
Rev. 1.3 8/08 Copyright © 2008 by Silicon Laboratories AN148

AN148

MAGNETIC STRIPE READER

1. Introduction
Magnetic stripe readers (MSRs) are widely used in
many different applications such as point-of-sale
terminals and key card readers. The C8051F330 is
capable of integrating MSR functionality in a very small
space with few external components. The high-speed,
high-resolution ADC, coupled with a fast controller core
makes this integration possible. This design
demonstrates a two-channel MSR function using the
on-chip ADC to read information directly from the
magnetic read head. Output can be viewed using a
PC’s terminal program via an RS-232 connection.

2. MSR Background
There are a number of different formats used for
encoding information on magnetic stripes, and many
different types of card readers available. This design
demonstrates a swipe-type reader that reads Track 1
and Track 2 of cards encoded using the ISO/IEC-7811
standard. A firmware example for reading Track 1, 2,
and 3 is also provided.

2.1. Encoding
The encoding format used by the ISO/IEC-7811
standard is known as “F2F” or “Aiken Biphase”
encoding. The F2F encoding format allows the serial
data to be self-clocking. Bits are encoded serially on the
magnetic stripe using a series of magnetic flux
transitions. Each bit of data on a track has a fixed
physical length on the magnetic stripe. Flux transitions
are located at the edge of each bit, and also in the
center of each “1” bit. As the stripe passes the magnetic
read head, the flux transitions on the stripe are
converted into a series of alternating positive and
negative pulses, as shown in Figure 1. After
determining which flux transitions represent the edges
of a bit, ones and zeros can be differentiated by the
presence or absence of a pulse in the center of the bit.

2.2. Data Format
The data format specified by ISO/IEC-7811 encodes
7-bit (6 bits + parity) characters on Track 1, and 5-bit
(4 bits + parity) decimal characters on Track 2. Track 3
may contain 7-bit or 5-bit encoding, depending on the
card. Characters are written to the stripe LSB-first, with
the parity bit written last. All tracks contain leading and
trailing zeros at the ends of the stripe to aid the clock
recovery process. When read in the forward direction, a
typical track contains information in the following order:

1. Clocking zeros
2. A start sentinel character
3. Data characters
4. An end sentinel character
5. A longitudinal redundancy check character
6. Clocking zeros
A number of error-checking features are included to
ensure accurate reads of the stripe information:

The Start Sentinel (SS) and End Sentinel (ES)
characters are unique characters which signal the
beginning and the end of the data encoded on the
stripe. The SS and ES characters are not allowed as
part of the data segment.
A Longitudinal Redundancy Check (LRC) character
is included after the ES. The LRC is the result of an
XOR operation on all characters in the track
(including the SS and ES, but not the LRC character
itself).

Relevant Devices
This application note applies to the following devices:
C8051F330

FLASH 3.7k/7.5k
Bytes50%

RAM 402/768
Bytes53%

Port I/O 11/17
Pins65%

Device Utilization

AN148

2 Rev. 1.3

Figure 1. Magnetic Stripe Encoding
All characters, including the SS, ES, and LRC,
include a parity bit. Odd parity is used, meaning that
the number of “1” bits in each character is odd when
the parity bit is included.

3. Hardware
The schematic and layout for this design can be found
in "Appendix A—Schematic‚" on page 8 and "Appendix
B—Layout‚" on page 10, respectively. The design
includes circuitry for the core MSR function, as well as
power supply and RS-232 components. Although the
reference design uses a two-track reader, there are
provisions for connecting a reader with three tracks.

3.1. Power Supply
Power can be supplied to the board using a 9 V dc
adaptor connected to the 2.1 x 5.5 mm center-positive
jack provided (P1). Power for the board circuitry is
derived using a 3.3 V LDO regulator.

3.2. Analog Inputs
The magnetic read heads are each connected directly
to one of the C8051F330’s differential ADC input
channels. The magnetic head signals are filtered with a
small capacitor, and biased to the ground plane. No
additional components are necessary.

3.3. Voltage Reference
Signal levels from the magnetic read heads can be as
little as a few millivolts. The on-chip voltage reference is
used in this design. To enhance the signal detection
capabilities of the device, the voltage reference for the
10-bit ADC can be set as low as 1 V. There are
placeholders on the schematic and layout for resistors
which will divide the 3.3 V supply down to 1 V.

3.4. RS-232 Circuitry
An RS-232 transceiver is included on-board for data
output purposes. The board can be connected directly
to a PC’s COM port using an RS-232 serial cable. Data
is transferred at 115.2 kbps using 8 data bits, no Parity
bit, and one Stop bit (8-N-1).

4. Software
The firmware listings can be found in "Appendix E—
Firmware Listing For 2-Channel Example‚" on page 15
and "Appendix F—Firmware Listing For 3-Channel
Example‚" on page 44. The provided firmware has been
developed using the Keil “C” compiler and the Silicon
Labs IDE. The two-track solution is described in detail in
the following sections. The three-track firmware
example is identical from an algorithmic standpoint.
Differences between the two versions of the firmware
are listed at the end of this section.
The main structure of the firmware is relatively simple.
After initializing the necessary device peripherals, the
controller begins sampling ADC data, waiting for flux
transitions at regular intervals. During the card swipe,
the processor performs the F2F decoding and stores
recognized bits into RAM. After a swipe has finished,
the stored data is then decoded and checked for errors.
Decoded data is output to the UART, and the controller
waits for another card swipe.

4.1. ADC Sampling
The ADC is configured to sample at 200 ksps using
Timer 2. Track 1 is sampled twice as often as Track 2,
for an effective throughput of 133 ksps on Track 1 and
67 ksps on Track 2. An exponential averaging technique
is applied to the data to filter the signal prior to the signal
detection algorithm. Filtering increases the effective
resolution of the ADC by reducing noise, and aids in the
detection of smaller read head signals.

N S S N N S S N N SMagnetic Stripe N S

Read Head Signal

0 0 0Decoded Data 1

AN148

Rev. 1.3 3

4.2. Signal Detection
Signal detection is performed by finding the minimum
and maximum peaks in the filtered data that correspond
to the pulse locations from the read head. See Figure 2.
A moving comparison window allows local peak values
to be recognized and time-stamped. The size of the
comparison window is controlled by the THRESHOLD1
and THRESHOLD2 constants in firmware. Larger
values provide more noise rejection, while smaller
values allow weaker signals to be detected. The time
between minimum and maximum peak values is
computed and recorded after each pulse is detected.
This information is used to synchronize with the bit
stream and to discern between ones and zeros.

4.3. Synchronization
To synchronize with the stream of clocking zeros, it is
initially assumed that all detected pulses are located at
clock edges. During this phase of synchronization, the
software detects and counts zero bits, as shown in
Figure 3. Three of the pulse timing values (Tbit) are
summed, and then divided by 2 and 4 to provide 150%
and 75% timing thresholds, respectively. When Z_LIMIT
(Zero Limit) consecutive timing values fall between the
75% and 150% thresholds (i.e., when the software
detects Z_LIMIT zeros in a row), the algorithm begins to
look for the first "1" in the bit stream. When a "1" is
detected, the synchronization is complete. The first "1"
is recorded to the data buffer and the software begins
the data collection process.

Figure 2. Signal Detection

Limit
Window

Pulse
Detection

+

-

AN148

4 Rev. 1.3

4.4. Collecting Data
During the data collection process, the clock edge
timing is continuously monitored, so that the algorithm
can adapt to variations in card swipe speed. The 75%
threshold is re-calculated every three pulses. At each
valid pulse from the magnetic head, the timing
information is compared with the 75% threshold to
determine if the pulse occurred at the center or the edge
of a bit. Whenever a pulse occurs at the edge of a bit, a
"1" or a "0" is recorded to the data buffer for the track. A
"1" is recorded to the data buffer when a pulse was
detected in the center of the most recent bit (i.e., when a
pulse was detected below the 75% threshold). If no
pulse was detected within the bit, a "0" is recorded.
When the conversion counter reaches 4096, the data
collection process is halted. The raw data is then
decoded and checked for errors. Figure 4 shows how
the detected pulses are recorded into the data buffer.

4.5. Decoding the Raw Data
The first step in decoding the raw data is to determine
which direction (forward or reverse) the card was
swiped. To find the read direction, the decoding
algorithm looks for a start sentinel (SS) character at the
beginning and the end of the data set. If the SS is found
at the beginning of the data and not found at the end of

the data, the track is decoded in the forward direction. If
the SS is found at the end of the data and not found at
the beginning of the data, the track is decoded in the
reverse direction. In the special case where the SS is
found at both ends of the data set, one of these SS
characters is actually the LRC. The routine then reads
the next forward character in reverse, and compares it
with the end sentinel (ES). If this character matches the
ES, data is decoded in the reverse direction. Otherwise,
data is decoded in the forward direction.
If the SS is not found at either end of the data set, the
decoding algorithm looks at a character starting with the
next "1" bit in both directions and repeats the process.
For data collected in the forward direction, the bits are
stored in the raw collection array LSB-first. The forward
decode algorithm begins at the MSB of the raw
collection array and unpacks the data into bytes in the
ASCII array, until all data has been unpacked.
For data collected in the reverse direction, the bits are
stored in the raw collection array MSB-first. The reverse
decode algorithm begins by finding the location of the
last "1" bit in the raw array. Working backward through
the array, the bits are copied into bytes in the ASCII
array until all data has been unpacked.

Figure 3. Synchronization with Data Stream

Figure 4. Recording Data

4.6. Error Checking When data has been decoded into ASCII characters,

T75%

T150%

'0' Detected,
Increase Zero

Count

Pulse
Detection

TBIT

+
-

Z_LIMIT
Reached

First '1'
Detected

Record '1'
to Buffer

T75%

T75%

Pulse
Detection

+
-

T75%

0 0 1 1 0 1Recorded Data

T75% T75% T75% T75%

AN148

Rev. 1.3 5

the firmware checks the data for three types of errors:
Parity Check: Each character is checked
individually to ensure that it has odd parity. The
parity check sums the number of “1"s in the
character’s data bits and determines if the parity bit
should be a "1" or a "0" to make the sum odd. If the
parity bit does not match the determined value, a
parity error has occurred.
SS and ES Check: Data is checked to ensure that a
Start Sentinel and an End Sentinel are both present.
Any data stream that does not include a SS and an
ES in the correct places was not read correctly.
LRC Check: As they are scanned for parity errors,
each character’s data bits are XORed until the ES is
reached (this check includes both the SS and ES
characters). The result of the XOR function is
compared with the LRC character to determine if an
LRC error has occurred.

If no errors are detected, the decoded data is output,
and the firmware prepares for another read.

4.7. Output
Data is output through the UART on the device at
115,200 Baud. The data format is 8 data bits, no parity
bit, and 1 stop bit. The decoded data is converted to
ASCII before it is sent to the UART so that it can be
easily viewed. There are two different output modes
defined in the software. The modes are controlled by

conditional compilation using the constant DEBUG.
If DEBUG is set to "0", decoded track data will be output
as shown in Figure 5. Track data is output only if no
errors were detected for the track. The output will begin
with the Start Sentinel character and end with the End
Sentinel character followed by the LRC. The Start
Sentinel for Track 1 is represented with the character
“%”. For Track 2, the Start Sentinel is represented by
the character “;”. The End Sentinel for both tracks is
represented by the character “?”.
If DEBUG is set to "1", the data output appears as
shown in Figure 6. In this mode, data is output for both
tracks, regardless of whether an error occurred. The
decoded data appears as when DEBUG is set to "0".
The decoded data is followed by the raw data for the
track. The raw data is displayed as a very long
hexadecimal number. With the exception of the first byte
(which is set to 0x00), the information displayed is the
data that was recorded during the card swipe.
In either output mode, the dual-color LEDs (D4 and D3)
will give an indication of whether any errors were
detected in the collected data. D4 is used to indicate the
status of Track 1, and D3 is used to indicate the status
of Track 2. During a card swipe, the diode will light both
red and green, to indicate a card swipe in progress. If
the data collection was successful and no errors were
detected, only the green LED will remain on. If errors
were detected, only the red LED will remain on.

Figure 5. Example Output when DEBUG = "0"

%B0123456789101112^SCHMOE/JOSEPH X^01020304050607080910?8
;0123456789101112=01020304050607080910?:

AN148

6 Rev. 1.3

Figure 6. Example Output When DEBUG = "1"

4.8. Differences Between 2-Track and 3-
Track Firmware

For the most part, the two firmware examples are
identical, with necessary variables and code added to
handle the third track. The three-track firmware has the
following notable differences from the two-track version
described in the preceding sections:
• Two additional pins are used for analog input of

Track 3
• Two additional pins are used to drive the dual-color

LED (D1) for Track 3 status information.
• A conditional compilation constant has been added

to allow the code to be compiled for either 5-bit or 7-
bit encoding on the magnetic stripe. When T3_5BIT
is cleared to "0", 7-bit encoding is used, and when
T3_5BIT is set to "1", 5-bit encoding is used.

• Track 1 and Track 3 are sampled at an effective
80 ksps, while Track 2 is sampled at an effective
40 ksps.

Testing

DATA CH1:
%B0123456789101112^SCHMOE/JOSEPH X^01020304050607080910?8
END DATA CH1

RAW COLLECTION CH1:
0x00A28C2454B90AD469D46CC8A122C58A95F67C42EDFAA5E557ACF4838B0239F048A11284C810A8
4A811A04EA10684991427C1A00000000
END RAW CH1

DATA CH2:
;0123456789101112=01020304050607080910?:
END DATA CH2

RAW COLLECTION CH2:
0x00D0608C92ADE0A700C210458300A039090350B43C08833807EB000000
END RAW CH2

No Errors

AN148

Rev. 1.3 7

5. Operational Notes
Cards can be swiped through the reader in either
direction. When swiping a card it is essential that the
magnetic stripe on the card makes contact with the read
head, and that the card remains level as it travels
through the reader, as shown in Figure 7. If the card is
tilted during the swipe, information may be lost.

6. Additional Information
Additional information on magnetic stripe readers and
the ISO/IEC-7811 standard can be found at the
following sources:

MagTek, I/O Interface for TTL Magnetic Stripe
Readers, P/N 99875148, http://www.magtek.com.
International Standards Organization, ISO/IEC-7811,
http://www.iso.org.

Figure 7. Swiping a Card through the Reader

Card Must Remain Level During Swipe

Magnetic Stripe Must Face
Read Head

AN148

8 Rev. 1.3

APPENDIX A—SCHEMATIC

Fi
gu

re
 8

. S
ch

em
at

ic
 -

Po
w

er
 S

up
pl

y
an

d
C

on
tr

ol
le

r

AN148

Rev. 1.3 9

Figure 8. Schematic—Analog Input and RS-232 Output

AN148

10 Rev. 1.3

APPENDIX B—LAYOUT

Fi
gu

re
 9

. T
op

 L
ay

er
 (3

.9
37

5”
 x

 3
.3

75
”)

AN148

Rev. 1.3 11

Fi
gu

re
 1

0.
 B

ot
to

m
 L

ay
er

 (M
irr

or
ed

, 3
.9

37
5”

 x
 3

.3
75

”)

AN148

12 Rev. 1.3

APPENDIX C—BILL OF MATERIALS

Qty Part Value Package Manufacturer

2 (2) C1, C2, C18† 150 pF 0805

10 (2) C3*, C4, C7, C9*, C12*, C13*,
C14*, C15*, C16*, C17*

0.1 μF 0805

1 (1) C5 4.7 μF Tant. EIA Size A 3216

2 (0) C6*, C11* 1 μF 0805

1 (0) C8* 10 uμF Tant. EIA Size C 6032

1 (0) C10* 15 μF Tant. Thru-Hole

3 (0) D1*†, D3*, D4* SML-LX1210SRSGC Lumex

1 (0) D2* LN1251C Panasonic

1 (0) J1* 2510-6002UB 0.1” Thru-Hole 3M

1 (0) J2* 1x3 Header 0.1” Thru-Hole

1 (0) J3* 747844-6 DB9_F AMP

1 (0) P1* RAPC722 2.1 x 5.5 mm SwitchCraft

3 (0) R1*†, R4*, R5*, R6*, R7*,
R17*†, R18*

470 0805

1 (0) R2* 2 1210

1 (0) R3* (Not Populated) 4.75 kΩ 0805

1 (0) R13* (Not Populated) 2.15 kΩ 0805

3 (1) R14, R15*, R16* 1 kΩ 0805

1 (1) U1 C8051F330 MLP20 Silicon Labs

1 (0) U2* LM2913IMP-3.3 SOT223 National
Semiconductor

1 (0) U3* SP3223 TSSOP20 Sipex

1 (1) X1 53047-0510 1.25 mm
Thru-Hole

Molex

1 (1) Magnetic Head Assy. 21047004 Magtek
() Denotes quantity of components necessary for 2-channel C8051F330 MSR function.
* Denotes demonstration board components not required for C8051F330 MSR function.
† Denotes additional components used in 3-channel C8051F330 MSR function.

AN148

Rev. 1.3 13

APPENDIX D—DEVICE UTILIZATION AND BOARD SPACE
REQUIREMENTS
The device memory and peripheral requirements are shown in Table 1 and Table 2. Some peripherals such as the
UART, Timer 1, and the Port I/O pins connected to the LED indicator are not essential to the MSR function, and can
be used for other purposes.

The PCB area required for the core MSR function can be estimated by totaling the area required by each
component. Table 3 shows an estimation of the area required by each component, as well as the total area
required to implement the MSR function. This area estimate does not include space required for connectors or
PCB traces.

Table 1. Device Resource Usage for 2-Channel Example Code

Device Resources Used Available

Flash Memory Approx. 3.7 kB Approx. 3.8 kB

RAM 402 Bytes 366 Bytes

Port I/O 11 (5 Analog, 2 UART, 4 LEDs) 6 (12 w/o UART and LEDs)

10-Bit SAR ADC 2 Differential Inputs (4 Pins) Yes*

Timers Timer 1 (UART), Timer 2 (ADC) Timer 0, Timer 3

Serial Communications UART SMBus, SPI

10-Bit Current-Mode DAC No Yes

Comparator No Yes

3-Channel PCA No Yes

*Note: The ADC can be used for other purposes when card is not being read.

Table 2. Device Resource Usage for 3-Channel Example Code

Device Resources Used Available

Flash Memory Approx. 4.7 kB Approx. 2.8 kB

RAM 524 Bytes 244 Bytes

Port I/O 15 (7 Analog, 2 UART, 6 LEDs) 2 (10 w/o UART and LEDs)

10-Bit SAR ADC 3 Differential Inputs (6 Pins) Yes*

Timers Timer 1 (UART), Timer 2 (ADC) Timer 0, Timer 3

Serial Communications UART SMBus, SPI

10-Bit Current-Mode DAC No Yes

Comparator No Yes

3-Channel PCA No Yes

*Note: The ADC can be used for other purposes when card is not being read.

AN148

14 Rev. 1.3

Table 3. Estimated Component PCB Area

Device Area
(sq. inch)

Quantity Total Area
(sq. inch)

C8051F330 4 x 4 mm 20-pin MLP 0.025 1 0.025

4.7 μF Tantalum Capacitor on VREF (3216, EIA Size A) 0.012 1 0.012

0.1 μF Capacitors for Decoupling and Bypass (0805) 0.008 2 0.016

150 pF Filtering Capacitor (0805) (1 per channel) 0.008 2 (2 Ch)
3 (3 Ch)

0.016
0.024

1 kΩ Pullup Resistor on /RST (0805) 0.008 1 0.008

Total Component Area (sq. inch) 2-Channel
3-Channel

0.077
0.085

AN148

Rev. 1.3 15

APPENDIX E—FIRMWARE LISTING FOR 2-CHANNEL
EXAMPLE
//---
// MagStripeReaderF330_2CH.c
//---
// Copyright 2004 Silicon Laboratories
//
// AUTH: BD
// DATE: 3 MAR 04
// VER: 2.0
//
// This program reads the magnetic stripe from a card written in the standard
// ISO 2-channel format using F2F encoding. Read data is output to the UART
// after being decoded.
//
// Target: C8051F33x
// Tool chain: KEIL C51 7.06 / KEIL EVAL C51
//

//---
// Includes
//---

#include <c8051f330.h> // SFR declarations for C8051F330

//---
// 16-bit SFR Definitions for ‘F33x
//---
sfr16 TMR2RL = 0xca; // Timer2 reload value
sfr16 TMR2 = 0xcc; // Timer2 counter

//---
// Conditional Compilation CONSTANTS
//---

#define DEBUG 0 // Set to ‘1’ for extra information

//---
// Global CONSTANTS
//---

#define SYSCLK 24500000 // SYSCLK frequency in Hz
#define BAUDRATE 115200 // Baud rate of UART in bps
#define SAMPLE_RATE 200000 // Sample rate of ADC

#define T1_SS 0x45 // Start Sentinel + parity
#define T1_ES 0x1F // End Sentinel + parity
#define T1_BITS 7 // data + parity bit
#define T1_CHPOS 0x08 // Positive ADC Mux channel
#define T1_CHNEG 0x09 // Negative ADC Mux channel

#define T2_SS 0x0B // Start Sentinel + parity
#define T2_ES 0x1F // End Sentinel + parity
#define T2_BITS 5 // data + parity bit
#define T2_CHPOS 0x0A // Positive ADC Mux channel

AN148

16 Rev. 1.3

#define T2_CHNEG 0x0B // Negative ADC Mux channel

#define THRESHOLD1 9 // Noise threshold limits
#define THRESHOLD2 9

#define Z_LIMIT 3 // Number of Zeros before recording

sbit TK1_GRN_LED = P0^2; // GREEN LED TK1
sbit TK1_RED_LED = P0^3; // RED LED TK1

sbit TK2_GRN_LED = P0^6; // GREEN LED TK2
sbit TK2_RED_LED = P0^7; // RED LED TK2

// Included to set these pins to OFF - not used in 2-track design
sbit TK3_GRN_LED = P1^6; // GREEN LED TK3
sbit TK3_RED_LED = P1^7; // RED LED TK3

//---
// Global VARIABLES
//---

unsigned char xdata T1RAW[100], T2RAW[100]; // Track 1 and 2 Raw Data
unsigned char xdata ASCII_array[128]; // Decoded Information
unsigned char COLLECTED1 = 1, COLLECTED2 = 1; // Raw data indices

unsigned int bdata Timeout_Counter; // Bit-Addressable Timeout counter
sbit CLEAR_TIMEOUT = Timeout_Counter ^ 4; // Used to keep from timing out
sbit READ_TIMEOUT = Timeout_Counter ^ 5; // Indicates when read is finished
sbit CH2_SWITCH = Timeout_Counter ^ 8; // LSB of counter:
 // If ‘1’, CH2 is sampled
 // If ‘0’, CH2 is skipped

unsigned char bdata Temp_Byte1; // Bit-Addressable Temporary Storage
sbit Temp1_b0 = Temp_Byte1 ^ 0; // LSB of Temp_Byte1

unsigned char bdata Temp_Byte2; // Bit-Addressable Temporary Storage
sbit Temp2_b0 = Temp_Byte2 ^ 0; // LSB of Temp_Byte2

//---
// Function PROTOTYPES
//---

void SYSCLK_Init (void);
void ADC0_Init (void);
void UART0_Init (void);
void PORT_Init (void);
void Timer2_Init (int);

unsigned char Swipe_Card(void);

char GetDirection (unsigned char maxindex, unsigned char StartSen,
 unsigned char EndSen, unsigned char *TrackRAW,
 unsigned char CharBits);
char DecodeTrackForward (unsigned char maxindex, unsigned char Byte_Offset,
 unsigned char Bit_Offset, unsigned char *TrackRAW,
 unsigned char CharBits);

char DecodeTrackBackward (unsigned char Byte_Offset, unsigned char Bit_Offset,

AN148

Rev. 1.3 17

 unsigned char *TrackRAW, unsigned char CharBits);

char TrackErrorCheck (unsigned char maxindex, unsigned char StartSen,
 unsigned char EndSen, unsigned char CharBits);

void UART_CharOut (unsigned char c);
void UART_StringOut (unsigned char *c);
void UART_HexOut (unsigned char c);

//---
// MAIN Routine
//---

void main (void) {

unsigned char idata Return_Code;
unsigned char idata colCount;
bit ERRT1, ERRT2; // Track 1, 2 Error Flags

 // Disable Watchdog timer
 PCA0MD &= ~0x40; // WDTE = 0 (clear watchdog timer
 // enable)
 PORT_Init(); // Initialize Port I/O
 SYSCLK_Init (); // Initialize Oscillator

 ADC0_Init (); // Init ADC0
 Timer2_Init(SYSCLK/SAMPLE_RATE); // Init Timer 2 w/ ADC sample rate
 UART0_Init();

 while (1) {

#if DEBUG
 UART_StringOut(“\nTesting”);
#endif // END #if DEBUG

 UART_StringOut(“\n”);

 Swipe_Card();

// If DEBUG is ‘1’, use verbose mode for output
#if DEBUG

 // Find direction of track1, and decode to character array
 Return_Code = GetDirection(COLLECTED1, T1_SS, T1_ES, T1RAW, T1_BITS);

 if ((Return_Code & 0x80) == 0) // If no error was detected
 {
 // Check character array for SS, ES, Parity, and LRC
 Return_Code = TrackErrorCheck(Return_Code, T1_SS, T1_ES, T1_BITS);
 }

 if (Return_Code & 0x80) // If an error was detected
 {
 ERRT1 = 1;
 UART_StringOut(“\nErrors: \n”); // List the errors detected

 if (Return_Code & 0x01)
 {

AN148

18 Rev. 1.3

 UART_StringOut(“\tStart Sentinel not found\n”);
 }
 if (Return_Code & 0x02)
 {
 UART_StringOut(“\tEnd Sentinel not found\n”);
 }
 if (Return_Code & 0x04)
 {
 UART_StringOut(“\tLRC incorrect\n”);
 }
 if (Return_Code & 0x08)
 {
 UART_StringOut(“\tParity error(s)\n”);
 }

 UART_StringOut(“\nDATA CH1:\n”);
 for (colCount = 0; colCount < 128; colCount++)
 {
 UART_CharOut(0x20 + (ASCII_array[colCount]&0x3F));
 UART_CharOut(0x30);
 }
 UART_CharOut(‘\n’);
 UART_StringOut(“END DATA CH1\n”);
 }
 else // No errors, print T1 data
 {
 ERRT1 = 0;
 UART_StringOut(“\nDATA CH1:\n”);

 for (colCount = 0; colCount < Return_Code; colCount++)
 {
 UART_CharOut(0x20 + (ASCII_array[colCount]&0x3F));
 ASCII_array[colCount] = 0x30;
 }
 UART_CharOut(‘\n’);
 UART_StringOut(“END DATA CH1\n”);
 }

 // Print the RAW data for Track 1
 UART_StringOut(“\nRAW COLLECTION CH1:\n0x”);

 for (colCount = 0; colCount < COLLECTED1; colCount++)
 {
 UART_HexOut (T1RAW[colCount]);
 }

 UART_CharOut(‘\n’);
 UART_StringOut(“END RAW CH1\n”);

 // Find direction of track2, and decode to character array
 Return_Code = GetDirection(COLLECTED2, T2_SS, T2_ES, T2RAW, T2_BITS);

 if ((Return_Code & 0x80) == 0) // If no error was detected
 {
 // Check character array for SS, ES, Parity, and LRC
 Return_Code = TrackErrorCheck(Return_Code, T2_SS, T2_ES, T2_BITS);
 }

 if (Return_Code & 0x80) // If an error was detected

AN148

Rev. 1.3 19

 {
 ERRT2 = 1;
 UART_StringOut(“\nErrors: \n”); // List the errors detected

 if (Return_Code & 0x01)
 {
 UART_StringOut(“\tStart Sentinel not found\n”);
 }
 if (Return_Code & 0x02)
 {
 UART_StringOut(“\tEnd Sentinel not found\n”);
 }
 if (Return_Code & 0x04)
 {
 UART_StringOut(“\tLRC incorrect\n”);
 }
 if (Return_Code & 0x08)
 {
 UART_StringOut(“\tParity error(s)\n”);
 }

 UART_StringOut(“\nDATA CH2:\n”);
 for (colCount = 0; colCount < 128; colCount++)
 {
 UART_CharOut(0x30 + (ASCII_array[colCount]&0x0F));
 ASCII_array[colCount] = 0x30;
 }
 UART_CharOut(‘\n’);
 UART_StringOut(“END DATA CH2\n”);
 }
 else // No errors, print T2 data
 {
 ERRT2 = 0;
 UART_StringOut(“\nDATA CH2:\n”);

 for (colCount = 0; colCount < Return_Code; colCount++)
 {
 UART_CharOut(0x30 + (ASCII_array[colCount]&0x0F));
 ASCII_array[colCount] = 0x30;
 }
 UART_CharOut(‘\n’);
 UART_StringOut(“END DATA CH2\n”);
 }

 // Print the RAW data for Track 2
 UART_StringOut(“\nRAW COLLECTION CH2:\n0x”);

 for (colCount = 0; colCount < COLLECTED2; colCount++)
 {
 UART_HexOut (T2RAW[colCount]);
 }

 UART_CharOut(‘\n’);
 UART_StringOut(“END RAW CH2\n”);

 // Signal Error / OK with LEDs
 if (!ERRT1)
 {
 TK1_RED_LED = 0;

AN148

20 Rev. 1.3

 TK1_GRN_LED = 1;
 }
 else
 {
 TK1_RED_LED = 1;
 TK1_GRN_LED = 0;
 }

 // Signal Error / OK with LEDs
 if (!ERRT2)
 {
 TK2_RED_LED = 0;
 TK2_GRN_LED = 1;
 }
 else
 {
 TK2_RED_LED = 1;
 TK2_GRN_LED = 0;
 }

#endif // END #if DEBUG

// If DEBUG is ‘0’, only output valid track info
#if !DEBUG

 // Find direction of track1, and decode to character array
 Return_Code = GetDirection(COLLECTED1, T1_SS, T1_ES, T1RAW, T1_BITS);

 if ((Return_Code & 0x80) == 0) // If no error was detected
 {
 // Check character array for SS, ES, Parity, and LRC
 Return_Code = TrackErrorCheck(Return_Code, T1_SS, T1_ES, T1_BITS);
 }

 if (Return_Code & 0x80) // If an error was detected
 { // set the error bit
 ERRT1 = 1;
 }
 else // Otherwise print Track 1
 {
 ERRT1 = 0;
 for (colCount = 0; colCount < Return_Code; colCount++)
 {
 UART_CharOut(0x20 + (ASCII_array[colCount]&0x3F));
 ASCII_array[colCount] = 0x30;
 }
 UART_CharOut(‘\n’);
 }

 // Find direction of track2, and decode to character array
 Return_Code = GetDirection(COLLECTED2, T2_SS, T2_ES, T2RAW, T2_BITS);

 if ((Return_Code & 0x80) == 0) // If no error was detected
 {
 // Check character array for SS, ES, Parity, and LRC
 Return_Code = TrackErrorCheck(Return_Code, T2_SS, T2_ES, T2_BITS);
 }

AN148

Rev. 1.3 21

 if (Return_Code & 0x80) // If an error was detected
 { // set the error bit
 ERRT2 = 1;
 }
 else // Otherwise print Track 2
 {
 ERRT2 = 0;
 for (colCount = 0; colCount < Return_Code; colCount++)
 {
 UART_CharOut(0x30 + (ASCII_array[colCount]&0x0F));
 ASCII_array[colCount] = 0x30;
 }
 UART_CharOut(‘\n’);
 }

 // Signal Error / OK with LEDs
 if (!ERRT1)
 {
 TK1_RED_LED = 0;
 TK1_GRN_LED = 1;
 }
 else
 {
 TK1_RED_LED = 1;
 TK1_GRN_LED = 0;
 }

 // Signal Error / OK with LEDs
 if (!ERRT2)
 {
 TK2_RED_LED = 0;
 TK2_GRN_LED = 1;
 }
 else
 {
 TK2_RED_LED = 1;
 TK2_GRN_LED = 0;
 }

#endif // END #if !DEBUG

 } // END while(1)
} // END main()

//---
// Initialization Subroutines
//---

//---
// PORT_Init
//---
//
// Configure the Crossbar and GPIO ports.
//
// P0.0 - VREF Input (analog, skipped)
// P0.2 - TK1 Green LED (push-pull, skipped)
// P0.3 - TK1 Red LED (push-pull, skipped)
// P0.4 - UART TX (push-pull)
// P0.5 - UART RX (open drain)

AN148

22 Rev. 1.3

// P0.6 - TK2 Green LED (push-pull, skipped)
// P0.7 - TK2 Red LED (push-pull, skipped)
// P1.0 - Channel 1+ (analog, skipped)
// P1.1 - Channel 1- (analog, skipped)
// P1.2 - Channel 2+ (analog, skipped)
// P1.3 - Channel 2- (analog, skipped)
// P1.6 - TK3 Green LED (push-pull, skipped)
// P1.7 - TK3 Red LED (push-pull, skipped)
//

void PORT_Init (void)
{
 P0MDOUT |= 0xDC; // enable TX and LEDs as push-pull out

 P0MDIN &= ~0x01; // VREF analog in
 P1MDIN &= ~0x0F; // Enable P1.0 through 1.3 as analog in
 P1MDOUT |= 0xC0; // P1.6, 1.7 Push-pull output

 P0SKIP |= 0xCD; // Skip VREF pin and LED Outputs
 P1SKIP |= 0xCF; // Skip Analog Inputs and LED Outputs

 XBR0 = 0x01; // Enable UART on P0.4(RX) and P0.5(TX)
 XBR1 = 0x40; // Enable crossbar and enable
 // weak pull-ups

 TK1_RED_LED = 0; // Turn all LEDs off
 TK1_GRN_LED = 0;
 TK2_RED_LED = 0;
 TK2_GRN_LED = 0;
 TK3_RED_LED = 0;
 TK3_GRN_LED = 0;
}

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use the internal oscillator
// at its maximum frequency, enables the Missing Clock Detector and VDD
// monitor.
//

void SYSCLK_Init (void)
{
 OSCICN |= 0x03; // Configure internal oscillator for
 // its maximum frequency
 RSTSRC = 0x06; // Enable missing clock detector and
 // VDD Monitor
}

//---
// ADC0_Init
//---
//
// Configure ADC0 to use Timer 2 as conversion source, and to initially point
// to Channel 2. Disables ADC end of conversion interrupt. Leaves ADC
// disabled.
//
void ADC0_Init (void)

AN148

Rev. 1.3 23

{
 ADC0CN = 0x02; // ADC0 disabled; Normal tracking
 // mode; ADC0 conversions are initiated
 // on timer 2

 AMX0P = T1_CHPOS; // Channel 1+
 AMX0N = T1_CHNEG; // Channel 1-

 ADC0CF = (SYSCLK/3000000) << 3; // ADC conversion clock <= 3MHz

 ADC0CF &= ~0x04; // Right-Justify data
 REF0CN = 0x03; // VREF = P0.0 internal VREF, bias
 // generator is on.

}

//---
// UART0_Init
//---
//
// Configure the UART0 using Timer1, for <BAUDRATE> and 8-N-1.
//
void UART0_Init (void)
{
 SCON0 = 0x10; // SCON0: 8-bit variable bit rate
 // level of STOP bit is ignored
 // RX enabled
 // ninth bits are zeros
 // clear RI0 and TI0 bits
 if (SYSCLK/BAUDRATE/2/256 < 1) {
 TH1 = -(SYSCLK/BAUDRATE/2);
 CKCON &= ~0x0B; // T1M = 1; SCA1:0 = xx
 CKCON |= 0x08;
 } else if (SYSCLK/BAUDRATE/2/256 < 4) {
 TH1 = -(SYSCLK/BAUDRATE/2/4);
 CKCON &= ~0x0B; // T1M = 0; SCA1:0 = 01
 CKCON |= 0x01;
 } else if (SYSCLK/BAUDRATE/2/256 < 12) {
 TH1 = -(SYSCLK/BAUDRATE/2/12);
 CKCON &= ~0x0B; // T1M = 0; SCA1:0 = 00
 } else {
 TH1 = -(SYSCLK/BAUDRATE/2/48);
 CKCON &= ~0x0B; // T1M = 0; SCA1:0 = 10
 CKCON |= 0x02;
 }

 TL1 = TH1; // init Timer1
 TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
 TMOD |= 0x20;
 TR1 = 1; // START Timer1
 TI0 = 1; // Indicate TX0 ready
}

//---
// Timer2_Init
//---
//
// Configure Timer2 to auto-reload at interval specified by <counts> (no

AN148

24 Rev. 1.3

// interrupt generated) using SYSCLK as its time base.
//
void Timer2_Init (int counts)
{
 TMR2CN = 0x00; // STOP Timer2; Clear TF2H and TF2L;
 // disable low-byte interrupt; disable
 // split mode; select internal timebase
 CKCON |= 0x10; // Timer2 uses SYSCLK as its timebase

 TMR2RL = -counts; // Init reload values
 TMR2 = TMR2RL; // Init Timer2 with reload value
}

//---
// Support Subroutines
//---

//---
// Swipe_Card
//---
//
// This routine performs the signal detection and data collection when a card
// is swiped through the reader for Track 1 and 2. Interrupts should be
// turned off when this routine runs for optimal performance.
//

unsigned char Swipe_Card(void)
{
unsigned char data zerocount1; // Zero counter - Track 1
unsigned char data bytecount1; // Raw data counter - TK 1
unsigned char data zerocount2; // Zero counter - Track 2
unsigned char data bytecount2; // Raw data counter - TK 2

char data runningsum1 = 0, rsum1_div = 0; // Filtering variables
char data runningsum2 = 0, rsum2_div = 0;

 // Minimum / Maximum and
 // next peak values
char data localmax1 = 0, localmin1 = 0, next_peak1 = 0;
char data localmax2 = 0, localmin2 = 0, next_peak2 = 0;

char data ADC_DATA; // Raw ADC Data (low byte)

unsigned int data cyclecount1, cyclecount2; // Cycle counters

unsigned int maincycle; // Main time stamp for
 // ADC conversions

unsigned int data maxtime1, mintime1; // Min / Max time stamps
unsigned int data maxtime2, mintime2;

unsigned char data cycleindex1; // Index for # of cycles
unsigned char data cycleindex2; // present in sum
unsigned int data cyclesum1 = 0; // Sum over 3 cycles
unsigned int data cyclesum2 = 0;
unsigned int data CP75pct1 = 0, CP150pct1 = 0; // 75% and 150% comparison
unsigned int data CP75pct2 = 0, CP150pct2 = 0; // values

AN148

Rev. 1.3 25

bit ZERO_WAIT1, FIRST_ONE1, BIT_RECORD1; // Bits keep track of stages
bit ZERO_WAIT2, FIRST_ONE2, BIT_RECORD2; // in the collection

bit LASTEDGE1 = 0; // State of last edges:
bit LASTEDGE2 = 0; // 1 = Positive
 // 0 = Negative

 maincycle = 0; // Reset ADC timestamp
 Timeout_Counter = 0; // Reset Timeout Variables
 READ_TIMEOUT = 0; // (included for clarity)
 CH2_SWITCH = 0;

 T1RAW[0] = 0; // Reset Track1 Variables
 COLLECTED1 = 1;
 ZERO_WAIT1 = 1;
 FIRST_ONE1 = 0;
 BIT_RECORD1 = 0;
 zerocount1 = 0;
 bytecount1 = 0;

 T2RAW[0] = 0; // Reset Track2 Variables
 COLLECTED2 = 1;
 ZERO_WAIT2 = 1;
 FIRST_ONE2 = 0;
 BIT_RECORD2 = 0;
 zerocount2 = 0;
 bytecount2 = 0;

 AMX0P = T1_CHPOS; // Set up AIN+ channel
 AMX0N = T1_CHNEG; // Set up AIN- channel

 AD0EN = 1; // Enable ADC0
 TR2 = 1; // start Timer2

 // wait for Timer2 overflow flag - 1st conversion begins
 while (!TF2H);
 TF2H = 0; // clear timer overflow flag
 AMX0P = T2_CHPOS; // switch AIN+ channel
 AMX0N = T2_CHNEG; // switch AIN- channel

 while (!READ_TIMEOUT)
 {
 Timeout_Counter++; // Increment counters
 maincycle++;

 if (CH2_SWITCH) // check if CH2 is sampled
 {
 // wait for Timer2 overflow flag
 while (!TF2H);
 AMX0P = T1_CHPOS; // switch AIN+ channel
 AMX0N = T1_CHNEG; // switch AIN- channel
 ADC_DATA = ADC0L; // read current data low byte
 TF2H = 0; // clear timer overflow flag
 }
 else
 {
 // wait for Timer2 overflow flag
 while (!TF2H);
 AMX0P = T2_CHPOS; // switch AIN+ channel

AN148

26 Rev. 1.3

 AMX0N = T2_CHNEG; // switch AIN- channel
 ADC_DATA = ADC0L; // read current data low byte
 TF2H = 0; // clear timer overflow flag
 }

 // Perform exponential average
 runningsum1 = runningsum1 + ADC_DATA - rsum1_div;
 rsum1_div = runningsum1>>2;

 if (!ZERO_WAIT1) // Test to see if still waiting for zeros
 { // If NOT.. collect data

 if (!LASTEDGE1) // Test if last edge was negative
 {
 if (runningsum1 > next_peak1) // Test against peak limit
 {
 // Establish new local max
 // and compute min-max
 // peak timing
 localmax1 = runningsum1;
 cyclecount1 += mintime1 - maxtime1;
 next_peak1 = localmax1 - THRESHOLD1;

 if (cyclecount1 <= CP75pct1) // 1/2 or Full cycle?
 { // **1/2 cycle
 BIT_RECORD1 = 1;
 FIRST_ONE1 = 1;
 }
 else // **Full cycle
 {
 cyclesum1 += cyclecount1; // Update cycle sum
 cycleindex1++;

 if (FIRST_ONE1) // If first ‘1’ is found
 {
 Temp_Byte1 = Temp_Byte1 << 1;
 Temp1_b0 = BIT_RECORD1; // Record a bit
 bytecount1++;
 BIT_RECORD1 = 0; // Reset bit value to ‘0’
 }
 cyclecount1 = 0; // Reset cycle counter
 CLEAR_TIMEOUT = 0; // Keep from timing out
 }
 LASTEDGE1 = 1; // Positive edge
 }
 else if (runningsum1 < localmin1) // Check against local min
 {
 localmin1 = runningsum1; // Update local min
 // and next peak
 next_peak1 = localmin1 + THRESHOLD1;
 mintime1 = maincycle; // Time stamp local min
 }
 else // Perform some housekeeping
 {
 if (bytecount1 == 8) // Store the current byte
 {
 T1RAW[COLLECTED1] = Temp_Byte1;
 bytecount1 = 0;
 COLLECTED1++;

AN148

Rev. 1.3 27

 }
 if (cycleindex1 >= 3) // Calculate 75% Value
 {
 CP75pct1 = cyclesum1 >> 2;
 cyclesum1 = 0;
 cycleindex1 = 0;
 }
 }
 }
 else // Last edge was positive..
 {
 if (runningsum1 < next_peak1) // Test against peak limit
 {
 // Establish new local min
 // and compute max-min
 // peak timing
 localmin1 = runningsum1;
 cyclecount1 += maxtime1 - mintime1;
 next_peak1 = localmin1 + THRESHOLD1;

 if (cyclecount1 <= CP75pct1) // 1/2 or Full cycle?
 { // **1/2 cycle
 BIT_RECORD1 = 1;
 FIRST_ONE1 = 1;
 }
 else // **Full cycle
 {
 cyclesum1 += cyclecount1; // Update cycle sum
 cycleindex1++;

 if (FIRST_ONE1) // If first ‘1’ is found
 {
 Temp_Byte1 = Temp_Byte1 << 1;
 Temp1_b0 = BIT_RECORD1; // Record a bit
 bytecount1++;
 BIT_RECORD1 = 0; // Reset bit value to ‘0’
 }
 cyclecount1 = 0; // Reset cycle counter
 CLEAR_TIMEOUT = 0;
 }
 LASTEDGE1 = 0; // Negative edge
 }
 else if (runningsum1 > localmax1) // Check against local max
 {
 localmax1 = runningsum1; // Update local max
 // and next peak
 next_peak1 = localmax1 - THRESHOLD1;
 maxtime1 = maincycle; // Time stamp local max
 }
 else // Perform some housekeeping
 {
 if (bytecount1 == 8) // Store the current byte
 {
 T1RAW[COLLECTED1] = Temp_Byte1;
 bytecount1 = 0;
 COLLECTED1++;
 }
 if (cycleindex1 >= 3) // Calculate 75% Value
 {

AN148

28 Rev. 1.3

 CP75pct1 = cyclesum1 >> 2;
 cyclesum1 = 0;
 cycleindex1 = 0;
 }
 }
 }
 } // End of data collection code (after Z_LIMIT zeros detected)

 else // IF ZERO_WAIT1 == 1, still waiting for Z_LIMIT zeros
 {
 CLEAR_TIMEOUT = 0;

 if (!LASTEDGE1) // Test if last edge was negative
 {
 if (runningsum1 > next_peak1) // Test against peak limit
 {
 // Establish new local max
 // and compute min-max
 // peak timing
 localmax1 = runningsum1;
 cyclecount1 += mintime1 - maxtime1;
 next_peak1 = localmax1 - THRESHOLD1;

 cyclesum1 += cyclecount1; // Update cycle sum
 cycleindex1++;

 // Check for a value that looks periodic
 if ((cyclecount1 > CP75pct1)&&(cyclecount1 < CP150pct1))
 {
 if (++zerocount1 == Z_LIMIT) // Count up and check
 { // for Z_LIMIT
 ZERO_WAIT1 = 0;
 TK1_RED_LED = 1;
 TK1_GRN_LED = 1;
 }
 }
 else // Outside of range
 {
 zerocount1 = 0; // Reset zero count
 }

 cyclecount1 = 0; // Reset cycle counter
 LASTEDGE1 = 1; // Positive edge
 }
 else if (runningsum1 < localmin1) // Check against local min
 {
 localmin1 = runningsum1; // Update local min
 // and next peak
 next_peak1 = localmin1 + THRESHOLD1;
 mintime1 = maincycle; // Time stamp local min
 }
 else // Perform some housekeeping
 {
 if (cycleindex1 >= 3) // Calculate 75% and 150%
 {
 CP150pct1 = cyclesum1 >> 1;
 CP75pct1 = CP150pct1 >> 1;
 cyclesum1 = 0;
 cycleindex1 = 0;

AN148

Rev. 1.3 29

 }
 }
 }
 else // Last edge was positive
 {
 if (runningsum1 < next_peak1) // Test against peak limit
 {
 // Establish new local min
 // and compute max-min
 // peak timing
 localmin1 = runningsum1;
 cyclecount1 += maxtime1 - mintime1;
 next_peak1 = localmin1 + THRESHOLD1;

 cyclesum1 += cyclecount1; // Update cycle sum
 cycleindex1++;

 // Check for a value that looks periodic
 if ((cyclecount1 > CP75pct1)&&(cyclecount1 < CP150pct1))
 {
 if (++zerocount1 == Z_LIMIT) // Count up and check
 { // for Z_LIMIT
 ZERO_WAIT1 = 0;
 TK1_RED_LED = 1;
 TK1_GRN_LED = 1;
 }
 }
 else // Outside of range
 {
 zerocount1 = 0; // Reset zero count
 }
 cyclecount1 = 0; // Reset cycle counter
 LASTEDGE1 = 0; // Negative edge
 }
 else if (runningsum1 > localmax1) // Check against local max
 {
 localmax1 = runningsum1; // Update local max
 // and next peak
 next_peak1 = localmax1 - THRESHOLD1;
 maxtime1 = maincycle; // Time stamp local max
 }
 else // Perform some housekeeping
 {
 if (cycleindex1 >= 3) // Calculate 75% and 150%
 {
 CP150pct1 = cyclesum1 >> 1;
 CP75pct1 = CP150pct1 >> 1;
 cyclesum1 = 0;
 cycleindex1 = 0;
 }
 }
 }
 } // End of Waiting for Zeroes code (before Z_LIMIT reached)

 if (CH2_SWITCH) // Check if CH2 is sampled
 {
 // wait for Timer2 overflow flag
 while (!TF2H);

AN148

30 Rev. 1.3

 AMX0P = T1_CHPOS; // switch AIN+ channel
 AMX0N = T1_CHNEG; // switch AIN- channel
 ADC_DATA = ADC0L; // read current data low byte
 TF2H = 0; // clear timer overflow flag

 // Perform exponential average
 runningsum2 = runningsum2 + ADC_DATA - rsum2_div;
 rsum2_div = runningsum2>>2;

 maincycle++;

 if (!ZERO_WAIT2) // Test to see if still waiting for zeros
 { // If NOT.. collect data

 if (!LASTEDGE2) // Test if last edge was negative
 {
 if (runningsum2 > next_peak2) // Test against peak limit
 {
 // Establish new local max
 // and compute min-max
 // peak timing
 localmax2 = runningsum2;
 cyclecount2 += mintime2 - maxtime2;
 next_peak2 = localmax2 - THRESHOLD2;

 if (cyclecount2 <= CP75pct2) // 1/2 or Full cycle?
 { // **1/2 cycle
 BIT_RECORD2 = 1;
 FIRST_ONE2 = 1;
 }
 else // **Full cycle
 {
 cyclesum2 += cyclecount2; // Update cycle sum
 cycleindex2++;

 if (FIRST_ONE2) // If first ‘1’ is found
 {
 Temp_Byte2 = Temp_Byte2 << 1;
 Temp2_b0 = BIT_RECORD2; // Record a bit
 bytecount2++;
 BIT_RECORD2 = 0; // Reset bit value to ‘0’
 }
 cyclecount2 = 0; // Reset cycle counter
 }
 LASTEDGE2 = 1; // Positive edge
 }
 else if (runningsum2 < localmin2) // Check against local min
 {
 // Update local min
 localmin2 = runningsum2; // and next peak
 next_peak2 = localmin2 + THRESHOLD2;
 mintime2 = maincycle; // Time stamp local min
 }
 else // Perform some housekeeping
 {
 if (bytecount2 == 8) // Store the current byte
 {
 T2RAW[COLLECTED2] = Temp_Byte2;
 bytecount2 = 0;

AN148

Rev. 1.3 31

 COLLECTED2++;
 }
 if (cycleindex2 >= 3) // Calculate 75% Value
 {
 CP75pct2 = cyclesum2 >> 2;
 cyclesum2 = 0;
 cycleindex2 = 0;
 }
 }
 }
 else // Last edge was positive..
 {
 if (runningsum2 < next_peak2) // Test against peak limit
 {
 // Establish new local min
 // and compute max-min
 // peak timing
 localmin2 = runningsum2;
 cyclecount2 += maxtime2 - mintime2;
 next_peak2 = localmin2 + THRESHOLD2;

 if (cyclecount2 <= CP75pct2) // 1/2 or Full cycle?
 { // **1/2 cycle
 BIT_RECORD2 = 1;
 FIRST_ONE2 = 1;
 }
 else // **Full cycle
 {
 cyclesum2 += cyclecount2; // Update cycle sum
 cycleindex2++;

 if (FIRST_ONE2) // If first ‘1’ is found
 {
 Temp_Byte2 = Temp_Byte2 << 1;
 Temp2_b0 = BIT_RECORD2; // Record a bit
 bytecount2++;
 BIT_RECORD2 = 0; // Reset bit value to ‘0’
 }
 cyclecount2 = 0; // Reset cycle counter
 }
 LASTEDGE2 = 0; // Negative edge
 }
 else if (runningsum2 > localmax2) // Check against local max
 {
 // Update local max
 localmax2 = runningsum2; // and next peak
 next_peak2 = localmax2 - THRESHOLD2;
 maxtime2 = maincycle; // Time stamp local max

 }
 else // Perform some housekeeping
 {
 if (bytecount2 == 8) // Store the current byte
 {
 T2RAW[COLLECTED2] = Temp_Byte2;
 bytecount2 = 0;
 COLLECTED2++;
 }
 if (cycleindex2 >= 3) // Calculate 75% Value

AN148

32 Rev. 1.3

 {
 CP75pct2 = cyclesum2 >> 2;
 cyclesum2 = 0;
 cycleindex2 = 0;
 }
 }
 }
 } // End of data collection code (after Z_LIMIT zeros detected)

 else // IF ZERO_WAIT2 == 1, still waiting for Z_LIMIT zeros
 {
 if (!LASTEDGE2) // Test if last edge was negative
 {
 if (runningsum2 > next_peak2) // Test against peak limit
 {
 // Establish new local max
 // and compute min-max
 // peak timing
 localmax2 = runningsum2;
 cyclecount2 += mintime2 - maxtime2;
 next_peak2 = localmax2 - THRESHOLD2;

 cyclesum2 += cyclecount2; // Update cycle sum
 cycleindex2++;

 // Check for a value that looks periodic
 if ((cyclecount2 > CP75pct2)&&(cyclecount2 < CP150pct2))
 {
 if (++zerocount2 == Z_LIMIT) // Count up and check
 { // for Z_LIMIT
 ZERO_WAIT2 = 0;
 TK2_RED_LED = 1;
 TK2_GRN_LED = 1;
 }
 }
 else // Outside of range
 {
 zerocount2 = 0; // Reset zero count
 }
 cyclecount2 = 0; // Reset cycle counter
 LASTEDGE2 = 1; // Positive edge
 }
 else if (runningsum2 < localmin2) // Check against local min
 {
 // Update local min
 localmin2 = runningsum2; // and next peak
 next_peak2 = localmin2 + THRESHOLD2;
 mintime2 = maincycle; // Time stamp local min
 }
 else // Perform some housekeeping
 {
 if (cycleindex2 >= 3) // Calculate 75% and 150%
 {
 CP150pct2 = cyclesum2 >> 1;
 CP75pct2 = CP150pct2 >> 1;
 cyclesum2 = 0;
 cycleindex2 = 0;
 }
 }

AN148

Rev. 1.3 33

 }
 else // Last edge was positive
 {
 if (runningsum2 < next_peak2) // Test against peak limit
 {
 // Establish new local min
 // and compute max-min
 // peak timing
 localmin2 = runningsum2;
 cyclecount2 += maxtime2 - mintime2;
 next_peak2 = localmin2 + THRESHOLD2;

 cyclesum2 += cyclecount2; // Update cycle sum
 cycleindex2++;

 // Check for a value that looks periodic
 if ((cyclecount2 > CP75pct2)&&(cyclecount2 < CP150pct2))
 {
 if (++zerocount2 == Z_LIMIT) // Count up and check
 { // for Z_LIMIT
 ZERO_WAIT2 = 0;
 TK2_RED_LED = 1;
 TK2_GRN_LED = 1;
 }
 }
 else // Outside of range
 {
 zerocount2 = 0; // Reset zero count
 }
 cyclecount2 = 0; // Reset cycle counter
 LASTEDGE2 = 0; // Negative edge
 }
 else if (runningsum2 > localmax2) // Check against local max
 {
 // Update local max
 localmax2 = runningsum2; // and next peak
 next_peak2 = localmax2 - THRESHOLD2;
 maxtime2 = maincycle; // Time stamp local max
 }
 else // Perform some housekeeping
 {
 if (cycleindex2 >= 3) // Calculate 75% and 150%
 {
 CP150pct2 = cyclesum2 >> 1;
 CP75pct2 = CP150pct2 >> 1;
 cyclesum2 = 0;
 cycleindex2 = 0;
 }
 }
 }
 } // End of Waiting for Zeroes code (before Z_LIMIT reached)

 } // End IF CH2_SWITCH

 } // End While (!READ_TIMEOUT)

 // Finish off last bytes with zeros..
 while (bytecount1 < 8)
 {

AN148

34 Rev. 1.3

 Temp_Byte1 = Temp_Byte1 << 1;
 Temp1_b0 = 0; // record a zero
 bytecount1++;
 }
 T1RAW[COLLECTED1] = Temp_Byte1;

 while (bytecount2 < 8)
 {
 Temp_Byte2 = Temp_Byte2 << 1;
 Temp2_b0 = 0; // record a zero
 bytecount2++;
 }
 T2RAW[COLLECTED2] = Temp_Byte2;

 return (1);
}

//---
// TrackErrorCheck
//---
//
// This routine checks the decoded track data for Start Sentinel, End Sentinel,
// Parity, and LRC errors.
//

char TrackErrorCheck (unsigned char maxindex, unsigned char StartSen,
 unsigned char EndSen, unsigned char CharBits)
{
unsigned char idata ASCII_Index, ASCII_Mask;
unsigned char idata ASCII_Data, PC_count, Read_LRC = 0, Calc_LRC = 0;
char idata errorcode = 0;
bit ES_Found = 0, ParityCheck = 0;

 ASCII_Mask = 0x7F >> (8 - CharBits); // Mask used to separate data info

 if (ASCII_array[0] != StartSen) // Check for SS at start of array
 {
 errorcode |= 0x81; // ERROR - SS is not 1st character
 }

 // Loop through ASCII_array and check each byte for errors
 for (ASCII_Index = 0; ASCII_Index <= maxindex; ASCII_Index++)
 {
 ASCII_Data = ASCII_array[ASCII_Index];
 if (!ES_Found) // If ES not found yet
 {
 // LRC Check - XOR’s data from all bytes (except the LRC)
 Calc_LRC ^= (ASCII_Data & ASCII_Mask);

 if (ASCII_Data == EndSen) // If this is the End Sentinel,
 { // treat the next character as
 // the LRC, and signal that
 // the ES has been found
 Read_LRC = (ASCII_array[ASCII_Index+1] & ASCII_Mask);
 maxindex = ASCII_Index+1;
 ES_Found = 1;
 }
 }

AN148

Rev. 1.3 35

 // Parity Check - checks #1’s against Parity bit for ODD parity.
 ParityCheck = 0; // Reset parity check variable
 for (PC_count = 0; PC_count < CharBits; PC_count++)
 {
 ParityCheck ^= (ASCII_Data & 0x01);
 ASCII_Data = ASCII_Data >> 1;
 }
 if (ParityCheck == (ASCII_Data & 0x01))
 {
 ASCII_array[ASCII_Index] |= 0x80; // Mark this byte for ID later
 errorcode |= 0x88; // ERROR - Parity error
 }
 }

 // Check that End Sentinel was found in captured data
 if (!ES_Found)
 {
 errorcode |=0x82; // ERROR - End Sentinel never found
 }
 // If ES was found...
 else if (Calc_LRC != (Read_LRC & ASCII_Mask))
 {
 errorcode |= 0x84; // LRC error

 // Parity Check for LRC - checks #1’s against Parity bit for ODD parity.
 ParityCheck = 0; // Reset parity check variable
 for (PC_count = 0; PC_count < CharBits; PC_count++)
 {
 ParityCheck ^= (Read_LRC & 0x01);
 Read_LRC = Read_LRC >> 1;
 }
 if (ParityCheck == (Read_LRC & 0x01))
 {
 ASCII_array[maxindex] |= 0x80; // Mark LRC byte for ID later
 errorcode |= 0x88; // ERROR - Parity error
 }
 }

 // If no errors were detected, return the number of bytes found.
 // Otherwise, return the error code.
 if (errorcode == 0)
 {
 return ASCII_Index;
 }
 else
 {
 return errorcode;
 }

}

//---
// DecodeTrackForward
//---
//
// This routine is used to decode a track into characters, assuming it was
// recorded in the forward direction into the array.
//

AN148

36 Rev. 1.3

char DecodeTrackForward (unsigned char maxindex, unsigned char Byte_Offset,
 unsigned char Bit_Offset, unsigned char *TrackRAW, unsigned char CharBits)
{
unsigned char idata Track_Index = 0;
char idata ASCII_Index = 0, ASCII_Mask;
unsigned char idata Track_Data, ASCII_Data;
unsigned char idata Track_bit, ASCII_bit;

 // Reset temporary variables
 ASCII_bit = 0x01;
 ASCII_Data = 0x00;

 // Generate a bit comparison value for sorting through ASCII bytes
 ASCII_Mask = 0x01 << (CharBits-1);

 // Begin at the specified offset, and proceed until the end of the track
 for (Track_Index = Byte_Offset; Track_Index <= maxindex; Track_Index++)
 {
 // Grab a byte of raw data
 Track_Data = TrackRAW[Track_Index];

 // Unpack raw data byte into character(s)
 for (Track_bit = Bit_Offset; Track_bit != 0x00; Track_bit = Track_bit>>1)
 {
 if (Track_bit & Track_Data)
 {
 ASCII_Data |= ASCII_bit;
 }
 else
 {
 ASCII_Data &= ~ASCII_bit;
 }
 if (ASCII_bit != ASCII_Mask)
 {
 ASCII_bit = ASCII_bit << 1;
 }
 else
 {
 ASCII_bit = 0x01;
 ASCII_array[ASCII_Index] = ASCII_Data;

 if ((ASCII_Data == 0x00)||(ASCII_Index == 126))
 {
 Track_Index = maxindex; // end translation
 }

 ASCII_Index++;
 }
 }
 }

 // Return the number of characters unpacked
 return (ASCII_Index);

}

//---
// DecodeTrackBackward

AN148

Rev. 1.3 37

//---
//
// This routine is used to decode a track into characters, assuming it was
// recorded in the backward direction into the array.
//
char DecodeTrackBackward (unsigned char Byte_Offset, unsigned char Bit_Offset,
 unsigned char *TrackRAW, unsigned char CharBits)
{
unsigned char idata Track_Index;
char idata ASCII_Index = 0, ASCII_Mask;
unsigned char idata Track_Data, ASCII_Data;
unsigned char idata ASCII_bit;

 // Reset temporary variables
 ASCII_bit = 0x01;
 ASCII_Data = 0x00;

 // Generate a bit comparison value for sorting through ASCII bytes
 ASCII_Mask = 0x01 << (CharBits-1);

 // Begin at the specified offset, and proceed until the beginning
 for (Track_Index = Byte_Offset; Track_Index != 0x00; Track_Index--)
 {
 // Grab a byte of raw data
 Track_Data = TrackRAW[Track_Index];

 // Unpack raw data byte into character(s)
 while (Bit_Offset != 0x00)
 {
 if (Bit_Offset & Track_Data)
 {
 ASCII_Data |= ASCII_bit;
 }
 else
 {
 ASCII_Data &= ~ASCII_bit;
 }
 if (ASCII_bit != ASCII_Mask)
 {
 ASCII_bit = ASCII_bit << 1;
 }
 else
 {
 ASCII_bit = 0x01;
 ASCII_array[ASCII_Index] = ASCII_Data;
 ASCII_Data = 0;
 ASCII_Index++;
 }
 Bit_Offset = Bit_Offset << 1;
 }
 Bit_Offset = 0x01;
 }

 // Finish off last byte with trailing zeros
 ASCII_Mask = ASCII_Mask << 1;
 while (ASCII_bit != ASCII_Mask)
 {
 ASCII_Data &= ~ASCII_bit;

AN148

38 Rev. 1.3

 ASCII_bit = ASCII_bit << 1;
 }
 ASCII_array[ASCII_Index] = ASCII_Data;

 // Return the number of characters unpacked
 return (ASCII_Index);

}

//---
// GetDirection
//---
//
// This routine determines which direction data was collected from the magnetic
// stripe and calls the appropriate decoding routine.
//

char GetDirection (unsigned char maxindex, unsigned char StartSen,
 unsigned char EndSen, unsigned char *TrackRAW, unsigned char CharBits)
{

unsigned char idata FW_Byte_Off, FW_Bit_Off, RV_Byte_Off, RV_Bit_Off;
unsigned char idata Read_Char, Bit_Count, Temp_Char, Temp_Bit, Temp_Mask;
char idata MAX_Decoded;
bit FW_StartSen, RV_StartSen, Direction_Found = 0, Abort_Direction = 0;

 // Initialize Index Pointers
 FW_Byte_Off = 1;
 FW_Bit_Off = 0x80;
 RV_Byte_Off = maxindex;
 RV_Bit_Off = 0x01;

 while ((Direction_Found == 0)&&(Abort_Direction == 0))
 {
 // Read a byte at FW pointer
 Read_Char = TrackRAW[FW_Byte_Off];

 // Find the next ‘1’ Forward
 while ((FW_Byte_Off != RV_Byte_Off)&&((Read_Char & FW_Bit_Off) == 0))
 {
 FW_Bit_Off = FW_Bit_Off >> 1;
 if (FW_Bit_Off == 00)
 {
 FW_Bit_Off = 0x80;
 FW_Byte_Off++;
 Read_Char = TrackRAW[FW_Byte_Off];
 }
 }

 if (FW_Byte_Off == RV_Byte_Off)
 {
 Abort_Direction = 1;
 }

 Temp_Bit = 0x02;
 Temp_Char = 0x01;
 Temp_Mask = FW_Bit_Off;

AN148

Rev. 1.3 39

 for (Bit_Count = 1; Bit_Count < CharBits; Bit_Count++)
 {
 Temp_Mask = Temp_Mask >> 1;
 if (Temp_Mask == 0x00)
 {
 Temp_Mask = 0x80;
 Read_Char = TrackRAW[FW_Byte_Off+1];
 }
 if (Read_Char & Temp_Mask)
 {
 Temp_Char |= Temp_Bit;
 }
 else
 {
 Temp_Char &= ~Temp_Bit;
 }
 Temp_Bit = Temp_Bit << 1;
 }

 // Check character against Start Sentinel
 if (Temp_Char == StartSen)
 {
 FW_StartSen = 1;
 }
 else
 {
 FW_StartSen = 0;
 }

 // Read a byte at RV pointer
 Read_Char = TrackRAW[RV_Byte_Off];

 // Find the next ‘1’ Reverse
 while ((FW_Byte_Off != RV_Byte_Off)&&((Read_Char & RV_Bit_Off) == 0))
 {
 RV_Bit_Off = RV_Bit_Off << 1;
 if (RV_Bit_Off == 00)
 {
 RV_Bit_Off = 0x01;
 RV_Byte_Off--;
 Read_Char = TrackRAW[RV_Byte_Off];
 }
 }

 if (FW_Byte_Off == RV_Byte_Off)
 {
 Abort_Direction = 1;
 }

 Temp_Bit = 0x02;
 Temp_Char = 0x01;
 Temp_Mask = RV_Bit_Off;

 for (Bit_Count = 1; Bit_Count < CharBits; Bit_Count++)
 {
 Temp_Mask = Temp_Mask << 1;
 if (Temp_Mask == 0x00)
 {

AN148

40 Rev. 1.3

 Temp_Mask = 0x01;
 Read_Char = TrackRAW[RV_Byte_Off-1];
 }
 if (Read_Char & Temp_Mask)
 {
 Temp_Char |= Temp_Bit;
 }
 else
 {
 Temp_Char &= ~Temp_Bit;
 }
 Temp_Bit = Temp_Bit << 1;
 }

 // Check character against Start Sentinel
 if (Temp_Char == StartSen)
 {
 RV_StartSen = 1;
 }
 else
 {
 RV_StartSen = 0;
 }

 if (FW_StartSen ^ RV_StartSen)
 {
 Direction_Found = 1;
 }
 else if (FW_StartSen && RV_StartSen)
 {
 //*** Check for ES Backwards in front
 Temp_Bit = 0x80;
 Temp_Char = 0x00;
 Temp_Mask = FW_Bit_Off;

 MAX_Decoded = FW_Byte_Off; // MAX_Decoded used as temporary storage
 if ((Temp_Mask >> CharBits) != 0x00)
 {
 Temp_Mask = Temp_Mask >> CharBits;
 }
 else
 {
 FW_Byte_Off++;
 Temp_Mask = Temp_Mask << (8 - CharBits);
 }

 Read_Char = TrackRAW[FW_Byte_Off];
 for (Bit_Count = 0; Bit_Count < CharBits; Bit_Count++)
 {
 if (Read_Char & Temp_Mask)
 {
 Temp_Char |= Temp_Bit;
 }
 else
 {
 Temp_Char &= ~Temp_Bit;
 }
 Temp_Bit = Temp_Bit >> 1;

AN148

Rev. 1.3 41

 Temp_Mask = Temp_Mask >> 1;
 if (Temp_Mask == 0x00)
 {
 Temp_Mask = 0x80;
 Read_Char = TrackRAW[FW_Byte_Off+1];
 }
 }
 FW_Byte_Off = MAX_Decoded; // Restore FW_Byte_Off

 Temp_Char = Temp_Char >> (8 - CharBits);
 // Check character against End Sentinel
 // If found here, track is reverse.
 if (Temp_Char == EndSen)
 {
 FW_StartSen = 0;
 }
 //otherwise, it is forward
 else
 {
 RV_StartSen = 0;
 }

 Direction_Found = 1;
 }
 else if (!Abort_Direction)
 {
 FW_Bit_Off = FW_Bit_Off >> 1;
 if (FW_Bit_Off == 00)
 {
 FW_Bit_Off = 0x80;
 FW_Byte_Off++;
 }
 RV_Bit_Off = RV_Bit_Off << 1;
 if (RV_Bit_Off == 00)
 {
 RV_Bit_Off = 0x01;
 RV_Byte_Off--;
 }

 if (FW_Byte_Off >= RV_Byte_Off)
 {
 Abort_Direction = 1;
 }
 }

 } // End while((Direction_Found == 0)&&(Abort_Direction == 0))

 if ((Direction_Found)&&(!Abort_Direction))
 {
 if (FW_StartSen)
 {
 MAX_Decoded = DecodeTrackForward(maxindex, FW_Byte_Off, FW_Bit_Off,
 TrackRAW, CharBits);
 }
 else if (RV_StartSen)
 {
 MAX_Decoded = DecodeTrackBackward(RV_Byte_Off, RV_Bit_Off,
 TrackRAW, CharBits);
 }

AN148

42 Rev. 1.3

 }
 else
 {
 MAX_Decoded = 0x81; // Could not find Start Sentinel
 }

 return (MAX_Decoded);

}

//---
// UART_CharOut
//---
//
// This routine sends a single character to the UART. It is used in lieu of
// printf() to reduce overall code size.
//

void UART_CharOut (unsigned char c)
{
 if (c == ‘\n’)
 {
 while (!TI0);
 TI0 = 0;
 SBUF0 = 0x0d; /* output CR */
 }
 while (!TI0);
 TI0 = 0;
 SBUF0 = c;
}

//---
// UART_StringOut
//---
//
// This routine calls the UART_CharOut repeatedly to send a string value to the
// UART. It is used in lieu of printf() to reduce overall code size.
//

void UART_StringOut (unsigned char *c)
{
 while (*c != 0x00)
 {
 UART_CharOut(*c);
 c++;
 }
}

#if DEBUG
//---
// UART_HexOut
//---
//
// This routine sends the hexadecimal value of a character to the UART as ASCII
// text. Only used when DEBUG = 1.
//
void UART_HexOut (unsigned char c)
{

AN148

Rev. 1.3 43

 while (!TI0);
 TI0 = 0;
 if ((c & 0xF0) < 0xA0)
 SBUF0 = ((c >> 4) & 0x0F) + 0x30;
 else
 SBUF0 = ((c >> 4) & 0x0F) + 0x37;

 while (!TI0);
 TI0 = 0;
 if ((c & 0x0F) < 0x0A)
 SBUF0 = (c & 0x0F) + 0x30;
 else
 SBUF0 = (c & 0x0F) + 0x37;

}
#endif // END #if DEBUG

AN148

44 Rev. 1.3

APPENDIX F—FIRMWARE LISTING FOR 3-CHANNEL EXAMPLE

//---
// MagStripeReaderF330_3CH.c
//---
// Copyright 2004 Silicon Laboratories
//
// AUTH: BD
// DATE: 3 MAR 04
// VER: 2.0
//
// This program reads the magnetic stripe from a card written in the standard
// ISO 3-channel format using F2F encoding. Read data is output to the UART
// after being decoded.
//
// Target: C8051F33x
// Tool chain: KEIL C51 7.06 / KEIL EVAL C51
//

//---
// Includes
//---

#include <c8051f330.h> // SFR declarations for C8051F330

//---
// 16-bit SFR Definitions for ‘F33x
//---
sfr16 TMR2RL = 0xca; // Timer2 reload value
sfr16 TMR2 = 0xcc; // Timer2 counter

//---
// Conditional Compilation CONSTANTS
//---

#define DEBUG 0 // Set to ‘1’ for extra information
#define T3_5BIT 1 // Set to ‘1’ for T3 5-bit encoding
 // Set to ‘0’ for T3 7-bit encoding

// **NOTE** The Track 3 encoding scheme is different for different card types
// The ISO-4909 standard uses 5-bit Track 3 encoding
// Many cards now use 7-bit encoding for Track 3

//---
// Global CONSTANTS
//---

#define SYSCLK 24500000 // SYSCLK frequency in Hz
#define BAUDRATE 115200 // Baud rate of UART in bps
#define SAMPLE_RATE 200000 // Sample rate of ADC

#define T1_SS 0x45 // Start Sentinel + parity
#define T1_ES 0x1F // End Sentinel + parity
#define T1_BITS 7 // data + parity bit
#define T1_CHPOS 0x08 // Positive ADC Mux channel

AN148

Rev. 1.3 45

#define T1_CHNEG 0x09 // Negative ADC Mux channel

#define T2_SS 0x0B // Start Sentinel + parity
#define T2_ES 0x1F // End Sentinel + parity
#define T2_BITS 5 // data + parity bit
#define T2_CHPOS 0x0A // Positive ADC Mux channel
#define T2_CHNEG 0x0B // Negative ADC Mux channel

#if T3_5BIT // Use 5-bit encoding on Track 3
#define T3_SS 0x0B // Start Sentinel + parity
#define T3_ES 0x1F // End Sentinel + parity
#define T3_BITS 5 // data + parity bit
#endif

#if !T3_5BIT // Use 7-bit encoding on Track 3
#define T3_SS 0x45 // Start Sentinel + parity
#define T3_ES 0x1F // End Sentinel + parity
#define T3_BITS 7 // data + parity bit
#endif

#define T3_CHPOS 0x0C // Positive ADC Mux channel
#define T3_CHNEG 0x0D // Negative ADC Mux channel

#define THRESHOLD1 7 // Noise threshold limits
#define THRESHOLD2 7
#define THRESHOLD3 7

#define Z_LIMIT 3 // Number of Zeros before recording

sbit TK1_GRN_LED = P0^2; // GREEN LED TK1
sbit TK1_RED_LED = P0^3; // RED LED TK1

sbit TK2_GRN_LED = P0^6; // GREEN LED TK2
sbit TK2_RED_LED = P0^7; // RED LED TK2

sbit TK3_GRN_LED = P1^6; // GREEN LED TK3
sbit TK3_RED_LED = P1^7; // RED LED TK3

//---
// Global VARIABLES
//---

unsigned char xdata T1RAW[100], T2RAW[100], // Track 1 and 2 Raw Data
 T3RAW[100]; // Track 3 Raw Data
unsigned char xdata ASCII_array[128]; // Decoded Information
unsigned char COLLECTED1 = 1, COLLECTED2 = 1, // Raw data indices
 COLLECTED3 = 1;

unsigned int bdata Timeout_Counter; // Bit-Addressable Timeout counter
sbit CLEAR_TIMEOUT = Timeout_Counter ^ 4; // Used to keep from timing out
sbit READ_TIMEOUT = Timeout_Counter ^ 5; // Indicates when read is finished
sbit CH2_SWITCH = Timeout_Counter ^ 8; // LSB of counter:
 // If ‘1’, CH2 is sampled
 // If ‘0’, CH2 is skipped

unsigned char bdata Temp_Byte1; // Bit-Addressable Temporary Storage
sbit Temp1_b0 = Temp_Byte1 ^ 0; // LSB of Temp_Byte1

AN148

46 Rev. 1.3

unsigned char bdata Temp_Byte2; // Bit-Addressable Temporary Storage
sbit Temp2_b0 = Temp_Byte2 ^ 0; // LSB of Temp_Byte2

unsigned char bdata Temp_Byte3; // Bit-Addressable Temporary Storage
sbit Temp3_b0 = Temp_Byte3 ^ 0; // LSB of Temp_Byte3

//---
// Function PROTOTYPES
//---

void SYSCLK_Init (void);
void ADC0_Init (void);
void UART0_Init (void);
void PORT_Init (void);
void Timer2_Init (int);

unsigned char Swipe_Card(void);

char GetDirection (unsigned char maxindex, unsigned char StartSen,
 unsigned char EndSen, unsigned char *TrackRAW,
 unsigned char CharBits);
char DecodeTrackForward (unsigned char maxindex, unsigned char Byte_Offset,
 unsigned char Bit_Offset, unsigned char *TrackRAW,
 unsigned char CharBits);

char DecodeTrackBackward (unsigned char Byte_Offset, unsigned char Bit_Offset,
 unsigned char *TrackRAW, unsigned char CharBits);

char TrackErrorCheck (unsigned char maxindex, unsigned char StartSen,
 unsigned char EndSen, unsigned char CharBits);

void UART_CharOut (unsigned char c);
void UART_StringOut (unsigned char *c);
void UART_HexOut (unsigned char c);

//---
// MAIN Routine
//---

void main (void) {

unsigned char idata Return_Code;
unsigned char idata colCount;
bit ERRT1, ERRT2, ERRT3; // Track 1, 2, 3 Error Flags

 // Disable Watchdog timer
 PCA0MD &= ~0x40; // WDTE = 0 (clear watchdog timer
 // enable)
 PORT_Init(); // Initialize Port I/O
 SYSCLK_Init (); // Initialize Oscillator

 ADC0_Init (); // Init ADC0
 Timer2_Init(SYSCLK/SAMPLE_RATE); // Init Timer 2 w/ ADC sample rate
 UART0_Init();

 while (1) {

AN148

Rev. 1.3 47

#if DEBUG
 UART_StringOut(“\nTesting”);
#endif // END #if DEBUG

 UART_StringOut(“\n”);

 Swipe_Card();

// If DEBUG is ‘1’, use verbose mode for output
#if DEBUG

 // Find direction of track1, and decode to character array
 Return_Code = GetDirection(COLLECTED1, T1_SS, T1_ES, T1RAW, T1_BITS);

 if ((Return_Code & 0x80) == 0) // If no error was detected
 {
 // Check character array for SS, ES, Parity, and LRC
 Return_Code = TrackErrorCheck(Return_Code, T1_SS, T1_ES, T1_BITS);
 }

 if (Return_Code & 0x80) // If an error was detected
 {
 ERRT1 = 1;
 UART_StringOut(“\nErrors: \n”); // List the errors detected

 if (Return_Code & 0x01)
 {
 UART_StringOut(“\tStart Sentinel not found\n”);
 }
 if (Return_Code & 0x02)
 {
 UART_StringOut(“\tEnd Sentinel not found\n”);
 }
 if (Return_Code & 0x04)
 {
 UART_StringOut(“\tLRC incorrect\n”);
 }
 if (Return_Code & 0x08)
 {
 UART_StringOut(“\tParity error(s)\n”);
 }

 UART_StringOut(“\nDATA CH1:\n”);
 for (colCount = 0; colCount < 128; colCount++)
 {
 UART_CharOut(0x20 + (ASCII_array[colCount]&0x3F));
 UART_CharOut(0x30);
 }
 UART_CharOut(‘\n’);
 UART_StringOut(“END DATA CH1\n”);
 }
 else // No errors, print T1 data
 {
 ERRT1 = 0;
 UART_StringOut(“\nDATA CH1:\n”);

 for (colCount = 0; colCount < Return_Code; colCount++)
 {
 UART_CharOut(0x20 + (ASCII_array[colCount]&0x3F));

AN148

48 Rev. 1.3

 ASCII_array[colCount] = 0x30;
 }
 UART_CharOut(‘\n’);
 UART_StringOut(“END DATA CH1\n”);
 }

 // Print the RAW data for Track 1
 UART_StringOut(“\nRAW COLLECTION CH1:\n0x”);

 for (colCount = 0; colCount < COLLECTED1; colCount++)
 {
 UART_HexOut (T1RAW[colCount]);
 }

 UART_CharOut(‘\n’);
 UART_StringOut(“END RAW CH1\n”);

 // Find direction of track2, and decode to character array
 Return_Code = GetDirection(COLLECTED2, T2_SS, T2_ES, T2RAW, T2_BITS);

 if ((Return_Code & 0x80) == 0) // If no error was detected
 {
 // Check character array for SS, ES, Parity, and LRC
 Return_Code = TrackErrorCheck(Return_Code, T2_SS, T2_ES, T2_BITS);
 }

 if (Return_Code & 0x80) // If an error was detected
 {
 ERRT2 = 1;
 UART_StringOut(“\nErrors: \n”); // List the errors detected

 if (Return_Code & 0x01)
 {
 UART_StringOut(“\tStart Sentinel not found\n”);
 }
 if (Return_Code & 0x02)
 {
 UART_StringOut(“\tEnd Sentinel not found\n”);
 }
 if (Return_Code & 0x04)
 {
 UART_StringOut(“\tLRC incorrect\n”);
 }
 if (Return_Code & 0x08)
 {
 UART_StringOut(“\tParity error(s)\n”);
 }

 UART_StringOut(“\nDATA CH2:\n”);
 for (colCount = 0; colCount < 128; colCount++)
 {
 UART_CharOut(0x30 + (ASCII_array[colCount]&0x0F));
 ASCII_array[colCount] = 0x30;
 }
 UART_CharOut(‘\n’);
 UART_StringOut(“END DATA CH2\n”);
 }
 else // No errors, print T2 data
 {

AN148

Rev. 1.3 49

 ERRT2 = 0;
 UART_StringOut(“\nDATA CH2:\n”);

 for (colCount = 0; colCount < Return_Code; colCount++)
 {
 UART_CharOut(0x30 + (ASCII_array[colCount]&0x0F));
 ASCII_array[colCount] = 0x30;
 }
 UART_CharOut(‘\n’);
 UART_StringOut(“END DATA CH2\n”);
 }

 // Print the RAW data for Track 2
 UART_StringOut(“\nRAW COLLECTION CH2:\n0x”);

 for (colCount = 0; colCount < COLLECTED2; colCount++)
 {
 UART_HexOut (T2RAW[colCount]);
 }

 UART_CharOut(‘\n’);
 UART_StringOut(“END RAW CH2\n”);

 // Find direction of track3, and decode to character array
 Return_Code = GetDirection(COLLECTED3, T3_SS, T3_ES, T3RAW, T3_BITS);

 if ((Return_Code & 0x80) == 0) // If no error was detected
 {
 // Check character array for SS, ES, Parity, and LRC
 Return_Code = TrackErrorCheck(Return_Code, T3_SS, T3_ES, T3_BITS);
 }

 if (Return_Code & 0x80) // If an error was detected
 {
 ERRT3 = 1;
 UART_StringOut(“\nErrors: “); // List the errors detected
 UART_CharOut(‘\n’);

 if (Return_Code & 0x01)
 {
 UART_StringOut(“\tStart Sentinel not found\n”);
 }
 if (Return_Code & 0x02)
 {
 UART_StringOut(“\tEnd Sentinel not found\n”);
 }
 if (Return_Code & 0x04)
 {
 UART_StringOut(“\tLRC incorrect\n”);
 }
 if (Return_Code & 0x08)
 {
 UART_StringOut(“\tParity error(s)\n”);
 }

 UART_StringOut(“\nDATA CH3:\n”);
 for (colCount = 0; colCount < 128; colCount++)
 {
 UART_CharOut(0x30 + (ASCII_array[colCount]&0x0F));

AN148

50 Rev. 1.3

 ASCII_array[colCount] = 0x30;
 }
 UART_CharOut(‘\n’);
 UART_StringOut(“END DATA CH3\n”);
 }
 else // No errors, print T3 data
 {
 ERRT3 = 0;
 UART_StringOut(“\nDATA CH3:\n”);

 for (colCount = 0; colCount < Return_Code; colCount++)
 {
 UART_CharOut(0x30 + (ASCII_array[colCount]&0x0F));
 ASCII_array[colCount] = 0x30;
 }
 UART_CharOut(‘\n’);
 UART_StringOut(“END DATA CH3\n”);
 }

 // Print the RAW data for Track 3
 UART_StringOut(“\nRAW COLLECTION CH3:\n0x”);

 for (colCount = 0; colCount < COLLECTED3; colCount++)
 {
 UART_HexOut (T3RAW[colCount]);
 }

 UART_CharOut(‘\n’);
 UART_StringOut(“END RAW CH3\n”);

 // Signal Error / OK with LEDs
 if (!ERRT1)
 {
 TK1_RED_LED = 0;
 TK1_GRN_LED = 1;
 }
 else
 {
 TK1_RED_LED = 1;
 TK1_GRN_LED = 0;
 }

 // Signal Error / OK with LEDs
 if (!ERRT2)
 {
 TK2_RED_LED = 0;
 TK2_GRN_LED = 1;
 }
 else
 {
 TK2_RED_LED = 1;
 TK2_GRN_LED = 0;
 }

 // Signal Error / OK with LEDs
 if (!ERRT3)
 {
 TK3_RED_LED = 0;

AN148

Rev. 1.3 51

 TK3_GRN_LED = 1;
 }
 else
 {
 TK3_RED_LED = 1;
 TK3_GRN_LED = 0;
 }

#endif // END #if DEBUG

// If DEBUG is ‘0’, only output valid track info
#if !DEBUG

 // Find direction of track1, and decode to character array
 Return_Code = GetDirection(COLLECTED1, T1_SS, T1_ES, T1RAW, T1_BITS);

 if ((Return_Code & 0x80) == 0) // If no error was detected
 {
 // Check character array for SS, ES, Parity, and LRC
 Return_Code = TrackErrorCheck(Return_Code, T1_SS, T1_ES, T1_BITS);
 }

 if (Return_Code & 0x80) // If an error was detected
 { // set the error bit
 ERRT1 = 1;
 }
 else // Otherwise print Track 1
 {
 ERRT1 = 0;
 for (colCount = 0; colCount < Return_Code; colCount++)
 {
 UART_CharOut(0x20 + (ASCII_array[colCount]&0x3F));
 ASCII_array[colCount] = 0x30;
 }
 UART_CharOut(‘\n’);
 }

 // Find direction of track2, and decode to character array
 Return_Code = GetDirection(COLLECTED2, T2_SS, T2_ES, T2RAW, T2_BITS);

 if ((Return_Code & 0x80) == 0) // If no error was detected
 {
 // Check character array for SS, ES, Parity, and LRC
 Return_Code = TrackErrorCheck(Return_Code, T2_SS, T2_ES, T2_BITS);
 }

 if (Return_Code & 0x80) // If an error was detected
 { // set the error bit
 ERRT2 = 1;
 }
 else // Otherwise print Track 2
 {
 ERRT2 = 0;
 for (colCount = 0; colCount < Return_Code; colCount++)
 {
 UART_CharOut(0x30 + (ASCII_array[colCount]&0x0F));
 ASCII_array[colCount] = 0x30;
 }

AN148

52 Rev. 1.3

 UART_CharOut(‘\n’);
 }

 // Find direction of track3, and decode to character array
 Return_Code = GetDirection(COLLECTED3, T3_SS, T3_ES, T3RAW, T3_BITS);

 if ((Return_Code & 0x80) == 0) // If no error was detected
 {
 // Check character array for SS, ES, Parity, and LRC
 Return_Code = TrackErrorCheck(Return_Code, T3_SS, T3_ES, T3_BITS);
 }

 if (Return_Code & 0x80) // If an error was detected
 { // set the error bit
 ERRT3 = 1;
 }
 else // Otherwise print Track 3
 {
 ERRT3 = 0;
 for (colCount = 0; colCount < Return_Code; colCount++)
 {
 UART_CharOut(0x30 + (ASCII_array[colCount]&0x0F));
 ASCII_array[colCount] = 0x30;
 }
 UART_CharOut(‘\n’);
 }

 // Signal Error / OK with LEDs
 if (!ERRT1)
 {
 TK1_RED_LED = 0;
 TK1_GRN_LED = 1;
 }
 else
 {
 TK1_RED_LED = 1;
 TK1_GRN_LED = 0;
 }

 // Signal Error / OK with LEDs
 if (!ERRT2)
 {
 TK2_RED_LED = 0;
 TK2_GRN_LED = 1;
 }
 else
 {
 TK2_RED_LED = 1;
 TK2_GRN_LED = 0;
 }

 // Signal Error / OK with LEDs
 if (!ERRT3)
 {
 TK3_RED_LED = 0;
 TK3_GRN_LED = 1;
 }
 else
 {

AN148

Rev. 1.3 53

 TK3_RED_LED = 1;
 TK3_GRN_LED = 0;
 }
#endif // END #if !DEBUG

 } // END while(1)
} // END main()

//---
// Initialization Subroutines
//---

//---
// PORT_Init
//---
//
// Configure the Crossbar and GPIO ports.
//
// P0.0 - VREF Input (analog, skipped)
// P0.4 - UART TX (push-pull)
// P0.5 - UART RX (open drain)
// P1.0 - Channel 1+ (analog, skipped)
// P1.1 - Channel 1- (analog, skipped)
// P1.2 - Channel 2+ (analog, skipped)
// P1.3 - Channel 2- (analog, skipped)
// P1.4 - Channel 3+ (analog, skipped)
// P1.5 - Channel 3- (analog, skipped)
// P1.6 - Green LED (push-pull, skipped)
// P1.7 - Red LED (push-pull, skipped)
//

void PORT_Init (void)
{
 P0MDOUT |= 0xDC; // enable TX and LEDs as push-pull out

 P0MDIN &= ~0x01; // VREF analog in
 P1MDIN &= ~0x3F; // Enable P1.0 through 1.5 as analog in
 P1MDOUT |= 0xC0; // P1.6, 1.7 Push-pull output

 P0SKIP |= 0xCD; // Skip VREF pin and LED Outputs
 P1SKIP |= 0xFF; // Skip Analog Inputs and LED Outputs

 XBR0 = 0x01; // Enable UART on P0.4(RX) and P0.5(TX)
 XBR1 = 0x40; // Enable crossbar and enable
 // weak pull-ups

 TK1_RED_LED = 0; // Turn all LEDs off
 TK1_GRN_LED = 0;
 TK2_RED_LED = 0;
 TK2_GRN_LED = 0;
 TK3_RED_LED = 0;
 TK3_GRN_LED = 0;
}

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use the internal oscillator

AN148

54 Rev. 1.3

// at its maximum frequency, enables the Missing Clock Detector and VDD
// monitor.
//

void SYSCLK_Init (void)
{
 OSCICN |= 0x03; // Configure internal oscillator for
 // its maximum frequency
 RSTSRC = 0x06; // Enable missing clock detector and
 // VDD Monitor
}

//---
// ADC0_Init
//---
//
// Configure ADC0 to use Timer 2 as conversion source, and to initially point
// to Channel 2. Disables ADC end of conversion interrupt. Leaves ADC
// disabled.
//
void ADC0_Init (void)
{
 ADC0CN = 0x02; // ADC0 disabled; Normal tracking
 // mode; ADC0 conversions are initiated
 // on timer 2

 AMX0P = T1_CHPOS; // Channel 1+
 AMX0N = T1_CHNEG; // Channel 1-

 ADC0CF = (SYSCLK/3000000) << 3; // ADC conversion clock <= 3MHz

 ADC0CF &= ~0x04; // Right-Justify data
 REF0CN = 0x03; // VREF = P0.0 internal VREF, bias
 // generator is on.

}

//---
// UART0_Init
//---
//
// Configure the UART0 using Timer1, for <BAUDRATE> and 8-N-1.
//
void UART0_Init (void)
{
 SCON0 = 0x10; // SCON0: 8-bit variable bit rate
 // level of STOP bit is ignored
 // RX enabled
 // ninth bits are zeros
 // clear RI0 and TI0 bits
 if (SYSCLK/BAUDRATE/2/256 < 1) {
 TH1 = -(SYSCLK/BAUDRATE/2);
 CKCON &= ~0x0B; // T1M = 1; SCA1:0 = xx
 CKCON |= 0x08;
 } else if (SYSCLK/BAUDRATE/2/256 < 4) {
 TH1 = -(SYSCLK/BAUDRATE/2/4);
 CKCON &= ~0x0B; // T1M = 0; SCA1:0 = 01
 CKCON |= 0x01;
 } else if (SYSCLK/BAUDRATE/2/256 < 12) {

AN148

Rev. 1.3 55

 TH1 = -(SYSCLK/BAUDRATE/2/12);
 CKCON &= ~0x0B; // T1M = 0; SCA1:0 = 00
 } else {
 TH1 = -(SYSCLK/BAUDRATE/2/48);
 CKCON &= ~0x0B; // T1M = 0; SCA1:0 = 10
 CKCON |= 0x02;
 }

 TL1 = TH1; // init Timer1
 TMOD &= ~0xf0; // TMOD: timer 1 in 8-bit autoreload
 TMOD |= 0x20;
 TR1 = 1; // START Timer1
 TI0 = 1; // Indicate TX0 ready
}

//---
// Timer2_Init
//---
//
// Configure Timer2 to auto-reload at interval specified by <counts> (no
// interrupt generated) using SYSCLK as its time base.
//
void Timer2_Init (int counts)
{
 TMR2CN = 0x00; // STOP Timer2; Clear TF2H and TF2L;
 // disable low-byte interrupt; disable
 // split mode; select internal timebase
 CKCON |= 0x10; // Timer2 uses SYSCLK as its timebase

 TMR2RL = -counts; // Init reload values
 TMR2 = TMR2RL; // Init Timer2 with reload value
}

//---
// Support Subroutines
//---

//---
// Swipe_Card
//---
//
// This routine performs the signal detection and data collection when a card
// is swiped through the reader for Track 1 2 and 3. Interrupts should be
// turned off when this routine runs for optimal performance.
//

unsigned char Swipe_Card(void)
{
unsigned char data zerocount1; // Zero counter - Track 1
unsigned char data bytecount1; // Raw data counter - TK 1
unsigned char data zerocount2; // Zero counter - Track 2
unsigned char data bytecount2; // Raw data counter - TK 2
unsigned char data zerocount3; // Zero counter - Track 3
unsigned char data bytecount3; // Raw data counter - TK 3

char data runningsum1 = 0, rsum1_div = 0; // Filtering variables
char data runningsum2 = 0, rsum2_div = 0;

AN148

56 Rev. 1.3

char data runningsum3 = 0, rsum3_div = 0;

 // Minimum / Maximum and
 // next peak values
char data localmax1 = 0, localmin1 = 0, next_peak1 = 0;
char data localmax2 = 0, localmin2 = 0, next_peak2 = 0;
char data localmax3 = 0, localmin3 = 0, next_peak3 = 0;

char data ADC_DATA; // Raw ADC Data (low byte)

unsigned int data cyclecount1, cyclecount2, // Cycle counters
 cyclecount3;

unsigned int maincycle; // Main time stamp for
 // ADC conversions

unsigned int data maxtime1, mintime1; // Min / Max time stamps
unsigned int data maxtime2, mintime2;
unsigned int data maxtime3, mintime3;

unsigned char data cycleindex1; // Index for # of cycles
unsigned char data cycleindex2; // present in sum
unsigned char data cycleindex3;
unsigned int data cyclesum1 = 0; // Sum over 3 cycles
unsigned int data cyclesum2 = 0;
unsigned int data cyclesum3 = 0;
unsigned int data CP75pct1 = 0, CP150pct1 = 0; // 75% and 150% comparison
unsigned int data CP75pct2 = 0, CP150pct2 = 0; // values
unsigned int data CP75pct3 = 0, CP150pct3 = 0;

bit ZERO_WAIT1, FIRST_ONE1, BIT_RECORD1; // Bits keep track of stages
bit ZERO_WAIT2, FIRST_ONE2, BIT_RECORD2; // in the collection
bit ZERO_WAIT3, FIRST_ONE3, BIT_RECORD3;

bit LASTEDGE1 = 0; // State of last edges:
bit LASTEDGE2 = 0; // 1 = Positive
bit LASTEDGE3 = 0; // 0 = Negative

 maincycle = 0; // Reset ADC timestamp
 Timeout_Counter = 0; // Reset Timeout Variables
 READ_TIMEOUT = 0; // (included for clarity)
 CH2_SWITCH = 0;

 T1RAW[0] = 0; // Reset Track1 Variables
 COLLECTED1 = 1;
 ZERO_WAIT1 = 1;
 FIRST_ONE1 = 0;
 BIT_RECORD1 = 0;
 zerocount1 = 0;
 bytecount1 = 0;

 T2RAW[0] = 0; // Reset Track2 Variables
 COLLECTED2 = 1;
 ZERO_WAIT2 = 1;
 FIRST_ONE2 = 0;
 BIT_RECORD2 = 0;
 zerocount2 = 0;
 bytecount2 = 0;

AN148

Rev. 1.3 57

 T3RAW[0] = 0; // Reset Track3 Variables
 COLLECTED3 = 1;
 ZERO_WAIT3 = 1;
 FIRST_ONE3 = 0;
 BIT_RECORD3 = 0;
 zerocount3 = 0;
 bytecount3 = 0;

 AMX0P = T1_CHPOS; // Set up AIN+ channel
 AMX0N = T1_CHNEG; // Set up AIN- channel

 AD0EN = 1; // Enable ADC0
 TR2 = 1; // start Timer2

 // wait for Timer2 overflow flag - 1st conversion begins
 while (!TF2H);
 TF2H = 0; // clear timer overflow flag
 AMX0P = T2_CHPOS; // switch AIN+ channel
 AMX0N = T2_CHNEG; // switch AIN- channel

 while (!READ_TIMEOUT)
 {
 Timeout_Counter++; // Increment counters
 maincycle++;

 if (CH2_SWITCH) // check if CH2 is sampled
 {
 // wait for Timer2 overflow flag
 while (!TF2H);
 AMX0P = T3_CHPOS; // switch AIN+ channel
 AMX0N = T3_CHNEG; // switch AIN- channel
 ADC_DATA = ADC0L; // read current data low byte
 TF2H = 0; // clear timer overflow flag
 }
 else
 {
 // wait for Timer2 overflow flag
 while (!TF2H);
 AMX0P = T1_CHPOS; // switch AIN+ channel
 AMX0N = T1_CHNEG; // switch AIN- channel
 ADC_DATA = ADC0L; // read current data low byte
 TF2H = 0; // clear timer overflow flag
 }

 // Perform exponential average
 runningsum1 = runningsum1 + ADC_DATA - rsum1_div;
 rsum1_div = runningsum1>>2;

 if (!ZERO_WAIT1) // Test to see if still waiting for zeros
 { // If NOT.. collect data

 if (!LASTEDGE1) // Test if last edge was negative
 {
 if (runningsum1 > next_peak1) // Test against peak limit
 {
 // Establish new local max
 // and compute min-max
 // peak timing

AN148

58 Rev. 1.3

 localmax1 = runningsum1;
 cyclecount1 += mintime1 - maxtime1;
 next_peak1 = localmax1 - THRESHOLD1;

 if (cyclecount1 <= CP75pct1) // 1/2 or Full cycle?
 { // **1/2 cycle
 BIT_RECORD1 = 1;
 FIRST_ONE1 = 1;
 }
 else // **Full cycle
 {
 cyclesum1 += cyclecount1; // Update cycle sum
 cycleindex1++;

 if (FIRST_ONE1) // If first ‘1’ is found
 {
 Temp_Byte1 = Temp_Byte1 << 1;
 Temp1_b0 = BIT_RECORD1; // Record a bit
 bytecount1++;
 BIT_RECORD1 = 0; // Reset bit value to ‘0’
 }
 cyclecount1 = 0; // Reset cycle counter
 CLEAR_TIMEOUT = 0; // Keep from timing out
 }
 LASTEDGE1 = 1; // Positive edge
 }
 else if (runningsum1 < localmin1) // Check against local min
 {
 localmin1 = runningsum1; // Update local min
 // and next peak
 next_peak1 = localmin1 + THRESHOLD1;
 mintime1 = maincycle; // Time stamp local min
 }
 else // Perform some housekeeping
 {
 if (bytecount1 == 8) // Store the current byte
 {
 T1RAW[COLLECTED1] = Temp_Byte1;
 bytecount1 = 0;
 COLLECTED1++;
 }
 if (cycleindex1 >= 3) // Calculate 75% Value
 {
 CP75pct1 = cyclesum1 >> 2;
 cyclesum1 = 0;
 cycleindex1 = 0;
 }
 }
 }
 else // Last edge was positive..
 {
 if (runningsum1 < next_peak1) // Test against peak limit
 {
 // Establish new local min
 // and compute max-min
 // peak timing
 localmin1 = runningsum1;
 cyclecount1 += maxtime1 - mintime1;
 next_peak1 = localmin1 + THRESHOLD1;

AN148

Rev. 1.3 59

 if (cyclecount1 <= CP75pct1) // 1/2 or Full cycle?
 { // **1/2 cycle
 BIT_RECORD1 = 1;
 FIRST_ONE1 = 1;
 }
 else // **Full cycle
 {
 cyclesum1 += cyclecount1; // Update cycle sum
 cycleindex1++;

 if (FIRST_ONE1) // If first ‘1’ is found
 {
 Temp_Byte1 = Temp_Byte1 << 1;
 Temp1_b0 = BIT_RECORD1; // Record a bit
 bytecount1++;
 BIT_RECORD1 = 0; // Reset bit value to ‘0’
 }
 cyclecount1 = 0; // Reset cycle counter
 CLEAR_TIMEOUT = 0;
 }
 LASTEDGE1 = 0; // Negative edge
 }
 else if (runningsum1 > localmax1) // Check against local max
 {
 localmax1 = runningsum1; // Update local max
 // and next peak
 next_peak1 = localmax1 - THRESHOLD1;
 maxtime1 = maincycle; // Time stamp local max
 }
 else // Perform some housekeeping
 {
 if (bytecount1 == 8) // Store the current byte
 {
 T1RAW[COLLECTED1] = Temp_Byte1;
 bytecount1 = 0;
 COLLECTED1++;
 }
 if (cycleindex1 >= 3) // Calculate 75% Value
 {
 CP75pct1 = cyclesum1 >> 2;
 cyclesum1 = 0;
 cycleindex1 = 0;
 }
 }
 }
 } // End of data collection code (after Z_LIMIT zeros detected)

 else // IF ZERO_WAIT1 == 1, still waiting for Z_LIMIT zeros
 {
 CLEAR_TIMEOUT = 0;

 if (!LASTEDGE1) // Test if last edge was negative
 {
 if (runningsum1 > next_peak1) // Test against peak limit
 {
 // Establish new local max
 // and compute min-max
 // peak timing

AN148

60 Rev. 1.3

 localmax1 = runningsum1;
 cyclecount1 += mintime1 - maxtime1;
 next_peak1 = localmax1 - THRESHOLD1;

 cyclesum1 += cyclecount1; // Update cycle sum
 cycleindex1++;

 // Check for a value that looks periodic
 if ((cyclecount1 > CP75pct1)&&(cyclecount1 < CP150pct1))
 {
 if (++zerocount1 == Z_LIMIT) // Count up and check
 { // for Z_LIMIT
 ZERO_WAIT1 = 0;
 TK1_RED_LED = 1;
 TK1_GRN_LED = 1;
 }
 }
 else // Outside of range
 {
 zerocount1 = 0; // Reset zero count
 }

 cyclecount1 = 0; // Reset cycle counter
 LASTEDGE1 = 1; // Positive edge
 }
 else if (runningsum1 < localmin1) // Check against local min
 {
 localmin1 = runningsum1; // Update local min
 // and next peak
 next_peak1 = localmin1 + THRESHOLD1;
 mintime1 = maincycle; // Time stamp local min
 }
 else // Perform some housekeeping
 {
 if (cycleindex1 >= 3) // Calculate 75% and 150%
 {
 CP150pct1 = cyclesum1 >> 1;
 CP75pct1 = CP150pct1 >> 1;
 cyclesum1 = 0;
 cycleindex1 = 0;
 }
 }
 }
 else // Last edge was positive
 {
 if (runningsum1 < next_peak1) // Test against peak limit
 {
 // Establish new local min
 // and compute max-min
 // peak timing
 localmin1 = runningsum1;
 cyclecount1 += maxtime1 - mintime1;
 next_peak1 = localmin1 + THRESHOLD1;

 cyclesum1 += cyclecount1; // Update cycle sum
 cycleindex1++;

 // Check for a value that looks periodic
 if ((cyclecount1 > CP75pct1)&&(cyclecount1 < CP150pct1))

AN148

Rev. 1.3 61

 {
 if (++zerocount1 == Z_LIMIT) // Count up and check
 { // for Z_LIMIT
 ZERO_WAIT1 = 0;
 TK1_RED_LED = 1;
 TK1_GRN_LED = 1;
 }
 }
 else // Outside of range
 {
 zerocount1 = 0; // Reset zero count
 }
 cyclecount1 = 0; // Reset cycle counter
 LASTEDGE1 = 0; // Negative edge
 }
 else if (runningsum1 > localmax1) // Check against local max
 {
 localmax1 = runningsum1; // Update local max
 // and next peak
 next_peak1 = localmax1 - THRESHOLD1;
 maxtime1 = maincycle; // Time stamp local max
 }
 else // Perform some housekeeping
 {
 if (cycleindex1 >= 3) // Calculate 75% and 150%
 {
 CP150pct1 = cyclesum1 >> 1;
 CP75pct1 = CP150pct1 >> 1;
 cyclesum1 = 0;
 cycleindex1 = 0;
 }
 }
 }
 } // End of Waiting for Zeroes code (before Z_LIMIT reached)

 if (CH2_SWITCH) // Check if CH2 is sampled
 {
 // wait for Timer2 overflow flag
 while (!TF2H);
 AMX0P = T1_CHPOS; // switch AIN+ channel
 AMX0N = T1_CHNEG; // switch AIN- channel
 ADC_DATA = ADC0L; // read current data low byte
 TF2H = 0; // clear timer overflow flag

 // Perform exponential average
 runningsum2 = runningsum2 + ADC_DATA - rsum2_div;
 rsum2_div = runningsum2>>2;

 maincycle++;

 if (!ZERO_WAIT2) // Test to see if still waiting for zeros
 { // If NOT.. collect data

 if (!LASTEDGE2) // Test if last edge was negative
 {
 if (runningsum2 > next_peak2) // Test against peak limit
 {
 // Establish new local max

AN148

62 Rev. 1.3

 // and compute min-max
 // peak timing
 localmax2 = runningsum2;
 cyclecount2 += mintime2 - maxtime2;
 next_peak2 = localmax2 - THRESHOLD2;

 if (cyclecount2 <= CP75pct2) // 1/2 or Full cycle?
 { // **1/2 cycle
 BIT_RECORD2 = 1;
 FIRST_ONE2 = 1;
 }
 else // **Full cycle
 {
 cyclesum2 += cyclecount2; // Update cycle sum
 cycleindex2++;

 if (FIRST_ONE2) // If first ‘1’ is found
 {
 Temp_Byte2 = Temp_Byte2 << 1;
 Temp2_b0 = BIT_RECORD2; // Record a bit
 bytecount2++;
 BIT_RECORD2 = 0; // Reset bit value to ‘0’
 }
 cyclecount2 = 0; // Reset cycle counter
 }
 LASTEDGE2 = 1; // Positive edge
 }
 else if (runningsum2 < localmin2) // Check against local min
 {
 // Update local min
 localmin2 = runningsum2; // and next peak
 next_peak2 = localmin2 + THRESHOLD2;
 mintime2 = maincycle; // Time stamp local min
 }
 else // Perform some housekeeping
 {
 if (bytecount2 == 8) // Store the current byte
 {
 T2RAW[COLLECTED2] = Temp_Byte2;
 bytecount2 = 0;
 COLLECTED2++;
 }
 if (cycleindex2 >= 3) // Calculate 75% Value
 {
 CP75pct2 = cyclesum2 >> 2;
 cyclesum2 = 0;
 cycleindex2 = 0;
 }
 }
 }
 else // Last edge was positive..
 {
 if (runningsum2 < next_peak2) // Test against peak limit
 {
 // Establish new local min
 // and compute max-min
 // peak timing
 localmin2 = runningsum2;
 cyclecount2 += maxtime2 - mintime2;

AN148

Rev. 1.3 63

 next_peak2 = localmin2 + THRESHOLD2;

 if (cyclecount2 <= CP75pct2) // 1/2 or Full cycle?
 { // **1/2 cycle
 BIT_RECORD2 = 1;
 FIRST_ONE2 = 1;
 }
 else // **Full cycle
 {
 cyclesum2 += cyclecount2; // Update cycle sum
 cycleindex2++;

 if (FIRST_ONE2) // If first ‘1’ is found
 {
 Temp_Byte2 = Temp_Byte2 << 1;
 Temp2_b0 = BIT_RECORD2; // Record a bit
 bytecount2++;
 BIT_RECORD2 = 0; // Reset bit value to ‘0’
 }
 cyclecount2 = 0; // Reset cycle counter
 }
 LASTEDGE2 = 0; // Negative edge
 }
 else if (runningsum2 > localmax2) // Check against local max
 {
 // Update local max
 localmax2 = runningsum2; // and next peak
 next_peak2 = localmax2 - THRESHOLD2;
 maxtime2 = maincycle; // Time stamp local max

 }
 else // Perform some housekeeping
 {
 if (bytecount2 == 8) // Store the current byte
 {
 T2RAW[COLLECTED2] = Temp_Byte2;
 bytecount2 = 0;
 COLLECTED2++;
 }
 if (cycleindex2 >= 3) // Calculate 75% Value
 {
 CP75pct2 = cyclesum2 >> 2;
 cyclesum2 = 0;
 cycleindex2 = 0;
 }
 }
 }
 } // End of data collection code (after Z_LIMIT zeros detected)

 else // IF ZERO_WAIT2 == 1, still waiting for Z_LIMIT zeros
 {
 if (!LASTEDGE2) // Test if last edge was negative
 {
 if (runningsum2 > next_peak2) // Test against peak limit
 {
 // Establish new local max
 // and compute min-max
 // peak timing
 localmax2 = runningsum2;

AN148

64 Rev. 1.3

 cyclecount2 += mintime2 - maxtime2;
 next_peak2 = localmax2 - THRESHOLD2;

 cyclesum2 += cyclecount2; // Update cycle sum
 cycleindex2++;

 // Check for a value that looks periodic
 if ((cyclecount2 > CP75pct2)&&(cyclecount2 < CP150pct2))
 {
 if (++zerocount2 == Z_LIMIT) // Count up and check
 { // for Z_LIMIT
 ZERO_WAIT2 = 0;
 TK2_RED_LED = 1;
 TK2_GRN_LED = 1;
 }
 }
 else // Outside of range
 {
 zerocount2 = 0; // Reset zero count
 }
 cyclecount2 = 0; // Reset cycle counter
 LASTEDGE2 = 1; // Positive edge
 }
 else if (runningsum2 < localmin2) // Check against local min
 {
 // Update local min
 localmin2 = runningsum2; // and next peak
 next_peak2 = localmin2 + THRESHOLD2;
 mintime2 = maincycle; // Time stamp local min
 }
 else // Perform some housekeeping
 {
 if (cycleindex2 >= 3) // Calculate 75% and 150%
 {
 CP150pct2 = cyclesum2 >> 1;
 CP75pct2 = CP150pct2 >> 1;
 cyclesum2 = 0;
 cycleindex2 = 0;
 }
 }
 }
 else // Last edge was positive
 {
 if (runningsum2 < next_peak2) // Test against peak limit
 {
 // Establish new local min
 // and compute max-min
 // peak timing
 localmin2 = runningsum2;
 cyclecount2 += maxtime2 - mintime2;
 next_peak2 = localmin2 + THRESHOLD2;

 cyclesum2 += cyclecount2; // Update cycle sum
 cycleindex2++;

 // Check for a value that looks periodic
 if ((cyclecount2 > CP75pct2)&&(cyclecount2 < CP150pct2))
 {
 if (++zerocount2 == Z_LIMIT) // Count up and check

AN148

Rev. 1.3 65

 { // for Z_LIMIT
 ZERO_WAIT2 = 0;
 TK2_RED_LED = 1;
 TK2_GRN_LED = 1;
 }
 }
 else // Outside of range
 {
 zerocount2 = 0; // Reset zero count
 }
 cyclecount2 = 0; // Reset cycle counter
 LASTEDGE2 = 0; // Negative edge
 }
 else if (runningsum2 > localmax2) // Check against local max
 {
 // Update local max
 localmax2 = runningsum2; // and next peak
 next_peak2 = localmax2 - THRESHOLD2;
 maxtime2 = maincycle; // Time stamp local max
 }
 else // Perform some housekeeping
 {
 if (cycleindex2 >= 3) // Calculate 75% and 150%
 {
 CP150pct2 = cyclesum2 >> 1;
 CP75pct2 = CP150pct2 >> 1;
 cyclesum2 = 0;
 cycleindex2 = 0;
 }
 }
 }
 } // End of Waiting for Zeroes code (before Z_LIMIT reached)

 // wait for Timer2 overflow flag
 while (!TF2H);
 AMX0P = T3_CHPOS; // switch AIN+ channel
 AMX0N = T3_CHNEG; // switch AIN- channel
 ADC_DATA = ADC0L; // read current data low byte
 TF2H = 0; // clear timer overflow flag
 } // End IF CH2_SWITCH

 else
 {
 // wait for Timer2 overflow flag
 while (!TF2H);
 AMX0P = T2_CHPOS; // switch AIN+ channel
 AMX0N = T2_CHNEG; // switch AIN- channel
 ADC_DATA = ADC0L; // read current data low byte
 TF2H = 0; // clear timer overflow flag
 }

 // Perform exponential average
 runningsum3 = runningsum3 + ADC_DATA - rsum3_div;
 rsum3_div = runningsum3>>2;

 maincycle++;

 if (!ZERO_WAIT3) // Test to see if still waiting for zeros
 { // If NOT.. collect data

AN148

66 Rev. 1.3

 if (!LASTEDGE3) // Test if last edge was negative
 {
 if (runningsum3 > next_peak3) // Test against peak limit
 {
 // Establish new local max
 // and compute min-max
 // peak timing
 localmax3 = runningsum3;
 cyclecount3 += mintime3 - maxtime3;
 next_peak3 = localmax3 - THRESHOLD3;

 if (cyclecount3 <= CP75pct3) // 1/2 or Full cycle?
 { // **1/2 cycle
 BIT_RECORD3 = 1;
 FIRST_ONE3 = 1;
 }
 else // **Full cycle
 {
 cyclesum3 += cyclecount3; // Update cycle sum
 cycleindex3++;

 if (FIRST_ONE3) // If first ‘1’ is found
 {
 Temp_Byte3 = Temp_Byte3 << 1;
 Temp3_b0 = BIT_RECORD3; // Record a bit
 bytecount3++;
 BIT_RECORD3 = 0; // Reset bit value to ‘0’

 }
 cyclecount3 = 0; // Reset cycle counter
 }
 LASTEDGE3 = 1; // Positive edge
 }
 else if (runningsum3 < localmin3) // Check against local min
 { // Update local min
 localmin3 = runningsum3; // and next peak
 next_peak3 = localmin3 + THRESHOLD3;
 mintime3 = maincycle; // Time stamp local min
 }
 else // Perform some housekeeping
 {
 if (bytecount3 == 8) // Store the current byte
 {
 T3RAW[COLLECTED3] = Temp_Byte3;
 bytecount3 = 0;
 COLLECTED3++;
 }
 if (cycleindex3 >= 3) // Calculate 75% Value
 {
 CP75pct3 = cyclesum3 >> 2;
 cyclesum3 = 0;
 cycleindex3 = 0;
 }
 }
 }
 else // Last edge was positive..
 {
 if (runningsum3 < next_peak3) // Test against peak limit

AN148

Rev. 1.3 67

 {
 // Establish new local min
 // and compute max-min
 // peak timing
 localmin3 = runningsum3;
 cyclecount3 += maxtime3 - mintime3;
 next_peak3 = localmin3 + THRESHOLD3;

 if (cyclecount3 <= CP75pct3) // 1/2 or Full cycle?
 { // **1/2 cycle
 BIT_RECORD3 = 1;
 FIRST_ONE3 = 1;
 }
 else // **Full cycle
 {
 cyclesum3 += cyclecount3; // Update cycle sum
 cycleindex3++;

 if (FIRST_ONE3) // If first ‘1’ is found
 {
 Temp_Byte3 = Temp_Byte3 << 1;
 Temp3_b0 = BIT_RECORD3; // Record a bit
 bytecount3++;
 BIT_RECORD3 = 0; // Reset bit value to ‘0’
 }
 cyclecount3 = 0; // Reset cycle counter
 }
 LASTEDGE3 = 0; // Negative edge
 }
 else if (runningsum3 > localmax3) // Check against local max
 { // Update local max
 localmax3 = runningsum3; // and next peak
 next_peak3 = localmax3 - THRESHOLD3;
 maxtime3 = maincycle; // Time stamp local max
 }
 else // Perform some housekeeping
 {
 if (bytecount3 == 8) // Store the current byte
 {
 T3RAW[COLLECTED3] = Temp_Byte3;
 bytecount3 = 0;
 COLLECTED3++;
 }
 if (cycleindex3 >= 3) // Calculate 75% Value
 {
 CP75pct3 = cyclesum3 >> 2;
 cyclesum3 = 0;
 cycleindex3 = 0;
 }
 }
 }
 } // End of data collection code (after Z_LIMIT zeros detected)

 else // IF ZERO_WAIT3 == 1, still waiting for Z_LIMIT zeros
 {
 if (!LASTEDGE3) // Test if last edge was negative
 {
 if (runningsum3 > next_peak3) // Test against peak limit
 {

AN148

68 Rev. 1.3

 // Establish new local max
 // and compute min-max
 // peak timing
 localmax3 = runningsum3;
 cyclecount3 += mintime3 - maxtime3;
 next_peak3 = localmax3 - THRESHOLD3;

 cyclesum3 += cyclecount3; // Update cycle sum
 cycleindex3++;

 // Check for a value that looks periodic
 if ((cyclecount3 > CP75pct3)&&(cyclecount3 < CP150pct3))
 {
 if (++zerocount3 == Z_LIMIT) // Count up and check
 { // for Z_LIMIT
 ZERO_WAIT3 = 0;
 TK3_RED_LED = 1;
 TK3_GRN_LED = 1;
 }
 }
 else // Outside of range
 {
 zerocount3 = 0; // Reset zero count
 }
 cyclecount3 = 0; // Reset cycle counter
 LASTEDGE3 = 1; // Positive edge
 }
 else if (runningsum3 < localmin3) // Check against local min
 { // Update local min
 localmin3 = runningsum3; // and next peak
 next_peak3 = localmin3 + THRESHOLD3;
 mintime3 = maincycle; // Time stamp local min
 }
 else // Perform some housekeeping
 {
 if (cycleindex3 >= 3) // Calculate 75% and 150%
 {
 CP150pct3 = cyclesum3 >> 1;
 CP75pct3 = CP150pct3 >> 1;
 cyclesum3 = 0;
 cycleindex3 = 0;
 }
 }
 }
 else // Last edge was positive
 {
 if (runningsum3 < next_peak3) // Test against peak limit
 {
 // Establish new local min
 // and compute max-min
 // peak timing
 localmin3 = runningsum3;
 cyclecount3 += maxtime3 - mintime3;
 next_peak3 = localmin3 + THRESHOLD3;

 cyclesum3 += cyclecount3; // Update cycle sum
 cycleindex3++;

 // Check for a value that looks periodic

AN148

Rev. 1.3 69

 if ((cyclecount3 > CP75pct3)&&(cyclecount3 < CP150pct3))
 {
 if (++zerocount3 == Z_LIMIT) // Count up and check
 { // for Z_LIMIT
 ZERO_WAIT3 = 0;
 TK3_RED_LED = 1;
 TK3_GRN_LED = 1;
 }
 }
 else // Outside of range
 {
 zerocount3 = 0; // Reset zero count
 }

 cyclecount3 = 0; // Reset cycle counter
 LASTEDGE3 = 0; // Negative edge

 }
 else if (runningsum3 > localmax3) // Check against local max
 { // Update local max
 localmax3 = runningsum3; // and next peak
 next_peak3 = localmax3 - THRESHOLD3;
 maxtime3 = maincycle; // Time stamp local max
 }
 else // Perform some housekeeping
 {
 if (cycleindex3 >= 3) // Calculate 75% and 150%
 {
 CP150pct3 = cyclesum3 >> 1;
 CP75pct3 = CP150pct3 >> 1;
 cyclesum3 = 0;
 cycleindex3 = 0;
 }
 }
 }
 } // End of Waiting for Zeroes code (before Z_LIMIT reached)
 } // End While (!READ_TIMEOUT)

 // Finish off last bytes with zeros..
 while (bytecount1 < 8)
 {
 Temp_Byte1 = Temp_Byte1 << 1;
 Temp1_b0 = 0; // record a zero
 bytecount1++;
 }
 T1RAW[COLLECTED1] = Temp_Byte1;

 while (bytecount2 < 8)
 {
 Temp_Byte2 = Temp_Byte2 << 1;
 Temp2_b0 = 0; // record a zero
 bytecount2++;
 }
 T2RAW[COLLECTED2] = Temp_Byte2;

 while (bytecount3 < 8)
 {
 Temp_Byte3 = Temp_Byte3 << 1;
 Temp3_b0 = 0; // record a zero

AN148

70 Rev. 1.3

 bytecount3++;
 }
 T3RAW[COLLECTED3] = Temp_Byte3;

 return (1);
}

//---
// TrackErrorCheck
//---
//
// This routine checks the decoded track data for Start Sentinel, End Sentinel,
// Parity, and LRC errors.
//

char TrackErrorCheck (unsigned char maxindex, unsigned char StartSen,
 unsigned char EndSen, unsigned char CharBits)
{
unsigned char idata ASCII_Index, ASCII_Mask;
unsigned char idata ASCII_Data, PC_count, Read_LRC = 0, Calc_LRC = 0;
char idata errorcode = 0;
bit ES_Found = 0, ParityCheck = 0;

 ASCII_Mask = 0x7F >> (8 - CharBits); // Mask used to separate data info

 if (ASCII_array[0] != StartSen) // Check for SS at start of array
 {
 errorcode |= 0x81; // ERROR - SS is not 1st character
 }

 // Loop through ASCII_array and check each byte for errors
 for (ASCII_Index = 0; ASCII_Index <= maxindex; ASCII_Index++)
 {
 ASCII_Data = ASCII_array[ASCII_Index];
 if (!ES_Found) // If ES not found yet
 {
 // LRC Check - XOR’s data from all bytes (except the LRC)
 Calc_LRC ^= (ASCII_Data & ASCII_Mask);

 if (ASCII_Data == EndSen) // If this is the End Sentinel,
 { // treat the next character as
 // the LRC, and signal that
 // the ES has been found
 Read_LRC = (ASCII_array[ASCII_Index+1] & ASCII_Mask);
 maxindex = ASCII_Index+1;
 ES_Found = 1;
 }
 }

 // Parity Check - checks #1’s against Parity bit for ODD parity.
 ParityCheck = 0; // Reset parity check variable
 for (PC_count = 0; PC_count < CharBits; PC_count++)
 {
 ParityCheck ^= (ASCII_Data & 0x01);
 ASCII_Data = ASCII_Data >> 1;
 }
 if (ParityCheck == (ASCII_Data & 0x01))
 {

AN148

Rev. 1.3 71

 ASCII_array[ASCII_Index] |= 0x80; // Mark this byte for ID later
 errorcode |= 0x88; // ERROR - Parity error
 }
 }

 // Check that End Sentinel was found in captured data
 if (!ES_Found)
 {
 errorcode |=0x82; // ERROR - End Sentinel never found
 }
 // If ES was found...
 else if (Calc_LRC != (Read_LRC & ASCII_Mask))
 {
 errorcode |= 0x84; // LRC error

 // Parity Check for LRC - checks #1’s against Parity bit for ODD parity.
 ParityCheck = 0; // Reset parity check variable
 for (PC_count = 0; PC_count < CharBits; PC_count++)
 {
 ParityCheck ^= (Read_LRC & 0x01);
 Read_LRC = Read_LRC >> 1;
 }
 if (ParityCheck == (Read_LRC & 0x01))
 {
 ASCII_array[maxindex] |= 0x80; // Mark LRC byte for ID later
 errorcode |= 0x88; // ERROR - Parity error
 }
 }

 // If no errors were detected, return the number of bytes found.
 // Otherwise, return the error code.
 if (errorcode == 0)
 {
 return ASCII_Index;
 }
 else
 {
 return errorcode;
 }

}

//---
// DecodeTrackForward
//---
//
// This routine is used to decode a track into characters, assuming it was
// recorded in the forward direction into the array.
//

char DecodeTrackForward (unsigned char maxindex, unsigned char Byte_Offset,
 unsigned char Bit_Offset, unsigned char *TrackRAW, unsigned char CharBits)
{
unsigned char idata Track_Index = 0;
char idata ASCII_Index = 0, ASCII_Mask;
unsigned char idata Track_Data, ASCII_Data;
unsigned char idata Track_bit, ASCII_bit;

 // Reset temporary variables

AN148

72 Rev. 1.3

 ASCII_bit = 0x01;
 ASCII_Data = 0x00;

 // Generate a bit comparison value for sorting through ASCII bytes
 ASCII_Mask = 0x01 << (CharBits-1);

 // Begin at the specified offset, and proceed until the end of the track
 for (Track_Index = Byte_Offset; Track_Index <= maxindex; Track_Index++)
 {
 // Grab a byte of raw data
 Track_Data = TrackRAW[Track_Index];

 // Unpack raw data byte into character(s)
 for (Track_bit = Bit_Offset; Track_bit != 0x00; Track_bit = Track_bit>>1)
 {
 if (Track_bit & Track_Data)
 {
 ASCII_Data |= ASCII_bit;
 }
 else
 {
 ASCII_Data &= ~ASCII_bit;
 }
 if (ASCII_bit != ASCII_Mask)
 {
 ASCII_bit = ASCII_bit << 1;
 }
 else
 {
 ASCII_bit = 0x01;
 ASCII_array[ASCII_Index] = ASCII_Data;

 if ((ASCII_Data == 0x00)||(ASCII_Index == 126))
 {
 Track_Index = maxindex; // end translation
 }

 ASCII_Index++;
 }
 }
 }

 // Return the number of characters unpacked
 return (ASCII_Index);

}

//---
// DecodeTrackBackward
//---
//
// This routine is used to decode a track into characters, assuming it was
// recorded in the backward direction into the array.
//
char DecodeTrackBackward (unsigned char Byte_Offset, unsigned char Bit_Offset,
 unsigned char *TrackRAW, unsigned char CharBits)
{
unsigned char idata Track_Index;
char idata ASCII_Index = 0, ASCII_Mask;

AN148

Rev. 1.3 73

unsigned char idata Track_Data, ASCII_Data;
unsigned char idata ASCII_bit;

 // Reset temporary variables
 ASCII_bit = 0x01;
 ASCII_Data = 0x00;

 // Generate a bit comparison value for sorting through ASCII bytes
 ASCII_Mask = 0x01 << (CharBits-1);

 // Begin at the specified offset, and proceed until the beginning
 for (Track_Index = Byte_Offset; Track_Index != 0x00; Track_Index--)
 {
 // Grab a byte of raw data
 Track_Data = TrackRAW[Track_Index];

 // Unpack raw data byte into character(s)
 while (Bit_Offset != 0x00)
 {
 if (Bit_Offset & Track_Data)
 {
 ASCII_Data |= ASCII_bit;
 }
 else
 {
 ASCII_Data &= ~ASCII_bit;
 }
 if (ASCII_bit != ASCII_Mask)
 {
 ASCII_bit = ASCII_bit << 1;
 }
 else
 {
 ASCII_bit = 0x01;
 ASCII_array[ASCII_Index] = ASCII_Data;
 ASCII_Data = 0;
 ASCII_Index++;
 }
 Bit_Offset = Bit_Offset << 1;
 }
 Bit_Offset = 0x01;
 }

 // Finish off last byte with trailing zeros
 ASCII_Mask = ASCII_Mask << 1;
 while (ASCII_bit != ASCII_Mask)
 {
 ASCII_Data &= ~ASCII_bit;
 ASCII_bit = ASCII_bit << 1;
 }
 ASCII_array[ASCII_Index] = ASCII_Data;

 // Return the number of characters unpacked
 return (ASCII_Index);

}

AN148

74 Rev. 1.3

//---
// GetDirection
//---
//
// This routine determines which direction data was collected from the magnetic
// stripe and calls the appropriate decoding routine.
//

char GetDirection (unsigned char maxindex, unsigned char StartSen,
 unsigned char EndSen, unsigned char *TrackRAW, unsigned char CharBits)
{

unsigned char idata FW_Byte_Off, FW_Bit_Off, RV_Byte_Off, RV_Bit_Off;
unsigned char idata Read_Char, Bit_Count, Temp_Char, Temp_Bit, Temp_Mask;
char idata MAX_Decoded;
bit FW_StartSen, RV_StartSen, Direction_Found = 0, Abort_Direction = 0;

 // Initialize Index Pointers
 FW_Byte_Off = 1;
 FW_Bit_Off = 0x80;
 RV_Byte_Off = maxindex;
 RV_Bit_Off = 0x01;

 while ((Direction_Found == 0)&&(Abort_Direction == 0))
 {
 // Read a byte at FW pointer
 Read_Char = TrackRAW[FW_Byte_Off];

 // Find the next ‘1’ Forward
 while ((FW_Byte_Off != RV_Byte_Off)&&((Read_Char & FW_Bit_Off) == 0))
 {
 FW_Bit_Off = FW_Bit_Off >> 1;
 if (FW_Bit_Off == 00)
 {
 FW_Bit_Off = 0x80;
 FW_Byte_Off++;
 Read_Char = TrackRAW[FW_Byte_Off];
 }
 }

 if (FW_Byte_Off == RV_Byte_Off)
 {
 Abort_Direction = 1;
 }

 Temp_Bit = 0x02;
 Temp_Char = 0x01;
 Temp_Mask = FW_Bit_Off;

 for (Bit_Count = 1; Bit_Count < CharBits; Bit_Count++)
 {
 Temp_Mask = Temp_Mask >> 1;
 if (Temp_Mask == 0x00)
 {
 Temp_Mask = 0x80;
 Read_Char = TrackRAW[FW_Byte_Off+1];
 }
 if (Read_Char & Temp_Mask)

AN148

Rev. 1.3 75

 {
 Temp_Char |= Temp_Bit;
 }
 else
 {
 Temp_Char &= ~Temp_Bit;
 }
 Temp_Bit = Temp_Bit << 1;
 }

 // Check character against Start Sentinel
 if (Temp_Char == StartSen)
 {
 FW_StartSen = 1;
 }
 else
 {
 FW_StartSen = 0;
 }

 // Read a byte at RV pointer
 Read_Char = TrackRAW[RV_Byte_Off];

 // Find the next ‘1’ Reverse
 while ((FW_Byte_Off != RV_Byte_Off)&&((Read_Char & RV_Bit_Off) == 0))
 {
 RV_Bit_Off = RV_Bit_Off << 1;
 if (RV_Bit_Off == 00)
 {
 RV_Bit_Off = 0x01;
 RV_Byte_Off--;
 Read_Char = TrackRAW[RV_Byte_Off];
 }
 }

 if (FW_Byte_Off == RV_Byte_Off)
 {
 Abort_Direction = 1;
 }

 Temp_Bit = 0x02;
 Temp_Char = 0x01;
 Temp_Mask = RV_Bit_Off;

 for (Bit_Count = 1; Bit_Count < CharBits; Bit_Count++)
 {
 Temp_Mask = Temp_Mask << 1;
 if (Temp_Mask == 0x00)
 {
 Temp_Mask = 0x01;
 Read_Char = TrackRAW[RV_Byte_Off-1];
 }
 if (Read_Char & Temp_Mask)
 {
 Temp_Char |= Temp_Bit;
 }
 else
 {
 Temp_Char &= ~Temp_Bit;

AN148

76 Rev. 1.3

 }
 Temp_Bit = Temp_Bit << 1;
 }

 // Check character against Start Sentinel
 if (Temp_Char == StartSen)
 {
 RV_StartSen = 1;
 }
 else
 {
 RV_StartSen = 0;
 }

 if (FW_StartSen ^ RV_StartSen)
 {
 Direction_Found = 1;
 }
 else if (FW_StartSen && RV_StartSen)
 {
 //*** Check for ES Backwards in front
 Temp_Bit = 0x80;
 Temp_Char = 0x00;
 Temp_Mask = FW_Bit_Off;

 MAX_Decoded = FW_Byte_Off; // MAX_Decoded used as temporary storage
 if ((Temp_Mask >> CharBits) != 0x00)
 {
 Temp_Mask = Temp_Mask >> CharBits;
 }
 else
 {
 FW_Byte_Off++;
 Temp_Mask = Temp_Mask << (8 - CharBits);
 }

 Read_Char = TrackRAW[FW_Byte_Off];
 for (Bit_Count = 0; Bit_Count < CharBits; Bit_Count++)
 {
 if (Read_Char & Temp_Mask)
 {
 Temp_Char |= Temp_Bit;
 }
 else
 {
 Temp_Char &= ~Temp_Bit;
 }
 Temp_Bit = Temp_Bit >> 1;

 Temp_Mask = Temp_Mask >> 1;
 if (Temp_Mask == 0x00)
 {
 Temp_Mask = 0x80;
 Read_Char = TrackRAW[FW_Byte_Off+1];
 }
 }
 FW_Byte_Off = MAX_Decoded; // Restore FW_Byte_Off

 Temp_Char = Temp_Char >> (8 - CharBits);

AN148

Rev. 1.3 77

 // Check character against End Sentinel
 // If found here, track is reverse.
 if (Temp_Char == EndSen)
 {
 FW_StartSen = 0;
 }
 //otherwise, it is forward
 else
 {
 RV_StartSen = 0;
 }

 Direction_Found = 1;
 }
 else if (!Abort_Direction)
 {
 FW_Bit_Off = FW_Bit_Off >> 1;
 if (FW_Bit_Off == 00)
 {
 FW_Bit_Off = 0x80;
 FW_Byte_Off++;
 }
 RV_Bit_Off = RV_Bit_Off << 1;
 if (RV_Bit_Off == 00)
 {
 RV_Bit_Off = 0x01;
 RV_Byte_Off--;
 }

 if (FW_Byte_Off >= RV_Byte_Off)
 {
 Abort_Direction = 1;
 }
 }

 } // End while((Direction_Found == 0)&&(Abort_Direction == 0))

 if ((Direction_Found)&&(!Abort_Direction))
 {
 if (FW_StartSen)
 {
 MAX_Decoded = DecodeTrackForward(maxindex, FW_Byte_Off, FW_Bit_Off,
 TrackRAW, CharBits);
 }
 else if (RV_StartSen)
 {
 MAX_Decoded = DecodeTrackBackward(RV_Byte_Off, RV_Bit_Off,
 TrackRAW, CharBits);
 }
 }
 else
 {
 MAX_Decoded = 0x81; // Could not find Start Sentinel
 }

 return (MAX_Decoded);

}

AN148

78 Rev. 1.3

//---
// UART_CharOut
//---
//
// This routine sends a single character to the UART. It is used in lieu of
// printf() to reduce overall code size.
//

void UART_CharOut (unsigned char c)
{
 if (c == ‘\n’)
 {
 while (!TI0);
 TI0 = 0;
 SBUF0 = 0x0d; /* output CR */
 }
 while (!TI0);
 TI0 = 0;
 SBUF0 = c;
}

//---
// UART_StringOut
//---
//
// This routine calls the UART_CharOut repeatedly to send a string value to the
// UART. It is used in lieu of printf() to reduce overall code size.
//

void UART_StringOut (unsigned char *c)
{
 while (*c != 0x00)
 {
 UART_CharOut(*c);
 c++;
 }
}

#if DEBUG
//---
// UART_HexOut
//---
//
// This routine sends the hexadecimal value of a character to the UART as ASCII
// text. Only used when DEBUG = 1.
//
void UART_HexOut (unsigned char c)
{
 while (!TI0);
 TI0 = 0;
 if ((c & 0xF0) < 0xA0)
 SBUF0 = ((c >> 4) & 0x0F) + 0x30;
 else
 SBUF0 = ((c >> 4) & 0x0F) + 0x37;

 while (!TI0);
 TI0 = 0;
 if ((c & 0x0F) < 0x0A)

AN148

Rev. 1.3 79

 SBUF0 = (c & 0x0F) + 0x30;
 else
 SBUF0 = (c & 0x0F) + 0x37;

}
#endif // END #if DEBUG

AN148

80 Rev. 1.3

NOTES:

AN148

Rev. 1.3 81

DOCUMENT CHANGE LIST:
Revision 1.2 to Revision 1.3

Corrected code in Appendix E-Firmware Listing for
2-Channel Example.
Corrected code in Appendix F-Firmware Listing for
3-Channel Example.

AN148

82 Rev. 1.3

CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: productinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

	1. Introduction
	2. MSR Background
	2.1. Encoding
	2.2. Data Format

	3. Hardware
	3.1. Power Supply
	3.2. Analog Inputs
	3.3. Voltage Reference

	4. Software
	4.1. ADC Sampling
	4.2. Signal Detection
	4.3. Synchronization
	4.5. Decoding the Raw Data
	4.6. Error Checking
	4.7. Output
	4.8. Differences Between 2-Track and 3- Track Firmware

	5. Operational Notes
	6. Additional Information
	Table 1. Device Resource Usage for 2-Channel Example Code
	Table 2. Device Resource Usage for 3-Channel Example Code
	Table 3. Estimated Component PCB Area

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

