SILICON LABS

AN148

MAGNETIC STRIPE READER

Relevant Devices

This application note applies to the following devices:
C8051F330

1. Introduction

Magnetic stripe readers (MSRs) are widely used in
many different applications such as point-of-sale
terminals and key card readers. The C8051F330 is
capable of integrating MSR functionality in a very small
space with few external components. The high-speed,
high-resolution ADC, coupled with a fast controller core
makes this integration possible. This design
demonstrates a two-channel MSR function using the
on-chip ADC to read information directly from the
magnetic read head. Output can be viewed using a
PC’s terminal program via an RS-232 connection.

2. MSR Background

There are a number of different formats used for
encoding information on magnetic stripes, and many
different types of card readers available. This design
demonstrates a swipe-type reader that reads Track 1
and Track 2 of cards encoded using the ISO/IEC-7811
standard. A firmware example for reading Track 1, 2,
and 3 is also provided.

2.1. Encoding
The encoding format used by the ISO/IEC-7811
standard is known as “F2F” or “Aiken Biphase”

encoding. The F2F encoding format allows the serial
data to be self-clocking. Bits are encoded serially on the
magnetic stripe using a series of magnetic flux
transitions. Each bit of data on a track has a fixed
physical length on the magnetic stripe. Flux transitions
are located at the edge of each bit, and also in the
center of each “1” bit. As the stripe passes the magnetic
read head, the flux transitions on the stripe are
converted into a series of alternating positive and
negative pulses, as shown in Figure 1. After
determining which flux transitions represent the edges
of a bit, ones and zeros can be differentiated by the
presence or absence of a pulse in the center of the bit.

Device Utilization
3.7k/7.5k
402/768
RaVIIE (o

Pins
2.2. Data Format

The data format specified by ISO/IEC-7811 encodes
7-bit (6 bits + parity) characters on Track 1, and 5-bit

(4 bits + parity) decimal characters on Track 2. Track 3
may contain 7-bit or 5-bit encoding, depending on the
card. Characters are written to the stripe LSB-first, with
the parity bit written last. All tracks contain leading and
trailing zeros at the ends of the stripe to aid the clock
recovery process. When read in the forward direction, a
typical track contains information in the following order:

Clocking zeros
A start sentinel character
Data characters

A longitudinal redundancy check character

1
2
3
4. An end sentinel character
5
6. Clocking zeros

A

number of error-checking features are included to
ensure accurate reads of the stripe information:

m The Start Sentinel (SS) and End Sentinel (ES)
characters are unique characters which signal the
beginning and the end of the data encoded on the
stripe. The SS and ES characters are not allowed as
part of the data segment.

m A Longitudinal Redundancy Check (LRC) character
is included after the ES. The LRC is the result of an
XOR operation on all characters in the track
(including the SS and ES, but not the LRC character
itself).

Rev. 1.3 8/08

Copyright © 2008 by Silicon Laboratories

AN148

AN148

Magnetic Stipe N[N s|s N[N s[s N[N s|s
Read Head Signal «A Y A Y)\ Y—
Decoded Data | 0 | 0 | 1 | 0 |

Figure 1. Magnetic Stripe Encoding

m All characters, including the SS, ES, and LRC,
include a parity bit. Odd parity is used, meaning that
the number of “1” bits in each character is odd when
the parity bit is included.

3. Hardware

The schematic and layout for this design can be found
in "Appendix A—Schematic," on page 8 and "Appendix
B—Layout," on page 10, respectively. The design
includes circuitry for the core MSR function, as well as
power supply and RS-232 components. Although the
reference design uses a two-track reader, there are
provisions for connecting a reader with three tracks.

3.1. Power Supply

Power can be supplied to the board using a 9V dc
adaptor connected to the 2.1 x 5.5 mm center-positive
jack provided (P1). Power for the board circuitry is
derived using a 3.3 V LDO regulator.

3.2. Analog Inputs

The magnetic read heads are each connected directly
to one of the C8051F330’s differential ADC input
channels. The magnetic head signals are filtered with a
small capacitor, and biased to the ground plane. No
additional components are necessary.

3.3. Voltage Reference

Signal levels from the magnetic read heads can be as
little as a few millivolts. The on-chip voltage reference is
used in this design. To enhance the signal detection
capabilities of the device, the voltage reference for the
10-bit ADC can be set as low as 1V. There are
placeholders on the schematic and layout for resistors
which will divide the 3.3 V supply down to 1 V.

3.4. RS-232 Circuitry

An RS-232 transceiver is included on-board for data
output purposes. The board can be connected directly
to a PC’s COM port using an RS-232 serial cable. Data
is transferred at 115.2 kbps using 8 data bits, no Parity
bit, and one Stop bit (8-N-1).

4. Software

The firmware listings can be found in "Appendix E—
Firmware Listing For 2-Channel Example," on page 15
and "Appendix F—Firmware Listing For 3-Channel
Example," on page 44. The provided firmware has been
developed using the Keil “C” compiler and the Silicon
Labs IDE. The two-track solution is described in detail in
the following sections. The three-track firmware
example is identical from an algorithmic standpoint.
Differences between the two versions of the firmware
are listed at the end of this section.

The main structure of the firmware is relatively simple.
After initializing the necessary device peripherals, the
controller begins sampling ADC data, waiting for flux
transitions at regular intervals. During the card swipe,
the processor performs the F2F decoding and stores
recognized bits into RAM. After a swipe has finished,
the stored data is then decoded and checked for errors.
Decoded data is output to the UART, and the controller
waits for another card swipe.

4.1. ADC Sampling

The ADC is configured to sample at 200 ksps using
Timer 2. Track 1 is sampled twice as often as Track 2,
for an effective throughput of 133 ksps on Track 1 and
67 ksps on Track 2. An exponential averaging technique
is applied to the data to filter the signal prior to the signal
detection algorithm. Filtering increases the effective
resolution of the ADC by reducing noise, and aids in the
detection of smaller read head signals.

2 Rev. 1.3

>

SILICON LABS

AN148

4.2. Signal Detection

Signal detection is performed by finding the minimum
and maximum peaks in the filtered data that correspond
to the pulse locations from the read head. See Figure 2.
A moving comparison window allows local peak values
to be recognized and time-stamped. The size of the
comparison window is controlled by the THRESHOLD1
and THRESHOLDZ2 constants in firmware. Larger
values provide more noise rejection, while smaller
values allow weaker signals to be detected. The time
between minimum and maximum peak values is
computed and recorded after each pulse is detected.
This information is used to synchronize with the bit
stream and to discern between ones and zeros.

Limit
Window

Pulse

4.3. Synchronization

To synchronize with the stream of clocking zeros, it is
initially assumed that all detected pulses are located at
clock edges. During this phase of synchronization, the
software detects and counts zero bits, as shown in
Figure 3. Three of the pulse timing values (Tbit) are
summed, and then divided by 2 and 4 to provide 150%
and 75% timing thresholds, respectively. When Z_LIMIT
(Zero Limit) consecutive timing values fall between the
75% and 150% thresholds (i.e., when the software
detects Z_LIMIT zeros in a row), the algorithm begins to
look for the first "1" in the bit stream. When a "1" is
detected, the synchronization is complete. The first "1"
is recorded to the data buffer and the software begins
the data collection process.

Detection

Figure 2. Signal Detection

>

SILICON LABS

Rev. 1.3 3

AN148

4.4. Collecting Data

During the data collection process, the clock edge
timing is continuously monitored, so that the algorithm
can adapt to variations in card swipe speed. The 75%
threshold is re-calculated every three pulses. At each
valid pulse from the magnetic head, the timing
information is compared with the 75% threshold to
determine if the pulse occurred at the center or the edge
of a bit. Whenever a pulse occurs at the edge of a bit, a
"1" or a "0" is recorded to the data buffer for the track. A
"1" is recorded to the data buffer when a pulse was
detected in the center of the most recent bit (i.e., when a
pulse was detected below the 75% threshold). If no
pulse was detected within the bit, a "0" is recorded.
When the conversion counter reaches 4096, the data
collection process is halted. The raw data is then
decoded and checked for errors. Figure 4 shows how
the detected pulses are recorded into the data buffer.

4.5. Decoding the Raw Data

The first step in decoding the raw data is to determine
which direction (forward or reverse) the card was
swiped. To find the read direction, the decoding
algorithm looks for a start sentinel (SS) character at the
beginning and the end of the data set. If the SS is found
at the beginning of the data and not found at the end of

the data, the track is decoded in the forward direction. If
the SS is found at the end of the data and not found at
the beginning of the data, the track is decoded in the
reverse direction. In the special case where the SS is
found at both ends of the data set, one of these SS
characters is actually the LRC. The routine then reads
the next forward character in reverse, and compares it
with the end sentinel (ES). If this character matches the
ES, data is decoded in the reverse direction. Otherwise,
data is decoded in the forward direction.

If the SS is not found at either end of the data set, the
decoding algorithm looks at a character starting with the
next "1" bit in both directions and repeats the process.

For data collected in the forward direction, the bits are
stored in the raw collection array LSB-first. The forward
decode algorithm begins at the MSB of the raw
collection array and unpacks the data into bytes in the
ASCII array, until all data has been unpacked.

For data collected in the reverse direction, the bits are
stored in the raw collection array MSB-first. The reverse
decode algorithm begins by finding the location of the
last "1" bit in the raw array. Working backward through
the array, the bits are copied into bytes in the ASCII
array until all data has been unpacked.

<« T150%
¢'I'75%ﬂ ﬁ'I' 75%ﬂ
Pulse +
Detection
PN | | | | / |
BT v A_—TX oY
'0' Detected, Z LIMIT First'1' Record "1'
Increase Zero Reached Detected to Buffer
Count
Figure 3. Synchronization with Data Stream
T75% T75% T75% T75% T75% T75%
P i e o o
Pulse Ji L
Detection _

Recorded Data | 0

0|

I

Figure 4. Recording Data

4.6. Error Checking

When data has been decoded into ASCII characters,

4 Rev. 1.3

>

SILICON LABS

AN148

the firmware checks the data for three types of errors:

m Parity Check: Each character is checked
individually to ensure that it has odd parity. The
parity check sums the number of “1"s in the
character’s data bits and determines if the parity bit
should be a "1" or a "0" to make the sum odd. If the
parity bit does not match the determined value, a
parity error has occurred.

m SS and ES Check: Data is checked to ensure that a
Start Sentinel and an End Sentinel are both present.
Any data stream that does not include a SS and an
ES in the correct places was not read correctly.

m LRC Check: As they are scanned for parity errors,
each character’s data bits are XORed until the ES is
reached (this check includes both the SS and ES
characters). The result of the XOR function is
compared with the LRC character to determine if an
LRC error has occurred.

If no errors are detected, the decoded data is output,
and the firmware prepares for another read.

4.7. Output

Data is output through the UART on the device at
115,200 Baud. The data format is 8 data bits, no parity
bit, and 1 stop bit. The decoded data is converted to
ASCII before it is sent to the UART so that it can be
easily viewed. There are two different output modes
defined in the software. The modes are controlled by

conditional compilation using the constant DEBUG.

If DEBUG is set to "0", decoded track data will be output
as shown in Figure 5. Track data is output only if no
errors were detected for the track. The output will begin
with the Start Sentinel character and end with the End
Sentinel character followed by the LRC. The Start
Sentinel for Track 1 is represented with the character
“%”. For Track 2, the Start Sentinel is represented by
the character “;”. The End Sentinel for both tracks is
represented by the character “?”.

If DEBUG is set to "1", the data output appears as
shown in Figure 6. In this mode, data is output for both
tracks, regardless of whether an error occurred. The
decoded data appears as when DEBUG is set to "0".
The decoded data is followed by the raw data for the
track. The raw data is displayed as a very long
hexadecimal number. With the exception of the first byte
(which is set to 0x00), the information displayed is the
data that was recorded during the card swipe.

In either output mode, the dual-color LEDs (D4 and D3)
will give an indication of whether any errors were
detected in the collected data. D4 is used to indicate the
status of Track 1, and D3 is used to indicate the status
of Track 2. During a card swipe, the diode will light both
red and green, to indicate a card swipe in progress. If
the data collection was successful and no errors were
detected, only the green LED will remain on. If errors
were detected, only the red LED will remain on.

$B0123456789101112"SCHMOE/JOSEPH X"~01020304050607080910728
;0123456789101112=010203040506070809102:

Figure 5. Example Output when DEBUG = "0"

>

SILICON LABS

Rev. 1.3 5

AN148

Testing

DATA CHI:
$B0123456789101112~SCHMOE/JOSEPH X"~01020304050607080910728
END DATA CH1

RAW COLLECTION CHI1:
0x00A28C2454B90AD469D46CC8A122C58A95F67C42EDFAASESS57ACF4838B0239F048A11284C810A8
4A811A04EA10684991427C1A00000000

END RAW CH1

DATA CH2:
;0123456789101112=010203040506070809107:
END DATA CH2

RAW COLLECTION CH2:
0x00D0608CO92ADEOAT700C210458300A039090350B43C08833807EB000000
END RAW CH2

No Errors

Figure 6. Example Output When DEBUG = "1"

4.8. Differences Between 2-Track and 3-

Track Firmware

For the most part, the two firmware examples are
identical, with necessary variables and code added to
handle the third track. The three-track firmware has the
following notable differences from the two-track version
described in the preceding sections:

Two additional pins are used for analog input of
Track 3

Two additional pins are used to drive the dual-color
LED (D1) for Track 3 status information.

A conditional compilation constant has been added
to allow the code to be compiled for either 5-bit or 7-
bit encoding on the magnetic stripe. When T3_5BIT
is cleared to "0", 7-bit encoding is used, and when
T3 _5BIT is set to "1", 5-bit encoding is used.

Track 1 and Track 3 are sampled at an effective

80 ksps, while Track 2 is sampled at an effective
40 ksps.

®
Rev. 1.3 @

SILICON

LABS

AN148

5. Operational Notes

Cards can be swiped through the reader in either
direction. When swiping a card it is essential that the
magnetic stripe on the card makes contact with the read
head, and that the card remains level as it travels
through the reader, as shown in Figure 7. If the card is
tilted during the swipe, information may be lost.

6. Additional Information

Additional information on magnetic stripe readers and

the ISO/IEC-7811 standard can be found at the

following sources:

m MagTek, I/O Interface for TTL Magnetic Stripe
Readers, P/N 99875148, http://www.magtek.com.

m International Standards Organization, ISO/IEC-7811,
http://www.iso.org.

A K

/]

—

N

Magnetic Stripe Must Face
Read Head

Card Must Remain Level During Swipe

Figure 7. Swiping a Card through the Reader

®
@ Rev. 1.3

SILICON LABS

APPENDIX A—SCHEMATIC

AN148

13]|]o43u0) pue Ajddng 1amod - o13eWdYIS g ainbi4

PEEATSO8]

n_v@ n_% n_%

o
S
— |"= >t
BIdl | ot 3 & @ @Mm b
= Z7ed
8 Z
5 g Id g N
3. 2 & 2 a1y ok Y
an : Y
T ano €ed o
w
N
O LS Y
atin SEINGS| Wi8aNe 4 ™
SaNgos | tNIaNe
zg| OGN 3Za/1sd/ g
s @9/e2d 2z | gzrTE 22 mx
aNo At 2°1d Vi g1 -
B e ® . .
— < ZTa sa| ¢ 2 erae e
5'1d vod |—2od5 0d
® TId Zd [~z ed
"R
|.AI>>L 9'1d —<Tg g &' Zz'ed
0% Bd ¢ gz od aNg
3 I g ™ . . dt @d
S oo = % 6a| ¥’ Zed —i577od
3 »% 2ed I"gig9od ®
S 2'ad £ gigeTgd %.Wn_ 4 +d
- @ B8d 1d eid I_l_.:.&
_M 23 Exi 1'ed @———Tggeza] 'od N g
S [n
aan
aan
f1ddng 4amod
aNse
anse
ae
[l v/
aNg o
ny nt &l_l nt Jm« ni-g ngT
93 zdH zZ10 119 212
0 ON9
N0 NI
® Nm ® ~ZE6ZH]
zaan aan g
<adan aan

SILICON LABS

Rev. 1.3

__________________ 4
_______________________ .
_______________________ I
_____________ I
Ir |
1
: TK1+ |
|]
| p1 ,
|]
: —LCI TK1- |
158pF
’ o1 T @ :
1
: 1
I |
| GND ,
| |
1
: —== X1-1 '
| X1-2 '
I TK2+ xi-2 |
: X1-4 !
| = X1-5 !
]
| :I:C2 TK2- |
I 150pF I
| o1 ® 4 |
1
1
| SN |
| GND TK3+ |
| 1
| p1 :
]
| :LCIS éK3— |
| 158pF |
: p1 :
| |
' ——
D 1
: o Analog Input |
e
e
L
__________________ 4
_______________________ .
_______________________ I
_____________ I
:_ uDD2 !
|]
I |
: U3 |
]
| 19
: e.1u _I_—2 c1+ uce |
] . . i
i o e o | > cis _fes _|er? :
:]
| 0" L o v 0.1 ?.1u .
I e.1 0.1u .1lu
' ? LE . g ot [T . :
i a3 6| oo GND p I
i 6K]
: L1 /N |
| ff /SHUTDOMN - :
| /ONLINE)
I L1 sstatus xR Foa |
I 21 ¢)_6_ !
| 13 TiouT |2 asiban |
1 N pPR. 4 2 T1IN L i 3k I
| ™ @ T2IN_ T20UT [EIRE I
I Pa.5 15 1 piout RIIN —'9 o 5T 36 |
S C 12 | pzour R2IN | <> :
]
1
]
I XRTS !
| o & |
]
I |
I]
I 1
: 1
1
| RS-232 |
e |
L
.-
T igure -232 Output
i ic— nput and RS
Figure 8. Schematic—Analog Inp
®

SILICON LABS

Rev. 1.3

AN148

APPENDIX B—LAYOUT

(«GL8°€ X .52€6°€) 48Ae do] "6 ainbi4

A9y adi.isbeyy

"JU] “SS8T1401B.40QEeT] UODITIS

0]

0000000000000
0000000000000
0000000000000

o 0000000
E_ 00000000

00000000
A 0000

= A [XeXeXe]
W [500
V E w\[5.-0-O0-O-O

N

aa:a_v & aN9 @

SILICON LABS

Rev. 1.3

10

AN148

(.G2€°€ X .§2€6°C ‘paloLN) Johe] woypog "0l a4nbi4

h—r(
) .X
|

ﬁmm 1K3+(®)
N/

000000000
00000000
00000000
00000000

o0

00O
00O
000

.vofl aqiviepsM

.onl 2sivoseNode |l nooilid
J

11

Rev. 1.3

SILICON LABS

AN148
APPENDIX C—BILL OF MATERIALS

Qty Part Value Package Manufacturer
2(2) C1, C2, C18t 150 pF 0805
10 (2) | C3*, C4,C7,C9* C12* C137, 0.1 pF 0805
C14*, C15* C16*, C17*
1(1) C5 4.7 uF Tant. EIA Size A 3216
2(0) c6*, C11* 1 uF 0805
1(0) Cc8* 10 upF Tant. EIA Size C 6032
1(0) C10* 15 uF Tant. Thru-Hole
3(0) D1*t, D3*, D4* SML-LX1210SRSGC Lumex
1(0) D2* LN1251C Panasonic
1(0) J1* 2510-6002UB 0.1” Thru-Hole 3M
1(0) Jz2* 1x3 Header 0.1” Thru-Hole
1(0) J3* 747844-6 DB9_F AMP
1(0) P1* RAPC722 2.1x5.5mm SwitchCraft
3(0) R1*t, R4*, R5%, R6*, R7*, 470 0805
R17*t, R18*
1(0) R2* 2 1210
1(0) R3* (Not Populated) 4.75 kQ 0805
1(0) R13* (Not Populated) 2.15kQ 0805
3(1) R14, R15*, R16* 1kQ 0805
1(1) U1 C8051F330 MLP20 Silicon Labs
1(0) u2* LM2913IMP-3.3 SOT223 National
Semiconductor
1(0) u3* SP3223 TSSOP20 Sipex
1(1) X1 53047-0510 1.25 mm Molex
Thru-Hole
1(1) Magnetic Head Assy. 21047004 Magtek

() Denotes quantity of components necessary for 2-channel C8051F330 MSR function.
* Denotes demonstration board components not required for C8051F330 MSR function.
1 Denotes additional components used in 3-channel C8051F330 MSR function.

®
12 Rev. 1.3 @

SILICON LABS

AN148

APPENDIX D—DEVICE UTILIZATION AND BOARD SPACE
REQUIREMENTS

The device memory and peripheral requirements are shown in Table 1 and Table 2. Some peripherals such as the
UART, Timer 1, and the Port I/O pins connected to the LED indicator are not essential to the MSR function, and can
be used for other purposes.

Table 1. Device Resource Usage for 2-Channel Example Code

Device Resources Used Available
Flash Memory Approx. 3.7 kB Approx. 3.8 kB
RAM 402 Bytes 366 Bytes
Port 1/0 11 (5 Analog, 2 UART, 4 LEDs) 6 (12 w/o UART and LEDs)
10-Bit SAR ADC 2 Differential Inputs (4 Pins) Yes*
Timers Timer 1 (UART), Timer 2 (ADC) Timer 0, Timer 3
Serial Communications UART SMBus, SPI
10-Bit Current-Mode DAC No Yes
Comparator No Yes
3-Channel PCA No Yes
*Note: The ADC can be used for other purposes when card is not being read.

Table 2. Device Resource Usage for 3-Channel Example Code

Device Resources Used Available
Flash Memory Approx. 4.7 kB Approx. 2.8 kB
RAM 524 Bytes 244 Bytes
Port 1/0 15 (7 Analog, 2 UART, 6 LEDs) 2 (10 w/o UART and LEDs)
10-Bit SAR ADC 3 Differential Inputs (6 Pins) Yes*
Timers Timer 1 (UART), Timer 2 (ADC) Timer 0, Timer 3
Serial Communications UART SMBus, SPI
10-Bit Current-Mode DAC No Yes
Comparator No Yes
3-Channel PCA No Yes
*Note: The ADC can be used for other purposes when card is not being read.

The PCB area required for the core MSR function can be estimated by totaling the area required by each
component. Table 3 shows an estimation of the area required by each component, as well as the total area
required to implement the MSR function. This area estimate does not include space required for connectors or
PCB traces.

®
@ Rev. 1.3 13

SILICON LABS

AN148

Table 3. Estimated Component PCB Area

Device Area Quantity Total Area

(sq. inch) (sq. inch)
C8051F330 4 x 4 mm 20-pin MLP 0.025 1 0.025
4.7 uF Tantalum Capacitor on Vrer (3216, EIA Size A) 0.012 1 0.012
0.1 uF Capacitors for Decoupling and Bypass (0805) 0.008 2 0.016
150 pF Filtering Capacitor (0805) (1 per channel) 0.008 2 (2 Ch) 0.016
3 (3 Ch) 0.024
1 kQ Pullup Resistor on /RST (0805) 0.008 1 0.008
Total Component Area (sq. inch) 2-Channel 0.077
3-Channel 0.085

14 Rev. 1.3

>

SILICON LABS

AN148

APPENDIX E—FIRMWARE LISTING FOR 2-CHANNEL
EXAMPLE

/e
// MagStripeReaderF330 2CH.c
et
// Copyright 2004 Silicon Laboratories

//

// AUTH: BD
// DATE: 3 MAR 04
// VER: 2.0

// This program reads the magnetic stripe from a card written in the standard
// ISO 2-channel format using F2F encoding. Read data is output to the UART
// after being decoded.

// Target: C8051F33x
// Tool chain: KEIL C51 7.06 / KEIL EVAL C51

//

/e oo
// Includes

e R I
#include <c8051f330.h> // SFR declarations for C8051F330
ettt bl
// 16-bit SFR Definitions for ‘F33x

e R R
sfrl6 TMR2RL = Oxca; // Timer2 reload value

sfrlé TMR2 = Oxcc; // Timer2 counter

/)
// Conditional Compilation CONSTANTS

J e
#define DEBUG 0 // Set to ‘1’ for extra information
/o
// Global CONSTANTS
s
#define SYSCLK 24500000 // SYSCLK frequency in Hz

#define BAUDRATE 115200 // Baud rate of UART in bps

#define SAMPLE RATE 200000 // Sample rate of ADC

#define T1_SS 0x45 // Start Sentinel + parity

#define T1 ES 0x1F // End Sentinel + parity

#define T1 BITS 7 // data + parity bit

#define T1 CHPOS 0x08 // Positive ADC Mux channel

#define T1 CHNEG 0x09 // Negative ADC Mux channel

#define T2_SS 0x0B // Start Sentinel + parity

#define T2 _ES 0x1F // End Sentinel + parity

#define T2 BITS 5 // data + parity bit

#define T2 CHPOS 0x0A // Positive ADC Mux channel

®
@ Rev. 1.3 15

SILICON LABS

AN148

#define T2 CHNEG 0x0B // Negative ADC Mux channel

#define THRESHOLD1 9 // Noise threshold limits

#define THRESHOLD2 9

#define Z LIMIT 3 // Number of Zeros before recording
sbit TK1 GRN LED = P0"2; // GREEN LED TK1

sbit TK1 RED LED = P0"3; // RED LED TK1

sbit TK2 GRN _LED = P0"6; // GREEN LED TK2

sbit TK2 RED LED = P0"7; // RED LED TK2

// Included to set these pins to OFF - not used in 2-track design
sbit TK3 GRN LED = P1"6; // GREEN LED TK3

sbit TK3 RED LED = P1"7; // RED LED TK3
e ittt
// Global VARIABLES

[mm e e
unsigned char xdata TI1RAW[100], T2RAW[100]; // Track 1 and 2 Raw Data
unsigned char xdata ASCII array[128]; // Decoded Information

unsigned char COLLECTED]1 = 1, COLLECTED2 = 1; // Raw data indices

unsigned int bdata Timeout Counter; // Bit-Addressable Timeout counter
sbit CLEAR TIMEOUT = Timeout Counter ~ 4; // Used to keep from timing out
sbit READ TIMEOUT = Timeout Counter *~ 5; // Indicates when read is finished
sbit CH2 SWITCH = Timeout Counter * 8; // LSB of counter:

// If ‘Y1’, CH2 is sampled

// If ‘0’, CH2 is skipped

unsigned char bdata Temp Bytel; // Bit-Addressable Temporary Storage
sbit Templ b0 = Temp Bytel "~ 0; // LSB of Temp Bytel

unsigned char bdata Temp Byte2; // Bit-Addressable Temporary Storage
sbit Temp2 b0 = Temp Byte2 "~ 0; // LSB of Temp Byte2
e
// Function PROTOTYPES

[mm e

void SYSCLK_Init (void) ;
void ADCO Init (void);
void UARTO Init (void);
void PORT Init (void);
void Timer2 Init (int);

unsigned char Swipe Card(void);

char GetDirection (unsigned char maxindex, unsigned char StartSen,
unsigned char EndSen, unsigned char *TrackRAW,
unsigned char CharBits);

char DecodeTrackForward (unsigned char maxindex, unsigned char Byte Offset,
unsigned char Bit Offset, unsigned char *TrackRAW,
unsigned char CharBits);

char DecodeTrackBackward (unsigned char Byte Offset, unsigned char Bit Offset,

16 Rev. 1.3

SILICON LABS

AN148

unsigned char *TrackRAW, unsigned char CharBits);

char TrackErrorCheck (unsigned char maxindex, unsigned char StartSen,
unsigned char EndSen, unsigned char CharBits);

void UART CharOut (unsigned char c);

void UART StringOut (unsigned char *c);
void UART HexOut (unsigned char c);

void main (void) {
unsigned char idata Return Code;
unsigned char idata colCount;

bit ERRT1, ERRT2; // Track 1, 2 Error Flags

// Disable Watchdog timer

PCAOMD &= ~0x40; // WDTE = 0 (clear watchdog timer
// enable)

PORT Init(); // Initialize Port I/O

SYSCLK Init (); // Initialize Oscillator

ADCO Init (); // Init ADCO

Timer2 Init (SYSCLK/SAMPLE RATE) ; // Init Timer 2 w/ ADC sample rate

UARTO Init();
while (1) {
#1if DEBUG
UART_StringOut (“\nTesting”);
#endif // END #if DEBUG
UART_ StringOut (“\n”);

Swipe Card();

// If DEBUG is ‘1’, use verbose mode for output
#if DEBUG

// Find direction of trackl, and decode to character array
Return Code = GetDirection (COLLECTED1, Tl SS, Tl ES, T1RAW, T1 BITS);

if ((Return Code & 0x80) == 0) // If no error was detected
{

// Check character array for SS, ES, Parity, and LRC

Return Code = TrackErrorCheck (Return Code, Tl SS, Tl ES, Tl BITS);

if (Return Code & 0x80) // If an error was detected
{

ERRT1 = 1;

UART StringOut (“\nErrors: \n”); // List the errors detected

if (Return Code & 0x01)
{

Rev. 1.3 17

SILICON LABS

AN148

UART StringOut (“"\tStart Sentinel not found\n”);
}
if (Return Code & 0x02)
{
UART StringOut (“\tEnd Sentinel not found\n”);
}
if (Return Code & 0x04)
{
UART_ StringOut (“"\tLRC incorrect\n”);
}
if (Return Code & 0x08)

{
UART StringOut (“"\tParity error(s)\n”);

UART_StringOut (“\nDATA CH1:\n”);

for (colCount = 0; colCount < 128; colCount++)

{
UART CharOut (0x20 + (ASCII array[colCount]&0x3F));
UART CharOut (0x30) ;

}

UART_CharOut (‘*\n’);

UART StringOut (“END DATA CHI\n”);

}

else // No errors, print Tl data

{
ERRT1 = 0;
UART_StringOut (“\nDATA CH1l:\n”);

for (colCount = 0; colCount < Return Code; colCount++)
{
UART CharOut (0x20 + (ASCII array[colCount]&0x3F));
ASCII array[colCount] = 0x30;
}
UART_CharOut (*\n”);
UART StringOut (“END DATA CHI\n”);

// Print the RAW data for Track 1
UART_StringOut(“\nRAW COLLECTION CH1:\nOx");

for (colCount = 0; colCount < COLLECTEDl; colCount++)

{
UART HexOut (T1RAW[colCount]) ;

UART_CharOut (*\n’) ;
UART StringOut (“END RAW CHI\n”);

// Find direction of track2, and decode to character array
Return Code = GetDirection (COLLECTED2, T2 SS, T2 ES, T2RAW,

if ((Return Code & 0x80) == 0) // If no error

{
// Check character array for SS, ES, Parity, and LRC
Return Code = TrackErrorCheck (Return Code, T2 SS, T2 ES,

if (Return Code & 0x80) // If an error

T2 BITS);

was detected

T2 BITS);

was detected

18

Rev. 1.3

SILICON LABS

AN148

}

els

{

//

ERRT2 = 1;
UART StringOut (“\nErrors: \n”); // List the errors detected

if (Return Code & 0x01)
{
UART StringOut (“"\tStart Sentinel not found\n”);
}
if (Return Code & 0x02)
{
UART StringOut (“\tEnd Sentinel not found\n”);
}
if (Return Code & 0x04)
{
UART_ StringOut (“"\tLRC incorrect\n”);
}
if (Return Code & 0x08)

{
UART StringOut (“"\tParity error(s)\n”);

UART_StringOut (“\nDATA CH2:\n”);

for (colCount = 0; colCount < 128; colCount++)

{
UART CharOut (0x30 + (ASCII array[colCount]&0x0F));
ASCII array[colCount] = 0x30;

}

UART_CharOut (*\n’);

UART StringOut (“END DATA CH2\n”);

e // No errors, print T2 data

ERRT2 = 0;
UART_StringOut (“\nDATA CH2:\n”);

for (colCount = 0; colCount < Return Code; colCount++)
{
UART CharOut (0x30 + (ASCII array[colCount]&0x0F));
ASCII array[colCount] = 0x30;
}
UART CharOut (*\n’);
UART StringOut (“END DATA CH2\n”);

Print the RAW data for Track 2

UART_StringOut (“\nRAW COLLECTION CH2:\n0x");

for

{

(colCount = 0; colCount < COLLECTED2; colCount++)

UART HexOut (T2RAW[colCount]);

UART_CharOut(‘\n’);
UART StringOut (“END RAW CH2\n”);

//
if
{

Signal Error / OK with LEDs
(!'ERRT1)

TK1 RED LED = 0;

Rev. 1.3 19

SILICON LABS

AN148

TK1 GRN LED = 1;
}
else
{
TK1 RED LED = 1;
TK1 GRN LED = 0;

// Signal Error / OK with LEDs

if (!'ERRT2)
{
TK2 RED LED = 0;
TK2 GRN LED = 1;
}
else
{
TK2 RED LED = 1;
TK2 GRN LED = 0;

#endif // END #if DEBUG

// If DEBUG is ‘0’, only output valid track info
#1if !DEBUG

// Find direction of trackl, and decode to character array
Return Code = GetDirection (COLLECTED1, Tl SS, Tl ES, T1RAW, T1 BITS);

if ((Return Code & 0x80) == 0) // If no error was detected
{

// Check character array for SS, ES, Parity, and LRC

Return Code = TrackErrorCheck (Return Code, Tl SS, Tl ES, Tl BITS);

if (Return Code & 0x80) // If an error was detected
{ // set the error bit

ERRT1 = 1;
}
else // Otherwise print Track 1
{

ERRT1 = 0;

for (colCount = 0; colCount < Return Code; colCount++)
{
UART CharOut (0x20 + (ASCII array[colCount]&0x3F));
ASCII array[colCount] = 0x30;
}
UART_CharOut (*\n”);

// Find direction of track2, and decode to character array
Return Code = GetDirection (COLLECTED2Z, T2 SS, T2 ES, T2RAW, T2 BITS);

if ((Return Code & 0x80) == 0) // If no error was detected
{

// Check character array for SS, ES, Parity, and LRC

Return Code = TrackErrorCheck (Return Code, T2 SS, T2 ES, T2 BITS);

20 Rev. 1.3

SILICON LABS

AN148

if (Return Code & 0x80)
{

ERRT2 = 1;
}
else
{
ERRT2 = 0;
for (colCount = 0; colCount < Return Code;

{

UART_CharOut(Ox3O +
ASCII array[colCount]

}
UART CharOut (*\n’);

= 0x30;

// Signal Error / OK with LEDs

if (!ERRT1)
{
TK1 RED LED = 0;
TK1 GRN LED = 1;
}
else
{
TK1 RED LED = 1;

TK1 GRN LED = 0;

// Signal Error / OK with LEDs

if (!ERRT2)

{
TK2 RED LED
TK2 GRN LED = 1;

Il
o
~.

}

else

{
TK2 RED LED = 1;
TK2 GRN LED

I
o
~.

#endif // END #if !DEBUG

}

}
//

// END while (1)
END main ()

Configure the Crossbar and GPIO ports.

PO.
PO.
PO.
PO.
PO.

0 - VREF Input (analog, skipped)

2 - TK1 Green LED (push-pull, skipped)
3 - TK1 Red LED (push-pull, skipped)
4 - UART TX (push-pull)

5 - UART RX (open drain)

// If an error was detected
// set the error bit

// Otherwise print Track 2

colCount++)

(ASCII array[colCount]&0x0F)) ;

>

SILICON LABS

21

AN148

// P0O.6 - TK2 Green LED (push-pull, skipped)
// P0O.7 - TK2 Red LED (push-pull, skipped)
// P1.0 - Channel 1+ (analog, skipped)

// P1.1 - Channel 1- (analog, skipped)

// P1.2 - Channel 2+ (analog, skipped)

// P1.3 - Channel 2- (analog, skipped)

// Pl.6 - TK3 Green LED (push-pull, skipped)
// P1l.7 - TK3 Red LED (push-pull, skipped)
//

void PORT Init (void)
{

POMDOUT |= 0xDC; // enable TX and LEDs as push-pull out
POMDIN &= ~0x01; // VREF analog in

PIMDIN &= ~0xO0F; // Enable P1.0 through 1.3 as analog in
P1IMDOUT |= 0xCO; // Pl.6, 1.7 Push-pull output

POSKIP |= 0xCD; // Skip VREF pin and LED Outputs

P1SKIP |= OxCF; // Skip Analog Inputs and LED Outputs
XBRO = 0x01; // Enable UART on P0.4(RX) and P0.5(TX)
XBR1 = 0x40; // Enable crossbar and enable

// weak pull-ups
TK1 RED LED = // Turn all LEDs off
TK1 GRN LED =
TK2 RED LED =
TK2 GRN_LED =
TK3 RED LED =
TK3 GRN LED =

~e N

~. . .

O O O O O o
~

~.

// This routine initializes the system clock to use the internal oscillator
// at its maximum frequency, enables the Missing Clock Detector and VDD
// monitor.

void SYSCLK Init (void)
{

OSCICN |= 0x03; // Configure internal oscillator for
// its maximum frequency
RSTSRC = 0x06; // Enable missing clock detector and

// VDD Monitor

// Configure ADCO to use Timer 2 as conversion source, and to initially point
// to Channel 2. Disables ADC end of conversion interrupt. Leaves ADC
// disabled.

void ADCO Init (void)

22 Rev. 1.3

SILICON LABS

AN148

ADCOCN = 0x02; // ADCO disabled; Normal tracking
// mode; ADCO conversions are initiated
// on timer 2
AMXOP = T1 CHPOS; // Channel 1+
AMXON = T1 CHNEG; // Channel 1-
ADCOCF = (SYSCLK/3000000) << 3; // ADC conversion clock <= 3MHz
ADCOCF &= ~0x04; // Right-Justify data
REFOCN = 0x03; // VREF = P0.0 internal VREF, bias
// generator is on.
}
[
// UARTO Init
/e e e
//
// Configure the UARTO using Timerl, for <BAUDRATE> and 8-N-1.
//
void UARTO Init (void)
{
SCONO = 0x10; // SCONO: 8-bit variable bit rate
// level of STOP bit is ignored
// RX enabled
// ninth bits are zeros
// clear RI0O and TIO bits
if (SYSCLK/BAUDRATE/2/256 < 1) {
TH1 = - (SYSCLK/BAUDRATE/2) ;
CKCON &= ~0x0B; // TIM = 1; SCAl:0 = xx
CKCON |= 0x08;
} else if (SYSCLK/BAUDRATE/2/256 < 4) {
TH1 = - (SYSCLK/BAUDRATE/2/4);
CKCON &= ~0x0B; // TIM = 0; SCAl1:0 = 01
CKCON |= 0x01;
} else if (SYSCLK/BAUDRATE/2/256 < 12) {
TH1 = - (SYSCLK/BAUDRATE/2/12);
CKCON &= ~0x0B; // TIM = 0; SCAl:0 = 00
} else {
TH1 = - (SYSCLK/BAUDRATE/2/48);
CKCON &= ~0x0B; // TIM = 0; SCAl:0 = 10
CKCON |= 0x02;
}
TL1l = TH1; // init Timerl
TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
TMOD |= 0x20;
TR1 = 1; // START Timerl
TIO = 1; // Indicate TX0 ready
}
/e e
// Timer2 Init
[m e
//

// Configure Timer2 to auto-reload at interval specified by <counts> (no

®
@ Rev. 1.3 23

SILICON LABS

AN148

// interrupt generated)
//
void Timer2 Init

{

(int counts)

using SYSCLK as its time base.

TMR2CN = 0x00; // STOP Timer2; Clear TF2H and TF2L;
// disable low-byte interrupt; disable
// split mode; select internal timebase
CKCON |= 0x10; // Timer2 uses SYSCLK as its timebase
TMR2RL = -counts; // Init reload values
TMR2 = TMR2RL; // Init Timer2 with reload value
}
e
// Support Subroutines
[mm e
/m T -
// Swipe Card
J e
//
// This routine performs the signal detection and data collection when a card
// 1is swiped through the reader for Track 1 and 2. Interrupts should be
// turned off when this routine runs for optimal performance.
//
unsigned char Swipe Card(void)
{
unsigned char data zerocountl; // Zero counter - Track 1
unsigned char data bytecountl; // Raw data counter - TK 1
unsigned char data zerocount2; // Zero counter - Track 2
unsigned char data bytecount2; // Raw data counter - TK 2
char data runningsuml = 0, rsuml div = 0; // Filtering variables
char data runningsum2 = 0, rsum2 div = 0;
// Minimum / Maximum and
// next peak values
char data localmaxl = 0, localminl = 0, next peakl = 0;
char data localmax2 = 0, localmin2 = 0, next peak2 = 0;
char data ADC DATA; // Raw ADC Data (low byte)
unsigned int data cyclecountl, cyclecount2; // Cycle counters
unsigned int maincycle; // Main time stamp for
// ADC conversions
unsigned int data maxtimel, mintimel; // Min / Max time stamps
unsigned int data maxtime2, mintime2;
unsigned char data cycleindexl; // Index for # of cycles
unsigned char data cycleindex?2; // present in sum
unsigned int data cyclesuml = 0; // Sum over 3 cycles
unsigned int data cyclesum2 = 0;
unsigned int data CP75pctl = 0, CP150pctl = 0; // 75% and 150% comparison
unsigned int data CP75pct2 = 0, CP150pct2 = 0; // values
24 Rev. 1.3

SILICON LABS

AN148

bit ZERO WAIT1, FIRST ONEl, BIT RECORDI1;
bit ZERO WAIT2, FIRST ONE2, BIT RECORD2;

bit LASTEDGEl = 0;

bit LASTEDGE2 = 0;
maincycle = 0;
Timeout Counter = 0;
READ TIMEOUT = 0;
CH2 SWITCH = 0;
TIRAW[0] = 0;
COLLECTED1 = 1;
ZERO WAITI1 = 1;
FIRST_ONEl = 0;
BIT_RECORDI = 0;
zerocountl = 0;
bytecountl = 0;
T2RAW[O0] = 0;
COLLECTED2 = 1;
ZERO_WAITZ = 1;
FIRST ONE2 = 0;
BIT RECORD2 = 0;
zerocount2 = 0;

bytecount2 = 0;

// Bits keep track of stages
// in the collection

// State of last edges:
// 1 = Positive
// 0 = Negative
// Reset ADC timestamp

// Reset Timeout Variables
// (included for clarity)

// Reset Trackl Variables

// Reset Track2 Variables

AMXOP = T1 CHPOS; // Set up AIN+ channel
AMXON = T1 CHNEG; // Set up AIN- channel
ADOEN = 1; // Enable ADCO

TR2 = 1; // start Timer2

// wait for Timer2 overflow flag - 1lst conversion begins

while (!TF2H);
TF2H = 0;

AMXO0P = T2_CHPOS;
AMXON = T2_CHNEG;

while (!READ TIMEOUT)
{

Timeout Counter++;
maincycle++;

if (CH2 SWITCH)
{

// wait for Timer2 overflow flag

while (!TF2H);
AMXOP = T1 CHPOS;
AMXON = T1 CHNEG;
ADC_DATA = ADCOL;
TF2H = 0;

}

else

{

// wait for Timer2 overflow flag

while (!TF2H);
AMXOP = T2_CHPOS;

// clear timer overflow flag
// switch AIN+ channel
// switch AIN- channel

// Increment counters

// check if CH2 is sampled

// switch AIN+ channel
// switch AIN- channel
// read current data low byte
// clear timer overflow flag

// switch AIN+ channel

SILICON LABS

Rev. 1.3

25

AN148

AMXON = T2 CHNEG; // switch AIN- channel
ADC_DATA = ADCOL; // read current data low byte
TF2H = 0O; // clear timer overflow flag

// Perform exponential average
runningsuml = runningsuml + ADC DATA - rsuml div;
rsuml div = runningsuml>>2;

if (!ZERO_WAIT1) // Test to see if still waiting for zeros
{ // If NOT.. collect data
if (!LASTEDGEL) // Test if last edge was negative
{
if (runningsuml > next peakl) // Test against peak limit

{

// Establish new local max

// and compute min-max
// peak timing
localmaxl = runningsuml;
cyclecountl += mintimel - maxtimel;
next peakl = localmaxl - THRESHOLDI1;
if (cyclecountl <= CP75pctl) // 1/2 or Full cycle?
{ // **1/2 cycle
BIT RECORD1 = 1;
FIRST ONE1l = 1;
}
else // **Full cycle
{
cyclesuml += cyclecountl; // Update cycle sum
cycleindexl++;
if (FIRST ONE1) // If first ‘1’ is found
{
Temp Bytel = Temp Bytel << 1;
Templ b0 = BIT RECORDI; // Record a bit
bytecountl++;
BIT RECORD1 = 0; // Reset bit value to ‘0’
}
cyclecountl = 0; // Reset cycle counter
CLEAR TIMEOUT = 0; // Keep from timing out
}
LASTEDGELl = 1; // Positive edge
}
else if (runningsuml < localminl) // Check against local min
{
localminl = runningsuml; // Update local min

// and next peak
next peakl = localminl + THRESHOLDI1;

mintimel = maincycle; // Time stamp local min
}
else // Perform some housekeeping
{
if (bytecountl == 8) // Store the current byte
{
T1RAW[COLLECTED1] = Temp Bytel;
bytecountl = 0;
COLLECTED1++;
®
26 Rev. 1.3

SILICON LABS

AN148

}
if
{

(cycleindexl >= 3)

CP75pctl = cyclesuml >> 2;
cyclesuml = 0;

cycleindexl = 0;

!/

Calculate 75% Value

else // Last edge was positive..
{
if (runningsuml < next peakl) // Test against peak limit
{
// Establish new local min
// and compute max-min
// peak timing
localminl = runningsuml;
cyclecountl += maxtimel - mintimel;
next peakl = localminl + THRESHOLD1;
if (cyclecountl <= CP75pctl) // 1/2 or Full cycle?
{ // **1/2 cycle
BIT_RECORDI =1;
FIRST ONEl = 1;
}
else // **Full cycle
{
cyclesuml += cyclecountl; // Update cycle sum
cycleindexl++;
if (FIRST ONE1) // If first ‘1’ is found
{
Temp Bytel = Temp Bytel << 1;
Templ b0 = BIT RECORDI1; // Record a bit
bytecountl++;
BIT RECORD1 = 0; // Reset bit value to ‘0
}
cyclecountl = 0; // Reset cycle counter
CLEAR TIMEOUT = 0;
}
LASTEDGE1l = 0; // Negative edge
}
else if (runningsuml > localmaxl) // Check against local max
{
localmaxl = runningsuml; // Update local max
// and next peak
next_peakl = localmaxl - THRESHOLDI1;
maxtimel = maincycle; // Time stamp local max
}
else // Perform some housekeeping
{
if (bytecountl == 8) // Store the current byte
{
T1RAW[COLLECTED1] = Temp Bytel;
bytecountl = 0;
COLLECTED1++;
}
if (cycleindexl >= 3) // Calculate 75% Value
{
®
Rev. 1.3 27

SILICON LABS

AN148

CP75pctl = cyclesuml >> 2;
cyclesuml = 0;
cycleindexl = 0;

} // End of data collection code (after Z LIMIT zeros detected)

else // IF ZERO WAIT1 == 1, still waiting for Z LIMIT zeros

{
CLEAR_TIMEOUT = 0;

if (!LASTEDGEL) // Test if last edge was negative
{

if (runningsuml > next peakl) // Test against peak limit

{

// Establish new local max

// and compute min-max
// peak timing
localmaxl = runningsuml;
cyclecountl += mintimel - maxtimel;
next peakl = localmaxl - THRESHOLDI1;
cyclesuml += cyclecountl; // Update cycle sum

cycleindexl++;

// Check for a value that looks periodic
if ((cyclecountl > CP75pctl) &&(cyclecountl < CP150pctl))
{
if (++zerocountl == Z LIMIT) // Count up and check
{ // for Z LIMIT
ZERO WAITI1 = 0;
TK1 RED LED = 1;
TK1 GRN LED = 1

}

else // Outside of range
{
zerocountl = 0; // Reset zero count

}

cyclecountl = 0; // Reset cycle counter

LASTEDGE1 = 1; // Positive edge
}
else if (runningsuml < localminl) // Check against local min
{

localminl = runningsuml; // Update local min

// and next peak
next peakl = localminl + THRESHOLDI1;

mintimel = maincycle; // Time stamp local min
}
else // Perform some housekeeping
{

if (cycleindexl >= 3) // Calculate 75% and 150%

{
CP150pctl = cyclesuml >> 1;
CP75pctl = CP150pctl >> 1;
cyclesuml = 0;
cycleindexl = 0;

28 Rev. 1.3

SILICON LABS

AN148

else // Last edge was positive
{
if (runningsuml < next peakl) // Test against peak limit
{
// Establish new local min
// and compute max-min
// peak timing
localminl = runningsuml;
cyclecountl += maxtimel - mintimel;
next peakl = localminl + THRESHOLD1;
cyclesuml += cyclecountl; // Update cycle sum
cycleindexl++;
// Check for a value that looks periodic
if ((cyclecountl > CP75pctl) &&(cyclecountl < CP150pctl))
{
if (++zerocountl == 7z LIMIT) // Count up and check
{ // for z LIMIT
ZERO_WAITI = 0;
TK1 RED LED = 1;
TK1 GRN LED = 1;
}
}
else // Outside of range
{
zerocountl = 0; // Reset zero count
}
cyclecountl = 0; // Reset cycle counter
LASTEDGELl = 0; // Negative edge
}
else if (runningsuml > localmaxl) // Check against local max
{
localmaxl = runningsuml; // Update local max
// and next peak
next peakl = localmaxl - THRESHOLDI;
maxtimel = maincycle; // Time stamp local max
}
else // Perform some housekeeping
{
if (cycleindexl >= 3) // Calculate 75% and 150%
{
CP150pctl = cyclesuml >> 1;
CP75pctl = CP150pctl >> 1;
cyclesuml = 0;
cycleindexl = 0;

// End of Waiting for Zeroes code

if
{

(CH2 SWITCH)

// wait for Timer2 overflow flag

while (!TF2H);

(before Z LIMIT reached)

// Check if CH2 is sampled

Rev. 1.3

SILICON LABS

29

AN148

AMXOP = T1 CHPOS;
AMXON = T1 CHNEG;
ADC_DATA = ADCOL;
TF2H = 0;

// Perform exponential average

// switch AIN+ channel
// switch AIN- channel
// read current data low byte
// clear timer overflow flag

runningsum2 = runningsum2 + ADC DATA - rsum2 div;

rsum2_div = runningsum2>>2;
maincycle++;

if (!ZERO _WAIT2)

{ // If NOT..

if (!LASTEDGE2)
{

if (runningsum2 > next peak2)

{

localmax2 = runningsum2;

// Test to see if still waiting for zeros
collect data

// Test if last edge was negative

// Test against peak limit

// Establish new local max
// and compute min-max
// peak timing

cyclecount?2 += mintime2 - maxtime?2;
next_peak2 = localmax?2 - THRESHOLDZ;

if (cyclecount2 <= CP75pct2)

{
BIT_RECORDZ =1;
FIRST ONE2 = 1;
}
else

{

cyclesum?2 += cyclecount?2;

cycleindex2++;

if (FIRST_ONE2)
{

Temp Byte2 = Temp Byte2 <<

Temp2 b0 = BIT RECORD2;

bytecount2++;
BIT_RECORDZ = 0;
}
cyclecount2 = 0;

}
LASTEDGE2 = 1;

}

else 1if

{

localmin2 = runningsum?2;

(runningsum2 < localmin2)

// 1/2 or Full cycle?
// **1/2 cycle

// **Full cycle

// Update cycle sum

// If first ‘1’ is found

1;
// Record a bit

// Reset bit value to ‘0’
// Reset cycle counter

// Positive edge

// Check against local min

// Update local min
// and next peak

next peak2 = localmin2 + THRESHOLD2;

mintime2 = maincycle;
}

else

{
if (bytecount2 == 8)
{

// Time stamp local min
// Perform some housekeeping

// Store the current byte

T2RAW[COLLECTED2] = Temp Byte2;

bytecount2 = 0;

30

Rev. 1.3

SILICON LABS

AN148

COLLECTED2++;
(cycleindex2 >= 3)

CP75pct2 = cyclesum2 >> 2;
cyclesum2 = 0;

cycleindex2 = 0;

// Calculate 75% Value

else // Last edge was positive..
{
if (runningsum2 < next peak2) // Test against peak limit
{

// Establish new local min

// and compute max-min

// peak timing
localmin2 = runningsum?2;
cyclecount?2 += maxtime2 - mintime2;
next peak2 = localmin2 + THRESHOLD2;
if (cyclecount2 <= CP75pct2) // 1/2 or Full cycle?

{ // **1/2 cycle
BIT_RECORDZ = 1;
FIRST ONE2 = 1;
}
else // **Full cycle
{
cyclesum2 += cyclecount2; // Update cycle sum
cycleindex2++;
if (FIRST ONE2) // If first ‘1’ is found
{
Temp Byte2 = Temp Byte2 << 1;
Temp2 b0 = BIT RECORD2; // Record a bit
bytecount2++;
BIT RECORD2 = 0; // Reset bit value to ‘0’
}
cyclecount2 = 0; // Reset cycle counter
}
LASTEDGE2 = 0; // Negative edge
}
else if (runningsum2 > localmax?2) // Check against local max
{

// Update local max
localmax2 = runningsum2; // and next peak
next_peak2 = localmax?2 - THRESHOLDZ;
maxtime2 = maincycle; // Time stamp local max

}
else // Perform some housekeeping
{
if (bytecount2 == 8) // Store the current byte
{
T2RAW[COLLECTED2] = Temp Byte2;
bytecount2 = 0;
COLLECTED2++;
}
if (cycleindex2 >= 3) // Calculate 75% Value
®

SILICON LABS

Rev. 1.3

31

AN148

else

{

if

{

CP75pct2 = cyclesum2 >> 2;
cyclesum2 = 0;
cycleindex2 = 0;

// End of data collection code (after Z LIMIT zeros detected)
// IF ZERO_WAIT2 == 1, still waiting for Z_LIMIT zeros

(!LASTEDGEZ2) // Test if last edge was negative

if (runningsum2 > next peak2)

{

localmax2 = runningsum?2;

// Test against peak limit

// Establish new local max
// and compute min-max
// peak timing

cyclecount?2 += mintime2 - maxtime?2;
next peak2 = localmax2 - THRESHOLD2;

cyclesum2 += cyclecount2;
cycleindex2++;

// Update cycle sum

// Check for a value that looks periodic
if ((cyclecount2 > CP75pct2) &&(cyclecount2 < CP1l50pct2))

{
if (++zerocount2 == 7 LIMIT)

{
ZER07WAIT2 =0
TK2 RED LED =
TK2_ GRN_LED

=,
-~

~e

}
else
{
zerocount2 = 0;
}
cyclecount2 = 0;
LASTEDGE2 = 1;
}
else if (runningsum2 < localmin?2)

{

// Count up and check
// for Z LIMIT

// Outside of range
// Reset zero count

// Reset cycle counter
// Positive edge

// Check against local min

// Update local min
// and next peak

// Time stamp local min

localmin2 = runningsum2;
next peak2 = localmin2 + THRESHOLDZ;
mintime2 = maincycle;

}

else

{
if (cycleindex2 >= 3)
{
CP150pct2 = cyclesumz2 >> 1;
CP75pct2 = CP150pct2 >> 1;
cyclesum2 = 0;
cycleindex2 = 0;

// Perform some housekeeping

// Calculate 75% and 150%

32

Rev. 1.3

SILICON LABS

AN148

}

else // Last edge was positive
{
if (runningsum2 < next peak2) // Test against peak limit
{
// Establish new local min
// and compute max-min
// peak timing
localmin2 = runningsum?2;
cyclecount2 += maxtime2 - mintime2;
next peak2 = localmin2 + THRESHOLDZ;
cyclesum2 += cyclecount2; // Update cycle sum
cycleindex2++;
// Check for a value that looks periodic
if ((cyclecount2 > CP75pct2) &&(cyclecount2 < CP150pct?2))
{
if (++zerocount2 == z LIMIT) // Count up and check
{ // for z LIMIT
ZERO WAIT2 = 0;
TK2 RED LED = 1;
TK2 GRN LED = 1;
}
}
else // Outside of range
{
zerocount2 = 0; // Reset zero count
}
cyclecount2 = 0; // Reset cycle counter
LASTEDGE2 = 0; // Negative edge
}
else if (runningsum2 > localmax2) // Check against local max
{
// Update local max
localmax2 = runningsum2; // and next peak
next peak2 = localmax2 - THRESHOLD2;
maxtime2 = maincycle; // Time stamp local max
}
else // Perform some housekeeping
{
if (cycleindex2 >= 3) // Calculate 75% and 150%
{
CP150pct2 = cyclesum2 >> 1;
CP75pct2 = CP150pct2 >> 1;
cyclesum2 = 0;
cycleindex2 = 0;

} // End of Waiting for Zeroes code

(before Z LIMIT reached)

} // End IF CH2 SWITCH

} // End While

(!READ TIMEOUT)

// Finish off last bytes with zeros..

while

{

(bytecountl < 8)

SILICON LABS

Rev. 1.3 33

AN148

Temp Bytel = Temp Bytel << 1;
Templ b0 = 0; // record a zero
bytecountl++;

}
T1RAW[COLLECTED1] = Temp Bytel;

while (bytecount2 < 8)

{
Temp Byte2 = Temp Byte2 << 1;
Temp2 b0 = 0; // record a zero
bytecount2++;

}
T2RAW[COLLECTED2] = Temp Byte2;

return (1);

// This routine checks the decoded track data for Start Sentinel, End
// Parity, and LRC errors.

char TrackErrorCheck (unsigned char maxindex, unsigned char StartSen,
unsigned char EndSen, unsigned char CharBits)

{

unsigned char idata ASCII Index, ASCII Mask;

unsigned char idata ASCII Data, PC count, Read LRC = 0, Calc LRC = 0;

char idata errorcode = 0;

bit ES Found = 0, ParityCheck = 0;

Sentinel,

ASCII Mask = 0x7F >> (8 - CharBits); // Mask used to separate data info
if (ASCII array[0] != StartSen) // Check for SS at start of array
{
errorcode |= 0x81; // ERROR - SS is not 1lst character
}
// Loop through ASCII array and check each byte for errors
for (ASCII Index = 0; ASCII Index <= maxindex; ASCII Index++)
{
ASCII Data = ASCII array[ASCII Index];
if (!ES_Found) // If ES not found yet
{
// LRC Check - XOR’s data from all bytes (except the LRC)
Calc LRC "= (ASCII Data & ASCII Mask);
if (ASCII Data == EndSen) // If this is the End Sentinel,
{ // treat the next character as

// the LRC, and signal that

// the ES has been found

Read LRC (ASCII array[ASCII Index+l] & ASCII Mask);
maxindex ASCII Index+1;
ES Found = 1;

34 Rev. 1.3

SILICON LABS

// Parity Check - checks #1’s against Parity bit for ODD parity.
ParityCheck = 0; // Reset parity check variable
for (PC_count = 0; PC count < CharBits; PC count++)
{

ParityCheck "= (ASCII Data & 0x01);

ASCII Data = ASCII Data >> 1;

if (ParityCheck == (ASCII Data & 0x01))

{
ASCII array[ASCII Index] |= 0x80; // Mark this byte for ID later
errorcode |= 0x88; // ERROR - Parity error

// Check that End Sentinel was found in captured data
if (!ES_Found)

errorcode |=0x82; // ERROR - End Sentinel never found
}
// If ES was found...
else if (Calc LRC != (Read LRC & ASCII Mask))
{

errorcode |= 0x84; // LRC error

// Parity Check for LRC - checks #1’s against Parity bit for ODD parity.
ParityCheck = 0; // Reset parity check variable
for (PC_count = 0; PC count < CharBits; PC count++)
{

ParityCheck ”~= (Read LRC & 0x01);

Read LRC = Read LRC >> 1;

if (ParityCheck == (Read LRC & 0x01))

{
ASCII array[maxindex] |= 0x80; // Mark LRC byte for ID later
errorcode |= 0x88; // ERROR - Parity error

// If no errors were detected, return the number of bytes found.
// Otherwise, return the error code.
if (errorcode == 0)
{
return ASCII Index;
}
else

{

return errorcode;

// This routine is used to decode a track into characters, assuming it was
// recorded in the forward direction into the array.

Rev. 1.3

SILICON LABS

AN148

AN148

char DecodeTrackForward (unsigned char maxindex, unsigned char Byte Offset,
unsigned char Bit Offset, unsigned char *TrackRAW, unsigned char CharBits)

{

unsigned char idata Track Index = 0;

char idata ASCII Index = 0, ASCII Mask;

unsigned char idata Track Data, ASCII Data;

unsigned char idata Track bit, ASCII bit;

// Reset temporary variables
ASCII bit = 0x01;
ASCII Data = 0x00;

// Generate a bit comparison value for sorting through ASCII bytes
ASCII Mask = 0x01 << (CharBits-1);

// Begin at the specified offset, and proceed until the end of the track
for (Track Index = Byte Offset; Track Index <= maxindex; Track Index++)
{

// Grab a byte of raw data

Track Data = TrackRAW[Track Index];

// Unpack raw data byte into character(s)
for (Track bit = Bit Offset; Track bit != 0x00; Track bit = Track bit>>1)
{
if (Track bit & Track Data)
{
ASCII Data |= ASCII_bit;
}
else
{
ASCII Data &= ~ASCII_bit;
}
if (ASCII bit != ASCII Mask)
{
ASCII bit = ASCII bit << 1;
}
else
{
ASCII bit = 0x01;

ASCII_array[ASCII_Index] = ASCII Data;
if ((ASCII Data == 0x00) || (ASCII Index == 126))
{
Track Index = maxindex; // end translation

ASCII Index++;

// Return the number of characters unpacked
return (ASCII_IndeX);

// DecodeTrackBackward

36 Rev. 1.3

SILICON LABS

AN148

//

// This routine is used to decode a track into characters, assuming it was

// recorded in the backward direction into the array.

//

char DecodeTrackBackward (unsigned char Byte Offset, unsigned char Bit Offset,
unsigned char *TrackRAW, unsigned char CharBits)

{

unsigned char idata Track Index;

char idata ASCII Index = 0, ASCII Mask;

unsigned char idata Track Data, ASCII Data;

unsigned char idata ASCII bit;

// Reset temporary variables
ASCIT bit = 0x01;
ASCII Data = 0x00;

// Generate a bit comparison value for sorting through ASCII bytes
ASCII Mask = 0x01 << (CharBits-1);

// Begin at the specified offset, and proceed until the beginning
for (Track Index = Byte Offset; Track Index != 0x00; Track Index--)
{

// Grab a byte of raw data

Track Data = TrackRAW[Track Index];

// Unpack raw data byte into character (s)
while (Bit Offset != 0x00)
{
if (Bit Offset & Track Data)
{
ASCII Data |= ASCII_bit;
}
else
{
ASCII Data &= ~ASCIIibit;
}
if (ASCII bit != ASCII Mask)
{
ASCII bit = ASCII bit << 1;
}
else
{
ASCITI bit = 0x01;
ASCII array[ASCII Index] = ASCII Data;
ASCII Data = 0;
ASCII Index++;
}
Bit Offset = Bit Offset << 1;
}
Bit Offset = 0x01;

// Finish off last byte with trailing zeros
ASCII Mask = ASCII Mask << 1;
while (ASCII bit != ASCII Mask)
{
ASCIT Data &= ~ASCII bit;

Rev. 1.3 37

SILICON LABS

AN148

ASCII bit = ASCII bit << 1;

}
ASCII array[ASCII Index] = ASCII Data;

// Return the number of characters unpacked
return (ASCII Index);

// This routine determines which direction data was collected from the magnetic
// stripe and calls the appropriate decoding routine.

char GetDirection (unsigned char maxindex, unsigned char StartSen,
unsigned char EndSen, unsigned char *TrackRAW, unsigned char CharBits)

unsigned char idata FW Byte Off, FW Bit Off, RV Byte Off, RV Bit Off;
unsigned char idata Read Char, Bit Count, Temp Char, Temp Bit, Temp Mask;
char idata MAX Decoded;

bit FW StartSen, RV_StartSen, Direction Found = 0, Abort Direction = 0;

// Initialize Index Pointers
FW_Byte_Off = 1;

FW Bit Off = 0x80;

RV Byte Off = maxindex;
RV_Bit Off = 0x01;

while ((Direction Found == 0) && (Abort Direction == 0))
{

// Read a byte at FW pointer

Read Char = TrackRAW[FW Byte Off];

// Find the next ‘1’ Forward
while ((FW Byte Off != RV Byte Off)&&((Read Char & FW Bit Off) == 0))
{
FW Bit Off = FW Bit Off >> 1;
if (FW Bit Off == 00)
{
FW Bit Off = 0x80;
FW Byte Off++;
Read Char = TrackRAW[FW Byte Off];

if (FW Byte Off == RV Byte Off)
{

Abort Direction = 1;

Temp Bit = 0x02;
Temp Char = 0x01;
Temp Mask = FW Bit Off;

38 Rev. 1.3

SILICON LABS

AN148

for (Bit Count = 1; Bit Count < CharBits; Bit Count++)
{
Temp Mask = Temp Mask >> 1;
if (Temp Mask == 0x00)
{
Temp Mask = 0x80;
Read_Char TrackRAW[FW Byte Off+1];

}
if (Read Char & Temp Mask)

{
Temp Char |= Temp Bit;
}
else
{
Temp Char &= ~Temp Bit;

}
Temp Bit = Temp Bit << 1;

// Check character against Start Sentinel
if (Temp Char == StartSen)

FW StartSen 1;

}
else

{
FW StartSen = 0;

// Read a byte at RV pointer
Read Char = TrackRAW[RV Byte Off];

// Find the next ‘1’ Reverse
while ((FW Byte Off != RV Byte Off)&&((Read Char & RV Bit Off) == 0))
{
RV_Bit Off = RV _Bit Off << 1;
if (RV_Bit Off == 00)
{
RV Bit Off = 0x01;
RV Byte Off--;
Read Char = TrackRAW[RV Byte Off];

if (FW Byte Off == RV Byte Off)
{

Abort Direction = 1;

Temp Bit = 0x02;
Temp Char = 0x01;
Temp Mask = RV _Bit Off;

for (Bit Count = 1; Bit Count < CharBits; Bit Count++)
{

Temp Mask = Temp Mask << 1;

if (Temp Mask == 0x00)

{

Rev. 1.3 39

SILICON LABS

AN148

//
if
{

}

Temp Mask 0x01;
Read Char = TrackRAW[RV Byte Off-1];

}
if (Read Char & Temp Mask)
{

Temp Char |= Temp Bit;
}
else
{

Temp Char &= ~Temp Bit;
}
Temp Bit = Temp Bit << 1;

Check character against Start Sentinel
(Temp Char == StartSen)

RV _StartSen 1;

else

{

}

RV _StartSen = 0;

(FW_StartSen ~ RV_StartsSen)

Direction Found = 1;

else if (FW _StartSen && RV _StartSen)

{

//*** Check for ES Backwards in front
Temp Bit = 0x80;

Temp Char = 0x00;

Temp Mask = FW Bit Off;

MAX Decoded = FW Byte Off; // MAX Decoded used as

if ((Temp Mask >> CharBits) != 0x00)
{

Temp Mask = Temp Mask >> CharBits;
}

else

{
FW Byte Off++;

Temp Mask = Temp Mask << (8 - CharBits);

Read Char = TrackRAW[FW Byte Off];

temporary storage

for (Bit Count = 0; Bit Count < CharBits; Bit Count++)

{
if (Read Char & Temp Mask)

{
Temp Char |= Temp Bit;
}

else
{
Temp Char &= ~Temp Bit;
}
Temp Bit = Temp Bit >> 1;

40

Rev. 1.3

SILICON LABS

AN148

Temp Mask = Temp Mask >> 1;
if (Temp Mask == 0x00)
{
Temp Mask = 0x80;
Read Char = TrackRAW[FW Byte Off+1];

}
FW_Byte Off = MAX Decoded; // Restore FW_Byte Off

Temp Char = Temp Char >> (8 - CharBits);
// Check character against End Sentinel
// If found here, track is reverse.
if (Temp Char == EndSen)
{
FW _StartSen = 0;
}
//otherwise, it is forward
else

{
RV_StartSen = 0;

Direction Found = 1;
}
else if (!Abort Direction)
{
FW Bit Off = FW Bit Off >> 1;
if (Fw_Bit Off == 00)
{
FW Bit Off = 0x80;
FW Byte Off++;
}
RV Bit Off = RV Bit Off << 1;
if (RV_Bit Off == 00)
{
RV Bit Off = 0x01;
RV Byte Off--;

if (FW _Byte Off >= RV Byte Off)
{

Abort Direction = 1;
}
}
}// End while((Direction Found == 0)&& (Abort Direction == 0))
if ((Direction Found) && (!Abort Direction))

{
if (FW_StartSen)

{
MAX Decoded = DecodeTrackForward (maxindex, FW Byte Off, FW Bit Off,

TrackRAW, CharBits);
}
else if (RV_StartSen)

{
MAX Decoded = DecodeTrackBackward(RV_Byte Off, RV Bit Off,

TrackRAW, CharBits);

Rev. 1.3 41

SILICON LABS

AN148

}

else

{
MAX Decoded = 0x81; // Could not find Start Sentinel

return (MAX Decoded);

// This routine sends a single character to the UART. It is used in lieu of
// printf () to reduce overall code size.

void UART CharOut (unsigned char c)
{
if (¢ == “\n’)
{
while (!TIO);
TIO = 0;
SBUF0 = 0x0d; /* output CR */
}
while (!TIO);
TIO = 0;
SBUFO0 = c;

// This routine calls the UART CharOut repeatedly to send a string value to the
// UART. It is used in lieu of printf () to reduce overall code size.

void UART StringOut (unsigned char *c)
{
while (*c != 0x00)

{
UART CharOut (*c) ;

c++;

}
}
#if DEBUG
/=
// UART_HexOut
T
/7

// This routine sends the hexadecimal value of a character to the UART as ASCII
// text. Only used when DEBUG = 1.

//

void UART HexOut (unsigned char c)

{

42 Rev. 1.3

SILICON LABS

AN148

while
TIO =
if ((c

SBUFO = ((c >> 4) & 0x0F) + 0x30;

else

SBUFO = ((c >> 4) & O0xOF) + 0x37;

while
TIO =
if ((c

(!TI0);
0;
& O0xFO0) < 0xA0)

(!TIO) ;
0;
& 0x0F) < 0x0A)

SBUFO0 = (¢ & 0xO0F) + 0x30;

else

SBUFO

}
#endif

(c & O0x0F) + 0x37;

// END #if DEBUG

>

SILICON

LABS

Rev. 1.3

43

AN1438
APPENDIX F—FIRMWARE LISTING FOR 3-CHANNEL EXAMPLE

/e
// MagStripeReaderF330 3CH.c
et
// Copyright 2004 Silicon Laboratories

//

// AUTH: BD

// DATE: 3 MAR 04

// VER: 2.0

//

// This program reads the magnetic stripe from a card written in the standard
// ISO 3-channel format using F2F encoding. Read data is output to the UART
// after being decoded.

//

// Target: C8051F33x

// Tool chain: KEIL C51 7.06 / KEIL EVAL C51

//

[
// Includes

[mm e
#include <c8051£330.h> // SFR declarations for C8051F330

[
// 16-bit SFR Definitions for ‘F33x
et
sfrl6 TMR2RL = Oxca; // Timer2 reload value

sfrl6 TMR2 = Oxcc; // Timer2 counter

/e
// Conditional Compilation CONSTANTS

/e
#define DEBUG 0 // Set to ‘1’ for extra information
#define T3 5BIT 1 // Set to ‘1’ for T3 5-bit encoding

// Set to ‘0’ for T3 7-bit encoding

// **NOTE** The Track 3 encoding scheme is different for different card types

// The IS0-4909 standard uses 5-bit Track 3 encoding

// Many cards now use 7-bit encoding for Track 3

J e
// Global CONSTANTS

/e
#define SYSCLK 24500000 // SYSCLK frequency in Hz

#define BAUDRATE 115200 // Baud rate of UART in bps

#define SAMPLE RATE 200000 // Sample rate of ADC

#define T1_SS 0x45 // Start Sentinel + parity

#define T1 ES 0x1F // End Sentinel + parity

#define T1 BITS 7 // data + parity bit

#define T1 CHPOS 0x08 // Positive ADC Mux channel

®
44 Rev. 1.3 @

SILICON LABS

AN148

#define T1 CHNEG 0x09 // Negative ADC Mux channel

#define T2 _SS 0x0B // Start Sentinel + parity

#define T2 _ES 0x1F // End Sentinel + parity

#define T2 BITS 5 // data + parity bit

#define T2 CHPOS 0x0A // Positive ADC Mux channel

#define T2 CHNEG 0x0B // Negative ADC Mux channel

#if T3 S5BIT // Use 5-bit encoding on Track 3

#define T3_SS 0x0B // Start Sentinel + parity

#define T3 _ES O0x1F // End Sentinel + parity

#define T3 BITS 5 // data + parity bit

#endif

#if !T3 SBIT // Use 7-bit encoding on Track 3

#define T3_SS 0x45 // Start Sentinel + parity

#define T3 _ES 0x1F // End Sentinel + parity

#define T3 BITS 7 // data + parity bit

#endif

#define T3 CHPOS 0x0C // Positive ADC Mux channel

#define T3 CHNEG 0x0D // Negative ADC Mux channel

#define THRESHOLDL 7 // Noise threshold limits

#define THRESHOLD2 7

#define THRESHOLD3 7

#define Z LIMIT 3 // Number of Zeros before recording

sbit TK1 GRN LED = P0"2; // GREEN LED TK1

sbit TK1 RED LED = P0"3; // RED LED TK1

sbit TK2 GRN LED = P0"6; // GREEN LED TK2

sbit TK2 RED LED = P0"7; // RED LED TK2

sbit TK3_GRN _LED = P176; // GREEN LED TK3

sbit TK3 RED LED = P1"7; // RED LED TK3

/e

// Global VARIABLES

ettt bl

unsigned char xdata T1RAW[100], T2RAW[100], // Track 1 and 2 Raw Data
T3RAW[100]; // Track 3 Raw Data

unsigned char xdata ASCII arrayl[128]; // Decoded Information

unsigned char COLLECTED1 = 1, COLLECTED2 = 1, // Raw data indices

COLLECTED3 = 1;
unsigned int bdata Timeout Counter; // Bit-Addressable Timeout counter

sbit CLEAR TIMEOUT = Timeout Counter ” 4; // Used to keep from timing out
sbit READ_TIMEOUT = Timeout_Counter ”~ 5; // Indicates when read is finished
sbit CH2 SWITCH = Timeout Counter ~ 8; // LSB of counter:

// If ‘1’, CH2 is sampled

// If ‘0’, CH2 is skipped

unsigned char bdata Temp Bytel; // Bit-Addressable Temporary Storage
sbit Templ b0 = Temp Bytel * 0; // LSB of Temp Bytel
®
Rev. 1.3 45

SILICON LABS

AN148

unsigned char bdata Temp Byte2;
sbit Temp2 b0 = Temp Byte2 ~ 0;

unsigned char bdata Temp Byte3;

/7
//

//

Bit-Addressable Temporary Storage

LSB of Temp Byte2

Bit-Addressable Temporary Storage

sbit

void
void
void
void
void

Temp3 b0 = Temp Byte3 "~ 0; // LSB of Temp Byte3

SYSCLK Init (void);
ADCO Init (void);
UARTO Init (void);
PORT Init (void);
Timer2 Init (int);

unsigned char Swipe Card(void);

char

char

char

char

void
void
void

void

GetDirection (unsigned char maxindex, unsigned char StartSen,

unsigned char EndSen, unsigned char *TrackRAW,

unsigned char CharBits);

DecodeTrackForward (unsigned char maxindex, unsigned char Byte Offset,
unsigned char Bit Offset, unsigned char *TrackRAW,

unsigned char CharBits);

DecodeTrackBackward (unsigned char Byte Offset, unsigned char Bit Offset,
unsigned char *TrackRAW, unsigned char CharBits);

TrackErrorCheck (unsigned char maxindex, unsigned char StartSen,
unsigned char EndSen, unsigned char CharBits);

UART CharOut (unsigned char c);
UART StringOut (unsigned char *c);
UART HexOut (unsigned char c);

main (void) {

unsigned char idata Return Code;
unsigned char idata colCount;

bit ERRT1, ERRT2, ERRT3; // Track 1, 2, 3 Error Flags
// Disable Watchdog timer
PCAOMD &= ~0x40; // WDTE = 0 (clear watchdog timer
// enable)
PORT Init(); // Initialize Port I/O

SYSCLK_Init (); // Initialize Oscillator
ADCO_Init (); // Init ADCO
Timer2 Init (SYSCLK/SAMPLE RATE) ; // Init Timer 2 w/ ADC sample rate

UARTO Init();

while

(1) A

46

Rev. 1.3

SILICON LABS

AN148

#if DEBUG
UAR
#endif

UAR

Swi

// 1f DEB
#if DEBUG

//
Ret

if
{

}

els
{

T StringOut (“\nTesting”);
// END #if DEBUG

T StringOut (“\n”);

pe Card();

UG is ‘1’, use verbose mode for output

Find direction of trackl, and decode to character array

urn Code = GetDirection(COLLECTED1, T1 SS, Tl ES, T1RAW, Tl BITS);
((Return _Code & 0x80) == 0) // If no error was detected

// Check character array for SS, ES, Parity, and LRC
Return Code = TrackErrorCheck (Return Code, Tl SS, Tl ES, Tl BITS);

(Return Code & 0x80) // If an error was detected
ERRT1L = 1;
UART StringOut (“\nErrors: \n”); // List the errors detected

if (Return Code & 0x01)
{
UART_ StringOut (“\tStart Sentinel not found\n”);
}
if (Return Code & 0x02)
{
UART_ StringOut (“"\tEnd Sentinel not found\n”);
}
if (Return Code & 0x04)
{
UART_ StringOut (“\tLRC incorrect\n”);
}
if (Return Code & 0x08)

{
UART_StringOut (“\tParity error(s)\n”);

UART StringOut (“\nDATA CH1l:\n”);

for (colCount = 0; colCount < 128; colCount++)

{
UART CharOut (0x20 + (ASCII array[colCount]&0x3F));
UART CharOut (0x30) ;

}

UART CharOut (*\n’);

UART_StringOut(“END DATA CH1\n”);

e // No errors, print Tl data

ERRT1 = 0;
UART StringOut (“\nDATA CH1:\n”);

for (colCount = 0; colCount < Return Code; colCount++)

{
UART CharOut (0x20 + (ASCII array[colCount]&0x3F));

Rev. 1.3 47

SILICON LABS

AN148

ASCII array[colCount] = 0x30;
}
UART_CharOut (*\n’);
UART_StringOut(“END DATA CH1\n”);

// Print the RAW data for Track 1
UART_StringOut(“\nRAW COLLECTION CH1:\nOx”);

for (colCount = 0; colCount < COLLECTEDl; colCount++)

{
UART HexOut (T1RAW[colCount]);

UART_CharOut (*\n’);
UART_StringOut(“END RAW CHI\n”);

// Find direction of track2, and decode to character array
Return Code = GetDirection (COLLECTED2, T2 SS, T2 ES, T2RAW, T2 BITS);

if ((Return Code & 0x80) == 0) // If no error was detected
{

// Check character array for SS, ES, Parity, and LRC

Return Code = TrackErrorCheck (Return Code, T2 SS, T2 ES, T2 BITS);

if (Return Code & 0x80) // If an error was detected
{

ERRT2 = 1;

UART StringOut (“\nErrors: \n”); // List the errors detected

if (Return Code & 0x01)
{
UART_ StringOut (“\tStart Sentinel not found\n”);
}
if (Return Code & 0x02)
{
UART_ StringOut (“\tEnd Sentinel not found\n”);
}
if (Return Code & 0x04)
{
UART_ StringOut (“\tLRC incorrect\n”);
}
if (Return Code & 0x08)

{
UART_StringOut (“\tParity error(s)\n”);

UART StringOut (“\nDATA CH2:\n”);
for (colCount = 0; colCount < 128; colCount++)
{
UART CharOut (0x30 + (ASCII array[colCount]&0x0F));
ASCII array[colCount] = 0x30;
}
UART CharOut (*\n’);
UART_ StringOut (“END DATA CH2\n”);
}
else // No errors, print T2 data

{

48 Rev. 1.3

SILICON LABS

AN148

ERRT2 = 0;
UART_ StringOut (“\nDATA CH2:\n”);

for (colCount = 0; colCount < Return Code; colCount++)
{
UART CharOut (0x30 + (ASCII array[colCount]&0x0F));
ASCII array[colCount] = 0x30;
}
UART_CharOut (*\n’);
UART_StringOut(“END DATA CH2\n”);

// Print the RAW data for Track 2
UART_StringOut(“\nRAW COLLECTION CH2:\nO0Ox”);

for (colCount = 0; colCount < COLLECTEDZ2; colCount++)

{
UART HexOut (T2RAW[colCount]);

UART_CharOut (*\n’);
UART_StringOut(“END RAW CH2\n”);

// Find direction of track3, and decode to character array
Return Code = GetDirection (COLLECTED3, T3 SS, T3 ES, T3RAW,

if ((Return Code & 0x80) == 0) // If no error
{
// Check character array for SS, ES, Parity, and LRC
Return Code = TrackErrorCheck (Return Code, T3 SS, T3 ES,

T3 BITS);

was detected

T3 BITS);

if (Return Code & 0x80) // If an error was detected
{

ERRT3 = 1;

UART_ StringOut (“\nErrors: “); // List the errors detected

UART CharOut (*\n’);

if (Return Code & 0x01)
{
UART StringOut (“\tStart Sentinel not found\n”);
}
if (Return Code & 0x02)
{
UART_ StringOut (“\tEnd Sentinel not found\n”);
}
if (Return Code & 0x04)
{
UART StringOut (“"\tLRC incorrect\n”);
}
if (Return Code & 0x08)

{
UART_StringOut (“\tParity error(s)\n”);

UART StringOut (“\nDATA CH3:\n”);
for (colCount = 0; colCount < 128; colCount++)

{
UART CharOut (0x30 + (ASCII array[colCount]&0x0F));

Rev. 1.3

SILICON LABS

49

AN148

ASCII array[colCount] = 0x30;

}

UART_CharOut (*\n’);

UART_StringOut(“END DATA CH3\n”);
}
else // No errors, print T3 data
{

ERRT3 = 0;

UART_StringOut (“\nDATA CH3:\n”);

for (colCount = 0; colCount < Return Code; colCount++)
{
UART CharOut (0x30 + (ASCII array[colCount]&0x0F));
ASCII array[colCount] = 0x30;
}
UART_CharOut (*\n’);
UART StringOut (“END DATA CH3\n”);

// Print the RAW data for Track 3
UART_StringOut(“\nRAW COLLECTION CH3:\nO0x”);

for (colCount = 0; colCount < COLLECTED3; colCount++)

{
UART HexOut (T3RAW[colCount]);

UART CharOut (‘\n’) ;
UART StringOut (“END RAW CH3\n”);

// Signal Error / OK with LEDs
if (!ERRT1)
{
TK1 RED LED
TK1 GRN LED = 1;

Il
o
~.

}

else

{
TK1 RED LED = 1;
TK1 GRN LED =

|
o
~.

// Signal Error / OK with LEDs

if (!'ERRT2)
{
TK2 RED LED = 0;
TK2 GRN LED = 1;
}
else
{
TK2 RED LED = 1;

TK2 GRN LED = 0;

// Signal Error / OK with LEDs
if (!'ERRT3)
{

TK3 RED LED = 0;

50 Rev. 1.3

SILICON LABS

AN148

TK3 GRN LED = 1;
}
else
{
TK3 RED LED = 1;
TK3 GRN LED = 0;

#endif // END #if DEBUG

// If DEBUG is ‘0’, only output valid track info
#1f !DEBUG

// Find direction of trackl, and decode to character array
Return Code = GetDirection (COLLECTED1, Tl SS, Tl ES, T1RAW, T1 BITS);

if ((Return Code & 0x80) == 0) // If no error was detected
{

// Check character array for SS, ES, Parity, and LRC

Return Code = TrackErrorCheck (Return Code, Tl SS, Tl ES, Tl BITS);

if (Return Code & 0x80) // If an error was detected
{ // set the error bit

ERRTL = 1;
}
else // Otherwise print Track 1
{

ERRT1 = 0;

for (colCount = 0; colCount < Return Code; colCount++)
{
UART CharOut (0x20 + (ASCII array[colCount]&0x3F));
ASCII array[colCount] = 0x30;
}
UART_CharOut (*\n”);

// Find direction of track2, and decode to character array
Return Code = GetDirection (COLLECTED2, T2 SS, T2 ES, T2RAW, T2 BITS);

if ((Return Code & 0x80) == 0) // If no error was detected
{

// Check character array for SS, ES, Parity, and LRC

Return Code = TrackErrorCheck (Return Code, T2 SS, T2 ES, T2 BITS);

if (Return Code & 0x80) // If an error was detected
{ // set the error bit

ERRT2 = 1;
}
else // Otherwise print Track 2
{

ERRT2 = 0;

for (colCount = 0; colCount < Return Code; colCount++)
{
UART CharOut (0x30 + (ASCII array[colCount]&0x0F));
ASCII array[colCount] = 0x30;

Rev. 1.3 51

SILICON LABS

AN148

UART CharOut (*\n’);

// Find direction of track3, and decode to character array
Return Code = GetDirection (COLLECTED3, T3 SS, T3 ES, T3RAW, T3 BITS);

if ((Return Code & 0x80) == 0)

{
// Check character array for SS, ES, Parity, and LRC

Return Code = TrackErrorCheck (Return Code, T3 SS, T3 ES, T3 BITS);

if (Return Code & 0x80)

{ // set the error bit
ERRT3 = 1;
}
else // Otherwise print Track 3
{
ERRT3 = 0;
for (colCount = 0; colCount < Return Code; colCount++)

{
UART CharOut (0x30 + (ASCII array[colCount]&0x0F));
ASCII array[colCount] = 0x30;

}

UART CharOut (*\n’);

// Signal Error / OK with LEDs
if (!ERRT1)

Il
o
~.

TK1 RED LED
TK1 GRN LED = 1;
}

else

{
TK1 RED LED = 1;
TK1 GRN LED = 0;

// Signal Error / OK with LEDs
if (!ERRT2)
{

TK2 RED LED = 0;

TK2 GRN_LED = 1;
}
else
{

TK2 RED LED = 1;

TK2 GRN_LED = 0;

// Signal Error / OK with LEDs
if (!ERRT3)
{

I
o
~.

TK3 RED LED
TK3 GRN LED = 1;
}
else

{

// If no error was detected

// If an error was detected

52

Rev. 1.3

SILICON LABS

AN148

TK3_RED LED
TK3_GRN_LED

}
#endif // END #if

} // END while (1)

} // END main ()

! DEBUG

// Configure the Crossbar and GPIO ports.

analog,

skipped)

push-pull)
open drain)

analog,
analog,

analog,
analog,
analog,

push-pull,
push-pull,

(
(
(
(
(
(analog,
(
(
(
(
(

// Initialization Subroutines
// PORT Init
//
//
// P0.0 - VREF Input
// PO.4 - UART TX
// P0O.5 - UART RX
// P1.0 - Channel 1+
// Pl1.1 - Channel 1-
// P1.2 - Channel 2+
// P1.3 - Channel 2-
// Pl.4 - Channel 3+
// P1.5 - Channel 3-
// Pl.6 - Green LED
// P1.7 - Red LED
//
void PORT Init (void)
{

POMDOUT |= 0xDC;

POMDIN &= ~0x01;
P1IMDIN &= ~0x3F;
P1MDOUT |= 0xCO;

POSKIP |=
P1SKIP |

0xCD;
OxXFE;

XBRO = 0x01;
XBR1 0x40;

TK1 RED LED =
TK1 GRN LED =
TK2 RED LED =
TK2 GRN_LED =
TK3 RED LED =
TK3 GRN LED =

~.

N

~.

~.

O O O O O O
~

~.

skipped)
skipped)
skipped)
skipped)
skipped)
skipped)

//

//
!/
//

//
//

//
//
//

//

skipped)
skipped)

enable TX and LEDs as push-pull out

VREF analog in
Enable P1.0 through 1.5 as analog in
Pl1.6, 1.7 Push-pull output

Skip VREF pin and LED Outputs
Skip Analog Inputs and LED Outputs

Enable UART on P0.4 (RX) and P0.5(TX)
Enable crossbar and enable

weak pull-ups

Turn all LEDs off

// This routine initializes the system clock to use the internal oscillator

>

SILICON LABS

Rev. 1.3

53

AN148

// at its maximum frequency, enables
// monitor.

//

void SYSCLK Init (void)

{

the Missing Clock Detector and VDD

OSCICN |= 0x03; // Configure internal oscillator for
// its maximum frequency
RSTSRC = 0x06; // Enable missing clock detector and
// VDD Monitor
}
/) m
// ADCO Init
J e R R
//
// Configure ADCO to use Timer 2 as conversion source, and to initially point
// to Channel 2. Disables ADC end of conversion interrupt. Leaves ADC
// disabled.
//
void ADCO Init (void)
{
ADCOCN = 0x02; // ADCO disabled; Normal tracking
// mode; ADCO conversions are initiated
// on timer 2
AMXOP = T1 CHPOS; // Channel 1+
AMXON = T1 CHNEG; // Channel 1-
ADCOCF = (SYSCLK/3000000) << 3; // ADC conversion clock <= 3MHz
ADCOCF &= ~0x04; // Right-Justify data
REFOCN = 0x03; // VREF = P0.0 internal VREF, bias
// generator is on.

=
// UARTO Init
[
//
// Configure the UARTO using Timerl, for <BAUDRATE> and 8-N-1.
//
void UARTO Init (void)
{
SCONO = 0x10; // SCONO: 8-bit variable bit rate
// level of STOP bit is ignored
// RX enabled
// ninth bits are zeros
// clear RIO and TIO bits
if (SYSCLK/BAUDRATE/2/256 < 1) {
TH1 = - (SYSCLK/BAUDRATE/2) ;
CKCON &= ~0x0B; // TIM = 1; SCAl:0 = xx
CKCON |= 0x08;
} else if (SYSCLK/BAUDRATE/2/256 < 4) {
TH1 = - (SYSCLK/BAUDRATE/2/4);
CKCON &= ~0x0B; // TIM = 0; SCAl:0 = 01
CKCON |= 0x01;
} else if (SYSCLK/BAUDRATE/2/256 < 12) {
®
54 Rev. 1.3

SILICON LABS

AN148

TH1 = - (SYSCLK/BAUDRATE/2/12);
CKCON &= ~0x0B; // TIM = 0; SCAl:0 = 00
} else {
TH1 = - (SYSCLK/BAUDRATE/2/48);
CKCON &= ~0x0B; // TIM = 0; SCA1:0 = 10
CKCON |= 0x02;
}
TL1 = TH1; // init Timerl
TMOD &= ~0xfO0; // TMOD: timer 1 in 8-bit autoreload
TMOD |= 0x20;
TR1 = 1; // START Timerl
TIO = 1; // Indicate TX0 ready
}
e
// Timer2 Init
/e e
//

// Configure Timer2 to auto-reload at interval specified by <counts> (no
// interrupt generated) using SYSCLK as its time base.

void Timer2 Init (int counts)
{
TMR2CN = 0x00; // STOP Timer2; Clear TF2H and TF2L;
// disable low-byte interrupt; disable
// split mode; select internal timebase

CKCON |= 0x10; // Timer2 uses SYSCLK as its timebase
TMR2RL = -counts; // Init reload values
TMR2 = TMR2RL; // Init Timer2 with reload value
}
[
// Support Subroutines
/e
[
// Swipe Card
[
//

// This routine performs the signal detection and data collection when a card
// is swiped through the reader for Track 1 2 and 3. Interrupts should be
// turned off when this routine runs for optimal performance.

unsigned char Swipe Card(void)

{

unsigned char data zerocountl; // Zero counter - Track 1
unsigned char data bytecountl; // Raw data counter - TK 1
unsigned char data zerocount2; // Zero counter - Track 2
unsigned char data bytecount2; // Raw data counter - TK 2
unsigned char data zerocount3; // Zero counter - Track 3
unsigned char data bytecount3; // Raw data counter - TK 3
char data runningsuml = 0, rsuml div = 0; // Filtering variables
char data runningsum2 = 0, rsum2 div = 0;

®

Rev. 1.3 55

SILICON LABS

AN148

char data

char data
char data
char data

char data

unsigned

unsigned

runningsum3 = 0, rsum3 div = 0;

localmaxl = 0, localminl

//
//

0, next peakl

localmax2 = 0, localmin2 = 0, next peak2

localmax3 = 0, localmin3 = 0, next peak3

ADC_DATA; //

int data cyclecountl, cyclecount2, //
cyclecount3;

int maincycle; //

//

Minimum / Maximum and
next peak values

Raw ADC Data (low byte)

Cycle counters

Main time stamp for
ADC conversions

unsigned int data maxtimel, mintimel; // Min / Max time stamps
unsigned int data maxtime2, mintime2;
unsigned int data maxtime3, mintime3;
unsigned char data cycleindexl; // Index for # of cycles
unsigned char data cycleindex2; // present in sum
unsigned char data cycleindex3;
unsigned int data cyclesuml = 0; // Sum over 3 cycles
unsigned int data cyclesum2 = 0;
unsigned int data cyclesum3 = 0;
unsigned int data CP75pctl = 0, CP150pctl = 0; // 75% and 150% comparison
unsigned int data CP75pct2 = 0, CP150pct2 = 0; // values
unsigned int data CP75pct3 = 0, CP150pct3 = 0;
bit ZERO WAIT1, FIRST ONEl, BIT RECORDI; // Bits keep track of stages
bit ZERO WAIT2, FIRST ONE2, BIT RECORD2; // in the collection
bit ZERO WAIT3, FIRST ONE3, BIT RECORD3;
bit LASTEDGEl = 0; // State of last edges:
bit LASTEDGE2 = 0; // 1 = Positive
bit LASTEDGE3 = 0; // 0 = Negative
maincycle = 0; // Reset ADC timestamp
Timeout Counter = 0; // Reset Timeout Variables
READ TIMEOUT = 0; // (included for clarity)
CH2 SWITCH = 0;
TIRAW[O0] = 0; // Reset Trackl Variables
COLLECTED1 = 1;
ZERO WAIT1 = 1;
FIRST ONEl = 0;
BIT_RECORDI = 0;
zerocountl = 0;
bytecountl = 0;
T2RAW[O0] = 0; // Reset Track2 Variables
COLLECTED2 = 1;
ZERO_WAITZ = 1;
FIRST ONE2 = O;
BIT RECORD2 = 0;
zerocount2 = 0;
bytecount2 = 0;
®
56 Rev. 1.3

SILICON LABS

AN148

T3RAW[0] = 0; // Reset Track3 Variables
COLLECTED3 = 1;

ZERO WAIT3 = 1;

FIRST ONE3 = 0;

BIT_RECORD3 = 0;

zerocount3 = 0;

bytecount3 = 0;

AMXO0P = T1 CHPOS; // Set up AIN+ channel
AMXON = T1 CHNEG; // Set up AIN- channel
ADOEN = 1; // Enable ADCO

TR2 = 1; // start Timer2

// wait for Timer2 overflow flag - 1lst conversion begins

while (!TF2H);

TF2H = 0; // clear timer overflow flag
AMXOP = T2 CHPOS; // switch AIN+ channel
AMXON = T2 CHNEG; // switch AIN- channel

while (!READ TIMEOUT)
{

Timeout Counter++; // Increment counters
maincycle++;
if (CH2_ SWITCH) // check if CH2 is sampled

{
// wait for Timer2 overflow flag
while (!TF2H);

AMX0P = T3 CHPOS; // switch AIN+ channel
AMXON = T3 CHNEG; // switch AIN- channel
ADC_DATA = ADCOL; // read current data low byte
TF2H = O; // clear timer overflow flag
}
else

{

// wait for Timer2 overflow flag
while (!TF2H);

AMXOP = T1 CHPOS; // switch AIN+ channel
AMXON = T1 CHNEG; // switch AIN- channel
ADC_DATA = ADCOL; // read current data low byte
TF2H = 0; // clear timer overflow flag

// Perform exponential average

runningsuml = runningsuml + ADC DATA - rsuml div;
rsuml div = runningsuml>>2;
if (!ZERO _WAIT1) // Test to see if still waiting for zeros
{ // If NOT.. collect data
if (!LASTEDGELl) // Test if last edge was negative
{
if (runningsuml > next peakl) // Test against peak limit

{

// Establish new local max
// and compute min-max
// peak timing

Rev. 1.3

SILICON LABS

57

AN148

}

else if

{

}

localmaxl = runningsuml;
cyclecountl += mintimel - maxtimel;
next peakl = localmaxl - THRESHOLDI1;

if (cyclecountl <= CP75pctl)
{
BITiRECORDl =
FIRST ONE1l =

1;

1;

}

else

{
cyclesuml += cyclecountl;
cycleindexl++;

if
{

(FIRST ONE1)
Temp Bytel = Temp Bytel <<
Templ_bO = BIT_RECORDI;
bytecountl++;
BIT RECORD1 = 0;
}
cyclecountl =
CLEAR TIMEOUT =
}

LASTEDGELl = 1;

(runningsuml < localminl)
runningsuml;

localminl =

localminl + THRESHOLDI;
maincycle;

next peakl =
mintimel =

else

{

else

if
{

if (bytecountl == 8)

{
TIRAW[COLLECTED1] =
bytecountl = 0;
COLLECTED1++;

Temp Bytel;

(cycleindexl >= 3)

CP75pctl = cyclesuml >> 2;
cyclesuml = 0;

cycleindexl = 0;

(runningsuml < next peakl)

localminl = runningsuml;
cyclecountl += maxtimel - mintimel;
next peakl = localminl + THRESHOLDI;

//
//

//

//

/7

//

//

//
//

//

/7

//
//

/7

//

//

//

/7
//
/7

//
//

1/2 or Full cycle?
**1/2 cycle

**Full cycle

Update cycle sum

If first ‘1’ is found

Record a bit
Reset bit value to ‘0’

Reset cycle counter
Keep from timing out

Positive edge
Check against local min

Update local min
and next peak

Time stamp local min
Perform some housekeeping

Store the current byte

Calculate 75% Value

Last edge was positive..
Test against peak limit
Establish new local min

and compute max-min
peak timing

58

Rev. 1.3

SILICON LABS

AN148

if (cyclecountl <= CP75pctl) // 1/2 or Full cycle?
{ // **1/2 cycle

BIT RECORD1 = 1;

FIRST ONEl = 1;
}

else // **Full cycle

{
cyclesuml += cyclecountl; // Update cycle sum
cycleindexl++;
if (FIRST ONE1) // If first ‘1’ is found

{
Temp Bytel = Temp Bytel << 1;

Templ b0 = BIT RECORDI; // Record a bit
bytecountl++;
BIT RECORD1 = 0; // Reset bit value to ‘0’
}
cyclecountl = 0; // Reset cycle counter

CLEAR TIMEOUT = 0;
}

LASTEDGE1l = 0; // Negative edge
}
else if (runningsuml > localmaxl) // Check against local max
{

localmaxl = runningsuml; // Update local max

// and next peak
next peakl = localmaxl - THRESHOLDI1;

maxtimel = maincycle; // Time stamp local max
}
else // Perform some housekeeping
{
if (bytecountl == 8) // Store the current byte
{
T1RAW[COLLECTED1] = Temp Bytel;
bytecountl = 0;
COLLECTED1++;
}
if (cycleindexl >= 3) // Calculate 75% Value

CP75pctl = cyclesuml >> 2;
cyclesuml = 0;
cycleindexl = 0;

} // End of data collection code (after Z LIMIT zeros detected)

else // IF ZERO WAIT1 == 1, still waiting for Z LIMIT zeros

{
CLEAR TIMEOUT = 0;

if (!LASTEDGELl) // Test if last edge was negative
{
if (runningsuml > next peakl) // Test against peak limit
{
// Establish new local max
// and compute min-max
// peak timing

Rev. 1.3 59

SILICON LABS

AN148

localmaxl = runningsuml;
cyclecountl += mintimel - maxtimel;
next peakl = localmaxl - THRESHOLDI1;

cyclesuml += cyclecountl;
cycleindexl++;

//

Update cycle sum

// Check for a value that looks periodic

if ((cyclecountl > CP75pctl) &&(cyclecountl < CP150pctl))
{
if (++zerocountl == Z LIMIT) // Count up and check
{ // for Z LIMIT
ZERO WAITI1 = 0;
TK1 RED LED = 1;
TK1 GRN LED = 1;
}
}
else // Outside of range
{
zerocountl = 0; // Reset zero count
}
cyclecountl = 0; // Reset cycle counter
LASTEDGE1l = 1; // Positive edge
}
else if (runningsuml < localminl) // Check against local min
{
localminl = runningsuml; // Update local min
// and next peak
next peakl = localminl + THRESHOLDI1;
mintimel = maincycle; // Time stamp local min
}
else //

{
if (cycleindexl >= 3)
{

CP150pctl = cyclesuml >> 1;
CP75pctl = CP150pctl >> 1;
cyclesuml = 0;

cycleindexl = 0;

else

if
{

(runningsuml < next peakl)

localminl runningsuml;
cyclecountl += maxtimel - mintimel;
next peakl localminl + THRESHOLDL;

cyclesuml += cyclecountl;
cycleindexl++;

/7

/7
//
/7

/7
/7

//

Perform some housekeeping

Calculate 75% and 150%

Last edge was positive
Test against peak limit
Establish new local min

and compute max-min
peak timing

Update cycle sum

// Check for a value that looks periodic

if

((cyclecountl > CP75pctl) &&(cyclecountl < CP150pctl))

60

Rev. 1.3

SILICON LABS

AN148

}

els

{

}

cyclecountl
LASTEDGEL

}

else if

{

localmax1l

next peakl
maxtimel

}
else
{
if
{

} // End of Waiting for Zeroes code

if
{

if
{

(++zerocountl == 7z LIMIT)

ZERO_WAIT1 = 0;
TK1 RED LED = 1;
1

TK1 GRN LED

’

e

zerocountl

0;
(runningsuml > localmaxl)

runningsuml ;

localmaxl - THRESHOLDI;

maincycle;

(cycleindexl >= 3)

CP150pctl

cyclesuml >> 1;
CP75pctl CP150pctl >> 1;
cyclesuml = 0;

cycleindexl

0;

(CH2 SWITCH)

// wait for Timer2 overflow flag

while
AMXOP
AMXON
ADC_DATA
TF2H = 0;

(ITF2H) ;
T1 CHPOS;
T1 CHNEG;

ADCOL;

// Perform exponential average

runningsum2
rsum2_ div

runningsum2>>2;

maincycle++;

if
{

if

{
if
{

(!ZERO_WAIT2)

(!'LASTEDGE2)

// If NOT..

(runningsum2 > next peak2)

!/
//

/7

//

/7
/7

//

//
//

/7

//

//

(before

//

//
//
//
/7

/7

//

Count up and check
for z LIMIT

Outside of range
Reset zero count

Reset cycle counter
Negative edge

Check against local max

Update local max
and next peak

Time stamp local max
Perform some housekeeping

Calculate 75% and 150%

Z LIMIT reached)

Check if CH2 is sampled

switch AIN+ channel
switch AIN- channel
read current data low byte
clear timer overflow flag

runningsum2 + ADC DATA - rsum2 div;

// Test to see if still waiting for zeros
collect data

// Test if last edge was negative

Test against peak limit

Establish new local max

SILICON LABS

Rev. 1.3

61

AN148

}

// and compute min-max
// peak timing
localmax2 = runningsum2;
cyclecount2 += mintime2 - maxtime2;
next_peak2 = localmax?2 - THRESHOLDZ;
if (cyclecount2 <= CP75pct2) // 1/2 or Full cycle?
{ // **1/2 cycle
BIT RECORD2 = 1;
FIRST ONE2 = 1;
}
else // **Full cycle

{

cyclesum?2 += cyclecount?2;

cycleindex2++;
if (FIRST ONE2)
{
Temp Byte2 = Temp Byte2 <<
Temp2 b0 = BIT RECORD2;
bytecount2++;
BIT_RECORDZ = 0;
}
cyclecount2 = 0;
}
LASTEDGEZ2 = 1;
}
else if (runningsum2 < localmin2)

{

}

localmin2 =
next peak2 =
mintime2 = maincycle;

runningsum?2;

else

{

else

{

if
{

if
{

(bytecount2 == 8)

T2RAW[COLLECTED2] =
bytecount2 = 0;
COLLECTED2++;

(cycleindex2 >= 3)

CP75pct2 = cyclesum2 >> 2;
cyclesum2 = 0;
cycleindex2 = 0;

(runningsum2 < next peak2)

localmin2 = runningsum2;

// Update cycle sum

// If first ‘1’ is found

1;
// Record a bit

// Reset bit value to ‘0’
// Reset cycle counter
// Positive edge

// Check against local min

// Update local min
// and next peak

localmin2 + THRESHOLD2;

// Time stamp local min

// Perform some housekeeping

// Store the current byte

Temp Byte2;

// Calculate 75% Value

// Last edge was positive..
// Test against peak limit
// Establish new local min

// and compute max-min
// peak timing

cyclecount2 += maxtime2 - mintime2;

62

Rev. 1.3

SILICON LABS

AN148

next peak2 =

if
{

(cyclecount2 <= CP75pct2)

1;
1;

BIT_RECORDZ =
FIRST ONE2 =
}
else

{

cyclesum?2 += cyclecount2;

cycleindex2++;
if (FIRST ONE2)
{
Temp Byte2 = Temp Byte2 <<
Temp2 b0 = BIT RECORD2;
bytecount2++;
BIT_RECORDZ = 0;
}
cyclecount2 = 0;
}
LASTEDGEZ2 = 0;
}
else if (runningsum2 > localmax?2)

{

localmin2 + THRESHOLD2;

// 1/2 or Full cycle?
// **1/2 cycle

// **Full cycle

// Update cycle sum

// If first ‘1’ is found

1;
// Record a bit

// Reset bit value to ‘0
// Reset cycle counter
// Negative edge

// Check against local max

// Update local max

localmax2 = runningsum?2; // and next peak

next peak2 = localmax2 - THRESHOLD2Z;

maxtime2 = maincycle; // Time stamp local max
}
else // Perform some housekeeping
{

if (bytecount2 == 8) // Store the current byte

{
T2RAW[COLLECTED2] =
bytecount2 = 0;
COLLECTED2++;

(cycleindex2 >= 3)

CP75pct2 = cyclesum2 >> 2;
cyclesum2 = 0;

cycleindex2 = 0;

} // End of data collection code
else // IF ZERO_WAITZ =1,
{

if (!LASTEDGEZ2)

if (runningsum2 > next peak2)

{

localmax2 = runningsum2;

Temp ByteZ2;

// Calculate 75% Value

(after Z LIMIT zeros detected)
still waiting for Z LIMIT zeros

// Test if last edge was negative

// Test against peak limit

// Establish new local max
// and compute min-max
// peak timing

Rev. 1.3

SILICON LABS

63

AN148

cyclecount?2 += mintime2 - maxtime?2;
next peak2 localmax2 - THRESHOLD2;

//

cyclesum2 += cyclecount2;
cycleindex2++;

Update cycle sum

// Check for a value that looks periodic

if ((cyclecount2 > CP75pct2) &&(cyclecount2 < CP1l50pct2))
{
if (++zerocount2 == 7z LIMIT) // Count up and check
{ // for Z_ LIMIT
ZERO_WAITZ = 0;
TK2 RED LED = 1;
TK2 GRN LED = 1;
}
}
else // Outside of range
{
zerocount2 = 0; // Reset zero count
}
cyclecount2 = 0; // Reset cycle counter
LASTEDGE2 = 1; // Positive edge
}
else if (runningsum2 < localmin2) // Check against local min
{
// Update local min
localmin2 = runningsum2; // and next peak
next peak2 = localminZ + THRESHOLDZ;
mintime2 = maincycle; // Time stamp local min
}
else // Perform some housekeeping
{
if (cycleindex2 >= 3) // Calculate 75% and 150%
{
CP150pct2 = cyclesumz2 >> 1;
CP75pct2 = CP150pct2 >> 1;
cyclesum2 = 0;
cycleindex2 = 0;
}
}
}
else // Last edge was positive
{
if (runningsum2 < next peak2) // Test against peak limit

//

//

//
localmin2 = runningsum?2;
cyclecount?2 += maxtime2 - mintime2;

next peak2 localmin2 + THRESHOLD2;

//

cyclesum2 += cyclecount2;
cycleindex2++;

Establish new local min
and compute max-min
peak timing

Update cycle sum

// Check for a value that looks periodic

if
{
if

(++zerocount2 == 7 LIMIT) //

((cyclecount2 > CP75pct2)&& (cyclecount2 < CP150pct2))

Count up and check

64

Rev. 1.3

SILICON LABS

AN148

ZERO WAIT2 = 0
TK2 RED LED =
TK2 GRN_LED

=S
-~

~.

}

// for Z LIMIT

else // Outside of range
{
zerocount2 = 0; // Reset zero count

}

cyclecount2 = 0; // Reset cycle counter

LASTEDGE2 = 0; // Negative edge
}
else if (runningsum2 > localmax2) // Check against local max
{

// Update local max
localmax2 = runningsum2; // and next peak
next_peak2 = localmax?2 - THRESHOLDZ;
maxtime?2 = maincycle; // Time stamp local max

}
else // Perform some housekeeping
{
if (cycleindex2 >= 3) // Calculate 75% and 150%
{
CP150pct2 = cyclesum2 >> 1;
CP75pct2 = CP150pct2 >> 1;
cyclesum2 = 0;
cycleindex2 = 0;

} // End of Waiting for Zeroes code

// wait for Timer2 overflow flag

while (!TF2H);
AMXOP = T3 CHPOS;
AMXON = T37CHNEG;
ADC _DATA = ADCOL;
TF2H = 0;

// End IF CH2 SWITCH

else

{

// wait for Timer2 overflow flag

while (!TF2H);
AMXOP = T2_CHPOS;
AMXON = TZ_CHNEG;
ADC_DATA = ADCOL;
TF2H = 0;

// Perform exponential average

(before Z LIMIT reached)

/7
/7
//
//

switch AIN+ channel
switch AIN- channel
read current data low byte
clear timer overflow flag

//
//
//
//

switch AIN+ channel
switch AIN- channel
read current data low byte
clear timer overflow flag

runningsum3 = runningsum3 + ADC DATA - rsum3 div;
rsum3 div = runningsum3>>2;
maincycle++;
if (!ZERO_WAIT3) // Test to see if still waiting for zeros
{ // If NOT.. collect data
®
Rev. 1.3 65

SILICON LABS

AN148

if (!LASTEDGE3) // Test if last edge was negative
{

if (runningsum3 > next peak3) // Test against peak limit

{

// Establish new local max

// and compute min-max
// peak timing
localmax3 = runningsum3;
cyclecount3 += mintime3 - maxtime3;
next peak3 = localmax3 - THRESHOLDS3;
if (cyclecount3 <= CP75pct3) // 1/2 or Full cycle?
{ // **1/2 cycle
BIT RECORD3 = 1;
FIRST ONE3 = 1;
}
else // **Full cycle
{
cyclesum3 += cyclecount3; // Update cycle sum
cycleindex3++;
if (FIRST ONE3) // If first ‘1’ is found
{
Temp Byte3 = Temp Byte3 << 1;
Temp3 b0 = BIT RECORD3; // Record a bit
bytecount3++;
BIT RECORD3 = 0; // Reset bit value to ‘0
}
cyclecount3 = 0; // Reset cycle counter
}
LASTEDGE3 = 1; // Positive edge
}
else if (runningsum3 < localmin3) // Check against local min
{ // Update local min
localmin3 = runningsum3; // and next peak
next peak3 = localmin3 + THRESHOLD3;
mintime3 = maincycle; // Time stamp local min
}
else // Perform some housekeeping
{
if (bytecount3 == 8) // Store the current byte
{
T3RAW[COLLECTED3] = Temp Byte3;
bytecount3 = 0;
COLLECTED3++;
}
if (cycleindex3 >= 3) // Calculate 75% Value
{
CP75pct3 = cyclesum3 >> 2;
cyclesum3 = 0;
cycleindex3 = 0;
}
}
}
else // Last edge was positive..
{
if (runningsum3 < next peak3) // Test against peak limit
®
66 Rev. 1.3

SILICON LABS

AN148

// Establish new local min
// and compute max-min
// peak timing

localmin3 = runningsum3;

cyclecount3 += maxtime3 - mintime3;

next peak3 = localmin3 + THRESHOLD3;

if (cyclecount3 <= CP75pct3) // 1/2 or Full cycle?
{ // **1/2 cycle
BIT_RECORD3 =1;
FIRST ONE3 = 1;
}

else // **Full cycle

{
cyclesum3 += cyclecount3; // Update cycle sum
cycleindex3++;
if (FIRST ONE3) // If first ‘1’ is found

{
Temp Byte3 = Temp Byte3 << 1;

Temp3 b0 = BIT RECORD3; // Record a bit
bytecount3++;
BIT RECORD3 = 0; // Reset bit value to ‘0
}
cyclecount3 = 0; // Reset cycle counter
}
LASTEDGE3 = 0; // Negative edge
}
else if (runningsum3 > localmax3) // Check against local max
{ // Update local max
localmax3 = runningsum3; // and next peak
next peak3 = localmax3 - THRESHOLD3;
maxtime3 = maincycle; // Time stamp local max
}
else // Perform some housekeeping
{
if (bytecount3 == 8) // Store the current byte
{
T3RAW[COLLECTED3] = Temp Byte3;
bytecount3 = 0;
COLLECTED3++;
if (cycleindex3 >= 3) // Calculate 75% Value

CP75pct3 = cyclesum3 >> 2;

cyclesum3 = 0;
cycleindex3 = 0;
}
}
}
} // End of data collection code (after Z LIMIT zeros detected)
else // IF ZERO WAIT3 == 1, still waiting for Z LIMIT zeros
{
if (!LASTEDGE3) // Test if last edge was negative
{
if (runningsum3 > next peak3) // Test against peak limit

{

Rev. 1.3 67

SILICON LABS

AN148

// Establish new local max

// and compute min-max
// peak timing
localmax3 = runningsum3;
cyclecount3 += mintime3 - maxtime3;
next peak3 = localmax3 - THRESHOLD3;
cyclesum3 += cyclecount3; // Update cycle sum

cycleindex3++;

// Check for a value that looks periodic
if ((cyclecount3 > CP75pct3) && (cyclecount3 < CP150pct3))
{
if (++zerocount3 == 7z LIMIT) // Count up and check
{ // for z LIMIT
ZERO _WAIT3 = 0

TK3 RED LED = 1;
TK3 GRN LED = 1;
}

}

else // Outside of range

{

zerocount3 = 0; // Reset zero count

}

cyclecount3 = 0; // Reset cycle counter

LASTEDGE3 = 1; // Positive edge
}
else if (runningsum3 < localmin3) // Check against local min
{ // Update local min

localmin3 = runningsum3; // and next peak

next peak3 = localmin3 + THRESHOLD3;

mintime3 = maincycle; // Time stamp local min
}
else // Perform some housekeeping
{

if (cycleindex3 >= 3) // Calculate 75% and 150%

else

if
{

{
CP150pct3 = cyclesum3 >> 1;
CP75pct3 = CP150pct3 >> 1;

cyclesum3 = 0;
cycleindex3 = 0;
}
// Last edge was positive
(runningsum3 < next peak3) // Test against peak limit
// Establish new local min
// and compute max-min
// peak timing
localmin3 = runningsum3;
cyclecount3 += maxtime3 - mintime3;
next peak3 = localmin3 + THRESHOLD3;
cyclesum3 += cyclecount3; // Update cycle sum

cycleindex3++;

// Check for a value that looks periodic

68

Rev. 1.3

SILICON LABS

AN148

if ((cyclecount3 > CP75pct3) &&(cyclecount3 < CP150pct3))

{

if (++zerocount3 == 7 LIMIT)
{
ZERO_WAIT3 = 0;
TK3 RED LED = 1;
TK3 GRN LED = 1;
}
}
else
{
zerocount3 = 0;
}
cyclecount3 = 0;
LASTEDGE3 = 0;
}
else if (runningsum3 > localmax3)
{
localmax3 = runningsum3;
next peak3 = localmax3 - THRESHOLD3;
maxtime3 = maincycle;
}
else
{
if (cycleindex3 >= 3)
{
CP150pct3 = cyclesum3 >> 1;
CP75pct3 = CP150pct3 >> 1;
cyclesum3 = 0;
cycleindex3 = 0;

} // End of Waiting for Zeroes code
} // End While (!READ TIMEOUT)

// Finish off last bytes with zeros..
while (bytecountl < 8)
{

Temp Bytel
Templ b0 = 0;

bytecountl++;

Temp Bytel << 1;

}
T1RAW[COLLECTED1]

Temp Bytel;
while (bytecount2 < 8)

{

Temp Byte2 =
Temp2 b0 0;
bytecount2++;

Temp Byte2 << 1;

}
T2RAW[COLLECTED2]

Temp ByteZ2;

while (bytecount3 < 8)

{

Temp Byte3
Temp3 b0

0;

Temp Byte3 << 1;

// Count up and check
// for Z LIMIT

// Outside of range

// Reset zero count

// Reset cycle counter

// Negative edge

// Check against local max
// Update local max

// and next peak

// Time stamp local max

// Perform some housekeeping
// Calculate 75% and 150%

(before Z LIMIT reached)

// record a zero

// record a zero

// record a zero

Rev. 1.3

SILICON LABS

69

AN148

bytecount3++;

}
T3RAW[COLLECTED3] = Temp Byte3;

return (1);

// This routine checks the decoded track data for Start Sentinel, End
// Parity, and LRC errors.

char TrackErrorCheck (unsigned char maxindex, unsigned char StartSen,
unsigned char EndSen, unsigned char CharBits)

{

unsigned char idata ASCII Index, ASCII Mask;

unsigned char idata ASCII Data, PC count, Read LRC = 0, Calc LRC = 0;

char idata errorcode = 0;

bit ES Found = 0, ParityCheck = 0;

Sentinel,

ASCII Mask = Ox7F >> (8 - CharBits); // Mask used to separate data info
if (ASCII array([0] != StartSen) // Check for SS at start of array
{
errorcode |= 0x81; // ERROR - SS is not 1st character
}
// Loop through ASCII array and check each byte for errors
for (ASCII Index = 0; ASCII Index <= maxindex; ASCII Index++)
{
ASCII Data = ASCII_array[ASCII_IndeX];
if (!ES_Found) // If ES not found yet
{
// LRC Check - XOR’s data from all bytes (except the LRC)
Calc LRC "= (ASCIT Data & ASCII Mask);
if (ASCII Data == EndSen) // If this is the End Sentinel,
{ // treat the next character as

// the LRC, and signal that

// the ES has been found
Read LRC (ASCIT array[ASCII Index+l] & ASCII Mask);
maxindex = ASCII Index+l;
ES Found 1;

// Parity Check - checks #1’s against Parity bit for ODD parity.

ParityCheck = 0; // Reset parity check variable

for (PC_count = 0; PC count < CharBits; PC count++)
{
ParityCheck "= (ASCII Data & 0x01);
ASCII Data = ASCII Data >> 1;
}
if (ParityCheck == (ASCII Data & 0x01))
{

70 Rev. 1.3

SILICON LABS

AN148

ASCII array[ASCII Index] |= 0x80; // Mark this byte for ID later
errorcode |= 0x88; // ERROR - Parity error

// Check that End Sentinel was found in captured data
if (!ES_Found)
{
errorcode |=0x82; // ERROR - End Sentinel never found
}
// If ES was found...
else if (Calc LRC != (Read LRC & ASCII Mask))
{

errorcode |= 0x84; // LRC error

// Parity Check for LRC - checks #1’s against Parity bit for ODD parity.

ParityCheck = 0; // Reset parity check variable
for (PC count = 0; PC count < CharBits; PC count++)
{

ParityCheck "= (Read LRC & 0x01);

Read LRC = Read LRC >> 1;

if (ParityCheck == (Read LRC & 0x01))

{
ASCII array[maxindex] |= 0x80; // Mark LRC byte for ID later
errorcode |= 0x88; // ERROR - Parity error

// If no errors were detected, return the number of bytes found.
// Otherwise, return the error code.
if (errorcode == 0)
{
return ASCII Index;
}
else

{

return errorcode;

This routine is used to decode a track into characters, assuming it was
recorded in the forward direction into the array.

char DecodeTrackForward (unsigned char maxindex, unsigned char Byte Offset,

{

unsigned char Bit Offset, unsigned char *TrackRAW, unsigned char CharBits)

unsigned char idata Track Index = 0;

char idata ASCII Index = 0, ASCII Mask;
unsigned char idata Track Data, ASCII Data;
unsigned char idata Track bit, ASCII bit;

// Reset temporary variables

Rev. 1.3

SILICON LABS

71

AN148

ASCII bit = 0x01;
ASCII Data = 0x00;

// Generate a bit comparison value for sorting through ASCII bytes
ASCII Mask = 0x01 << (CharBits-1);

// Begin at the specified offset, and proceed until the end of the track

for (Track Index = Byte Offset; Track Index <= maxindex; Track Index++)

{
// Grab a byte of raw data
Track Data = TrackRAW[Track Index];

// Unpack raw data byte into character(s)

for (Track bit = Bit Offset; Track bit != 0x00; Track bit = Track bit>>1)

{
if (Track bit & Track Data)
{
ASCII Data | = ASCII_bit;
}
else
{
ASCII Data &= ~ASCII bit;
}
if (ASCII bit != ASCII Mask)
{
ASCII bit = ASCII bit << 1;
}
else
{
ASCII bit = 0x01;
ASCII array[ASCII Index] = ASCII Data;

if ((ASCII Data == 0x00) || (ASCII Index == 126))
{

Track Index = maxindex; // end translation

ASCII Index++;

// Return the number of characters unpacked
return (ASCII Index);

// This routine is used to decode a track into characters, assuming it was
// recorded in the backward direction into the array.

!/

char DecodeTrackBackward (unsigned char Byte Offset, unsigned char Bit Offset,

unsigned char *TrackRAW, unsigned char CharBits)
{
unsigned char idata Track Index;
char idata ASCII Index = 0, ASCII Mask;

72 Rev. 1.3

SILICON LABS

AN148

unsigned char idata Track Data, ASCII Data;
unsigned char idata ASCII bit;

// Reset temporary variables
ASCII bit = 0x01;
ASCII Data = 0x00;

// Generate a bit comparison value for sorting through ASCII bytes

ASCII Mask = 0x01 << (CharBits-1);

// Begin at the specified offset, and proceed until the beginning

for (Track Index = Byte Offset; Track Index
{

// Grab a byte of raw data

Track Data = TrackRAW[Track Index];

// Unpack raw data byte into character(s)
while (Bit Offset != 0x00)
{
if (Bit Offset & Track Data)
{
ASCII Data | = ASCII_bit;
}
else
{
ASCII Data &= ~ASCII_bit;
}

I'= 0x00;

if (ASCII bit != ASCII Mask)

{
ASCII bit = ASCII bit << 1;

}

else

{
ASCII bit = 0x01;
ASCII_array[ASCII_Index] = ASCII Data;

ASCII Data = 0;
ASCII Index++;
}
Bit Offset = Bit Offset << 1;
}
Bit Offset = 0x01;

// Finish off last byte with trailing zeros
ASCTII Mask = ASCIT Mask << 1;
while (ASCII bit != ASCII Mask)
{
ASCII Data &= ~ASCII bit;
ASCTII bit = ASCIT bit << 1;
}
ASCII array[ASCII Index] = ASCII Data;

// Return the number of characters unpacked
return (ASCII Index);

Track Index--)

Rev. 1.3

SILICON LABS

73

AN148

//

// This routine determines which direction data was collected from the magnetic

// stripe and calls the appropriate decoding routine.

1/

char GetDirection (unsigned char maxindex, unsigned char StartSen,
unsigned char EndSen, unsigned char *TrackRAW, unsigned char CharBits)

unsigned char idata FW Byte Off, FW Bit Off, RV Byte Off, RV Bit Off;

unsigned char idata Read Char, Bit Count, Temp Char, Temp Bit, Temp Mask;

char idata MAX Decoded;
bit FW StartSen, RV _StartSen, Direction Found = 0, Abort Direction = 0;

// Initialize Index Pointers
FW Byte Off = 1;

FW Bit Off = 0x80;

RV _Byte Off = maxindex;

RV Bit Off = 0x01;

while ((Direction Found == 0)&& (Abort Direction == 0))
{

// Read a byte at FW pointer

Read Char = TrackRAW[FW Byte Off];

// Find the next ‘1’ Forward

while ((FW _Byte Off != RV Byte Off)s&&((Read Char & FW Bit Off) == 0))

{
FW_Bit Off = FW_Bit Off >> 1;
if (Fw_Bit Off == 00)
{
FW Bit Off = 0x80;
FW Byte Off++;
Read Char = TrackRAW[FW Byte Off];

if (FW Byte Off == RV Byte Off)
{

Abort Direction = 1;

Temp Bit = 0x02;
Temp_Char 0x01;
Temp Mask = FW Bit Off;

for (Bit Count = 1; Bit Count < CharBits; Bit Count++)
{
Temp Mask = Temp Mask >> 1;
if (Temp Mask == 0x00)
{
Temp Mask = 0x80;
Read Char = TrackRAW[FW Byte Off+1];
}
if (Read Char & Temp Mask)

74 Rev. 1.3

SILICON LABS

AN148

Temp Char |= Temp Bit;
}
else
{

Temp Char &= ~Temp Bit;

}
Temp Bit = Temp Bit << 1;

// Check character against Start Sentinel

if (Temp Char == StartSen)
{
FW StartSen = 1;
}
else

{

FW StartSen 0;

// Read a byte at RV pointer
Read Char = TrackRAW[RV Byte Off];

// Find the next ‘1’ Reverse

while ((FW Byte Off != RV Byte Off)&&((Read Char & RV _Bit Off)

{
RV Bit Off = RV _Bit Off << 1;
if (RV_Bit Off == 00)
{
RV Bit Off = 0x01;
RV Byte Off--;

Read Char = TrackRAW[RV Byte Off];

if (FW Byte Off == RV Byte Off)
{

Abort Direction = 1;

Temp Bit = 0x02;
Temp_Char = 0x01;
Temp Mask = RV _Bit Off;

for (Bit Count = 1; Bit Count < CharBits; Bit Count++)

{
Temp Mask = Temp Mask << 1;
if (Temp Mask == 0x00)

{
Temp Mask = 0x01;
Read Char

}
if (Read Char & Temp Mask)

{
Temp Char |= Temp Bit;

}

else

{
Temp Char &= ~Temp Bit;

TrackRAW[RV Byte Off-17];

SILICON LABS

Rev. 1.3

75

AN148

}
Temp Bit = Temp Bit << 1;

// Check character against Start Sentinel

if (Temp Char == StartSen)
{
RV _StartSen = 1;
}
else
{
RV StartSen = 0;

if (FW_StartSen ~ RV _StartSen)

Direction Found = 1;
}
else if (FW _StartSen && RV _StartSen)
{
//*** Check for ES Backwards in front
Temp Bit = 0x80;
Temp Char = 0x00;
Temp Mask = FW Bit Off;

MAX Decoded = FW Byte Off; // MAX Decoded used as temporary storage
if ((Temp Mask >> CharBits) != 0x00)
{
Temp Mask = Temp Mask >> CharBits;
}
else
{
FW Byte Off++;
Temp Mask = Temp Mask << (8 - CharBits);

Read Char = TrackRAW[FW Byte Off];
for (Bit Count = 0; Bit Count < CharBits; Bit Count++)
{
if (Read Char & Temp Mask)
{
Temp Char |= Temp Bit;
}
else
{
Temp Char &= ~Temp Bit;
}
Temp Bit = Temp Bit >> 1;

Temp Mask = Temp Mask >> 1;
if (Temp Mask == 0x00)
{
Temp Mask = 0x80;
Read Char TrackRAW[FW Byte Off+l1];

}
FW_Byte Off = MAX Decoded; // Restore FW_Byte Off

Temp Char = Temp Char >> (8 - CharBits);

76 Rev. 1.3

SILICON LABS

AN148

}

if
{

}

// Check character against End Sentinel

// If found here, track is reverse.
if (Temp Char == EndSen)
{

FW StartSen = 0;
}
//otherwise,
else

{

it is forward

RV_StartSen = 0;

Direction Found = 1;
}

else if

{

(!Abort Direction)

FW Bit Off = FW Bit Off >> 1;
if (Fw _Bit Off == 00)
{
FW Bit Off = 0x80;
Fil_Byte Off++;
}
RV _Bit Off = RV Bit Off << 1;
if (RV_Bit Off == 00)
{
RV_Bit Off = 0x01;
RV Byte Off--;

if (FW Byte Off >= RV Byte Off)
{

Abort Direction = 1;

// End while((Direction Found ==
((Direction Found) && (!Abort Direction))

if (FW_StartSen)
{
MAX Decoded =
TrackRAW, CharBits);
}
else if

{

(RV_StartSen)

MAX Decoded =
TrackRAW, CharBits);

else

{

return

MAX Decoded = 0x81;

(MAX Decoded) ;

) && (Abort Direction == 0))

DecodeTrackForward (maxindex, FW Byte Off, FW Bit Off,

DecodeTrackBackward (RV_Byte Off, RV Bit Off,

// Could not find Start Sentinel

Rev. 1.3

SILICON LABS

77

AN148

//
// This routine sends a single character to the UART. It is used in lieu of
// printf () to reduce overall code size.

1/

void UART CharOut (unsigned char c)
if (¢ == *\n')

while (!TIO);

TIO = 0;

SBUF0 = 0x0d; /* output CR */
}
while (!TIO);

TIO = 0;

SBUF0 = c;
}
/=
// UART_StringOut
/o o
//
// This routine calls the UART CharOut repeatedly to send a string value to the
// UART. It is used in lieu of printf() to reduce overall code size.
//

void UART StringOut (unsigned char *c)
{
while (*c != 0x00)
{
UART CharOut (*c) ;

ct+;
}

1
#1if DEBUG
[m oo
// UART_ HexOut
/== e
//

// This routine sends the hexadecimal value of a character to the UART as ASCII
// text. Only used when DEBUG = 1.

//

void UART HexOut (unsigned char c)

{

if ((c & OxF0) < 0xAO0)

SBUFO = ((c >> 4) & 0x0F) + 0x30;
else

SBUFO = ((c >> 4) & O0xOF) + 0x37;

while I'TIO) ;

(
TIO = 0;
if ((c & 0xO0F) < 0x0A)

®
78 Rev. 1.3 @

SILICON LABS

AN148

SBUF0 = (¢ & OxOF)
else
SBUF0 = (c & 0xOF)

#endif // END #if DEBUG

+ 0x30;

+ 0x37;

>

SILICON LABS

Rev. 1.3

79

AN148

NOTES:

®
80 Rev. 1.3 @

SILICON LABS

AN148

DOCUMENT CHANGE LIST:

Revision 1.2 to Revision 1.3

m Corrected code in Appendix E-Firmware Listing for
2-Channel Example.

m Corrected code in Appendix F-Firmware Listing for
3-Channel Example.

>

SILICON LABS

Rev. 1.3

81

AN148

CONTACT INFORMATION

Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: productinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

®
82 Rev. 1.3 @

SILICON LABS

	1. Introduction
	2. MSR Background
	2.1. Encoding
	2.2. Data Format

	3. Hardware
	3.1. Power Supply
	3.2. Analog Inputs
	3.3. Voltage Reference

	4. Software
	4.1. ADC Sampling
	4.2. Signal Detection
	4.3. Synchronization
	4.5. Decoding the Raw Data
	4.6. Error Checking
	4.7. Output
	4.8. Differences Between 2-Track and 3- Track Firmware

	5. Operational Notes
	6. Additional Information
	Table 1. Device Resource Usage for 2-Channel Example Code
	Table 2. Device Resource Usage for 3-Channel Example Code
	Table 3. Estimated Component PCB Area

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

