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相关器件 
本应用笔记适用于下列器件： 
C8051F000、C8051F001、C8051F002、C8051F005、C8051F006、C8051F007、C8051F010、

C8051F011、C8051F012、C8051F015、C8051F016、C8051F017、C8051F220、C8051F221、C8051F226、
C8051F230、C8051F231 和 C8051F236。 

 

1 引言 
FLASH编程接口DLL（动态链接库）提供下述功能：下载Intel hex文件到FLASH；与一个

C8051Fxxx处理器连接或断开连接；“运行”和“停止”微处理器；读和写内部、外部及程序存储

器空间。所有这些功能都是通过PC机的COM端口和Cygnal串行适配器提供的。必须先调用Connect
（连接）函数，以建立到C8051Fxxx目标板的通路。 

本文所介绍的过程和原则说明如何将编程接口DLL链接到一个用户程序中。DLL不是可独立

执行的应用程序，它只是一个在运行时才被链接的输出函数库，由一个“微软视窗”应用程序调

用。 

Cygnal提供FLASH编程接口DLL，同时还提供了一个使用FLASH编程接口DLL的应用程序（包

括程序和源码），用户可以在不写自己的应用程序的情况下用它来测试或使用FLASH编程接口

DLL。该FLASH编程接口应用程序采用隐含链接方式，要求将DLL放到一个特定的目录（见4.0节）。 

2 文件及兼容性 
从http://www.cygnal.com可以得到“CygUtil.dll”和“CygUtil.lib”的最近版本。该DLL是一个

Win32 MFC常规DLL，这意味着它使用Microsoft Foundations Classes库；它可以被装入到任何Win32
编程环境中，并且只输出‘C’类型函数。有两种版本：一种是MFC“Microsoft Foundations Classes”
已被静态链接到DLL内部，另一种是MFC库被动态链接到DLL。 

静态链接的MFC版本包含了它所需要的所有MFC库代码的拷贝，因此是自含式的，不需进行

外部MFC链接。含有MFC库代码的静态链接型DLL大约为212KB。 

动态链接MFC的版本大约为72KB。但是动态链接的DLL要求在目标机器上有文件

“MFC42.dll”和“MSVCRT.dll”存在。如果客户程序也被链接到同一版本（4.2版）或更新的MFC
库（即用MFC作为共享库），这不会成为问题。所需要的MFC DLL“MFC42.dll”和“MSVCRT.dll”
随动态链接的MFC版FLASH编程接口DLL一起提供。如果在目标机器上已有这些文件的相同或更

新版本，不要替换它们。 
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3 从客户程序调用 DLL 的输出函数 
该DLL输出12个函数。下面是它们的原型及相关说明。 
int Connect(int nComPort=1, BOOL bDisableDialogBoxes=0); 
BOOL Connected(); 
int Disconnect(int nComPort=1); 
int Download(char* sDownloadFile, BOOL DeviceErase=0, BOOL DisableDialogBoxes=0); 
int SetTargetGo(); 
BOOL SetTargetHalt(); 
int GetRAMMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength); 
int SetRAMMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength); 
int GetXRAMMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength); 
int SetXRAMMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength); 
int GetCodeMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength); 
int SetCodeMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength, 

BOOL bDisableDialogs=0); 

3.1 通信函数 
int Connect(int nComPort=1, BOOL bDisableDialogBoxes=0); 
BOOL Connected(); 
int Disconnect(int nComPort=1); 

3.1.1  Connect() 
Connect()函数返回一个整型值，该返回值的含义在5.0节介绍。Connect()函数接受两个缺省参

数，参数类型为整型和布尔型。输入参数nComPort代表用于建立通信连接的COM端口。输入参数

bDisableDialogBoxes是一个布尔值，表示允许（TRUE）或禁止（FALSE）DLL内部的对话框。注

意，对于所有的存储器操作，都必须首先建立一个有效通信连接。 

当使用C++时，Connect()函数必须被声明为一个导入函数。将下面一行加到调用该函数的源

文件（*.cpp）之头文件（*.h）中： 
extern "C" __declspec(dllexport) int Connect(int nComPort=1, BOOL bDisableDialogBoxes=0); 

在源文件中，按下例所示调用该函数： 
int r = Connect(nNewCOMPort, m_bDisableDialogs); 

其中，nNewCOMPort和m_bDisableDialogs是在调用“Connect”函数之前已经被声明和初始化

的变量。 

3.1.2  Connected() 
Connected()函数返回一个布尔值（FALSE表示未连接，TRUE表示已连接），该值代表目标

C8051Fxxx的连接状态。 

当使用C++时，Connected()函数必须被声明为一个导入函数。将下面一行加到调用该函数的
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源文件（*.cpp）之头文件（*.h）中： 
extern "C" __declspec(dllexport) BOOL Connected(); 

在源文件中，按下例所示调用该函数： 
BOOL r = Connected(); 

3.1.3  Disconnect() 
Disconnect()函数返回一个整型值，该返回值的含义在5.0节介绍。Disconnect()函数接受一个缺

省参数（整型）。输入参数nComPort代表要断开通信连接的COM端口。 

当使用C++时，Connect()函数必须被声明为一个导入函数。将下面一行加到调用该函数的源

文件（*.cpp）之头文件（*.h）中： 
extern "C" __declspec(dllexport) int Disconnect(int nComPort=1); 

在源文件中，按下例所示调用该函数： 
int r = Disconnect(m_nCOMPor); 

其中，m_nCOMPort是在调用“Disconnect”函数之前已经被声明和初始化的变量。 

3.2 程序接口函数 
int Download(char* sDownloadFile, BOOL DeviceErase=0, BOOL DisableDialogBoxes=0); 
int SetTargetGo(); 
BOOL SetTargetHalt(); 

3.2.1  Download() 
Download()函数返回一个整型值，该返回值的含义在5.0节介绍。该函数接受三个参数（两个

缺省参数）：char* sDownloadFile、BOOL DeviceErase和BOOL DisableDialogBoxes。输入参数

sDownloadFile必须是一个字符指针，该指针指向含有下载文件绝对路径及文件名的字符数组（串）

的开始处。输入参数DeviceErase是一个布尔值，在被设置为TRUE时执行器件擦除，如果被设置

为FALSE，器件将不被擦除。一个器件擦除操作将擦除器件FLASH的全部内容。注意，在成功地

从Download()函数退出后，目标C8051Fxxx将处于“停机”状态。如果器件被置于“停机”状态，

它将不执行程序，直到产生一次上电复位或由SetTargetGo()函数调用产生复位。 

当使用C++时，Download()函数必须被声明为一个导入函数。将下面一行加到调用该函数的

源文件（*.cpp）之头文件（*.h）中： 
extern "C" __declspec(dllexport) int Download(char* sDownloadFile, BOOL bDeviceErase=0, 
BOOL bDisableDialogs=0); 

在源文件中，按下例所示调用该函数： 
int r = Download(m_sDownloadFile, m_bDeviceErase, m_bDisableDialogs); 

其中，m_sDownloadFile、m_bDeviceErase和m_bDisableDialogs是在调用“Download”函数之

前已经被声明和初始化的变量。 
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3.2.2  SetTargetGo() 
SetTargetGo()函数返回一个整型值，该返回值的含义在5.0节介绍。注意，在成功地从

SetTargetGo()函数退出后，目标C8051Fxxx将处于“运行”状态。 

当使用C++时，SetTargetGo()函数必须被声明为一个导入函数。将下面一行加到调用该函数的

源文件（*.cpp）之头文件（*.h）中： 
extern "C" __declspec(dllexport) int SetTargetGo (); 

在源文件中，按下例所示调用该函数： 
int r = SetTargetGo (); 

3.2.3  SetTargetHalt() 
SetTargetHalt()函数返回一个布尔值（FALSE表示目标器件不“停机”，TRUE表示目标器件已

处于“停机”状态），该值代表是否成功地对目标C8051Fxxx执行了“停机”命令。 

当使用C++时，SetTargetHalt()函数必须被声明为一个导入函数。将下面一行加到调用该函数

的源文件（*.cpp）之头文件（*.h）中： 
extern "C" __declspec(dllexport) BOOL SetTargetHalt (); 

在源文件中，按下例所示调用该函数： 
BOOL r = SetTargetHalt (); 

3.3 读存储器函数 
int GetRAMMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength); 
int GetXRAMMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength); 
int GetCodeMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength); 

GetRAMMemory()、GetXRAMMemory()和 GetCodeMemory()函数均为读存储器函数，所以放

在一起讨论。所有读存储器函数都返回整型值，这些返回值的含义在 5.0 节介绍。所有读存储器

函数都接受一个字节型指针作为第一个参数，该指针指向一个字节型数组的开始处。如果读存储

器函数执行成功，变量 ptrMem 将包含要读的存储器单元。下面给出了一个如何用 C++对一个数

组进行初始化的例子： 

unsigned char* ptrMem; 
ptrMem = new unsigned char[length]; // 假定已在其它地方对 length 进行了声明和赋值 
//接下来对用将被写入存储器的字节对该数组进行填充 

或者： 
BYTE ptrMem[10] = {0x00}; // 必须在将数组传递给 DLL 之前对其初始化 

所有读存储器函数都接受一个 DWORD 型的 wStartAddress 作为第二个参数，该参数为待读

存储器的起始地址。所有读存储器函数都接受一个整型的 nLength 作为第三个参数，该参数应包

含要从存储器中读取的字节数。 
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3.3.1  GetRAMMemory() 
GetRAMMemory()函数读内部数据存储器。要读的RAM存储器必须位于目标器件的内部数据

地址空间。当使用C++时，GetRAMMemory ()函数必须被声明为一个导入函数。将下面一行加到

调用该函数的源文件（*.cpp）之头文件（*.h）中： 
extern "C" __declspec(dllexport) int GetRAMMemory(BYTE * ptrMem, DWORD wStartAddress, 
unsigned int nLength); 
 

在源文件中，按下例所示调用该函数： 
int r = GetRAMMemory(ptrBuf, m_wStartAt, m_nBytes); 

其中，ptrBuf、m_wStartAt和m_nBytes是在调用“GetRAMMemory”函数之前已经被声明和

初始化的变量。 

3.3.2  GetXRAMMemory() 
GetXRAMMemory()函数读外部数据存储器。要读的XRAM存储器必须位于目标器件的外部数

据地址空间。要特别注意正确选择外部数据地址空间。当使用C++时，GetXRAMMemory()函数必

须被声明为一个导入函数。将下面一行加到调用该函数的源文件（*.cpp）之头文件（*.h）中： 
extern "C" __declspec(dllexport) int GetXRAMMemory(BYTE * ptrMem, DWORD wStartAddress, 
unsigned int nLength); 

在源文件中，按下例所示调用该函数： 
int r = GetXRAMMemory(ptrBuf, m_wStartAt, m_nBytes); 

其中，ptrBuf、m_wStartAt和m_nBytes是在调用“GetXRAMMemory”函数之前已经被声明和

初始化的变量。 

3.3.3  GetCodeMemory() 
GetCodeMemory()函数读程序存储器空间。要读的程序存储器必须位于目标器件的程序存储

器空间。在读取被设置为读锁定的扇区时要特别注意。在读取被设置为读锁定的扇区时将总是返

回0。还要注意，不允许读被保留的空间。读被保留的空间将总是返回错误。当使用C++时，

GetCodeMemory()函数必须被声明为一个导入函数。将下面一行加到调用该函数的源文件（*.cpp）
之头文件（*.h）中： 

extern "C" __declspec(dllexport) int GetCodeMemory(BYTE * ptrMem, DWORD wStartAddress, 
unsigned int nLength); 

在源文件中，按下例所示调用该函数： 
int r = GetCodeMemory(ptrBuf, m_wStartAt, m_nBytes); 

其中，ptrBuf、m_wStartAt和m_nBytes是在调用“GetCodeMemory”函数之前已经被声明和初

始化的变量。 
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3.4 写存储器函数 
int SetRAMMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength); 
int SetXRAMMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength); 
int SetCodeMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength,  

BOOL bDisableDialogs=0); 

SetRAMMemory()、SetXRAMMemory()和 SetCodeMemory()函数均为写存储器函数，所以放

在一起讨论。所有写存储器函数都返回整型值，这些返回值的含义在 5.0 节介绍。所有写存储器

函数都接受一个字节型指针作为第一个参数，该指针指向一个字节型数组的开始处，该数组包含

nLength 个元素并且在调用 DLL 的写存储器函数之前已被赋值。如果写存储器函数执行成功，说

明已完成了对存储器的写入。 

下面给出了一个如何用 C++对一个数组进行初始化的例子： 

unsigned char* ptrMem; 
ptrMem = new unsigned char[length]; // 假定已在其它地方对 length 进行了声明和赋值 
//接下来对用将被写入存储器的字节对该数组进行填充 

或者： 
BYTE ptrMem[10] = {0x00}; // 必须在将数组传递给 DLL 之前对其初始化 

所有写存储器函数都接受一个 DWORD 型的 wStartAddress 作为第二个参数，该参数为待写

存储器的起始地址。所有写存储器函数都接受一个整型的 nLength 作为第三个参数，该参数应包

含要向存储器写入的字节数。 

3.4.1  SetRAMMemory() 
SetRAMMemory()函数写内部数据存储器。目标RAM存储器必须位于目标器件的内部数据地

址空间。当使用C++时，SetRAMMemory ()函数必须被声明为一个导入函数。将下面一行加到调

用该函数的源文件（*.cpp）之头文件（*.h）中： 
extern "C" __declspec(dllexport) int SetRAMMemory(BYTE * ptrMem, DWORD wStartAddress, 
unsigned int nLength); 

在源文件中，按下例所示调用该函数： 
int r = SetRAMMemory(ptrBuf, m_wStartAt, m_nBytes); 

其中，ptrBuf、m_wStartAt和m_nBytes是在调用“SetRAMMemory”函数之前已经被声明和初

始化的变量。 

3.4.2  SetXRAMMemory() 
SetXRAMMemory()函数写外部数据存储器。目标XRAM存储器必须位于目标器件的外部数据

地址空间。要特别注意正确选择外部数据地址空间。当使用C++时，SetXRAMMemory ()函数必须

被声明为一个导入函数。将下面一行加到调用该函数的源文件（*.cpp）之头文件（*.h）中： 
extern "C" __declspec(dllexport) int SetXRAMMemory(BYTE * ptrMem, DWORD wStartAddress, 
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unsigned int nLength); 

在源文件中，按下例所示调用该函数： 
int r = SetXRAMMemory(ptrBuf, m_wStartAt, m_nBytes); 

其中，ptrBuf、m_wStartAt和m_nBytes是在调用“SetXRAMMemory”函数之前已经被声明和

初始化的变量。 

3.4.3  SetCodeMemory() 
SetCodeMemory()函数写程序存储器。该函数增加了一个布尔型参数bDisableDialogs。该参数

决定是否显示DLL内部的对话框。BDisableDialogs参数的缺省值为FALSE。注意，如果用户程序

写FLASH的保留区，或一次写的数据大于一页（512字节），或对已被设置为写/擦除锁定的扇区

写入，则写操作不会成功。如果SetCodeMemory ()函数执行成功，表明指定范围（m_wStartAt + 
m_nLength）内的存储器单元被正确写入。 

当使用C++时，SetCodeMemory ()函数必须被声明为一个导入函数。将下面一行加到调用该函

数的源文件（*.cpp）之头文件（*.h）中： 
extern "C" __declspec(dllexport) int SetCodeMemory(BYTE * ptrMem, DWORD wStartAddress, 
unsigned int nLength, BOOL bDisableDialogs=0); 

在源文件中，按下例所示调用该函数： 
int r = SetCodeMemory(ptrBuf, m_wStartAt, m_nBytes, m_bDisableDialogs); 

其中，ptrBuf、m_wStartAt、m_nBytes和m_bDisableDialogs是在调用“SetCodeMemory”函数

之前已经被声明和初始化的变量。 

4 链接 
如果使用显式链接，需要在生成客户可执行程序之前向链接器提供“CygUtil.lib”库文件的路

径。在 Microsoft Visual C++中，这可以通过从 Project 菜单选择 Settings…然后再选择 link 标签来

完成。然后在 Object/library modules 对话框中输入该库文件的完整路径和文件名。例如，

“c:\project\release\ CygUtil.lib”。在客户程序生成后将不再需要该库文件。 

如果该 DLL 被隐式链接，则 DLL 必须位于下列目录之一： 

1． 含有客户 EXE 文件的目录。 
2． 过程的当前目录。 
3． Windows 系统目录。 
4． Windows 目录。 
5． 在环境变量 PATH 中列出的目录。 

5 测试结果 
在退出时，该 DLL 会返回一个整型值的返回码。如果在 DLL 执行期间出现致命错误，DLL

会显示一个说明错误的消息框（如果允许显示对话框），然后退出。下表给出了返回码及含义说明。 
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返回码 

返回码 错误 状态 可能的原因 

-3 FLASH 写错误 失败 写无效页，写 FLASH 保留区等 

-2 
目标器件状态错

误 
失败 目标器件不处于停机状态 

-1 
目标器件状态错

误 
失败 目标器件未连接 

0 无错误 成功 函数调用成功 

1 
文件名或路径错

误 
失败 无效路径和/或文件不存在 

2 COM 端口错误 失败 不能用所选 COM 端口建立连接 

3 下载错误 失败 
无效字节数，所要求的存储

器操作不存在 

4 复位错误 失败 
目标器件不能执行复位过

程；检查是否仍然保持连接 

5 器件擦除错误 失败 
目标器件不能执行擦除过

程；检查写/擦除锁定字节；检查

是否仍然保持连接 

7 
关闭 COM 端口

错误 
失败 

不能与目标器件建立连接

以关闭 COM 端口，检查是否仍

然保持连接 

 

6 使用限制 
当在一个客户程序的调试（debug）方式调用 DLL 时，消息框可能工作不正确。消息框为客

户程序提供了获取瞬时信息的一种手段，而这种信息又不能用其它方法得到。消息框支持一个过

程指示器，为客户程序提供与存储器操作过程有关的信息。当从一个客户程序（在调试方式）进

入 DLL 时，可能导致 DLL 错误理解用于显示对话框的窗口句柄。建议在调用 DLL 之前将函数中

的 bDisableDialogs 参数值设置为 TRUE（布尔值 1），bDisableDialogs 参数的缺省值为 FALSE。该

问题不会在客户程序的发行（release）版本中出现。 
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