
C8051F MCU 应 用 笔 记

Silicon Laboratories Inc. 新华龙电子有限公司
4635 Boston Lane 深圳市福田区华强北路现代之窗大厦 A 座 13F C 室(518013)
Austin, TX 78735 0755-83645240 83645242 83645244 83645251

AN017 — 使用 C8051FXXX 片内 FLASH 编程接口 DLL

相关器件
本应用笔记适用于下列器件：
C8051F000、C8051F001、C8051F002、C8051F005、C8051F006、C8051F007、C8051F010、

C8051F011、C8051F012、C8051F015、C8051F016、C8051F017、C8051F220、C8051F221、C8051F226、
C8051F230、C8051F231 和 C8051F236。

1 引言
FLASH编程接口DLL（动态链接库）提供下述功能：下载Intel hex文件到FLASH；与一个

C8051Fxxx处理器连接或断开连接；“运行”和“停止”微处理器；读和写内部、外部及程序存储

器空间。所有这些功能都是通过PC机的COM端口和Cygnal串行适配器提供的。必须先调用Connect
（连接）函数，以建立到C8051Fxxx目标板的通路。

本文所介绍的过程和原则说明如何将编程接口DLL链接到一个用户程序中。DLL不是可独立

执行的应用程序，它只是一个在运行时才被链接的输出函数库，由一个“微软视窗”应用程序调

用。

Cygnal提供FLASH编程接口DLL，同时还提供了一个使用FLASH编程接口DLL的应用程序（包

括程序和源码），用户可以在不写自己的应用程序的情况下用它来测试或使用FLASH编程接口

DLL。该FLASH编程接口应用程序采用隐含链接方式，要求将DLL放到一个特定的目录（见4.0节）。

2 文件及兼容性
从http://www.cygnal.com可以得到“CygUtil.dll”和“CygUtil.lib”的最近版本。该DLL是一个

Win32 MFC常规DLL，这意味着它使用Microsoft Foundations Classes库；它可以被装入到任何Win32
编程环境中，并且只输出‘C’类型函数。有两种版本：一种是MFC“Microsoft Foundations Classes”
已被静态链接到DLL内部，另一种是MFC库被动态链接到DLL。

静态链接的MFC版本包含了它所需要的所有MFC库代码的拷贝，因此是自含式的，不需进行

外部MFC链接。含有MFC库代码的静态链接型DLL大约为212KB。

动态链接MFC的版本大约为72KB。但是动态链接的DLL要求在目标机器上有文件

“MFC42.dll”和“MSVCRT.dll”存在。如果客户程序也被链接到同一版本（4.2版）或更新的MFC
库（即用MFC作为共享库），这不会成为问题。所需要的MFC DLL“MFC42.dll”和“MSVCRT.dll”
随动态链接的MFC版FLASH编程接口DLL一起提供。如果在目标机器上已有这些文件的相同或更

新版本，不要替换它们。

 电话：

Email: mcuinfo@silabs.com （版权所有） 电邮：shenzhen@xhl.com.cn
Internet: www.silabs.com 网址：www.xhl.com.cn

http://www.cygnal.com/

AN017 — 使用 C8051FXXX 片内 FLASH 编程接口 DLL

3 从客户程序调用 DLL 的输出函数
该DLL输出12个函数。下面是它们的原型及相关说明。
int Connect(int nComPort=1, BOOL bDisableDialogBoxes=0);
BOOL Connected();
int Disconnect(int nComPort=1);
int Download(char* sDownloadFile, BOOL DeviceErase=0, BOOL DisableDialogBoxes=0);
int SetTargetGo();
BOOL SetTargetHalt();
int GetRAMMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength);
int SetRAMMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength);
int GetXRAMMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength);
int SetXRAMMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength);
int GetCodeMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength);
int SetCodeMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength,

BOOL bDisableDialogs=0);

3.1 通信函数
int Connect(int nComPort=1, BOOL bDisableDialogBoxes=0);
BOOL Connected();
int Disconnect(int nComPort=1);

3.1.1 Connect()
Connect()函数返回一个整型值，该返回值的含义在5.0节介绍。Connect()函数接受两个缺省参

数，参数类型为整型和布尔型。输入参数nComPort代表用于建立通信连接的COM端口。输入参数

bDisableDialogBoxes是一个布尔值，表示允许（TRUE）或禁止（FALSE）DLL内部的对话框。注

意，对于所有的存储器操作，都必须首先建立一个有效通信连接。

当使用C++时，Connect()函数必须被声明为一个导入函数。将下面一行加到调用该函数的源

文件（*.cpp）之头文件（*.h）中：
extern "C" __declspec(dllexport) int Connect(int nComPort=1, BOOL bDisableDialogBoxes=0);

在源文件中，按下例所示调用该函数：
int r = Connect(nNewCOMPort, m_bDisableDialogs);

其中，nNewCOMPort和m_bDisableDialogs是在调用“Connect”函数之前已经被声明和初始化

的变量。

3.1.2 Connected()
Connected()函数返回一个布尔值（FALSE表示未连接，TRUE表示已连接），该值代表目标

C8051Fxxx的连接状态。

当使用C++时，Connected()函数必须被声明为一个导入函数。将下面一行加到调用该函数的

2 AN017-1.1

AN017 — 使用 C8051FXXX 片内 FLASH 编程接口 DLL

源文件（*.cpp）之头文件（*.h）中：
extern "C" __declspec(dllexport) BOOL Connected();

在源文件中，按下例所示调用该函数：
BOOL r = Connected();

3.1.3 Disconnect()
Disconnect()函数返回一个整型值，该返回值的含义在5.0节介绍。Disconnect()函数接受一个缺

省参数（整型）。输入参数nComPort代表要断开通信连接的COM端口。

当使用C++时，Connect()函数必须被声明为一个导入函数。将下面一行加到调用该函数的源

文件（*.cpp）之头文件（*.h）中：
extern "C" __declspec(dllexport) int Disconnect(int nComPort=1);

在源文件中，按下例所示调用该函数：
int r = Disconnect(m_nCOMPor);

其中，m_nCOMPort是在调用“Disconnect”函数之前已经被声明和初始化的变量。

3.2 程序接口函数
int Download(char* sDownloadFile, BOOL DeviceErase=0, BOOL DisableDialogBoxes=0);
int SetTargetGo();
BOOL SetTargetHalt();

3.2.1 Download()
Download()函数返回一个整型值，该返回值的含义在5.0节介绍。该函数接受三个参数（两个

缺省参数）：char* sDownloadFile、BOOL DeviceErase和BOOL DisableDialogBoxes。输入参数

sDownloadFile必须是一个字符指针，该指针指向含有下载文件绝对路径及文件名的字符数组（串）

的开始处。输入参数DeviceErase是一个布尔值，在被设置为TRUE时执行器件擦除，如果被设置

为FALSE，器件将不被擦除。一个器件擦除操作将擦除器件FLASH的全部内容。注意，在成功地

从Download()函数退出后，目标C8051Fxxx将处于“停机”状态。如果器件被置于“停机”状态，

它将不执行程序，直到产生一次上电复位或由SetTargetGo()函数调用产生复位。

当使用C++时，Download()函数必须被声明为一个导入函数。将下面一行加到调用该函数的

源文件（*.cpp）之头文件（*.h）中：
extern "C" __declspec(dllexport) int Download(char* sDownloadFile, BOOL bDeviceErase=0,
BOOL bDisableDialogs=0);

在源文件中，按下例所示调用该函数：
int r = Download(m_sDownloadFile, m_bDeviceErase, m_bDisableDialogs);

其中，m_sDownloadFile、m_bDeviceErase和m_bDisableDialogs是在调用“Download”函数之

前已经被声明和初始化的变量。

 AN017-1.1 3

AN017 — 使用 C8051FXXX 片内 FLASH 编程接口 DLL

3.2.2 SetTargetGo()
SetTargetGo()函数返回一个整型值，该返回值的含义在5.0节介绍。注意，在成功地从

SetTargetGo()函数退出后，目标C8051Fxxx将处于“运行”状态。

当使用C++时，SetTargetGo()函数必须被声明为一个导入函数。将下面一行加到调用该函数的

源文件（*.cpp）之头文件（*.h）中：
extern "C" __declspec(dllexport) int SetTargetGo ();

在源文件中，按下例所示调用该函数：
int r = SetTargetGo ();

3.2.3 SetTargetHalt()
SetTargetHalt()函数返回一个布尔值（FALSE表示目标器件不“停机”，TRUE表示目标器件已

处于“停机”状态），该值代表是否成功地对目标C8051Fxxx执行了“停机”命令。

当使用C++时，SetTargetHalt()函数必须被声明为一个导入函数。将下面一行加到调用该函数

的源文件（*.cpp）之头文件（*.h）中：
extern "C" __declspec(dllexport) BOOL SetTargetHalt ();

在源文件中，按下例所示调用该函数：
BOOL r = SetTargetHalt ();

3.3 读存储器函数
int GetRAMMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength);
int GetXRAMMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength);
int GetCodeMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength);

GetRAMMemory()、GetXRAMMemory()和 GetCodeMemory()函数均为读存储器函数，所以放

在一起讨论。所有读存储器函数都返回整型值，这些返回值的含义在 5.0 节介绍。所有读存储器

函数都接受一个字节型指针作为第一个参数，该指针指向一个字节型数组的开始处。如果读存储

器函数执行成功，变量 ptrMem 将包含要读的存储器单元。下面给出了一个如何用 C++对一个数

组进行初始化的例子：

unsigned char* ptrMem;
ptrMem = new unsigned char[length]; // 假定已在其它地方对 length 进行了声明和赋值
//接下来对用将被写入存储器的字节对该数组进行填充

或者：
BYTE ptrMem[10] = {0x00}; // 必须在将数组传递给 DLL 之前对其初始化

所有读存储器函数都接受一个 DWORD 型的 wStartAddress 作为第二个参数，该参数为待读

存储器的起始地址。所有读存储器函数都接受一个整型的 nLength 作为第三个参数，该参数应包

含要从存储器中读取的字节数。

4 AN017-1.1

AN017 — 使用 C8051FXXX 片内 FLASH 编程接口 DLL

3.3.1 GetRAMMemory()
GetRAMMemory()函数读内部数据存储器。要读的RAM存储器必须位于目标器件的内部数据

地址空间。当使用C++时，GetRAMMemory ()函数必须被声明为一个导入函数。将下面一行加到

调用该函数的源文件（*.cpp）之头文件（*.h）中：
extern "C" __declspec(dllexport) int GetRAMMemory(BYTE * ptrMem, DWORD wStartAddress,
unsigned int nLength);

在源文件中，按下例所示调用该函数：
int r = GetRAMMemory(ptrBuf, m_wStartAt, m_nBytes);

其中，ptrBuf、m_wStartAt和m_nBytes是在调用“GetRAMMemory”函数之前已经被声明和

初始化的变量。

3.3.2 GetXRAMMemory()
GetXRAMMemory()函数读外部数据存储器。要读的XRAM存储器必须位于目标器件的外部数

据地址空间。要特别注意正确选择外部数据地址空间。当使用C++时，GetXRAMMemory()函数必

须被声明为一个导入函数。将下面一行加到调用该函数的源文件（*.cpp）之头文件（*.h）中：
extern "C" __declspec(dllexport) int GetXRAMMemory(BYTE * ptrMem, DWORD wStartAddress,
unsigned int nLength);

在源文件中，按下例所示调用该函数：
int r = GetXRAMMemory(ptrBuf, m_wStartAt, m_nBytes);

其中，ptrBuf、m_wStartAt和m_nBytes是在调用“GetXRAMMemory”函数之前已经被声明和

初始化的变量。

3.3.3 GetCodeMemory()
GetCodeMemory()函数读程序存储器空间。要读的程序存储器必须位于目标器件的程序存储

器空间。在读取被设置为读锁定的扇区时要特别注意。在读取被设置为读锁定的扇区时将总是返

回0。还要注意，不允许读被保留的空间。读被保留的空间将总是返回错误。当使用C++时，

GetCodeMemory()函数必须被声明为一个导入函数。将下面一行加到调用该函数的源文件（*.cpp）
之头文件（*.h）中：

extern "C" __declspec(dllexport) int GetCodeMemory(BYTE * ptrMem, DWORD wStartAddress,
unsigned int nLength);

在源文件中，按下例所示调用该函数：
int r = GetCodeMemory(ptrBuf, m_wStartAt, m_nBytes);

其中，ptrBuf、m_wStartAt和m_nBytes是在调用“GetCodeMemory”函数之前已经被声明和初

始化的变量。

 AN017-1.1 5

AN017 — 使用 C8051FXXX 片内 FLASH 编程接口 DLL

3.4 写存储器函数
int SetRAMMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength);
int SetXRAMMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength);
int SetCodeMemory(BYTE * ptrMem, DWORD wStartAddress, unsigned int nLength,

BOOL bDisableDialogs=0);

SetRAMMemory()、SetXRAMMemory()和 SetCodeMemory()函数均为写存储器函数，所以放

在一起讨论。所有写存储器函数都返回整型值，这些返回值的含义在 5.0 节介绍。所有写存储器

函数都接受一个字节型指针作为第一个参数，该指针指向一个字节型数组的开始处，该数组包含

nLength 个元素并且在调用 DLL 的写存储器函数之前已被赋值。如果写存储器函数执行成功，说

明已完成了对存储器的写入。

下面给出了一个如何用 C++对一个数组进行初始化的例子：

unsigned char* ptrMem;
ptrMem = new unsigned char[length]; // 假定已在其它地方对 length 进行了声明和赋值
//接下来对用将被写入存储器的字节对该数组进行填充

或者：
BYTE ptrMem[10] = {0x00}; // 必须在将数组传递给 DLL 之前对其初始化

所有写存储器函数都接受一个 DWORD 型的 wStartAddress 作为第二个参数，该参数为待写

存储器的起始地址。所有写存储器函数都接受一个整型的 nLength 作为第三个参数，该参数应包

含要向存储器写入的字节数。

3.4.1 SetRAMMemory()
SetRAMMemory()函数写内部数据存储器。目标RAM存储器必须位于目标器件的内部数据地

址空间。当使用C++时，SetRAMMemory ()函数必须被声明为一个导入函数。将下面一行加到调

用该函数的源文件（*.cpp）之头文件（*.h）中：
extern "C" __declspec(dllexport) int SetRAMMemory(BYTE * ptrMem, DWORD wStartAddress,
unsigned int nLength);

在源文件中，按下例所示调用该函数：
int r = SetRAMMemory(ptrBuf, m_wStartAt, m_nBytes);

其中，ptrBuf、m_wStartAt和m_nBytes是在调用“SetRAMMemory”函数之前已经被声明和初

始化的变量。

3.4.2 SetXRAMMemory()
SetXRAMMemory()函数写外部数据存储器。目标XRAM存储器必须位于目标器件的外部数据

地址空间。要特别注意正确选择外部数据地址空间。当使用C++时，SetXRAMMemory ()函数必须

被声明为一个导入函数。将下面一行加到调用该函数的源文件（*.cpp）之头文件（*.h）中：
extern "C" __declspec(dllexport) int SetXRAMMemory(BYTE * ptrMem, DWORD wStartAddress,

6 AN017-1.1

AN017 — 使用 C8051FXXX 片内 FLASH 编程接口 DLL

unsigned int nLength);

在源文件中，按下例所示调用该函数：
int r = SetXRAMMemory(ptrBuf, m_wStartAt, m_nBytes);

其中，ptrBuf、m_wStartAt和m_nBytes是在调用“SetXRAMMemory”函数之前已经被声明和

初始化的变量。

3.4.3 SetCodeMemory()
SetCodeMemory()函数写程序存储器。该函数增加了一个布尔型参数bDisableDialogs。该参数

决定是否显示DLL内部的对话框。BDisableDialogs参数的缺省值为FALSE。注意，如果用户程序

写FLASH的保留区，或一次写的数据大于一页（512字节），或对已被设置为写/擦除锁定的扇区

写入，则写操作不会成功。如果SetCodeMemory ()函数执行成功，表明指定范围（m_wStartAt +
m_nLength）内的存储器单元被正确写入。

当使用C++时，SetCodeMemory ()函数必须被声明为一个导入函数。将下面一行加到调用该函

数的源文件（*.cpp）之头文件（*.h）中：
extern "C" __declspec(dllexport) int SetCodeMemory(BYTE * ptrMem, DWORD wStartAddress,
unsigned int nLength, BOOL bDisableDialogs=0);

在源文件中，按下例所示调用该函数：
int r = SetCodeMemory(ptrBuf, m_wStartAt, m_nBytes, m_bDisableDialogs);

其中，ptrBuf、m_wStartAt、m_nBytes和m_bDisableDialogs是在调用“SetCodeMemory”函数

之前已经被声明和初始化的变量。

4 链接
如果使用显式链接，需要在生成客户可执行程序之前向链接器提供“CygUtil.lib”库文件的路

径。在 Microsoft Visual C++中，这可以通过从 Project 菜单选择 Settings…然后再选择 link 标签来

完成。然后在 Object/library modules 对话框中输入该库文件的完整路径和文件名。例如，

“c:\project\release\ CygUtil.lib”。在客户程序生成后将不再需要该库文件。

如果该 DLL 被隐式链接，则 DLL 必须位于下列目录之一：

1． 含有客户 EXE 文件的目录。
2． 过程的当前目录。
3． Windows 系统目录。
4． Windows 目录。
5． 在环境变量 PATH 中列出的目录。

5 测试结果
在退出时，该 DLL 会返回一个整型值的返回码。如果在 DLL 执行期间出现致命错误，DLL

会显示一个说明错误的消息框（如果允许显示对话框），然后退出。下表给出了返回码及含义说明。

 AN017-1.1 7

AN017 — 使用 C8051FXXX 片内 FLASH 编程接口 DLL

返回码

返回码 错误 状态 可能的原因

-3 FLASH 写错误 失败 写无效页，写 FLASH 保留区等

-2
目标器件状态错

误
失败 目标器件不处于停机状态

-1
目标器件状态错

误
失败 目标器件未连接

0 无错误 成功 函数调用成功

1
文件名或路径错

误
失败 无效路径和/或文件不存在

2 COM 端口错误 失败 不能用所选 COM 端口建立连接

3 下载错误 失败
无效字节数，所要求的存储

器操作不存在

4 复位错误 失败
目标器件不能执行复位过

程；检查是否仍然保持连接

5 器件擦除错误 失败
目标器件不能执行擦除过

程；检查写/擦除锁定字节；检查

是否仍然保持连接

7
关闭 COM 端口

错误
失败

不能与目标器件建立连接

以关闭 COM 端口，检查是否仍

然保持连接

6 使用限制
当在一个客户程序的调试（debug）方式调用 DLL 时，消息框可能工作不正确。消息框为客

户程序提供了获取瞬时信息的一种手段，而这种信息又不能用其它方法得到。消息框支持一个过

程指示器，为客户程序提供与存储器操作过程有关的信息。当从一个客户程序（在调试方式）进

入 DLL 时，可能导致 DLL 错误理解用于显示对话框的窗口句柄。建议在调用 DLL 之前将函数中

的 bDisableDialogs 参数值设置为 TRUE（布尔值 1），bDisableDialogs 参数的缺省值为 FALSE。该

问题不会在客户程序的发行（release）版本中出现。

8 AN017-1.1

	1 引言
	2 文件及兼容性
	3 从客户程序调用DLL的输出函数
	3.1 通信函数
	3.1.1 Connect()
	3.1.2 Connected()
	3.1.3 Disconnect()

	3.2 程序接口函数
	3.2.1 Download()
	3.2.2 SetTargetGo()
	3.2.3 SetTargetHalt()

	3.3 读存储器函数
	3.3.1 GetRAMMemory()
	3.3.2 GetXRAMMemory()
	3.3.3 GetCodeMemory()

	3.4 写存储器函数
	3.4.1 SetRAMMemory()
	3.4.2 SetXRAMMemory()
	3.4.3 SetCodeMemory()

	4 链接
	5 测试结果
	6 使用限制

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

