Mode

Multiplexed or
Non-Multiplexed

Multiplexed Only

Parallel
Interface
Speed

30 Mbps 25 Mbps

LED Controls 2 1

Link/Activity
Indicators

Separate LEDs Combined LED

CP220x

TX+

TX-

TXP

TXN

TCT

RX+

RX-

RXP

RXN

RCT

8Ω

8Ω

560pF

0.1uF

100Ω

RJ-45
1

2

3

4

5

6

7

8

Chassis
Ground

1:2.5

0.1uF

1:1

Ethernet Connector

AN292

Rev. 0.3 11

5.6. Power Circuit
The power supply circuit should be designed to provide
a regulated 3.3 V DC output capable of delivering
enough current to meet the demands of the entire
system at peak loads. Since the CP220x requires a 3.1
to 3.6 V supply voltage, a 3.0 V regulator cannot be
used. To provide adequate power to the system, the
power supply should be capable of providing the MCU
with at least 1 mA/Mhz and the CP220x with 150 mA
(peak current). The maximum current capacity of the
regulator should always exceed the peak current
requirements of the system.
There are three options for powering the system: 9 V
wall adapter and 3.3 V LDO, Power over Ethernet, and
battery power. These options are described in the
following paragraphs.
5.6.1. 9 V Wall Adapter and 3.3 V LDO
This method is the simplest to implement and is often
the lowest cost. However, because the efficiency of
linear regulators is low, a large amount of heat may be
generated. To dissipate the heat, a multi-layer board
with solid supply and ground planes may be used. An
alternative is to use a switching regulator instead of a
linear regulator.

5.6.2. Power over Ethernet
With the introduction of VoIP phones, powered Ethernet
switches are becoming mainstream and are falling in
price. A powered Ethernet plug delivers power to the
embedded system through the 4 unused wires in the
CAT5 Ethernet cable. To design the power supply circuit
to accept power directly from the Ethernet cable, two
functions are needed:
� An IEEE 802.3af compliant powered device (PD)

interface - this interface provides a signature to the
power sourcing equipment during PD detection and
programs the correct classification mode according
to the 802.3af specification.

� A 48–3.3 V switching regulator to convert the
48 VDC power on the Ethernet cable to 3.3 VDC.

5.6.3. Battery Power
Due to the nature of most network enabled monitoring
and control applications, the embedded system must be
continuously powered. This does not lend itself well for
batteries because batteries will need to be frequently
replaced. If an application only requires Ethernet
connectivity for a few hours at a time, then battery
power may be used. A typical 9 V Alkaline battery can
provide 625 mAH @ 9 V leading to a typical battery life
of 4–10 hours depending on the application and the
amount of power used by the embedded system.

Table 3. Example Part Numbers for Integrated Connectors and Discrete Magnetics

Manufacturer Website Part Number (Integrated) Part Number (Discrete)

Halo www.haloelectronics.com HFJ11-1041[E]-[L12RL] TG41-2006N

Tyco www.tycoelectronics.com [1-]6605752-1 HB724

Pulse www.pulseeng.com J00-0063 E2023

Bel Fuse www.belfuse.com SI-40047 LM01509

http://www.haloelectronics.com
http://www.tycoelectronics.com
http://www.pulseeng.com
http://www.belfuse.com

AN292

12 Rev. 0.3

MCU INTEGRATION GUIDELINES
� Pinout - Each MCU’s pinout is determined by a

Crossbar, which is configured from software. It is
important to verify that the desired device pinout is
possible before finalizing the hardware design.

� Port Input/Output Configuration - When assigning
I/O pins to specific functions, it is important to check
if the selected I/O pins are capable of being
configured to the desired mode. Some pins are
digital only, some are analog only, and some can be
used for either digital or analog signals.
Timesaving Tip: On C8051F02x devices port 4
through port 7, each set of 4 adjacent bits must be
configured to the same output mode. See the
P47MDOUT register description in the C8051F02x
datasheet for more details.

� Special Signals - The port pin selection for special
signals should be chosen carefully to ensure that the
desired functionality is achievable. These special
signals include:
z CP220x Reset Pin (/RST) - This signal should be

connected to a pin configured as an open-drain output
because it may be driven low either by the MCU or by
the CP220x. The port pin selected for this signal should
have the capability of generating a interrupt. This allows
software to detect if the CP220x ever goes into reset
due to a brownout or oscillator-fail condition.

z CP220x Interrupt Pin (/INT) - This signal should be
connected to a digital input pin capable of becoming
External Interrupt 0. This is required by the TCP/IP
Stack Library as outlined in the important notes section
of “AN237: TCP/IP Library Programmer’s Guide”.

z /RD, /WR, ALE, and Address/Data Pins - These
signals should all be configured as push-pull outputs.
During a read operation, the external memory interface
automatically turns off the output drivers (making the
pins high impedance) for the duration of the read
operation.

� Voltage Reference - If the device has an on-chip
voltage reference and the analog peripherals are
used, then VREF decoupling capacitors should be
added to the VREF pin.

� Power and Ground Pins - All power and ground
pins on the device must be connected to power or
ground. Also, be sure to provide adequate power
supply decoupling.

� VDD Monitor - If the MCU has a MONEN pin, then it
should be tied directly to VDD to enable the VDD
Monitor. Some devices also require input from
software to turn on the VDD Monitor. For example,
the ‘F12x and ‘F13x family have a MONEN pin and
require input from software. See the datasheet for
the selected device to determine how to enable the

VDD Monitor.
� Reset and Debug Pins - We recommend placing a

1–5 K pull-up resistor on the reset pin and a 1 K pull-
up on TCK (for JTAG devices). Do not add a
capacitor directly on the debug pins as this may limit
the ability to perform in-system debugging.

� Testpoints - At a minimum, testpoints should be
provided for the debug interface signals C2CK, C2D,
GND and the UART signals TX and RX.
Design Example: The CP2201 Evaluation Board
does not have a programming header, however, it
supports in-system debugging by providing testpoint
access to the C2 Interface debug signals. The
testpoints are located close to the edge of the board
to allow large sized clips to easily connect to the
debug signals without installing actual testpoints. A
custom cable was built that converts the 10-pin USB
Debug Adapter cable to 3 large clips that connect to
C2CK, C2D, and GND on the CP2201EB.
Design Example: The CP2201 Evaluation Board
gives testpoint access to the UART pins to allow
debugging while the MCU is running. Often, if the
MCU is halted to examine registers and memory,
then devices waiting to receive packets from the
MCU will time out. UART based debugging can allow
the MCU to continue processing packets while
printing system status to a UART terminal. Since
packets are transmitted every 100 to 200 ms on
average, the debug messages do not significantly
impact the performance of the MCU.

Figure 13. CP2201 Evaluation Board with
Testpoint Access to C2 and UART Signals

AN292

Rev. 0.3 13

CP220X INTEGRATION GUIDELINES
� Typical Connection Diagram - The CP220x

datasheet has a typical connection diagram for both
multiplexed and a non-multiplexed configurations.
Please follow the typical connection diagram when
designing the CP220x section of the schematic.

� Clock - The CP220x requires a 20 MHz ± 50 ppm
clock with a 50% duty cycle. This can be derived
from a crystal or from a CMOS clock source.

� Power and Ground Pins - All power and ground
pins on the device must be connected to power or
ground. The power supply should be capable of
sourcing 150 mA at a supply voltage of 3.1–3.6 V.
Also, be sure to provide adequate power supply
decoupling.

� Unused Pins - If using the CP2201, there should not
be any unused pins and no input pins should be left
floating. If using the CP2200, only pins marked N.C.
can be left floating.

� Chip Select (/CS) - The chip select input should be
driven low when the CP220x is being accessed by
the MCU. Tying /CS to the most significant bit of the
address bus A15 makes the CP220x occupy off-chip
external memory addresses up to 0x7FFF.
Addresses 0x8000 to 0xFFFF may be used for
adding other devices (such as an external RAM or
Flash) to the external memory bus.

� ALE - The ALE output of the MCU must be
connected to the ALE input of the CP220x if using
the multiplexed bus mode. It is not required if using
the non-multiplexed bus mode.

� Reset Pin - We recommend placing a 4.75 K pull-up
resistor on the reset pin. This is both an input and an
output for the CP220x.

� Interrupt Pin - The interrupt pin is optional if writing
a polled mode driver. The TCP/IP Library uses an
interrupt driven driver, therefore, this signal is
required if the TCP/IP Library is used.

� MOTEN/MUXEN - The MOTEN pin enables the
Motorola bus format when tied high. This pin should
be tied to ground when using a Silicon Laboratories
MCU. The MUXEN pin enables multiplexed mode on
the CP2200 and is not available on the CP2201.

� Link, Activity, Link/Act LED Drivers - The CP2200
has two LED drivers: Link and Activity. The CP2201
has a single LED driver that turns the LED on when
there is a link and blinks it when there is both link
and activity. The LED drivers have push-pull outputs.
See the CP220x datasheet for an LED control
example.

Layout Considerations:

The following guidelines should be followed when laying
out the hardware. Figure 14 shows an example PCB
layout for the CP2201.

Figure 14. CP2201 Evaluation Board Layout
� The traces used for the parallel memory interface

should be matched. The difference in propagation
delay through the address/data, /RD, /WR, /CS, and
ALE signals must not vary by more than 5 ns.

� The CP220x should be located close to the Ethernet
connector.

� The crystal should be located within 1 inch of the
CP220x.

� The traces used for TX+/TX– should be short, thick,
matched and run on the same side of the PCB.
These traces carry current, therefore, using thick
traces minimizes signal loss.

� The traces used for RX+/RX– should be short, thick,
matched, and should run on the same side of the
PCB (if possible).

� The TX+/TX– and the RX+/RX– traces should not
have 90 degree corners and should be shielded by
the ground plane (if possible).

� The Ethernet connector and the rest of the system
should have separate ground planes. The Ethernet
connector’s ground plane can be connected to the
connector chassis.

AN292

14 Rev. 0.3

6. Software Generation
In this step of the system design process, we will be
generating the software that interacts with the CP220x
to provide the embedded system with Ethernet
connectivity. Figure 15 shows the software generation
flow. Using the TCP/IP Configuration Wizard, this step
is one of the easiest steps in the entire system design
process. The TCP/IP Configuration Wizard is available
for download from www.silabs.com/ethernet and is also
included in each MCU development kit.

Figure 15. Software Generation Flow

6.1. TCP/IP Configuration Wizard
When the TCP/IP Configuration Wizard is first
launched, the user is presented with an option tree as
shown in Figure 16. Clicking on an option will show
additional settings in the right-hand pane. In Figure 16
the TCP option is highlighted; therefore, the settings
pane shows the protocol settings for TCP. Enabling the
checkbox next to an option adds support for that option
to the custom library that will be generated.

Figure 16. TCP/IP Configuration Wizard
The checkboxes needed for your application come
directly from the protocol list generated from the system
definition. Recall Table 1 on page 7 which maps
required protocols to items in the system definition.
Please have your protocol list handy as we describe the
TCP/IP Configuration Wizard option tree.

6.2. Selecting Checkboxes
The TCP/IP Configuration Wizard has three main
categories of checkboxes: Hardware Settings, Protocol
Settings, and System Settings. A full listing of all
available options is shown in Figure 17.
6.2.1. Hardware Settings
The first group of checkboxes labeled Communication
Adapter select the device driver that will be added to
your custom library. The default selection is the
CP220x. The TCP/IP Configuration Wizard also allows
you to generate a library that supports the Si245x dial-
up modem or provide your own custom driver.

Hardware
Design

Software
Generation

Application
Development

Embedded System
Personalization

Debug

System
Definition

Launch
TCP/IP Configuration Wizard

Run Generated Project
using Silicon Labs IDE

Select Checkboxes

Generate Project

Settings
Pane

Estimated Code
Size PaneOption Tree

http://www.silabs.com/ethernet

AN292

Rev. 0.3 15

Figure 17. TCP/IP Configuration Wizard
Options

The second group of checkboxes labeled Device
Selection is used to generate a TCP/IP project and
framework code. The framework code includes
initialization routines that configure the custom TCP/IP
Library and initialize the MCU for communication with
the CP220x. The checkbox selection for this group must
match the MCU being used to ensure that the proper

initialization code is generated.
6.2.2. Protocol Settings
The first three checkbox groups under Protocol Settings
are automatically filled in by the TCP/IP Configuration
wizard. The user may choose to select advanced
settings for these protocols or leave them at their default
values. Let us now skip down to the Application Layer
checkboxes, where we will use our required protocol list
to specify our requirements.
You may notice that some protocols in the option tree
are not listed in Table 1 on page 7. These protocols are
more advanced and are described in detail in the
appendix on page 26. Application Note “AN237: TCP/IP
Library Programmer’s Guide” also describes how these
protocols can be used in your embedded system.
6.2.3. System Settings
All customization options under System Settings are
optional. If the system will be using static network
configuration, a default IP address and subnet mask
may be assigned to the embedded system now, or may
be assigned in mn_userconst.h after the project is
generated.

6.3. Generating a Project
After the protocols required to meet your system
definition have been selected, it is now time to generate
the custom TCP/IP Library and supporting project files.
In the TCP/IP Configuration Wizard, press the
File→Generate Project command as shown in
Figure 18.

Figure 18. Generate Project Command

AN292

16 Rev. 0.3

6.4. Running the Generated Code
The TCP/IP Configuration Wizard generates a TCP/IP
Library and supporting code for execution on an MCU
target board with an attached CP2200 Ethernet
Development Board (AB4). This allows immediate
evaluation of the wizard’s output and provides a stable
platform for software development. The AB4 board is
compatible with the ‘F12x, ‘F34x, and ‘F02x Target
Boards.
Once the project has been generated, it may be
managed in the Silicon Laboratories IDE as shown in
Figure 19. A step-by-step tutorial which shows how to
manage the generated project in the Silicon
Laboratories IDE can be found in the Embedded
Ethernet Development Kit User’s Guide. A detailed
description of the generated project files can be found in
“AN237: TCP/IP Library Programmer’s Guide.”
After testing the code on a development board, the code
may be ported to your hardware by changing the
initialization routines. The following items need to be
modified to run the software on new hardware:
� External Memory Interface Initialization - The

EMIF_Init() routine should be modified to configure
the MCU into the correct duplex mode.

� Port Input/Output Initialization - The Port_Init()
routine should be modified to specify the location of
the interrupt pin and configure the input and output
mode of each pin.

� Reset Pin Control Routines - The
ether_reset_high() and ether_reset_low() routines
should be modified such that the reset pin of the
CP220x can be controlled by the library.

Figure 19. Project Management Using the
Silicon Laboratories IDE

7. Application Development
The TCP/IP Configuration Wizard generates the
framework code for basic network functionality. We will
now start developing the application code that gives the
embedded system its required functionality. Figure 20
shows the application development flow.

Figure 20. Application Development Flow

7.1. Application Structure
The application code that will implement the required
system functionality specified in the first question of the
system definition must co-exist and share resources
with the TCP/IP Library. To develop the code, we will
need a good understanding of how the TCP/IP Stack
operates.

Hardware
Design

Software
Generation

Application
Development

Embedded System
Personalization

Debug

System
Definition

Understand TCP/IP
Configuration Wizard Output

Add Bootloader

Add Custom Application Code

Add Network Interface

AN292

Rev. 0.3 17

Figure 21 shows the main application loop for projects
generated using the TCP/IP Configuration Wizard. On
reset, the MCU is initialized then an attempt is made to
establish a network connection. Once the embedded
system is on a network, the mn_server() library routine
is called and typically does not exit unless the device is
disconnected from the network.
The mn_server() routine handles many network tasks
as shown in Figure 22. This includes automatically
responding to web server, ping, and virtual file system
requests.

Figure 21. Main Application Loop

7.2. Adding Application Code
Application code can be inserted in three places as
shown in Figure 22. Each of these ‘application code
holders’ are described in the paragraphs below.
7.2.1. Interrupt Service Routines
The MCU has multiple interrupt sources including
external pin, timer overflow, ADC end-of-conversion,
etc. Application code that requires accurate timing, such
as an ADC sampling engine, should be placed inside a
high or low priority interrupt service routine. Note that
the TCP/IP library uses a low priority interrupt for
communication with the CP220x.
7.2.2. Callback Functions
The TCP/IP Library uses callback functions to notify
application code of certain events such as packet
received, server idle, waiting to receive packet, etc.
Application code that interfaces with the TCP/IP Library
or does not require accurate timing should be placed
inside a callback function. Application Note “AN237:
TCP/IP Library Programmer’s Guide” has a complete
description of all available callback functions.
7.2.3. Common Gateway Interface (CGI) scripts.
The Common Gateway Interface (CGI) is a standard
protocol for communication between a web browser and
a web server. A CGI script is a firmware routine residing
on the embedded web server that may be executed by
clicking on a link or button inside a web browser.
CGI scripts are capable of accepting data from a web
browser and returning dynamically created web pages
for display in the web browser.

Figure 22. Application Code Model For MCU Firmware After mn_server() is Started

Reset

MCU Initialization

Establish Network
Connection

Start mn_server()

Connection Lost

Ethernet
MAC/PHY

8 kB
Flash

Memory

CP220xMCU

mn_server()

MCU
Flash

Memory

Virtual File
System

CGI
Scripts

Interrupt
Service

Routines

Callback
Functions

Insert Application Code Here

Network

AN292

18 Rev. 0.3

7.3. Developing a Web Browser Interface
The application code added to the embedded system
should allow it to meet the required system functionality
specified in question 1 of the system definition. We will
now develop an example system and demonstrate how
to build a network interface.
Our example system will provide remote monitoring
capability for a light sensor. A block diagram of the
example system is shown in Figure 23.

Figure 23. Example System Block Diagram
The software for this system can be generated by the
TCP/IP Configuration Wizard. The only required
application layer protocol is HTTP. After generating the
basic project, we have added an interrupt-based ADC
sampling engine. From this point, we will assume that
we always have access to a global variable called
ambient_light.
7.3.1. Creating Common Gateway Interface (CGI)

Scripts
Our goal in this section is to view the ambient_light
variable from a web browser. To exchange data with a
web browser, we will need to use the common gateway
interface. Thanks to the TCP/IP library, this task is as
simple as placing application code inside an empty
function stub.
The first step to creating a CGI script is to create a new
function stub as follows:
// Prototype:
void get_data(PSOCKET_INFO socket_ptr);

// Definition:
void get_data(PSOCKET_INFO socket_ptr)
{

// Insert application code here.
}

To make our new CGI script visible to a web browser,
we must add it to the virtual file system. The following
code adds the CGI script to the virtual file system:

void main(void)
{

// Initialization Code
...

// Add CGI Script to Virtual File System
mn_pf_set_entry(

(byte*)"get_data",
get_data

);

// Start mn_server()
...

}

Note: (byte*) “get_data” is the string which
the web browser will use to call our CGI
script.

Note: <get_data> is a function pointer to our
new CGI script.

The last step to creating our new CGI script is making
sure we have enough empty slots in the virtual file
system to add our new CGI script. Open the
mn_userconst.h header file and scroll down to the
num_post_funcs constant. This value should be greater
than or equal to the number of CGI scripts added to the
file system.
7.3.2. Adding Application Code to a CGI Script
Our new CGI script should now be executable from a
web browser. To test this functionality, we can place a
breakpoint on the CGI script and call it from a web
browser. Assuming our embedded system has an IP
address of 10.10.10.163, we can call the CGI script
from a web browser as follows:
http://10.10.10.163/get_data?

This should cause code execution to stop at the
breakpoint. To pass data to the CGI script, we can call it
from a web browser as follows:
http://10.10.10.163/
get_data?type=html&setbgcolor=yes

When text is passed after the question mark following
the IP address and script name, it is automatically
copied by the TCP/IP library to the global BODYptr
buffer. The size of this buffer can be set by modifying
the body_buffer_len constant in mn_userconst.h.

Embedded
System

Light
Sensor

Web Browser

AN292

Rev. 0.3 19

The TCP/IP library provides the mn_http_find_value()
function to parse the incoming data. Application code
can parse the information in the BODYptr as shown in
the following example:
byte msg_buff1[52];
byte msg_buff2[52];

// Search for the “type” field and store the
// result in <msg_buff1>.
status1 = mn_http_find_value (BODYptr,

(byte*)"type", msg_buff1);

// Search for the “setbgcolor” field
// and store the result in <msg_buff2>.
status2 = mn_http_find_value (BODYptr,

(byte*)"setbgcolor",msg_buff2);

// Check status1 and status2 to determine if
// msg_buff1 and msg_buff2 are valid.
if(status1 && status2){

...
}

Using the data passed in msg_buff1 and msg_buff2,
application code can perform an application-specific
task, then fill a memory buffer with data it wishes to
return to the web browser.
7.3.3. Sending a Web Page to the Web Browser
Once we have received the browser’s request, we can
generate a web page containing the value of
ambient_light and return it to the web browser. We do
this with the following code:
static byte html_buffer[256];

// Write the HTML code to a buffer.
sprintf(html_buffer, “<HTML>%i</HTML>”,

ambient_light);

// Fill the socket with data to send.
socket_ptr->send_ptr = html_buffer;
socket_ptr->send_len = strlen(html_buffer);

// Return from the CGI script
return;

The above code makes a very simple HTML page
containing the value of ambient_light and stores it in a
buffer. The buffer is sent to the web browser using the
socket pointer provided by the TCP/IP library as the first
parameter in the CGI script. A socket is a data structure
that allows application code to send and receive data
using the TCP/IP library.
Data is sent using the socket by specifying its starting
address and length. As soon as the CGI script returns,
the TCP/IP library will check the socket’s send_len field
for a value greater than zero and send the html page to
the web browser. Note that the temporary HTML buffer

must be a global variable because it is accessed after
the CGI script returns.

7.4. HyperTerminal (Telnet) Interface
We will now add a Telnet interface to our example
embedded system to allow access from Telnet clients
such a HyperTerminal, PuTTy, Microsoft Telnet, etc. The
TCP/IP library provides callback functions which make
implementing a Telnet interface very easy.
The TCP/IP library functions used for implementing a
Telnet server interface are:
� mn_open()
� callback_app_server_process_packet()
� callback_app_server_idle()
� mn_send()
� callback_socket_closed()
� mn_close()
7.4.1. Starting the Embedded Telnet Server
The first step to creating a Telnet server is opening a
passive TCP socket at port 23, the well known port
number for Telnet. This can be done using the
mn_open() routine. A passive socket means that it will
wait for a client to connect, rather than actively trying to
establish a connection. It is the most suitable type of
socket for implementing a server application.
Once the user starts a Telnet session (e.g. by pressing
the “connect” button in Hyperterminal), the Telnet client
will attempt to establish a TCP connection with the
embedded Telnet server. If the connection attempt is
successful, the TCP/IP library will alert application code
using the callback_app_server_process_packet()
callback function. Below is an example of application
code placed inside this callback function:

callback_app_server_process_packet
(PSOCKET_INFO socket_ptr)

{
// Check if the incoming packet
// was addressed to Port 23
if(socket_ptr->dest_port == 23){

if(TELNET_STATE == WAITING){
// Change Telnet State Variable
TELNET_STATE = CONNECTED;

// Display Welcome Message
mn_send(telnet_socket_no,

TELNET_WELCOME_STR,
sizeof(TELNET_WELCOME_STR));

}
}

}The mn_send() routine used in the above example can
be used to send data back to the Telnet client that has
just established a connection.

AN292

20 Rev. 0.3

7.4.2. Communication During the Telnet Session
Now that the Telnet connection is fully working, either
the server or the client may send data to the other
device. The client sends data to the embedded system
when the user types characters into the keyboard, and
the embedded system may update the client’s screen
using the mn_send() routine. The two callback functions
used in the “connected” state are:
� callback_app_server_process_packet() - called by

the TCP/IP library when a packet is received from
the client. Application code can access the received
data by reading from socket_ptr->recv_ptr up to
socket_ptr->recv_len bytes.

� callback_app_server_idle() - periodically called
when the TCP/IP library is not sending or receiving
packets. Application code, including calls to
mn_send(), may be placed in this callback function.

7.4.3. Ending a Telnet Session
The Telnet session may be ended by either the client or
the embedded server. The Telnet session is considered
closed when either end of the TCP connection is lost.
On the embedded server, the TCP connection may be
closed by calling the mn_close() routine. The Telnet
client closes the TCP connection when the user clicks
the “disconnect” button or the window is closed.
If the Telnet client closes the connection, application
code is notified using the callback_socket_closed()
callback function. In case the client loses power and is
unable to cleanly close the TCP connection, application
code may not receive notification that the connection
has been lost. To handle this case, application code
may implement a timeout.
7.4.4. Data Rate Considerations
Since Telnet uses the TCP transport protocol, each
packet sent must be acknowledged by the receiver
before further packets may be sent. This causes the
transfer rate to be dependant on how fast the receiving
device can acknowledge a packet.
If the Telnet connection uses uni-directional data flow,
then it may be affected by a congestion control
algorithm called TCP delayed acknowledgement. This
algorithm causes most PCs to withhold packet
acknowledgement until it needs to send data back to the
embedded system or a 200 ms timeout expires. This
phenomenon limits the data rate of uni-directional TCP
traffic to 5 packets per second. Most applications such
as Web Server, E-mail, etc. that use bi-directional data
flow are not affected by this phenomenon.
More information is available from Microsoft
Knowlegebase Article 214397 available from
http://support.microsoft.com/.

7.5. Transferring Data By Email
E-mail transmission across the Internet requires a
network infrastructure. The network infrastructure for e-
mail consists of outgoing mail servers (SMTP) and
incoming mail servers (POP, IMAP, HTTP). The
incoming and outgoing mail servers handle the routing
and queuing of e-mails as they are sent across the
Internet.

Figure 24. E-Mail Transmission
The TCP/IP stack implements the SMTP protocol which
allows the MCU to communicate with an outgoing mail
server. Several pieces of information are required for an
MCU to send e-mail. These are:

z IP address of the SMTP server.
z Destination e-mail address (TO field).
z Return e-mail address (FROM field).
z Subject.
z Message Body.
z Attachment Name.
z Attachment Contents.

Each of the information fields above can be stored in
dynamic RAM buffers or in static code constants. The
only restriction on the information in the buffers is that it
must be plain text (ASCII). Binary files such as images
can only be sent if the MIME protocol is used to convert
the binary attachment to ASCII.
If an SMTP server is not available on your network, then
software SMTP servers, such as the PostCast server
available from www.postcastserver.com allow any PC
on the network to become an SMTP server.
A firmware example of sending e-mail is located in the
Ethernet examples folder. For a typical IDE Installation,
this folder’s path is “C:\Silabs\MCU\Examples\
C8051F...\Ethernet.

Outgoing Mail Server
(SMTP)

Incoming Mail Server
(POP, IMAP, HTTP) Internet

E-Mail Infrastructure

http://support.microsoft.com/
http://www.postcastserver.com

AN292

Rev. 0.3 21

7.6. Custom Application Interface
The TCP/IP Stack allows opening TCP and UDP
sockets for communication with custom applications.
The firmware required to implement the custom
interface is very similar to a Telnet interface. If the
custom application chooses to use UDP, then the
maximum data transfer rate will increase and the
application may use broadcast packets; however, the
reliability and connection-oriented nature of TCP will be
lost. See the Appendix on page 26 for a detailed
comparison between TCP and UDP.
Timesaving Tip: If a listening UDP socket receives a
packet from a device, the socket is automatically bound
to the IP address and port number of the sender. This
means that the embedded system may only send
packets to and receive packets from the device that has
sent it a packet. To allow packet transmission and
reception to/from other devices, the socket must be
reset by closing and re-opening it. See Application Note
“AN237: TCP/IP Library Programmer’s Guide” for a
complete description of the TCP/IP Library API.

7.7. Running without a Network
The TCP/IP Library can detect when the CP220x has
been disconnected from a network and causes the
mn_server() routine to exit. In most systems, the library
will immediately be re-initialized using mn_init() then
software will enter the establish_network_connection()
routine. This routine does not exit until a network
connection has been established.
The establish_network_connection() routine can be
customized to perform specific system functionality
while waiting for a network connection.

7.8. Managing RAM
On devices with 4 kB RAM, the RAM usage should be
managed as the application is being developed to
ensure that the RAM usage does not exceed the
amount of physical RAM on the device. If using the
‘F340 MCU and not utilizing the USB interface, the USB
FIFO RAM may add up to 1 kB of additional RAM for
use by the TCP/IP Library or application code.
All buffers used by the TCP/IP Library are adjustable by
the user. The buffer sizes can be configured in the
mn_userconst.h header file.
Timesaving Tip: DHCP requires a large RAM buffer
(548 bytes) for acquiring and renewing the embedded
system’s IP address. Since this buffer is used only
during initialization and seldom otherwise, some of the
RAM can be temporarily recovered. For example, in the
CP2201EB, the last 504 bytes of the DHCP buffer
(starting with the sname field of the dhcp_info structure)

are used as a general purpose buffer for dynamically
creating web page content using sprintf().

7.9. Saving Data to Flash
If the system definition requires storing a static IP
address in Flash, either the Flash on the MCU or the
Flash on the CP220x may be used. Note that using the
CP220x Flash to store an IP address or other data will
allows more of the MCU’s Flash to be used as
executable program memory.
Application Note “AN201: Writing to Flash from
Firmware” provides pre-written routines for writing the
MCU’s Flash. The TCP/IP library also provides routines
for reading and writing the CP220x Flash. The TCP/IP
Library API can be found in “AN237: TCP/IP Library
Programmer’s Guide.”

7.10. Implementing a Network Bootloader
To update firmware over the network, a TFTP
bootloader can be used to transfer a new firmware
image to the embedded system. To use a bootloader to
update firmware, a special build of the TCP/IP Library is
required. This library is located at address 0x2400 in
code space to allow room in Flash for a bootloader.
The special libraries can be found in a folder named
“ExtraLibraries” typically found in
C:\SiLabs\MCU\TCP-IP Config\ExtraLibraries.
An example project which uses the bootload libraries is
located in C:\SiLabs\MCU\Examples\C8051F34x\
Ethernet\CP2201EK_SOURCE\CP2201EK_AB4_BL.
For more information about the bootload libraries,
please see the MCU Knowlegebase, available from
www.silabs.com/support.

http://www.silabs.com/support

AN292

22 Rev. 0.3

8. Personalizing the Ethernet
Enabled Embedded System

Now that the application has been developed, it is time
to add personalized content (e.g. web pages, images,
etc.) to the embedded system. The two primary areas
that require customization are network configuration
and web server interface. Figure 25 shows the
embedded system personalization flow.

Figure 25. Embedded System Personalization
Flow

8.1. Customizing Network Configuration
If the embedded system has Netfinder enabled, then the
TCP/IP Configuration Wizard will generate two
additional files in the project directory: netfinder.c and

netfinder.h. These files may be used as-is or modified to
suite the application requirements.
Figure 26 shows a screenshot of the Netfinder utility
after finding an embedded system that has been loaded
with the default netfinder.c and netfinder.h files. The
following fields can be customized by modifying the
customization strings in netfinder.h:
� Device Name.
� Text Description.
� Definition of Event 1 (e.g. Time Powered).
� Definition of Event 2 (e.g. Time on Network).

Figure 26. Netfinder Utility Screenshot
If Netfinder capability is needed in your system, you
may use the dedicated Netfinder utility or integrate
Netfinder functionality in your own custom application.
“AN237: TCP/IP Library Programmer’s Guide” provides
the information required to search for Netfinder-enabled
devices on a local area network.

8.2. Customizing the Web Server Content
The TCP/IP Configuration Wizard generates a basic
“Hello World” web page when web server functionality is
included in the generated library. The single-page “Hello
World” website can be modified as shown in the
Embedded Ethernet Development Kit User’s Guide or a
multi-page website with images and Javascript can be
developed and stored in the embedded system.
8.2.1. Adding Web Pages and Images
Recall our example embedded system described in
Section 7.3 on page 18. We will now develop and add
web pages to display our light sensor data inside a web
browser.
We will be designing the HTML pages on a PC and
adding them to the embedded system using the
procedure illustrated in Figure 27 and summarized
below:
1. Develop the HTML content and preview on a PC.

Hardware
Design

Software
Generation

Application
Development

Embedded System
Personalization

Debug

System
Definition

Customize Network
Configuration

Add HTML Web Pages
to the Web Server

AN292

Rev. 0.3 23

Make a note of the file sizes as you are developing
the content. An image that is 3 kB on the PC will
consume 3 kB of Flash memory.

2. Use the HTML2C utility to convert the HTML content
to file arrays. For each file array, the HTML2C utility
generates a (.c) source file and a (.h) header file.

3. Include the header file at the beginning of main.c.
4. Add the source file to the project and to the project

build.
5. Add each file array to the virtual file system using the

mn_vf_set_entry() function. See “AN237: TCP/IP
Library Programmers Guide” for more details.

6. Modify the num_vf_pages constant in
mn_userconst.h such that the value is greater than
or equal to the total number of files arrays added to
the file system.

Figure 27. Adding HTML Content
For additional information, the Embedded Ethernet
Development Kit User’s Guide has a step by step
tutorial which shows how to use the HTML2C utility.

8.2.2. Creating Basic HTML Content
HTML stands for Hyper Text Markup Language and is a
file format used to specify web page content. The HTML
language uses tags tell the web browser how to display
a web page. Below is an example of a simple web page:
<html>

<!-- HTML comments take up code space -->
<head>

<title>Hello World</title>
<head>

<!-- Whitespace takes up code space -->
<body bgcolor="green">

<h1>Hello World!</h1>

This page is served from a C8051F12x
and uses the Silicon Laboratories TCP/
IP stack.

</body>
</html>

Designing HTML content will require some knowledge
of how web pages are created. If you are not familiar
with the HTML language used to compose web pages,
you can use applications such as Frontpage or
Microsoft Word to generate web pages. This method is
not preferred because the output of such applications is
not optimized and quickly fills up code space.
If you are willing to learn HTML, there are excellent
tutorials on the Internet. Below are some links to
websites that have HTML tutorials:
HTML Tutorials and Examples:
http://www.w3schools.com/html/default.asp*
http://www.htmlgoodies.com/primers/html/
http://www.pagetutor.com/
* Recommended as a starting point.
8.2.3. HTML Frames - A page within a page.
Now that we have a basic web page, we will add a
display showing the light sensor data. Since our CGI
script returns an HTML page, we will create a frame
inside our main HTML page to display the page
returned from our CGI script. Below is an example of
adding an inline frame to a web page:
<html>

...

<body bgcolor=”green”>

<!-- Add an inline HTML frame -->
<iframe src="get_data?type=html">
</iframe>

</body>

</html>
Notice that in the <iframe> tag, we have specified the
relative path of the CGI script, which will provide the
content for the new frame. Example usage of inline

#include webpage.h

void main()
{
 ...
 mn_vf_set_entry();
 ...
}

HTML Content
examples

 .html (web pages),
.jpg, .gif (images),

.class (Java),

html2c

.H files
ex.

(webpage.h)

.C files
ex.

(webpage.c)

main.c

…

…

#define num_vf_pages 2

...

mn_userconst.h

http://www.w3schools.com/html/default.asp
http://www.pagetutor.com/
http://www.pagetutor.com/
http://www.pagetutor.com/
http://www.pagetutor.com/

AN292

24 Rev. 0.3

frames can be found in the CP2201EK.

Figure 28. Displaying Data Inside a Frame
8.2.4. Using Javascript to Automate a Web Page
An inline frame is a good way to display sensor data;
however, the user must refresh the web page to update
the display. After several minutes, this can become very
tedious. The solution... Javascript.
Javascript is a browser scripting language that is used
to automate common browser tasks. The CP2201EK
uses Javascript to refresh the sensor data displayed
inside the inline frames. The Javascript code used for
performing these operations in the CP2201EK can be
examined by selecting the “view source” command in
the web browser. Below is a simple example of
refreshing a frame using Javascript:
<html>

<head>
<script type="text/javascript">
var delay = 2000;
function refresh()
{

document.getElementById("frame1")
.src="get_data?type=html";

setTimeout("refresh()", delay);
}
</script>

</head>

<body bgcolor=”green” onload=”refresh()”>

<!-- Add an inline HTML frame -->
<iframe id="frame1" src="about:blank">
</iframe>

</body>

</html>

The webpage containing this Javascript example has a
single blank <iframe> and a single Javascript function
named refresh(). Once the HTML page is loaded by the

web browser, the refresh() function is executed because
we have added the onload = “refresh()’” statement to
the <body> tag.
The refresh() function performs two tasks. First, it forces
a reload of the frame contents by setting its src field to
the relative path of the CGI script.
Second, it starts a timeout of delay milliseconds by
calling setTimeout(function, time). This Javascript
function allows a specified function to be called after the
specified time. In this example, each call to refresh()
triggers a new call to refresh() 2 seconds later. This
allows the sensor data to be continuously refreshed
every 2 seconds.
Below are some links to websites that have additional
Javascript tutorials and examples:
Javascript Tutorials and Examples:
http://www.w3schools.com/js/
http://www.htmlgoodies.com/beyond/javascript/
http://www.webteacher.com/javascript/
8.2.5. Collecting Data Using HTML Forms
HTML forms are another web page construct that may
be used for sending data to a CGI script. An HTML form
collects data in text fields on a web page and passes it
to the embedded system by calling a CGI script. Below
is an example of an HTML form:
<form action="get_data" target="_blank">

SMTP Server:

<input type="text" name="server">

To:

<input type="text" name="to">
<input type="submit" value="Send">

</form>

Figure 29 shows this form inside an HTML page. When
the user presses the Send button (input type = submit),
the get_data CGI script will be called as follows:
/get_data?server={text}&to={text}

The fields labeled {text} come from text entered by the
user inside the HTML page. The target = “_blank”
statement causes the data returned from the embedded
system to be displayed on a new page.

Figure 29. HTML Form

http://www.w3schools.com/js/
http://www.htmlgoodies.com/beyond/javascript/
http://www.webteacher.com/javascript/

AN292

Rev. 0.3 25

9. Debugging Embedded Ethernet
Occasionally when developing an Embedded Ethernet
system, a problem is encountered. Debugging and
finding the cause of the problem can be simplified if the
problem can be isolated to specific part of the system.
There are four conditions that may be checked that help
isolate the problem to a specific piece of the system.
They are illustrated in Figure 30 and described below:
� Is the PC sending the correct data?
� Is the embedded system receiving the correct data?
� Is the embedded system transmitting a response?
� Is the PC receiving the embedded system’s

response?
On the PC side, a packet capture utility such as
Wireshark can be used to view network traffic being
received and transmitted by the PC. Wireshark is a
widely used open-source utility available for download
from www.wireshark.org.
On the embedded system side, a UART terminal may
be used to view debug messages printed by the debug
version of the TCP/IP Library. Some of the messages
printed by the library are “packet received”, “packet
transmitted”, “packet skipped”, “device reset”, etc. An
example of a problem that may be solved by these
messages is a receive buffer that is sized too small. In

this case, the user would continue to see “packet
skipped” messages for every packet sent by the PC
larger than the receive buffer size.
The debug libraries can be used by adding UART
initialization code to the embedded system. This allows
the library to print messages using the printf() library
function. The debug libraries can be found in a folder
named “ExtraLibraries” typically found in
C:\SiLabs\MCU\TCP-IP Config\ExtraLibraries.
Example projects which uses the debug libraries are
located in C:\SiLabs\MCU\Examples\C8051F34x\
Ethernet\CP2201EK_SOURCE\CP2201EK_AB4_DBG
and C:\SiLabs\MCU\Examples\C8051F12x\Ethernet\
DEBUG.
If the embedded system does not have an RS-232 level
translator, the level translator for any target board may
be borrowed to debug the embedded system.
Alternatively, the CP210x evaluation boards may be
used to convert TTL level UART signaling to a virtual
COM port on the PC.
An alternative method of debugging is halting the MCU
and viewing the CP220x registers in the Silicon
Laboratories IDE. The memory windows associated
with the CP220x allow the user to view the direct and
indirect registers, transmit buffer, receive buffer and
Flash memory.

Figure 30. Embedded Ethernet Debug Setup

Embedded
System PCNetwork

Wireshark
Utility

UART
Terminal

12

3 4

http://www.wireshark.org

AN292

26 Rev. 0.3

APPENDIX—THE BASICS OF TCP/IP
TCP/IP refers to a set of standard protocols used for
communication over a network. The protocols are
based on the Open Systems Interconnection (OSI)
Model, a layered abstract description of network
communication. The layers specified in the OSI model
are structured such that each layer only depends on the
layers below it. Implementations of the OSI Model, such
as TCP/IP, result in a protocol stack as shown in
Figure 31 which describes functionality both at the
application layer and at the low level physical interface.
9.0.1. Physical Layer
The physical layer is typically implemented in hardware
and can use a wide variety of interfaces. This allows
networks to consist of Ethernet devices, wireless
devices, dial-up modem devices, or a combination of all
three.
9.0.2. Data Link Layer
The data link layer is implemented in both software and
hardware. It contains the low level device driver and the
Ethernet Media Access Controller (MAC). At this level,
data is exchanged in IEEE 802.3 Ethernet frames using
physical addressing.
The CP220x is a single-chip Ethernet controller
containing the physical and data link layers, buffer
space, and 8 kB Flash memory pre-programmed with a
unique physical address.

9.0.3. Network Layer
The network layer builds on top of the data link layer by
implementing logical addressing. Logical addressing
allows devices with different data link and physical
layers to communicate. It also allows devices to have a
temporary address that can be easily changed or re-
assigned as it moves between networks. The logical
address is also called an IP Address.
Devices with different data link and physical layers can
communicate using their logical addresses because of
the Address Resolution Protocol (ARP). ARP is a
protocol used to map the logical IP Address to a
physical address. For Ethernet, the physical address is
the MAC address, however, this can be different for
other types of networks such as dial-up networking.
The PING protocol allows a user to check if a device
assigned to a particular IP address is responding. A
PING application sends a small packet to a device’s
logical address and measures the time it takes to
receive a response. This round trip time can be used to
estimate network latency.
9.0.4. Transport Layer
The transport layer builds on the network layer by
dividing each IP address into 65536 ports. This allows
multiple applications to run on a network node using a
single IP address. A packet’s full destination at the
transport level includes both an IP address and a port
number.

Figure 31. TCP/IP Protocol Stack

H ardw are (E the rne t, M odem , e tc .)

H a rdw are D evice D rive rs

IP + A R P /P IN G

T C P U D P

H T T P F T P S M T P T F T P N etfinder D H C P
B O O T P

P hys ica l

D a ta L ink

N e tw ork

T ransport

A pp lica tion D N S

AN292

Rev. 0.3 27

There are two types of ports (also called sockets) at the
transport level: TCP and UDP. Each is described below:
� Transmission Control Protocol (TCP) - TCP is a

connection-oriented protocol providing a reliable
byte-stream between two devices. Data delivery is
guaranteed and always arrives in-order.

� User Datagram Protocol (UDP) - UDP is a
connectionless protocol providing fast, best effort
datagram delivery. A single node may broadcast or
multicast packets to multiple nodes.

Table 4 compares the TCP and UDP transport layer
protocols. Most network nodes implement one or both
of the transport layer protocols.
9.0.5. Application Layer
The application layer is the topmost protocol level and
directly implements the user interface. Each user
interface relies on either UDP or TCP at the transport
layer. Based on this, the application layer protocols can
be divided into two groups. The application layer
protocols below rely on UDP:
� Automatic Network Configuration (BOOTP/

DHCP) - These protocols allow the embedded
system to automatically acquire an IP address from
the network. A DHCP/BOOTP server must exist on
the network. BOOTP is an older and less efficient
version of the DHCP specification but is provided for
compatibility with older network hardware.

� Netfinder - The netfinder protocol allows a PC
application to search for embedded systems on a
network. When using DHCP, this saves space and
hardware costs because the embedded system does
not need to display its IP address on an LCD screen.
Multiple embedded systems can be differentiated
through an external event path.

If DHCP is not used, the Netfinder protocol allows a
PC application to assign a static IP address to an
embedded system. This also saves space and
hardware costs because static IP address
assignment occurs over the network. A second
interface (e.g. UART, keypad, etc.) is not required to
program the IP Address.

� Trivial File Transfer Protocol (TFTP) - The TFTP
protocol is a simple way to transfer files. It is typically
used to update firmware or download configuration
information from a TFTP server.

The application layer protocols below rely on TCP:
� Hyperterminal/Telnet Interface (TCP) - A

Hyperterminal/Telnet interface is the simplest
interface that can be implemented using TCP. Data
is transmitted in both directions and is displayed on a
terminal very similar to UART/RS-232.

� Web Server Interface (HTTP) - HTTP stands for
Hyper Text Transfer Protocol and is used to transfer
information (web pages, images, etc.) for display
inside a web browser. This protocol allows an
embedded system to be monitored and controlled
from a web browser.

� E-mail Interface (SMTP) - SMTP stands for Simple
Mail Transfer Protocol and is used to send e-mail
messages. This interface allows the embedded
system to send e-mail with or without attachments.

� File Transfer Protocol (FTP) - This protocol allows
the embedded system to become an FTP server
accessible from an FTP Client. Files may be
uploaded or downloaded to the embedded system.

� Domain Name Service (DNS) - This protocol allows
domain names such as www.silabs.com to be
resolved into an IP address.

Table 4. TCP/UDP Protocol Comparison

Feature TCP UDP

Complexity High Low

Packet Delivery Guaranteed. Uses acknowledgements
and retransmits lost packets.

Best Effort. Lost packets are not retransmitted.

Speed Slow. Retransmitted packets and
overhead affect data rate.

Fast. Very low overhead since each packet is
transmitted only once.

Data Stream A TCP connection implements a byte
stream between two devices very similar
to a virtual RS-232 cable.

Each UDP datagram is self-contained. Data
only arrives in-order if it fits inside a single
datagram.

Broadcast Capability TCP requires two devices to establish a
connection.

Any network node may broadcast/multicast a
datagram to any number of devices.

AN292

28 Rev. 0.3

DOCUMENT CHANGE LIST:
Revision 0.2 to Revision 0.3
� Corrected various typos.
� Corrected reference to table 3 in Section "5.5.

Ethernet Connector" on page 10.
� Corrected reference to Figure 19 on page 16.
� Updated references to Ethereal, now named

Wireshark in Section "9. Debugging Embedded
Ethernet" on page 25.

AN292

Rev. 0.3 29

NOTES:

AN292

30 Rev. 0.3

CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Email: MCUinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories, Silicon Labs, and USBXpress are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

	1. Introduction
	2. Embedded Ethernet Connectivity
	3. How to Use This Design Guide
	4. System Definition
	4.1. Specifying Required Functionality
	4.2. Specifying Access Method
	4.3. Specifying Configuration Method
	4.3.1. Automatic Network Configuration
	4.3.2. Searching for Automatically Configured Embedded System Using Netfinder
	4.3.3. Static Network Configuration
	4.3.4. Assigning an IP Address Using Netfinder

	4.4. Specifying Field Re-Programmability Requirements
	4.4.1. Updating Firmware using a Header
	4.4.2. Updating Firmware over the Network

	4.5. Translating the System Definition to Protocol Requirements
	Table 1. System Definition to Protocol Mapping

	5. Hardware Design
	5.1. Custom Application Circuitry
	5.2. Designing the MCU Section
	5.2.1. Determining MCU Peripheral Requirements
	5.2.2. Determining Flash Memory Requirements
	5.2.3. Determining RAM Requirements
	5.2.4. Determining MIPS requirements
	5.2.5. Selecting an MCU
	5.2.6. Adding Additional Memory
	5.2.7. Adding the MCU to the Embedded System

	5.3. Ethernet Controller Section
	5.4. System Level Benefits of the CP220x
	Table 2. CP220x Comparison
	5.4.1. Adding the Ethernet Controller to the Embedded System

	5.5. Ethernet Connector
	Table 3. Example Part Numbers for Integrated Connectors and Discrete Magnetics

	5.6. Power Circuit
	5.6.1. 9 V Wall Adapter and 3.3 V LDO
	5.6.2. Power over Ethernet
	5.6.3. Battery Power

	6. Software Generation
	6.2. Selecting Checkboxes
	6.2.1. Hardware Settings
	6.2.2. Protocol Settings
	6.2.3. System Settings

	6.3. Generating a Project

	7. Application Development
	7.1. Application Structure
	7.2. Adding Application Code
	7.2.1. Interrupt Service Routines
	7.2.2. Callback Functions
	7.2.3. Common Gateway Interface (CGI) scripts.

	7.3. Developing a Web Browser Interface
	7.3.1. Creating Common Gateway Interface (CGI) Scripts
	7.3.2. Adding Application Code to a CGI Script
	7.3.3. Sending a Web Page to the Web Browser

	7.4. HyperTerminal (Telnet) Interface
	7.4.1. Starting the Embedded Telnet Server
	7.4.2. Communication During the Telnet Session
	7.4.3. Ending a Telnet Session
	7.4.4. Data Rate Considerations

	7.5. Transferring Data By Email
	7.6. Custom Application Interface
	7.7. Running without a Network
	7.8. Managing RAM
	7.9. Saving Data to Flash
	7.10. Implementing a Network Bootloader

	8. Personalizing the Ethernet Enabled Embedded System
	8.1. Customizing Network Configuration
	8.2. Customizing the Web Server Content
	8.2.1. Adding Web Pages and Images
	8.2.2. Creating Basic HTML Content
	8.2.3. HTML Frames - A page within a page.
	8.2.4. Using Javascript to Automate a Web Page
	8.2.5. Collecting Data Using HTML Forms

	9. Debugging Embedded Ethernet
	9.0.1. Physical Layer
	9.0.2. Data Link Layer
	9.0.4. Transport Layer
	9.0.5. Application Layer
	Table 4. TCP/UDP Protocol Comparison

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

