
CYGNAL应 用 笔 记

导言

此应用笔记收集了用软件实现的主模式SPI
程序。提供了 8个不同的 SPI主模式传输例
子。示例中包含SPI时钟相位和极性两个子例
程：一个是用 C语言编写的例程，一个是为
了提高速度用汇编语言编写的可被 C语言调
用的例程。一个例子是在“C”程序中如何
调用汇编同时提供了EEPROM接口例子。SPI
是摩托罗拉商标。

此文档中描述的SPI功能使SPI处理的软件
最小化。在系统中使用 C8051F30X器件作为
总线上的 SPI主器件。

硬件接口

这些例子是使用通用 IO引脚作为 SPI接
口 。

M O S I （主出 / 从入）：此引脚用于
C8051F30X器件串行数据输出，此引脚设置
为数据推挽输出。

MISO（主入 / 从出）：此引脚用于串行
数据从从器件输入，此引脚设置为开漏数据

引脚。

S C K （串行时钟）：此引脚作为
C8051F30X器件的串行时钟输出，设置为数
据推挽输出。

此外，如果从器件需要从选择信号，需

要第四个通用 IO引脚，且必须声明为数据推
挽输出。所有这些专用的通用 IO口应被数据
交叉开关跳过。图 1是 SPI主（C8051F30X）
和 SPI从器件的连接图。

AN028-C8051F30X 系列软件 SPI 例子

相关器件

此应用笔记适用于下列器件：

C8051F300, C8051F301, C8051F302和 C8051F303。

CYGNAL Integrated Products, Inc.

4301 Westbank Drive
Suite B-100
Austin, TX 78746
www.cygnal.com

沈阳新华龙电子有限公司

沈阳市和平区青年大街284号58号信箱

Tel：024-23930366　23895360 Fax:23940230

Email: longhua@mail.sy.ln.cn

www.xhl.com.cn　

Copyright ©2001Cygnal Integrated Products, Inc.
 版权所有

C8051F30X SPI Slave

MOSI

MOSO

SCK

P0.3

MOSI

MOSO

SCK

NSS

图 1.硬件配置

AN028-C8051F30X系列软件 SPI 例子

函数描述函数描述函数描述函数描述函数描述

在此应用笔记中包含 8个SPI主模式例程。
四个不同 SPI 模式（模式 1，模式 2，模式
3 和模式 4）都给出了“C”和汇编例子。
表 1立列出了实现每一种模式的源文件。所
有的程序使用相同的原型函数可被“C”调
用。正因为如此，当生成项目时只有一个执

行例程被调用。如果在同一系统中需要多个

S P I 模式，则函数可从命名。

当输入一个参数时函数接收单一字符并返

回一单一字符。在 M O S I 引脚传输的参数
MSB优先。函数从MISO返回一个接收的数
据字节。SCK相位和极性由 SPI模式文件决
定，当生成项目时次文件被包含。

执行 文件名
模式 0，C语言 SPI_MODE0.c
模式 0，汇编语言 SPI_MODE0.asm
模式 1，C语言 SPI_MODE1.c
模式 1，汇编语言 SPI_MODE1.asm
模式 2，C语言 SPI_MODE2.c
模式 2，汇编语言 SPI_MODE2.asm
模式 3，C语言 SPI_MODE3.c
模式 3，汇编语言 SPI_MODE3.asm

SPI 时序时序时序时序时序

当实现软件 SPI主模式时，确保从器件
的 时 序 要 求 是 非 常 重 要 的 。 因 为

C8051F30X器件能够在高速时操作，为了
适应SPI从器件的时序这里介绍的程序需要
修改。四种SPI模式都有各自特殊的串行时
钟相位和极性，如图 2所示。此外，C和
汇编程序有不同的时序要求。图 3为模式 0
和模式 3的时序。图 4为模式 1和模式 2的
时序。表2给出了对应每个时序参数的系统
时钟数。

一个以快速时钟运行的系统，为了适应

SPI从器件的时序要求需要放慢速度或修
改 。

 2 AN028 - 1.0 DEC01 . 2001 Cygnal Integrated Products, Inc.

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 3

图 2.串行时钟相位/极性

MSB

MISO/
MOSI

NSS

SCK
MODE 3

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
LSB

SCK
MODE 2

SCK
MODE 1

SCK
MODE 0

图 3.模式 0和模式 3的时序

MISO

SCK

MOSI

t1 t2 t3 t4 t5

图 4.模式 1和模式 2的时序

MISO

SCK

MOSI

t6 t7 t8 t5 t4

AN028-C8051F30X 系列软件 SPI 例子

AN028 - 1.0 DEC01 . 2001 Cygnal Integrated Products, Inc.

参数

T1

T2

T3

T4

T5

T6

T7

T8

-

描述

MOSI有效到 SCK高
（M O S I 建立）

SCK高到MISO锁存

SCK低到MOSI变化
（M O S I 保持）

SCK低时间

SCK高时间

MOSI有效到 SCK低
（M O S I 建立）

SCK低到MISO锁存

SCK高到MOSI变化
（M O S I 保持）
从函数调用返回函数

SPI模式
模式 0
模式 3
模式 0
模式 3
模式 0
模式 3
模式 0
模式 1
模式 2
模式 3
模式 0
模式 1
模式 2
模式 3
模式 1
模式 2
模式 1
模式 2
模式 1
模式 2
所有模式

C时序时钟数
6
6
2
2
7
4
13
11
8
10
8
10
13
11
6
6
2
2
4
7
182

汇编时序时钟数

2
2
2
3
5
2
7
7
5
5
5
5
7
7
2
2
3
2
2
5
113

使用函数使用函数使用函数使用函数使用函数

在“C”程序中使用一个例子中的 SPI函
数，含有函数的文件首先必须汇编或编译。

所得的目标文件能被加到项目的生成列表中并

链接到主（调用）软件。

为了满足所需功能主软件必须正确配置

C8051F30X器件的通用 IO引脚。参看第一页
的“硬件接口”。SPI_Transfer()函数的函数
原型也需要在所有调用它的文件中声明。

适用于所有例程函数的“C”原型是：

extern char SPI_Transfer(char);

“extern”限定符告诉链接器函数本身将
在一个单独的目标文件中定义。

调用函数用下面的程序行：

in_spi = SPI_Transfer(out_spi);

in_spi和out_spi是字符型变量分别用于输入
和输出 SPI字节。

表表表表表 2.SPI 时序参数时序参数时序参数时序参数时序参数

4

AN028-C8051F30X 系列软件 SPI 例子

 5 AN028 - 1.0 DEC01 . 2001 Cygnal Integrated Products, Inc.

例子使用代码例子使用代码例子使用代码例子使用代码例子使用代码

包含两个完整的“C”程序示范软件 SPI
的使用。第一个例程，“S P I _ F 3 0 0 _ Te s t .
c”，示范了 SPI程序的调用方法。第二个例
子，“SPI_EE_F30x.c”，使用模式 0或模式
3实现串行 EEPROM接口的 SPI程序。

SPI_F300_Test.c

在“SPI_F300_Test.c”文件中，一个 for
循环用于从0-255的重复计数。当输出字节时
使用 for循环变量 test_counter，SPI_return变量
是 SPI输入字节。在函数调用选择从器件前
NSS信号被拉到低，当调用函数取消选择它
后 NSS被拉到高电平。在 SPI数据传输后，
SPI输入和输出字节传输到UART，可以在PC
终端监控。

测 试 例 子 代 码 ， 文 件 名 为

“SPI_F300_Test.c”, “SPI_defs.h”，且例子
函数文件应该放置在一个单一目录。

“SPI_defs.h”中包含执行SPI时所使用的四个
引脚的 s b i t 声明。在生成时文件包含
SPI_Transfer()且“SPI_F300_Test.c”文件应
该分别被编译或汇编和包含。一旦代码编程到

C8051F30X器件的FLASH中，MISO和MOSI
引脚能被连到一起校验移入和移出数据。使

用 PC终端（配置为 115,200波特，8位数据
位，无奇偶校验，1个停止位，无溢出控制）
通过RS-232电平转换器连接到UART，PC机
终端程序能显示在MOSI上送出的数据，同
样可以看到MISO的接收。这种配置输出结

果的一部分类似：

SPI Out = 0xFC, SPI In = 0xFC
SPI Out = 0xFD, SPI In = 0xFD
SPI Out = 0xFE, SPI In = 0xFE
SPI Out = 0xFF, SPI In = 0xFF
SPI Out = 0x00, SPI In = 0x00
SPI Out = 0x01, SPI In = 0x01
SPI Out = 0x02, SPI In = 0x02
SPI Out = 0x03, SPI In = 0x03
SPI Out = 0x04, SPI In = 0x04
SPI Out = 0x05, SPI In = 0x05

连接MOSI和MISO引脚不能完全地测试执
行 SPI的功能性。但是，它可以校验程序处
理MOSI和MISO是否正确。

AN028-C8051F30X 系列软件 SPI 例子

 6 AN028 - 1.0 DEC01 101 . 2001 Cygnal Integrated Products, Inc.

SPI_EE_F30x.c

“SPI_EE_F30x.c”使用一个 SPI程序来
读、写一个 S P I E E P R O M（M i c r o c h i p
25LC320）。为了与 EEPROM的 SPI接口兼
容，必须使用模式 O或模 3的 SPI函数。例
子代码写入 FLASH有两种不同的模式，通过
读回 EEPROM的内容校验写入器件的模式，
并且与原有模式核对。当写 EEPROM时，发

光二极管（连接到 P 0 . 6 ）点亮，当读
EEPROM时，发光二极管熄灭。如果发生读
错误，程序将停止。如果未发生错误，发

光二极管闪烁表明测试成功。程序的进程可

以通过 PC机的终端（配置为 115,200波特，
8 位数据位，无奇偶校验，1 个停止位，无
溢出控制）通过 RS-232电平转换器连接到
UART来监控。图5为此例子的C8051F30x和
EEPROM的连接图。

C8051F30X EEPROM

SI

SO

SCK

CS

P0.0(MOSI)

P0.1(MOSO)

P0.2(SCK)

P0.3(NSS)

P0.4(TX)

P0.5(RX)

P0.6

T0 RS-232

TRANSCEIVER

470 ohm

LED

图 5.EEPROM连接

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 7

软件例子

//---
// SPI_defs.h
//---
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// 作者: BD
// 日期: 2001年 12月 7日
//
// 此文件定义 SPI引脚
// SPI引脚映射到 P0.0 - P0.3, 但也可以定义到器件
// 的其它任何可用的 GPIO引脚
//
#ifndef SPI_DEFS
#define SPI_DEFS
sbit MOSI = P0^0; // 主出/从入(输出)
sbit MISO = P0^1; // 主入/从出(输入)
sbit SCK = P0^2; // 串行时钟(输出)
sbit NSS = P0^3; // 从选择(输出到片选)
#endif

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 8

//---
// SPI_MODE0.c
//---
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// 作者 BD
// 日期 2001年 12月 14日
//
// 此文件包含一个模式 0执行 SPI器件的 C 程序
//
// 目标 t: C8051F30x
// 链接工具 KEIL C51 6.03 / KEIL EVAL C51
//
//
#include <c8051f300.h> // SFR声明
#include SPI_defs.h // SPI端口定义
//---
// SPI_Transfer
//---
//
// 使用 SPI协议同时发送和接受一个字节 <SPI_byte>
// SCK空闲为低 在 SCK上升时位锁存
//
// 此程序的时序如下
//
//参数 时钟数
// MOSI有效到 SCK上升沿 6
// SCK上升到 MISO锁存 2
// SCK 下降到 MOSI有效 7
// SCK 高时间 8
// SCK 低时间 13
char SPI_Transfer (char SPI_byte)
{
unsigned char SPI_count; // SPI办理计数器
for (SPI_count = 8; SPI_count > 0; SPI_count--) // 单个字节 SPI循环
{
MOSI = SPI_byte & 0x80; // 放当前输出位到 MOSI
SPI_byte = SPI_byte << 1; // 移下一位到 MSB
SCK = 0x01; // 设置 SCK为高
SPI_byte |= MISO; // 在MISO上捕捉当前位
SCK = 0x00; // 设置时钟为低
}
return (SPI_byte);

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 9

} //结束 SPI_Transfer

;---
; Copyright (C) 2001 CYGNAL INTEGRATED PRODUCTS, INC.
; All rights reserved.
;
; 文件名 SPI_MODE0.ASM
; 日期 2001年 12月 14日
; 目标MCU : C8051F30x
; 描述 这是一个用 C8051F30X器件端口执行主 SPI的子程序 函数
; 此函数可在 C程序中调用
; 函数原型如下
;
;
; extern char SPI_Transfer (char);
;
; 注意 时序如下 模式 0SPI
; 参数 系统时钟数
; MOSI有效到 SCK上升 2
; SCK 上升到 MISO 锁存 2
; SCK 下降到 MOSI有效 5
; SCK 高时间 5
; SCK 低时间 7
;
;---
NAME SPI_MODE0
?PR?_SPI_Transfer?SPI_MODE0 SEGMENT CODE
PUBLIC _SPI_Transfer
$include (c8051f300.inc) ; 寄存器定义包含文件
$include (SPI_defs.h) ; 包含 SPI位定义
RSEG ?PR?_SPI_Transfer?SPI_MODE0
_SPI_Transfer:
USING 0
MOV A, R7 ; 在 A中存储传递变量
MOV R7, #08H ; 装载 R7计数位
RLC A ; 移位MSB到进位位
SPI_Loop: MOV MOSI, C ;将位移出到MOSI
SETB SCK ; 时钟高
MOV C, MISO ; 将MISO移到进位位
RLC A ; 循环移位进位位到 A中
CLR SCK ; 时钟低
DJNZ R7, SPI_Loop ; 循环直到其它位完成
MOV R7, A ; 在 R7中存储返回值
?C0001:

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 10

RET ;从程序中返回
END ; 文件结束

//---
// SPI_MODE1.c
//---
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// 作者 BD
// 日期 2001年 12月 14日
//
// 此文件包含一个模式 1执行主 SPI器件的 C 程序
//
// 目标 t: C8051F30x
// 链接工具 KEIL C51 6.03 / KEIL EVAL C51
//
//
#include <c8051f300.h> // SFR声明
#include SPI_defs.h //SPI端口定义
//---
// SPI_Transfer
//---
//
// 使用 SPI协议同时发送和接受一个字节 <SPI_byte>
// SCK空闲为低 在 SCK下降时位锁存
//
// 此程序的时序如下
//
//参数 时钟周期数

// SCK 上升沿到MOSI有效 4
// MOSI 有效到 SCK 下降沿 6
// SCK 下降到 MISO 锁存 2
// SCK 高时间 10
// SCK 低时间 11
char SPI_Transfer (char SPI_byte)
{
unsigned char SPI_count; // counter for SPI transaction
for (SPI_count = 8; SPI_count > 0; SPI_count--) // 单一字节 SPI循环
{
SCK = 0x01; // 设置 SCK为高
MOSI = SPI_byte & 0x80; // 放当前输出位到 MOSI
SPI_byte = SPI_byte << 1; // 移下一位到 MSB
SCK = 0x00; // 设置 SCK为低

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 11

SPI_byte |= MISO; // 在MISO上捕捉当前位
}
return (SPI_byte);
} // 结束 SPI_Transfer

;---
; Copyright (C) 2001 CYGNAL INTEGRATED PRODUCTS, INC.
; All rights reserved.
;
; 文件名 SPI_MODE1.ASM
; 日期 14 DEC 01
; 目标 MCU : C8051F30x
; 描述 这是一个用 C8051F30X器件端口执行主 SPI的子程序 函数
; 此函数可在 C程序中调用
; 函数原型如下
;
; extern char SPI_Transfer (char);
;
; 注意 时序如下 模式 1 SPI)
; 参数 时钟数
; SCK 上升到 MOSI有效 2
; MOSI有效到 SCK 下降 2
; SCK 下降到 MISO 锁存 3
; SCK 高时间 5
; SCK 低时间 7
;
;---
NAME SPI_MODE1
?PR?_SPI_Transfer?SPI_MODE1 SEGMENT CODE
PUBLIC _SPI_Transfer
$include (c8051f300.inc) ;寄存器定义包含文件
$include (SPI_defs.h) ; SPI位定义
RSEG ?PR?_SPI_Transfer?SPI_MODE1
_SPI_Transfer:
USING 0
MOV A, R7 ; 在 A中存储传递变量
MOV R7, #08H ;装载 R7计数位
SPI_Loop: SETB SCK ; 时钟高
RLC A ;将MSB移位到进位位 t
MOV MOSI, C ;将位移出到 MOSI
CLR SCK ;时钟低
MOV C, MISO ; 将 MISO移到进位位
DJNZ R7, SPI_Loop ; 循环直到其他位完成
RLC A ;循环移位进位位到 A中

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 12

MOV R7, A ; 在 R7中存储返回值
?C0001:
RET ;从程序中返回
END ;文件结束

//---
// SPI_MODE2.c
//---
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// 作者 BD
// 日期 2001年 12月 14日
//
// 此文件包含一个模式 2执行主 SPI器件的 C 程序
//
// 目标 t: C8051F30x
// 链接工具 KEIL C51 6.03 / KEIL EVAL C51
//
//
#include <c8051f300.h> // SFR声明
#include SPI_defs.h // SPI端口定义
//---
// SPI_Transfer
//---
//
// 使用 SPI协议同时发送和接受一个字节 <SPI_byte>
// SCK空闲为高 在 SCK下降时位锁存
//
// 此程序的时序如下
//
//参数 时钟数
// MOSI有效到 SCK下降沿 6
// SCK 下降到MISO锁存 2
// SCK 上升到 MOSI有效 7
// SCK 低时间 8
// SCK 高时间 13
char SPI_Transfer (char SPI_byte)
{
unsigned char SPI_count; // SPI办理计数器
for (SPI_count = 8; SPI_count > 0; SPI_count--) //单个字节 SPI循环
{
MOSI = SPI_byte & 0x80; //放当前输出位到 MOSI
SPI_byte = SPI_byte << 1; // 移下一位到 MSB

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 13

SCK = 0x00; // 设置 SCK 为低
SPI_byte |= MISO; //在MISO上捕捉当前位
SCK = 0x01; // 设置 SCK 为高
}
return (SPI_byte);
} //结束 SPI_Transfer

;---
; Copyright (C) 2001 CYGNAL INTEGRATED PRODUCTS, INC.
; All rights reserved.
;
; 文件名 SPI_MODE2.ASM
; 日期 2001年 12月 14日
; 目标MCU : C8051F30x
; 描述 这是一个用 C8051F30X器件端口执行主 SPI的子程序 函数
; 此函数可在 C程序中调用
; 函数原型如下
;
; extern char SPI_Transfer (char);
;
;注意 时序如下(模式 2 SPI)
; 参数 系统时钟数
; MOSI有效到 SCK 下降 2
; SCK 下降到 MISO 锁存 2
; SCK 上升到 MOSI 有效 5
; SCK 低时间 5
; SCK 高时间 7
;
;---
NAME SPI_MODE2
?PR?_SPI_Transfer?SPI_MODE2 SEGMENT CODE
PUBLIC _SPI_Transfer
$include (c8051f300.inc) ;寄存器定义包含文件
$include (SPI_defs.h) ;包含 SPI位定义
RSEG ?PR?_SPI_Transfer?SPI_MODE2
_SPI_Transfer:
USING 0
MOV A, R7 ; 在 A中存储传递变量
MOV R7, #08H ; 装载 R7计数位
RLC A ;移位 MSB到进位位
SPI_Loop: MOV MOSI, C ;将位移出到 MOSI
CLR SCK ; 时钟低
MOV C, MISO ;将 MISO移到进位位

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 14

RLC A ;循环移位进位位到 A中
SETB SCK ; 时钟高
DJNZ R7, SPI_Loop ;循环直到其他位完成
MOV R7, A ; 在 R7中存储返回值
?C0001:
RET ;从程序中返回
END ;文件结束

//---
// SPI_MODE3.c
//---
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// 作者 BD
// 日期 2001年 12月 14日
//
// 此文件包含一个模式 3执行主 SPI器件的 C 程序
//
// 目标 t: C8051F30x
// 链接工具 KEIL C51 6.03 / KEIL EVAL C51
//
//
#include <c8051f300.h> //SFR声明
#include SPI_defs.h // SPI端口定义
//---
// SPI_Transfer
//---
//
// 使用 SPI协议同时发送和接受一个字节 <SPI_byte>
// SCK空闲为高 在 SCK上升时位锁存
//
// 此程序的时序如下
//
//参数 时钟数
// SCK 下降沿到 MOSI 有效 4
// MOSI 有效到 SCK 上升沿 6
// SCK 上升到 MISO 锁存 2
// SCK 低时间 10
// SCK 高时间 11
char SPI_Transfer (char SPI_byte)
{
unsigned char SPI_count; // SPI办理计数器
for (SPI_count = 8; SPI_count > 0; SPI_count--) //单个字节 SPI循环

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 15

{
SCK = 0x00; // 设置 SCK 为低
MOSI = SPI_byte & 0x80; // 放当前输出位到 MOSI
SPI_byte = SPI_byte << 1; // 移下一位到 MSB
SCK = 0x01; // 设置 SCK 为高
SPI_byte |= MISO; //在MISO上捕捉当前位
}
return (SPI_byte);
} //结束 SPI_Transfer

;---
; Copyright (C) 2001 CYGNAL INTEGRATED PRODUCTS, INC.
; All rights reserved.
;
; 文件名 SPI_MODE3.ASM
; 日期 2001年 12月 14日
; 目标MCU : C8051F30x
; 描述 这是一个用 C8051F30X器件端口执行主 SPI的子程序 函数
; 此函数可在 C程序中调用
; 函数原型如下
;
; extern char SPI_Transfer (char);
;
; 注意 时序如下 模式 3SPI
; 参数 系统时钟数
; SCK 下降到 MOSI 有效 2
; MOSI 有效到 SCK 上升 2
; SCK 上升到 MISO 锁存 3
; SCK 低时间 5
; SCK 高时间 7
;
;---
NAME SPI_MODE3
?PR?_SPI_Transfer?SPI_MODE3 SEGMENT CODE
PUBLIC _SPI_Transfer
$include (c8051f300.inc) ; 寄存器定义包含文件
$include (SPI_defs.h) ;包含 SPI位定义
RSEG ?PR?_SPI_Transfer?SPI_MODE3
_SPI_Transfer:
USING 0
MOV A, R7 ; 在 A中存储传递变量
MOV R7, #08H ;装载 R7计数位
SPI_Loop: CLR SCK ; 时钟低

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 16

RLC A ;移位 MSB到进位位
MOV MOSI, C ;将位移出到 MOSI
SETB SCK ; 时钟高
MOV C, MISO ; 将 MISO移到进位位
DJNZ R7, SPI_Loop ;循环直到其他位完成
RLC A ;移位进位位到 A中
MOV R7, A ; 在 R7中存储返回值
?C0001:
RET ; 从程序中返回
END ;文件结束

//---
// SPI_F300_Test.c
//---
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// 作者 BD
// 日期 2001年 12月 14日
//
// 此程序示范 C8051F30X处理主 SPI程序集是如何在一个 C程序中使用的
//
// 此程序设置 C8051F30X器件的通用 IO引脚为适当功能
// 接着用 SPI_Transfer函数通过 SPI引脚发送和接收信息
// 当发送信息时 通过 UART口与 PC机的终端程序连接来
// 监视程序进程
//
// 为了实现代码功能 下列文件之一应该被编译或汇编
// 最终生成的目标文件必须与从这些文件产生的目标文件连接
//
// SPI_MODE0.c 模式 0主 SPI器件的 C 语言实现
// SPI_MODE0.asm 模式 0主 SPI器件的汇编语言实现
// SPI_MODE1.c Mode 1 模式 1主 SPI器件的 C 语言实现
// SPI_MODE1.asm Mode 1 模式 1主 SPI器件的汇编语言实现
// SPI_MODE2.c Mode 2 模式 2主 SPI器件的 C 语言实现
// SPI_MODE2.asm Mode 2 模式 2主 SPI器件的汇编语言实现
// SPI_MODE3.c Mode 3 模式 3主 SPI器件的 C 语言实现
// SPI_MODE3.asm Mode 3 模式 3主 SPI器件的汇编语言实现
//
// 目标器件: C8051F30x
// 连接工具: KEIL C51 6.03 / KEIL EVAL C51
//
//---
// 包含文件

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 17

//---
#include <c8051f300.h> // SFR 声明
#include <stdio.h> // 标准 I/O
#include SPI_defs.h // SPI 端口定义
//---
// C8051F30X的 16位 SFR定义
//---
sfr16 DP = 0x82; // 数据指针
sfr16 TMR2RL = 0xca; // 定时器 T2重装值
sfr16 TMR2 = 0xcc; // 定时器 T2计数器
sfr16 PCA0CP1 = 0xe9; // PCA0模式 1捕捉/比较
sfr16 PCA0CP2 = 0xeb; // PCA0模式 2捕捉/比较
sfr16 PCA0 = 0xf9; // PCA0计数器
sfr16 PCA0CP0 = 0xfb; // PCA0模式 0捕捉/比较
//---
// 全局变量
//---
#define SYSCLK 24500000 // 系统时钟频率 Hz
#define BAUDRATE 115200 // UART波特率 bps
//---
// 函数原型
//---
void PORT_Init (void); // 端口 I/O配置
void SYSCLK_Init (void); // 系统时钟初始化
void UART0_Init (void); // UART0初始化
extern char SPI_Transfer (char); // SPI传输程序
//---
// 全局变量
//---
//---
// 主程序
//---
void main (void) {
unsigned char test_counter, SPI_return; // 用于测试 SPI程序
// 禁止WDT
PCA0MD &= ~0x40; // WDTE = 0 (清除WDT使能)
SYSCLK_Init (); // 初始化振荡器
PORT_Init (); // 初始化端口和 GPIO
UART0_Init (); // 初始化 UART0
EA = 1; // 使能全部中断
while (1)
{
for (test_counter = 0; test_counter <= 0xFF; test_counter++)
{

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 18

NSS = 0x00; // 选择 SPI从器件
SPI_return = SPI_Transfer(test_counter); // 发送/接收 SPI字节
NSS = 0x01; // 取消选择 SPI从器件
printf(\nSPI Out = 0x%02X, SPI In = 0x%02X , (unsigned)test_counter,
(unsigned)SPI_return);
// 发送 SPI数据到 UART
// 为校验目的
}
}
}
//---
// 初始化子程序
//---
//---
// PORT_Init
//---
//
// 配置数据交叉开关和 GPIO端口
// P0.0 - MOSI (推挽)
// P0.1 - MISO
// P0.2 - SCK (推挽)
// P0.3 - NSS (推挽)
// P0.4 - UART TX (推挽)
// P0.5 - UART RX
// P0.6 -
// P0.7 -
//
void PORT_Init (void)
{
XBR0 = 0x0F; // 在 XBAR中跳过 SPI引脚
XBR1 = 0x03; // UART0 TX和 RX引脚使能
XBR2 = 0x40; // 使能数据交叉开关和弱上拉
P0MDOUT |= 0x1D; // 允许 TX0, MOSI, SCK和 NSS为推挽输出
}
//---
// SYSCLK_Init
//---
//
// 此程序初始化系统时钟 用内部 24.5 MHz时钟
// 作为时钟源
//
void SYSCLK_Init (void)
{
OSCICN = 0x07; // 选择内部振荡器作为系统时钟源

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 19

}
//---
// UART0_Init
//---
//
// 使用定时器 T0作为波特率发生器和 8-N-1模式
//
void UART0_Init (void)
{
SCON0 = 0x10; // SCON0: 8位可变速率位
// 忽略停止位
// RX使能
// 第九位为 0
// 清 RI0和 TI0位
if (SYSCLK/BAUDRATE/2/256 < 1)
{
TH1 = -(SYSCLK/BAUDRATE/2);
CKCON &= ~0x13;

CKCON |= 0x10; // T1M = 1; SCA1:0 = xx
}
else if (SYSCLK/BAUDRATE/2/256 < 4)
{
TH1 = -(SYSCLK/BAUDRATE/2/4);
CKCON &= ~0x13;
CKCON |= 0x01; // T1M = 0; SCA1:0 = 01
}
else if (SYSCLK/BAUDRATE/2/256 < 12)
{
TH1 = -(SYSCLK/BAUDRATE/2/12);
CKCON &= ~0x13; // T1M = 0; SCA1:0 = 00
}
else
{
TH1 = -(SYSCLK/BAUDRATE/2/48);
CKCON &= ~0x13;
CKCON |= 0x02; // T1M = 0; SCA1:0 = 10
}
TL1 = 0xff; // 立即设置定时器 T1溢出
TMOD |= 0x20; // TMOD: 定时器 t1 8位自动重装
TMOD &= ~0xD0; // 模式
TR1 = 1; // 启动定时器 T1
TI0 = 1; // 表示 TX0就绪

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 20

}
//---
// SPI_EE_F30x.c
//---
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// 作者: BD
// 日期:2001年 12月 14日
//
// 此程序示范 C8051F30X处理主 SPI程序集是如何在一个 C程序中使用的
//
// 在此例子中, Microchip的 25LC320 4k X 8串行 EEPROM连接到
// 由 C8051F30X实现的 SPI主器件
// 用两种测试模式写 EEPROM
// 1) 所有单元为 0xFF
// 2) 每个单元用相应地址的 LSB写
// EEPROM的内容用测试模式校验 如果测试
// 模式校验无错 则在操作完成后 LED闪烁
// 否则, LED保持为关闭态 可以通过 PC终端
// 与 UART连接 传输波特率为 115.2kbps 来监测进程
//
// 为了实现代码功能 下列文件之一应该被编译或汇编
// 最终生成的目标文件必须与从这些文件产生的目标文件连接

//
// SPI_MODE0.c 模式 0主 SPI器件的 C 语言实现
// SPI_MODE0.asm 模式 0主 SPI器件的汇编语言实现
// SPI_MODE3.c 模式 3主 SPI器件的 C 语言实现
// SPI_MODE3.asm 模式 3主 SPI器件的汇编语言实现

//
// EEPROM的串行口只能用模式 0和模式 3 SPI配置操作
//
// 目标器件: C8051F30x
// 连接工具: KEIL C51 6.03 / KEIL EVAL C51
//
//---
// 包含文件
//---
#include <c8051f300.h> // SFR 声明
#include <stdio.h> // 标准 I/O
#include SPI_defs.h // SPI 端口定义
//---
// C8051F30X的 16位 SFR定义

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 21

//---
sfr16 DP = 0x82; // 数据指针
sfr16 TMR2RL = 0xca; // 定时器 T2重装值
sfr16 TMR2 = 0xcc; // 定时器 T2计数器
sfr16 PCA0CP1 = 0xe9; // PCA0模式 1捕捉/比较
sfr16 PCA0CP2 = 0xeb; // PCA0模式 2捕捉/比较
sfr16 PCA0 = 0xf9; // PCA0计数器
sfr16 PCA0CP0 = 0xfb; // PCA0模式 0捕捉/比较
//---
// 全局变量
//---
#define SYSCLK 24500000 // 系统时钟频率 Hz
#define BAUDRATE 115200 // UART波特率 bps
#define EE_SIZE 4096 // EEPROM容量 字节
#define EE_READ 0x03 // EEPROM读命令
#define EE_WRITE 0x02 // EEPROM写命令
#define EE_WRDI 0x04 // EEPROM 写禁止命令
#define EE_WREN 0x06 // EEPROM 写允许命令
#define EE_RDSR 0x05 // EEPROM 读状态寄存器
#define EE_WRSR 0x01 // EEPROM 写状态寄存器
sbit LED = P0^6; // LED 指示器
//---
// 函数原型
//---
void PORT_Init (void); // 端口 I/O配置
void SYSCLK_Init (void); // 系统时钟初始化
void UART0_Init (void); // UART0初始化
extern char SPI_Transfer (char); // SPI传输程序
void Timer0_ms (unsigned ms);
void Timer0_us (unsigned us);

unsigned char EE_Read (unsigned Addr);
void EE_Write (unsigned Addr, unsigned char value);
//---
// 全局变量
//---
//---
// 主程序
//---
void main (void) {
unsigned EE_Addr; // EEPROM字节地址
unsigned char test_byte;
禁止WDT
PCA0MD &= ~0x40; // WDTE = 0 (清除WDT使能)

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 22

SYSCLK_Init (); // 初始化振荡器
PORT_Init (); // 初始化端口和 GPIO
UART0_Init (); // 初始化 UART0
EA = 1; // 使能全部中断
SCK = 0;
// 用 0xFF填充 EEPROM
LED = 1;
for (EE_Addr = 0; EE_Addr < EE_SIZE; EE_Addr++)
{
test_byte = 0xff;
EE_Write (EE_Addr, test_byte);
// print status to UART0
if ((EE_Addr % 16) == 0)
{
printf (\nwriting 0x%04x: %02x , EE_Addr, (unsigned) test_byte);
}
else
{
printf (%02x , (unsigned) test_byte);
}
}
// 用 0xFF校验 EEPROM
LED = 0;
for (EE_Addr = 0; EE_Addr < EE_SIZE; EE_Addr++)
{
test_byte = EE_Read (EE_Addr);
// 打印状态到 UART0
if ((EE_Addr % 16) == 0)
{

printf (\nverifying 0x%04x: %02x , EE_Addr, (unsigned) test_byte);
}
else
{
printf (%02x , (unsigned) test_byte);
}
if (test_byte != 0xFF)
{
printf (Error at %u\n , EE_Addr);
while (1); // stop here on error
}
}
// 用 EEPROM地址的 LSB填充 EEPROM存储器
LED = 1;

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 23

for (EE_Addr = 0; EE_Addr < EE_SIZE; EE_Addr++)
{
test_byte = EE_Addr & 0xff;
EE_Write (EE_Addr, test_byte);
// 打印状态到 UART0
if ((EE_Addr % 16) == 0)
{
printf (\nwriting 0x%04x: %02x , EE_Addr, (unsigned) test_byte);
}
else
{
printf (%02x , (unsigned) test_byte);
}
}
// 用 EEPROM地址的 LSB校验 EEPROM存储器
LED = 0;
for (EE_Addr = 0; EE_Addr < EE_SIZE; EE_Addr++)
{
test_byte = EE_Read (EE_Addr);
// 打印状态到 UART0
if ((EE_Addr % 16) == 0)
{
printf (\nverifying 0x%04x: %02x , EE_Addr, (unsigned) test_byte);
}
else
{
printf (%02x , (unsigned) test_byte);
}
if (test_byte != (EE_Addr & 0xFF))
{
printf (Error at %u\n , EE_Addr);
while (1); // stop here on error
}
}
while (1)
{ // 完成后 LED闪烁
Timer0_ms (100);
LED = ~LED;
 }
}
//---
子程序
//---
//---

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 24

// 初始化子程序
//---
//---
// PORT_Init
//---
//
// 配置数据交叉开关和 GPIO端口
// P0.0 - MOSI (推挽)
// P0.1 - MISO
// P0.2 - SCK (推挽)
// P0.3 - NSS (推挽)
// P0.4 - UART TX (推挽)
// P0.5 - UART RX
// P0.6 - LED
// P0.7 -
//
void PORT_Init (void)
{
XBR0 = 0x0F; // 在 XBAR中跳过 SPI引脚
XBR1 = 0x03; // UART0 TX和 RX引脚使能
XBR2 = 0x40; // 使能数据交叉开关和弱上拉
P0MDOUT |= 0x5D; // 允许 TX0, MOSI, SCK和 NSS为推挽输出
}
//---
// SYSCLK_Init
//---
//
// 此程序初始化系统时钟 用内部 24.5 MHz时钟
// 作为时钟源
//
void SYSCLK_Init (void)
{
OSCICN = 0x07; // 选择内部振荡器作为系统时钟源
}
//---
// UART0_Init
//---
//
// 使用定时器 T0作为波特率发生器和 8-N-1模式
//
void UART0_Init (void)
{
SCON0 = 0x10; // SCON0: 8位可变速率位

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 25

// 忽略停止位
// RX使能
// 第九位为 0
// 清 RI0和 TI0位
if (SYSCLK/BAUDRATE/2/256 < 1)
{
TH1 = -(SYSCLK/BAUDRATE/2);
CKCON &= ~0x13;
CKCON |= 0x10; // T1M = 1; SCA1:0 = xx
}
else if (SYSCLK/BAUDRATE/2/256 < 4)
{
TH1 = -(SYSCLK/BAUDRATE/2/4);
CKCON &= ~0x13;
CKCON |= 0x01; // T1M = 0; SCA1:0 = 01
}
else if (SYSCLK/BAUDRATE/2/256 < 12)
{
TH1 = -(SYSCLK/BAUDRATE/2/12);
CKCON &= ~0x13; // T1M = 0; SCA1:0 = 00
}
else
{
TH1 = -(SYSCLK/BAUDRATE/2/48);
CKCON &= ~0x13;
CKCON |= 0x02; // T1M = 0; SCA1:0 = 10
}
TL1 = 0xff; // 立即设置定时器 T1溢出
TMOD |= 0x20; // TMOD: 定时器 t1 8位自动重装
TMOD &= ~0xD0; // 模式
TR1 = 1; // 启动定时器 T1
TI0 = 1; // 表示 TX0就绪
}
//---
// Timer0_ms
//---
//
// 配置定时器 T0在返回前延时<ms>毫秒
//
void Timer0_ms (unsigned ms)
{
unsigned i; // 毫秒计数器
TCON &= ~0x30; // 停止定时器 T0并清除溢出标志
TMOD &= ~0x0f; // 配置定时器 T0为 16位模式

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 26

TMOD |= 0x01;
CKCON |= 0x08; // 定时器 T0计数系统时钟
for (i = 0; i < ms; i++) // 计数毫秒
{
TR0 = 0; // 停止定时器 T0
TH0 = (-SYSCLK/1000) >> 8; // 设置定时器 T0在 1ms溢出
TL0 = -SYSCLK/1000;
TR0 = 1; // 启动定时器 T0
while (TF0 == 0); // 等待溢出

TF0 = 0; // 清除溢出标志
}
}
//---
// Timer0_us
//---
//
// 配置定时器 T0在返回前延时<ms>微秒
//
void Timer0_us (unsigned us)
{
unsigned i; // 微秒计数器
TCON &= ~0x30; // 停止定时器 T0并清除溢出标志
TMOD &= ~0x0f; // 配置定时器 T0为 16位模式
TMOD |= 0x01;
CKCON |= 0x08; // 定时器 T0计数系统时钟
for (i = 0; i < us; i++) { // 计数微秒
TR0 = 0; // 停止定时器 T0
TH0 = (-SYSCLK/1000000) >> 8; // 设置定时器 T0在 1us溢出
TL0 = -SYSCLK/1000000;
TR0 = 1; // 启动定时器 T0
while (TF0 == 0); // 等待溢出
TF0 = 0; // 清除溢出标志
}
}
//---
// EE_Read
//---
//
// 此程序读和返回一个 EEPROM字节
// 字节地址由<Addr>给出
//
unsigned char EE_Read (unsigned Addr)
{

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 27

unsigned char retval; // 返回值
NSS = 0; // 选择 EEPROM
Timer0_us (1); // 至少等待 250ns (CS 建立时间)
// 传送读操作码
retval = SPI_Transfer(EE_READ);
// 传送地址MSB在先
retval = SPI_Transfer((Addr & 0xFF00) >> 8); // 传送地址的MSB
retval = SPI_Transfer((Addr & 0x00FF)); // 传送地址的 LSB
// 初始化哑元传送读数据
retval = SPI_Transfer(0x00);
Timer0_us (1); // 至少等待 250ns (CS 保持时间)

NSS = 1; // 取消选择 EEPROM
Timer0_us (1); // 至少等待 500ns (CS 禁止时间)
return retval;
}
//---
// EE_Write
//---
// 此程序写一个 EEPROM字节<value> 字节地址由<Addr>给出
//
void EE_Write (unsigned Addr, unsigned char value)
{
unsigned char retval; // 从 SPI返回值
NSS = 0; // 选择 EEPROM
Timer0_us (1); // 至少等待 250ns (CS 建立时间)
// 传送WREN 写使能 操作码
retval = SPI_Transfer(EE_WREN);
Timer0_us (1); // 至少等待 250ns (CS 保持时间)
NSS = 1; // 取消选择 EEPROM到设置WREN锁存
Timer0_us (1); //至少等待 500ns (CS 禁止时间)
NSS = 0; // 选择 EEPROM
Timer0_us (1); // 至少等待 250ns (CS 建立时间)
// 传送WRITE操作码
retval = SPI_Transfer(EE_WRITE);
// 传送地址MSB在先
retval = SPI_Transfer((Addr & 0xFF00) >> 8); // 传送地址的MSB
retval = SPI_Transfer((Addr & 0x00FF)); // 传送地址的 LSB
// 传送数据
retval = SPI_Transfer(value);
Timer0_us (1); // 至少等待 250ns (CS 保持时间)
NSS = 1; // 取消选定 EEPROM (初始化 EEPROM写周期
// 为了完成写操作 现在查询读状态寄存器(RDSR)
do {

 AN028-C8051F30X系列软件 SPI例子

 AN028-1.0DEC01 ©Cygnal Integrated Products, Inc. 28

Timer0_us (1); // 至少等待 500ns (CS 禁止时间)
NSS = 0; // 选择 EEPROM开始查询
Timer0_us (1); // 至少等待 250ns (CS 建立时间)
retval = SPI_Transfer(EE_RDSR);
retval = SPI_Transfer(0x00);
Timer0_us (1); // 至少等待 250ns (CS 保持时间)
NSS = 1; // 取消选择 EEPROM
} while (retval & 0x01); // 查询直到WIP (Write In Progress) 位为 0
Timer0_us (1); // 至少等待 500ns (CS禁止时间)
}

