
C8051F MCU 应 用 笔 记

Silicon Laboratories Inc. 新华龙电子有限公司
4635 Boston Lane 深圳市福田区华强北路现代之窗大厦 A 座 13F C 室(518013)
Austin, TX 78735 电话：0755-83645240 83645242 83645244 83645251
Email: mcuinfo@silabs.com

AN015 — 软件 UART 示例

相关器件
本应用笔记适用于下列器件：
C8051F000、C8051F001、C8051F002、C8051F005、C8051F006、C8051F010、C8051F011、C8051F012、

C8051F015、C8051F016、C8051F017、C8051F220、C8051F221、C8051F226、C8051F230、C8051F231、
C8051F236。

引言
本应用笔记讨论基于 C8051Fxxx 系列器件的软件 UART 的实现方法。本文给出两个完整的例子：一个用

PCA 作为波特率发生器的 C 语言程序和一个用定时器 0 作为波特率发生器的汇编语言程序。

关键特性
这两个软件设计示例在节省硬件资源和 CPU 带宽的前提下几乎完全模拟硬件 UART 的功能。下面是两

个例子中都具备的关键特性：
y 一个与硬件 UART 相似的接口，有用户级发送和接收中断。
y 支持中断或查询方式访问。
y 全双工通信，使用 18.432MHz 时钟源时最大波特率可达 57.6 kbps。
y 基于状态的中断驱动实现方案，需要的 CPU 开销最小。
y 最少的硬件资源占用：

- C 语言示例程序使用两个 PCA 模块。
- 汇编语言示例程序使用定时器 0 工作于方式 3。

实现选项
在实现一个软件 UART（SW UART）时最重要的是在硬件资源占用和速度/效率之间权衡。使用较多硬

件的设计可消耗较小的 CPU 带宽并允许较高的位速率。这种权衡将在下面讨论。

波特率源
在传输每一位时都必须产生一个中断；在全双工 115.2 kbps 的速率下，每 4.3 微秒就要产生一个中断。

产生这些中断（波特率源）的方法不同，则实现时所需的 CPU 开销会有很大的差异。可选择的波特率源包括：

8 位定时器、16 位定时器和可编程计数器阵列（PCA）。注意：对于全双工操作，需要两个波特率源（发送和

接收各一个）。

使用 8 位定时器的方案允许将一个 16 位硬件定时器用于产生发送和接收波特率。定时器 0 工作于方式 3
时具有这种能力。注意：当定时器 0 工作于方式 3 时，定时器 1 的功能将减少；但是定时器 1 仍可用作硬件

UART（HW UART）的波特率发生器。使用 8 位定时器节省硬件资源，但是会有 CPU 软件开销和时间延迟

的问题。这些问题在例 2 中讨论。

上述方法的一个替代方案是使用 16 位自动重装载定时器。在这种情况下，SW UART 占用两个 16 位硬

件定时器：一个用于发送，一个用于接收。任何可用的定时器都能满足要求，但定时器 2 和定时器 3 的自动

重装载能力可以减少软件开销并可消除任何中断延迟问题。此外，16 位定时器还可支持更宽的波特率范围。

 网址：www.xhl.com.cn
 （版权所有） 电邮：shenzhen@xhl.com.cn

Internet: www.silabs.com

AN015 — 软件 UART 示例

AN015-1.0

可编程计数器阵列（PCA）也为 SW UART 提

供了一个很好的解决方案，所提供的 C 语言示例能

说明这一点。PCA 包含一个专用的 16 位计数器/定
时器和五个 16 位的捕捉/比较模块。每个模块都可

以被设置为在 PCA 计数器与相对应的比较模块的

内容一致时产生中断。由于 PCA 计数器在产生中断

时并不停止运行，所以该方案可以避免中断延迟累

加的问题。PCA 实现方案不适用于 C8051F2xx 器

件。

其它考虑
上述的每种定时器源都可以用 SYSCLK 或一

个外部信号作为时钟。在所提供的例子中，波特率

源用 SYSCLK 作为时钟，而 SYSCLK 源自外部的

18.432MHz 晶体。任何波特率/晶体频率组合都是允

许的，但软件开销限制了波特率与 SYSCLK 的最大

比值。

起始位检测也是 SW UART 接收器的一个重要

问题。C8051F00x 和 C8051F01x 器件提供了很多外

部中断源，其中有几个可被配置为下降沿触发。本

文的两个示例程序都使用外部中断来检测起始位。

例 1：可编程计数器阵列实现方

案
例1使用两个PCA模块产生接收和发送波特率

（分别为模块 0 和 1）。这两个模块被配置为软件定

时器方式，以产生波特率中断。对 PCA 的介绍见

AN007。

程序结构
在软件定时器方式，当 PCA 计数器与某个比较

模块中的值一致时，PCA 可产生一个中断。由于

PCA 计数器不停止运行，比较模块可在每个位时间

被更新以精确产生下一个位时间。另外，PCA 还提

供了在起始位检测中很有用的捕捉功能。

PCA 模块可通过交叉开关与外部信号连接。这

些信号（对模块 n 称为 CEXn）可用于触发 PCA 计

数器捕捉。在 SW UART 接收器中用到这一特性。

起始位识别是用模块 0 实现的，模块 0 被配置为在

RX 引脚出现一个下降沿时捕捉 PCA 计数器的内

容。该功能有两个优点：（1）起始位检测容易实现；

（2）由于捕捉是在检测到下降沿后立即完成的，所

以位采样时间不受中断响应延迟的影响。

实现
例1中的发送和接收操作是在PCA中断服务程

序的两个独立的状态机中实现的，如图 1 所示。

状态0: 发送起始位
- 将TX引脚置为低电平作为起始条件
- 为下一个位时间更新波特率源
- 状态变量加1

状态1-9: 发送数据位
- 将发送数据的LSB移到TX引脚
- 将停止位移到发送数据的MSB
- 为下一个位时间更新波特率源
- 状态变量加1

状态10: 停止位已发送
- 指示发送完成
- 触发用户级中断（如果被允许）
- 重新置发送器为等待状态

状态0: 发送起始位
- 将TX引脚置为低电平作为起始条件
- 为下一个位时间更新波特率源
- 状态变量加1

状态1-9: 发送数据位
- 将发送数据的LSB移到TX引脚
- 将停止位移到发送数据的MSB
- 为下一个位时间更新波特率源
- 状态变量加1

状态10: 停止位已发送
- 指示发送完成
- 触发用户级中断（如果被允许）
- 重新置发送器为等待状态

状态0: 检测到
- 装载波特率源
- 状态变量加1

状态1-8: 收到
- 将RX引脚的值
- 为下一个位时
- 状态变量加1

状态9: 捕捉停
- 指示接收完成
- 触发用户级中
- 重新置接收器

状态0: 检测到起
- 装载波特率源
- 状态变量加1

状态1-8: 收到数
- 将RX引脚的值移
- 为下一个位时间
- 状态变量加1

状态9: 捕捉停止
- 指示接收完成
- 触发用户级中断
- 重新置接收器为

中断源
1) 用户(开始发送)
2) 位时间发生器

1) 起
2) 位

发 送 状 态 机 接 收

图 1. 发送和接收状态机

接收状态机

当 SW UART 被初始化时，PCA 模块 0 被配置

为下降沿捕捉方式。它的输入（CEX0）通过交叉开

关接到一个通用 I/O 引脚（P0.2, SW_RX）。在状态

机处于状态 0 时，如果在 SW_RX 引脚检测到下降

沿，则会产生一个中断。由于模块工作在捕捉方式，

PCA 计数器的内容被装入到模块 0 捕捉寄存器。注

意该值与中断响应延迟无关。在检测到起始位后，

模块 0 被切换到软件定时器方式，并且 3/2 个位时

间被加到模块 0 捕捉寄存器中。额外的 1/2 位时间

只在检测到起始位之后使用，其作用是使采样发生

在下一个位周期的中间（见图 2）。当 PCA 计数器

计到模块 0 捕捉寄存器中的数值时，产生第一个位

采样中断（此处为 LSB）。

AN015 — 软件 UART 示例

D1D0 D2 D3 D4 D5 D6 D7
MARK

SPACE

3/2位时间 1个位时间

位采样

位时间

起始位 停止位

图 2. SW UART 位时序

状态 1-8 在模块匹配中断发生时执行。在每个

状态，从 SW_RX 采样数据位并将其移入到变量

RXSHIFT。PCA模块0的内容在每个状态都被更新，

以提供下一个位时间中断（一个位时间被加到比较

寄存器）。状态变量也被加 1。

状态 9 捕捉停止位，设置 SRI，最后使接收器

返回到等待状态。

发送状态机

用户可以通过强制 PCA 模块 1 产生中断（设置

CCF1=1）来启动一次发送。在状态 0，TX 引脚被

强制为低电平以产生起始条件。此时读 PCA 计数器

的值并将该值加上一个位时间后装入到模块 1 捕捉

寄存器。注意：从产生起始位到读出 PCA 计数值之

间要经过几个系统时钟周期。这是例 1 中唯一的中

断延迟影响位时间的地方。这个影响是可以忽略的

（最坏的情况是大约 1/16 位时间，这是在

18.432MHz 系统时钟频率、57.6 kbps 波特率的情况

下）。

状态 1-9 在发生模块匹配中断时执行。在每个

状态，TDR 的 LSB 被移出，而一个代表停止位的

‘1’被移入 TDR 的 MSB。一个位时间被加到模块

1 捕捉寄存器以产生下一个位时间。经过 9 次移位

后，数据字节+停止位被发送出去。最后发送结束

标志（STI）被置位，发送忙标志（STXBSY）被清

除，TX 状态变量被复位。

程序接口
SW UART 支持查询和中断驱动方式接口。查

询支持是通过禁止用户级中断（SES=0）来实现的。

可以通过查询发送和接收标志（分别为 STI 和 SRI）
看传输是否结束。例 1 的初始化和查询方式的编程

过程如图 3 所示。

发送

否

1

0

1

0

接收

1) 读RDR
2) 清SRI

RX结束

1) 清除STI

1) 写新数据到TDR
2) 置位CCF1以
 启动发送
3) 置位STXBSY

接收完？

SRI
STXBSY

 初始化

1) 定义SYSCLK和所希望的波特率
2) 调用SW_UART_INIT
3) 如果需要用户级中断支持，
 置位SES
4) 置位SREN以允许SW UART接收器
5) 调用SW_UART_ENABLE

STI

1

发送完？TX结束

1

0

是

是 否

图 3. 例 1 的用户级查询方式接口

AN015-1.0

AN015 — 软件 UART 示例

初始化程序 SW_UART_INIT 配置 SW UART 中用到的 PCA、中断和状态变量。

SW_UART_ENABLE 程序允许 SW UART。必须将 SREN 位置‘1’以允许接收。注意，常数

TIME_COUNT 是用软件由常数 BAUD_RATE 和 SYSCLK 计算而得。

为了使用中断方式，设置 SES=1。中断方式的编程过程如图 4 所示。

如果用户级中断支持被允许（SES=1），
则每当一次发送或接收过程结束就会产生一

个 IE7 中断。与硬件 UART 一样，用户软件

必须通过检查发送/接收结束标志来确定中

断源。如果发送和接收同时完成，用户软件

将只收到一个中断，IE7 中断服务程序必须

能处理这种情况。有两种处理方式：（1）在

一次中断服务程序执行中同时处理发送和接

收，（2）处理一个（STI 或 SRI）并强制产生

一个中断使中断服务程序被重新调用以服务

另一个中断。建议采用第二种方案，这样可

使中断服务程序的执行时间最短。

示例程序中提供了 SW UART 与 HW
UART 接口的测试代码。跳线连接方式如图

5 所示。

P0.0 (HW_TX)

P0.3 (SW_RX)

P0.1 (HW_RX)

P0.2 (SW_TX)

图 5. 例 1 的测试配置 图 4. 例 1 的用户级中断方式接口

测试代码配置并允许 HW UART，使其工作于方式 1 并使用定时器 1 作为波特率发生器。测

试代码还完成对定时器 1 的设置。通过改变 BAUD_RATE 和 SYSCLK 常数可以测试不同的波特

率和晶体。硬件和软件 UART 的波特率计数值用软件根据这些常数计算而得。测试程序在两个方

1

0

1

0

1

0

IE7中断

清除IE7中断标志

1) 读RDR
2) 清SRI

退出ISR

1) 重新触发IE7

1) 清除STI
2) 写新数据到TDR
3) 置位CCF1以
 启动发送
4) 置位STXBSY

STI || SRI

SRI

STI

AN015-1.0

AN015 — 软件 UART 示例

向上各发送 15 个字符。

为了测试查询方式下的 SW UART，给下行加上注释符：

 ; INTERRUPT_TEST();

去掉下行的注释符：

 POLLED_TEST();

将上面的步骤反过来可测试中断方式下的 SW UART。去掉下行的注释符

 INTERRUPT_TEST();

给下行加上注释符

 ; POLLED_TEST();

例 2 中执行时间最长的状态需要 113 个系统时钟周期（TX 状态 1-9）。对于 18.432MHz 的晶

体，SW UART 发送或接收操作在最坏的情况下需要 6µs/位（113*TSYSCLK）。在 57.6 kbps 的波特

率下，发送或接收占大约 35%的 CPU 带宽（全双工时占 70%）。对于例 1 的软件，用 Keil 编译器

编译时全双工的软件开销可用下式估算：

全双工软件开销（%）≈BAUD_RATE/81000。

按照上面的公式，波特率高于 80 kbps 时不能支持全双工操作。只有在 SW UART 正在进行传

输过程时才会有软件开销的限制。

例 2：8 位定时器实现方案
在例 2 中，SW UART 使用定时器 0 工作于方式 3。在该方式下，定时器 0 被分成两个 8 位定

时器：一个用于发送，一个用于接收。TL0 用作接收定时器；TH0 用作发送定时器。

当定时器 0 工作于方式 3 时，定时器 1 不能设置 TF1 标志，不能产生中断，也不能用外部信

号作为时钟。但是，如果被配置为方式 2（自动重装载的 8 位定时器），则定时器 1 仍可被用作

HW UART 的波特率发生器。在定时器 0 工作于方式 3 时，可以通过工作方式设置来禁止/允许定

时器 1。定时器 1 在方式 3 时被禁止，在其它方式被允许。

用定时器 1 作为 HW UART 的波特率源时，本方案大概是对硬件资源的最有效利用。缺点是

软件开销增加（相对于 16 为定时器方案）。定时器 0 的方式 3 没有自动重装载能力；手动装载定

时器需要在每次执行中断服务程序（ISR）时进行 16 位的数据传送。另外，中断延迟会影响位时

间精度。可以将定时器的预装值加上一个校正常数以补偿典型中断延迟，但是无法考虑中断延迟

之间的差别。

较低的波特率可能需要用大于 8 位长度的定时器对位时间计时。在 SYSCLK 为 18.432MHz
且定时器 0 工作于 SYSCLK/1 方式的情况下，低于 72kbps 的波特率需要大于 256 的定时器计数值。

可选方案包括：

1）使用定时器 0 工作在 SYSCLK/12 方式。这样可以用 8 位长度得到较低的波特率，但要得

 AN015-1.0 5

AN015 — 软件 UART 示例

到标准波特率/SYSCLK 的组合将更加困难。

2）使用定时器 0 工作在 SYSCLK/1 方式，但要在定时器 ISR 中手动操作高位定时器字节。

注意：不管波特率为何，对每次发送和接收，使用该方法时每隔 256 个 SYSCLK 将产生一个中断

（每次低 8 位溢出时产生一个中断）。例 2 的软件是选项 2 的实例。

程序结构
例 2 中的发送和接收操作是在定时器 0 和定时器 1 中断服务程序的两个独立的状态机中实现

的（见图 1）。定时器 0 的中断服务程序管理接收状态机；定时器 1 的中断服务程序管理发送状态

机。/INT0 的中断服务程序启动接收状态机，但在接收状态不为 0 时被禁止。SW UART 接收器用

外部中断源/INT0 捕捉起始位，/INT0 被配置为下降沿触发。在等待一个起始位时，/INT0 被允许，

但在传输过程中/INT0 被禁止。/INT0 通过交叉开关连到通用 I/O 引脚。有关交叉开关配置的详细

信息见 AN001。

由于在中断服务程序中所有的定时器装载都是手动完成的，所以必须对中断延迟进行补偿。

从每个定时器预装值中减去一个‘溢出常数’，以补偿这个中断延迟和程序从定时器溢出到重装定

时器初值所需要的执行时间。这些常数与 SYSCLK 频率或波特率无关，但是没有考虑到中断延迟

的变化。

实现
注：对于本例的讨论，假设波特率低到用 8 位定时器不能满足要求。直接地址字节 BCRHI

和 BCTHI 分别用于手动管理发送和接收定时器的高字节。

发送状态机

当 SW UART 被初始化并被允许时，TX 中断有效但仍被禁止。用户通过允许发送中断来启动

传送过程（注意，定时器 0 的高字节 TH0 产生 TX 中断）。

在状态 0，TX 引脚被强制为低电平以产生起始条件，定时器被装入一个位时间以产生下一个

中断。
mov BCTHI, #HIGH(TX_BT) ; 将高字节装入 BCTHI
mov TH0, #-LOW(TX_BT) ; 将低字节装入 TH0

注意，BCTHI 的装入值是无符号的位时间高字节，而 TH0 的装入值是位时间低字节的负数。

这是因为定时器 0（与所有硬件定时器一样）是一个加 1 计数器，而 BCTHI 向下计数。TH0 在从

0xFF 计到 0x00 时发生溢出并产生一个中断；BCTHI 在每次中断时减 1，当减到 0 时表示计满一

个位时间。

对于状态 1-9，每当 BCTHI 达到 0 时有一个状态被执行。在每个状态，发送数据寄存器（TDR）
的 LSB 被移出到 TX 引脚。TX 定时器被装入一个位时间值，一个‘1’被移入 TDR 的 MSB 以代

表状态 9 的停止位（在传输完成后 TDR 中应保持 0xFF）。

6 AN015-1.0

AN015 — 软件 UART 示例

状态 10将发送结束标志（STI）
置 ‘ 1 ’， 清 除 发 送 忙 标 志

（STXBSY），并触发一个 IE7 中断

（如果用户级中断支持被允许）。

接收状态机

在状态 0，/INT0 用做 RX 输入

（被配置为下降沿有效，高优先

级）。发生/INT0 中断意味着检测到

起始条件。/INT0 的中断服务程序

用 3/2 位时间装载 RX 定时器（TL0
+ BCRHI）。BCRHI 在每次 TL0 溢

出时减 1。

状态 1-8 在 BCRHI 达到 0 时

执行。在每个状态，SW_RX 引脚

被采样并被移入变量 RXSHIFT 的

LSB。RX 定时器被重新装载以产

生下一个采样时间。状态 9 捕捉停

止位，但没有提供帧错误检测（未

检测停止位极性）。如果用户级中

断被允许，该状态允许并触发 IE7
中断。

程序接口
例 2 支持查询和中断驱动方式接口。查询方式的初始化过程和程序流程示于图 6。在该例中

TIME_COUNT 常数必须明确定义。

图 7 给出了中断方式下 IE7 中断服务程序的流程。注意，接收操作首先被服务，因为它对延

迟最敏感。

为了处理发送和接收同时完成的情况，本例的程序在完成对一个功能的服务后又重新自触发

去服务另一个功能。

 图 6.例 2 的用户级查询方式接口

本例的程序中提供了测试代码。为了测试查询方式的代码，在主程序中去掉下行的注释符

ajmp PolledRX_PolledTX

发送

否

1

0

1

0

接收

1) 读RDR
2) 清SRI

RX结束

1) 清除STI

1) 写新数据到TDR
2) 置位ETI以
 启动发送
3) 置位STXBSY

接收完？

SRI
STXBSY

 初始化

1) 根据所希望的波特率和SYSCLK
 定义TIME_COUNT
2) 调用SW_UART_INIT
3) 如果需要用户级中断支持，
 置位SES
4) 置位SREN以允许SW UART接收器
5) 调用SW_UART_ENABLE

STI

1

发送完？TX结束

1

0

是

是 否

 AN015-1.0 7

AN015 — 软件 UART 示例

给下行加上注释符：

; ajmp InterruptRX_InterruptTX

为了运行中断方式的测试代码，将上面的步骤反过来。给下行加上注释符

; ajmp PolledRX_PolledTX

去掉下行的注释符

ajmp PolledRX_PolledTX

在 SW_GPIO_TX 和 SW_GPIO_RX 之

加一个跨接片即可很容易地对 SW UART 进

快速评估。注意，这种评估方法只对中断方

的测试代码有用。

间

行

式

给

可

在 SYSCLK 为 18.432MHz 时，例 2 中

出的软件工作在全双工方式时最大波特率

达到 57.6kbps。

图 7. 例 2 的用户级中断接口

0

1

1

0

1

0

IE7中断

清除IE7中断标志

1) 读RDR
2) 清SRI

STI

退出ISR

1) 重新触发IE7

1) 清除STI
2) 写新数据到TDR
3) 置位ETI以
 启动发送
4) 置位STXBSY

STI

SRI

1) 重新触发IE7

1

STI

1

0

8 AN015-1.0

AN015 — 软件 UART 示例

示例代码
//--
//
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// 文件名 : AN015_1.c
// 目标器件 : C8051F00x, C8051F01x
// 编写日期 : 03/10/01
// 作者 : JS
//
// 软件 UART程序，使用 PCA作为波特率发生器。
// PCA模块 0用作接收波特率源和起始位检测器。为了检测起始位，模块 0被配置为
// 负沿捕捉方式。对于所有其它的 SW_UART操作，模块 0被配置为软件定时器。模块
// 匹配中断用于产生波特率。模块 1用软件定时器方式产生发送波特率。
// 程序假设一个外部晶体连接在 XTAL1和 XTAL2引脚之间。
// 外部晶体的频率应在 SYSCLK常数中定义。
//
// 初始化过程:
// 1) 根据外部晶体频率定义 SYSCLK。
// 2) 定义所期望的波特率 BAUD_RATE。
// 3) 调用 SW_UART_INIT()。
// 4) 置位 SREN以允许 SW_UART接收器。
// 5) 置位 SES，只在需要用户级中断支持时。
// 6) 调用 SW_UART_ENABLE()。
//
// 发送:
// 1) 查询 STXBSY是否为 0。
// 2) 写数据到 TDR。
// 3) 置位 CCF1以启动发送。
// 4) 发送完成时置位 STI。如果用户级中断被允许，产生一个 IE7中断。
//
// 接收:
// 1) 如果在查询方式，查询 SRI。如果在中断方式，在 IE7中断服务程序中查询 SRI。
// 2) 从 RDR读数据。
//
// 示例代码中包含查询和中断方式的测试代码。测试代码假设 HW_UART和 SW_UART引脚
// 在外部相连：
// P0.0 (HW_UART TX) -> P0.3 (SW_UART RX)
// P0.1 (HW_UART RX) -> P0.2 (SW_UART TX)
//
// 为了使用查询方式的测试代码，将位于主程序底端的对 INTERRUPT_TEST()的调用行
// 前面加上注释符，并去掉调用 POLLED_TEST()的程序行前面的注释符。为了测试中断
// 方式，在 POLLED_TEST()调用行前面加上注释符，并去掉调用 INTERRUPT_TEST()
//的程序行前面的注释符。
//

 AN015-1.0 9

AN015 — 软件 UART 示例

// 测试程序配置硬件 UART用定时器 1作为波特率源。定时器 1的预装值用 SYSCLK和
// BAUD_RATE常数自动计算。
//
//--
// 包含文件
//--
#include <c8051f000.h> // SFR声明

//--
// 全局常量
//--

#define BAUD_RATE 57600 // 用户定义的 SW_UART波特率
#define SYSCLK 18432000 // 系统时钟取自外部 18.432MHz晶体

#define TIME_COUNT SYSCLK/BAUD_RATE/4 // 对应一个位时间的 PCA计数值
 // (PCA 被配置为对 SYSCLK/4
 // 计数)

#define TH_TIME_COUNT TIME_COUNT*3/2 // 3/2位时间，在接收到一个起
 // 始位之后使用。在起始位边沿之
 // 后 RX应在一个位时间内保持低
 // 电平，第一个位采样在下一个位

// 时间的中间开始。

#define HW_TIME_COUNT SYSCLK/BAUD_RATE/16 // 用于产生 HW_UART波特率
 // 的定时计数值。根据前面定
 // 义的常数 SYSCLK和
 // BAUD_RATE自动计算。

//--
//全局变量
//--

bit SRI; // SW_UART接收完成标志
bit STI; // SW_UART 发送完成标志
bit STXBSY; // SW_UART 发送忙标志
bit SREN; // SW_UART 接收允许
bit SES; // SW_UART 用户级中断支持允许

sbit SW_RX = P0^2; // SW_UART 接收引脚
sbit SW_TX = P0^3; // SW_UART 发送引脚

char TDR; // SW_UART 发送数据寄存器
char RDR; // SW_UART 接收数据寄存器(锁存器)

// 测试变量
char k, m; // 测试计数器
char idata SW_BUF[20]; // SW_UART测试接收缓冲区

10 AN015-1.0

AN015 — 软件 UART 示例

bit HW_DONE; // HW发送结束标志(发送完 15个字符)
bit SW_DONE; // SW发送结束标志(发送完 15个字符)

//--
// 函数原型
//--

void SW_UART_INIT(); // SW_UART初始化程序
void SW_UART_ENABLE(); // SW_UART允许程序
void PCA_ISR(); // SW_UART中断服务程序
void INTERRUPT_TEST(void); // SW_UART中断方式测试程序
void POLLED_TEST(void); // SW_UART查询方式测试程序
void USER_ISR(void); // SW_UART测试中断服务程序
void HWU_INIT(void); // HW_UART初始化程序
void HW_UART_ISR(void); // HW_UART中断服务程序

//--
// 主程序
//--
// - 禁止看门狗定时器
// - 配置外部晶体；稳定后将 SYSCLK切换到外部晶体。
// - 配置交叉开关和端口。
// - 初始化并允许 SW_UART。
// - 调用测试程序。
//
void MAIN (void){
 int delay; // 延时计数器

 OSCXCN = 0x66; // 允许外部晶体
 WDTCN = 0xDE; // 禁止看门狗定时器
 WDTCN = 0xAD;

 // Port Setup
 XBR0 = 0x0C; // HW_UART连到 P0.0和 P0.1;

 // CEX0连到 P0.2.
 XBR2 = 0x40; // 允许交叉开关，允许上拉

 PRT0CF = 0x09; // 将 P0.0 (HW TX)和 P0.3 (SW TX)
 // 配置为推挽输出

 delay=256; // 在查询 XTLVLD之前延时>1 ms
 while(delay--);

 while (!(OSCXCN & 0x80)); // 等待外部晶体起振
 OSCICN = 0x0C; // 切换到外部振荡器
 OSCICN = 0x88; // 禁止内部振荡器；允许时钟丢失检测器

 while (!(OSCXCN & 0x80)); // 等待外部晶体起振

 AN015-1.0 11

AN015 — 软件 UART 示例

 OSCICN = 0x08; // 切换到外部振荡器

// POLLED_TEST(); // 调用查询方式 SW_UART测试程序
 INTERRUPT_TEST(); // 调用中断方式 SW_UART测试程序

 while(1); // 原地循环
}

//--
// 函数
//--

//--
// INTERRUPT_TEST: SW_UART中断方式测试
// 测试代码用 SW_UART中断方式向 HW_UART发送 15个字符并从 HW_UART接收 15个
// 字符（在中断方式）。
// - 初始划并允许 SW_UART & HW_UART
// - 清 0所有测试变量和计数器
// - 从 HW_UART向 SW_UART发送 15个字符，同时从 SW_UART向 HW_UART发送 15个
// 字符
//
void INTERRUPT_TEST(void){

 SW_UART_INIT(); // 初始化 SW_UART
 SW_UART_ENABLE(); // 允许 SW_UART
 SREN = 1; // 允许 SW_UART接收器
 SES = 1; // 允许用户级中断支持

 HWU_INIT(); // 配置 HW_UART，用于测试程序

 k=m=0; // 清 0用户 ISR计数器

 HW_DONE=0; // 清 0传输完成标志
 SW_DONE=0; //

 IE |= 0x10; // 允许 HW_UART中断。
 STI=1; // 指示发送完成以启动下一次发送。

 EIE2 |= 0x20; // 通过允许并强制一个 IE7中断来
 PRT1IF |= 0x80; // 启动软件发送（SW_TX）。

TI = 1; // 通过强制 TX中断启动一次
 // HW_UART发送。

 while(!(HW_DONE&SW_DONE)); // 等待发送结束。
}

//--
// POLLED_TEST：SW_UART查询方式测试
// 测试代码用 SW_UART查询方式向 HW_UART发送 15个字符并从 HW_UART接收 15个

12 AN015-1.0

AN015 — 软件 UART 示例

// 字符。
// - 初始化并允许 SW_UART & HW_UART
// - 清 0所有测试变量和计数器
// - 从 HW_UART发送 15个字符，由 SW_UART接收。
// - 从 SW_UART发送 15个字符，由 HW_UART接收
//
void POLLED_TEST(void){

 SW_UART_INIT(); // 初始化 SW_UART
 SW_UART_ENABLE(); // 允许 SW_UART
 SREN = 1; // 允许 SW_UART接收器
 SES=0; // 禁止用户级中断支持

 HWU_INIT(); //配置 HW_UART，用于测试程序
 k=m=0; // 清 0测试计数器变量
 HW_DONE=0; // 清 0传送完成标志
 SW_DONE=0; //
 IE |= 0x10; // 允许 HW_UART中断

TI = 1; // 通过强制 TX中断来启动一次
// HW_UART发送。

 // 用 SW_UART接收 15个字符；用 HW_UART发送。
 while(SREN){ // 在 SW_UART被允许时执行。
 if (SRI){ // 如果接收完成:
 SRI = 0; // 清除接收标志
 SW_BUF[k++] = RDR; // 读接收缓冲器
 if (k==15){ // 如果已收到 15个字符：
 SREN = 0; // 禁止 SW_UART接收器。
 } // 指示已收到 15个字符。
 }
 }

 //用 SW_UART发送 15个字符；用 HW_UART接收。
 while(STXBSY); // 查询忙标志
STXBSY = 1; // 占用 SW_UART发送器
 TDR=m++; // 装发送数据
 CCF1=1; // 通过强制 PCA模块 1中断来
 // 启动第一次 SW_UART发送。
 while(!SW_DONE){ // SW_UART发送

// HW_UART接收

 if (STI){ // 如果发送完成：
 STI = 0; // 清除发送标志。
 if (m<16){ // 发送 15个字符。
 STXBSY = 1; // 占用 SW_UART发送器

TDR = m++; // 发送，变量增 1
 CCF1 = 1; // 强制模块 1中断以启动发送

 AN015-1.0 13

AN015 — 软件 UART 示例

 }
 else // 如果这是第 15个字符，
 SW_DONE=1; // 表示这是发送的最后一个字符。
 }
 }
}

//--
// HWU_INIT: HW_UART初始化程序
// 初始化 HW_UART，用于 SW_UART测试。
// - HW_UART工作于方式 1
// - 定时器 1用做波特率源，以 SYSCLK为时钟。
//
void HWU_INIT(void) {

 PCON |= 0x80; // SMOD=1（HW_UART使用定时器 1
 // 溢出，不分频）。

 TMOD = 0x20; // 配置定时器 1为 HW_UART所用
 CKCON |= 0x10; // 定时器 1用 SYSCLK作为时钟
 TH1 = -HW_TIME_COUNT; // 定时器 1初始值
 TL1 = -HW_TIME_COUNT; // 定时器 1重载值

 TR1 = 1; // 启动定时器 1

 RI=0; // 清除 HW_UART接收和发送完成标志
 TI=0; //

 SCON = 0x50; // 配置 HW_UART为方式 1，允许接收
}

//--
// SW_UART_INIT: SW_UART初始化程序
// 初始化 SW_UART。
// - 配置 PCA: 模块 0为负沿捕捉方式；模块 1为软件定时器方式；
// PCA时基 = SYSCLK/4；禁止 PCA中断；禁止 PCA计数器
// - 清除 PCA模块 0和模块 1中断
// - 复位 TX和 RX状态变量
//
void SW_UART_INIT(void){

 PCA0CPM0 = 0x10; // 模块 0为负沿捕捉方式；
 // 禁止模块 0中断。

 PCA0CPM1 = 0x48; // 模块 1为软件定时器方式；
 // 禁止模块 1中断。

 PCA0CN = 0; // PCA保持禁止状态
 PCA0MD = 0x02; // PCA时基 = SYSCLK/4；
 // 禁止 PCA计数器中断。

 CCF0 = 0; // 清除 PCA模块 0和模块 1
 CCF1 = 0; // 捕捉/比较中断。

 SRI = 0; // 清除接收完成标志。

14 AN015-1.0

AN015 — 软件 UART 示例

 STI = 0; // 清除发送完成标志。

SW_TX = 1; // 将 TX线初始化为高电平
 STXBSY = 0; // 清除 SW_UART忙标志

}

//--
// SW_UART_ENABLE: SW_UART允许程序
// 允许 SW_UART
// - 允许 PCA模块 0中断
// - 允许 PCA模块 1中断
// - 启动 PCA计数器
//
void SW_UART_ENABLE(void){

 PCA0CPM0 |= 0x01; // 允许 PCA模块 0（接收）中断。
 PCA0CPM1 |= 0x01; // 允许 PCA模块 1（发送）中断。

 CR = 1; // 启动 PCA计数器
 EIE1 |= 0x08; // 允许 PCA中断
 EA = 1; // 全局中断允许

}
//--
// 中断服务程序
//--
//
// PCA_ISR: PCA中断服务程序。
// 该 ISR由发送和接收函数触发，在每个发送和接收位都被触发一次
// - 检查模块 0中断标志(CCF0)；如果置位，服务接收状态。
// - 检查模块 1中断标志(CCF1)；如果置位，服务发送状态。
//
void PCA_ISR(void) interrupt 9 {

 static char SUTXST = 0; // SW_UART TX状态变量
 static char SURXST = 0; // SW_UART RX状态变量
 static unsigned char RXSHIFT; // SW_UART RX移位寄存器

 unsigned int PCA_TEMP; // 临时存储变量，
 // 用于处理 PCA模块的高和低字节

 // 首先检查接收中断变量，如果 CCF0置位则对其服务。
 if (CCF0){
 CCF0 = 0; // 清除中断标志
 switch (SURXST){

 // 状态 0:收到起始位。
 // 在该状态，是 SW_TX上的负边沿触发的中断，表示检测到起始位，
 // 同时 PCA0CP0寄存器捕捉 PCA0的值。
 // - 检查接收允许和起始位
 // - 将 PCA模块 0切换到软件定时器方式

 AN015-1.0 15

AN015 — 软件 UART 示例

 // - 加 3/2位时间到模块 0捕捉寄存器以采样 LSB。
 // - RX状态变量加 1。
 case 0:
 if (SREN & ~SW_RX){ //检查接收允许和起始位

 PCA_TEMP = (PCA0CPH0<<8); // 将模块 0的内容读到
 PCA_TEMP |= PCA0CPL0; // PCA_TEMP。

 PCA_TEMP += TH_TIME_COUNT; // 加 3/2位时间到 PCA_TEMP

 PCA0CPL0 = PCA_TEMP; // 更新 PCA0CPL0和
 PCA0CPH0 = (PCA_TEMP >> 8);// PCA0CPH0

 PCA0CPM0 = 0x49; // 将模块 0切换到软件定时器
 // 方式，允许中断。

 SURXST++; // 更新 RX状态变量。
 }
 break;

 // 状态 1-8: 收到数据位
 // - 采样 SW_RX引脚
 // - 将新数据位移入 RXSHIFT
 // - 加 1个位时间到模块 0捕捉寄存器
 // - RX状态变量增 1
 case 1:
 case 2:
 case 3:
 case 4:
 case 5:
 case 6:
 case 7:
 case 8:

 RXSHIFT = RXSHIFT >> 1; // 右移一位
 if (SW_RX) // If SW_RX=1，
 RXSHIFT |= 0x80; // 将‘1’移入 RXSHIFT的 MSB

 PCA_TEMP = (PCA0CPH0 << 8);// 将模块 0内容读到 PCA_TEMP。
 PCA_TEMP |= PCA0CPL0; //

 PCA_TEMP += TIME_COUNT; // 加一个位时间到 PCA_TEMP

 PCA0CPL0 = PCA_TEMP; // 更新 PCA0CPL0和 PCA0CPH0
 PCA0CPH0 = (PCA_TEMP >> 8);

 SURXST++; // 更新 RX状态变量。
 break;

 // 状态 9: 已收到 8个数据位，捕捉停止位。
 // - 将 RXSHIFT传送到 RDR。

16 AN015-1.0

AN015 — 软件 UART 示例

 // - 置位 SRI (表示接收完成)。
 // - 设置模块 0，为下一次传输做准备。
 // - 复位 RX状态变量
 // - 触发 IE7（如果用户级中断支持被允许）
 case 9:

 RDR = RXSHIFT; // 将接收到的数据传送到接收寄存器。
 SRI = 1; // 置‘1’接收完成标志。

 PCA0CPM0 = 0x11; // 切换模块 0到负沿捕捉方式；
 // 允许中断以检测起始位。

 SURXST = 0; // 复位 RX状态变量

 if (SES){ //如果用户级中断支持被允许
 EIE2 |= 0x20; // 允许 IE7.
 PRT1IF |= 0x80; // 触发 IE7.
 }
 break;

 }
 }

 // 检查发送中断，如果 CCF1置位则对其服务。
 else if (CCF1){
 CCF1 = 0; // 清除中断标志
 switch (SUTXST){

 // 状态 0：发送过程已启动
 // 在此，用户已将要发送的字节装入到 TDR，强制模块 1中断以启动发送。
 // - 发送起始位(使 SW_TX变低)
 // - 读 PCA0，加一个位时间后存到模块 1捕捉寄存器。
 // - TX状态变量增 1。
 case 0:

 SW_TX = 0; // 使 TX引脚变低作为起始位

 PCA_TEMP = PCA0L; // 将 PCA计数器的值读到
 PCA_TEMP |= (PCA0H << 8); // PCA_TEMP

 PCA_TEMP += TIME_COUNT; // 加一个位时间

 PCA0CPL1 = PCA_TEMP; // 将更新后的匹配值存到模块 1
 PCA0CPH1 = (PCA_TEMP >> 8);// 的捕捉比较寄存器

 PCA0CPM1 |= 0x48; // 允许模块 1软件定时器

 SUTXST++; // 更新 TX状态变量
 break;

 // 状态 1-9: 发送数据位

 AN015-1.0 17

AN015 — 软件 UART 示例

 // - 将 TDR的 LSB输出到 TX
 // - 将 TDR右移一位
 // - 将一个‘1’移入 TDR的 MSB作为状态 9的停止位
 // - 加一个位时间到模块 1捕捉寄存器
 case 1:
 case 2:
 case 3:
 case 4:
 case 5:
 case 6:
 case 7:
 case 8:
 case 9:

 SW_TX = (TDR & 0x01);// 将 TDR的 LSB输出到 SW_TX引脚。
 TDR >>= 1; // TDR右移一位。
 TDR |= 0x80; // 将一个‘1’移入 TDR的 MSB
 // 作为状态 9的停止位

 PCA_TEMP = (PCA0CPH1 << 8);// 将模块 1内容读到 PCA_TEMP
 PCA_TEMP |= PCA0CPL1;

 PCA_TEMP += TIME_COUNT; // 加一个位时间到 PCA_TEMP

 PCA0CPL1 = PCA_TEMP; // 更新 PCA0CPL1
 PCA0CPH1 = (PCA_TEMP >> 8);// 和 PCA0CPH1

 SUTXST++; // 更新 TX状态变量。
 break;

 // 状态 10: 最后一位数据已发送完。发送停止位并结束传输过程。
 // - 发送停止位
 // - 置‘1’发送结束标志，清除忙标志
 // - 复位 TX状态
 // - 设置模块 1，为下一次传输做准备。
 // - 触发 IE7（如果用户级中断支持被允许）
 case 10:

 STI = 1; // 表示发送完成。
 SUTXST = 0; // 复位 TX状态。
 SW_TX = 1; // SW_TX应保持高电平。

 PCA0CPM1 = 0x01; // 禁止模块 1软件定时器，
 // 保持中断为允许状态，以备下一

// 次传输

 if (SES){ //如果用户级中断支持被允许：
 EIE2 |= 0x20; // 允许 IE7
 PRT1IF |= 0x80; // 触发 IE7
 }

18 AN015-1.0

AN015 — 软件 UART 示例

 STXBSY = 0; // SW_UART TX空闲
 break;
 }
 }
}

//--
// USER_ISR：用户 SW_UART中断服务程序(IE7 ISR)
// 如果中断测试方式被允许，该 ISR将发送 15个字符并接收 15个字符。
// 每次 SW_UART发送或接收完成都要触发该例程。
// - 检查接收完成指示标志并服务。
// - 检查发送完成指示标志并服务。
// - 检查 ISR执行期间是否有发送和接收过程完成；如有，再触发一次中断。
//
void USER_ISR(void) interrupt 19 { // IE7中断服务程序

 PRT1IF &= ~(0x80); // 清除 IE7中断标志

 if (SRI){ // 如果接收完成：
 SRI = 0; // 清除接收标志。
 SW_BUF[k++] = RDR; // 读接收缓冲器
 if (k==16){ // 如果已收到 15个字符：
 SREN=0; // 禁止 SW_UART接收器。
 } // 表示收到 15个字符。
 }

 else if (STI){ // 如果发送完成：
 STI = 0; // 清除发送标志。

 if (m<15){ // 如果已发送的字符不足 15个：
 STXBSY = 1; // 占用 SW_UART发送器。
 TDR = m++; // 变量加 1，发送。
 CCF1 = 1; // 强制模块 1中断以启动发送
 }
 else
 SW_DONE=1; // 表示已发送完最后一个字符。
 }

 if (STI|SRI) // 如果 SRI或 STI置位，再次触发
 PRT1IF |= 0x80; // 中断服务。
}

//--
// HW_UART_ISR: 硬件 UART中断服务程序
// 发送字符 1-15，并接收 15个字符。
// - 检查接收中断并服务。
// - 检查发送中断并服务。
//
void HW_UART_ISR(void) interrupt 4 {

 AN015-1.0 19

AN015 — 软件 UART 示例

 static char i=0; // 发送数据变量
 static char j=0; // 接收数据的下标
 static idata char HW_BUF[20]; // 接收数据缓冲区

 if (RI){ // 如果接收完成：

 RI=0; // 清除接收标志
 HW_BUF[j++] = SBUF; // 读接收缓冲区
 if (j==15) // 如果已收到 15个字符：
 REN=0; // 禁止 HW_UART接收器
 }

 else if (TI){ // 如果发送完成：

 TI = 0; // 清除发送标志
 if (i<15) // 如果还有要发送的字符：
 SBUF=i++; // 变量加 1，发送
 else // 如果已发送完 15个字符，
 HW_DONE=1; // 指示 HW TX结束。

 }
}

// 例 1结束

;---
; COPYRIGHT 2001 CYGNAL INTEGRATED PRODUCTS, INC.
;
; 文件名 : an015_2.ASM
; 目标 MCU : C8051F000
; 说明 : 软件 UART示例源码
;
; 实现笔记：
; - 使用定时器 0工作于方式 3（两个 8位定时器）
; - 定时器 0运行/溢出用于 RX状态机
; -定时器 1溢出用于 TX状态机
; - 8-N-1格式，无帧错误检测
; - 使用 IE7作为用户级中断
; - 基于状态表的实现方案，使用单字节 PC偏移量
; - 使用/INT0下降沿检测起始位
;
;---

;---
; 等价定义
;---

20 AN015-1.0

AN015 — 软件 UART 示例

$MOD8F000

; SW UART常量
SW_TX_GPIO EQU P0.4 ; SW UART TX GPIO引脚（可以是任一 GPIO引脚）
SW_RX_GPIO EQU P0.2 ; SW UART RX GPIO引脚（必须是/INT0）

TIME_COUNT EQU 320
 ; 注：320是保证可靠全双工操作的极限值
 ; 对于 SYSCLK = 18.432 MHz：
 ; 115200 = 160
 ; 57600 = 320
 ; 38400 = 480
 ; 19200 = 960
 ; 9600 = 1920
 ; 4800 = 3840
 ; 2400 = 7680

TX_CORR EQU 41 ; (41) 在发送周期的定时器预装校正值
RX_CORR EQU 47 ; (47) 在接收周期的定时器预装校正值
THALF_CORR EQU 113 ; (113) 对于 3/2 RX的定时器预装校正值

TX_BT EQU TIME_COUNT - TX_CORR ; 实际的 16位位计数器周期值
 ; TX
RX_BT EQU TIME_COUNT - RX_CORR ; 实际的 16位位计数器周期值
 ; RX
THALF_BT EQU TIME_COUNT*3/2 - THALF_CORR;实际的 16位1.5位计数器周期值
 ; RX

RX_BUFSIZE EQU 16 ; 接收缓冲区字符个数
;---
; 变量
;---

BSEG
 org 0h

SRI: DBIT 1 ; SW UART 接收完成标志
STI: DBIT 1 ; SW UART 发送完成标志
STXBSY: DBIT 1 ; SW UART 发送忙标志
SREN: DBIT 1 ; SW UART 接收允许
SES: DBIT 1 ; SW UART 用户级中断支持允许

DSEG at 30h

TDR: DS 1 ; SW UART 发送数据寄存器
RDR: DS 1 ; SW UART 接收数据寄存器
RXSHIFT: DS 1 ; SW UART 接收移位寄存器
SURXST: DS 1 ; SW UART 接收状态变量
SUTXST: DS 1 ; SW UART 发送状态变量
BCRHI: DS 1 ; 用于SW UART接收的 16位位定时器的MSB
BCTHI: DS 1 ; 用于SW UART发送的 16位位定时器的MSB

 AN015-1.0 21

AN015 — 软件 UART 示例

;测试变量
RX_TAIL: DS 1 ; 接收消息缓冲区的写指针
TX_VAL: DS 1 ; 待发送数值
;-------------------
; 间接地址空间变量

ISEG at 80h

RX_BUF: DS RX_BUFSIZE ; 接收消息缓冲区

;-------------------
; 堆栈

STACK_TOP: DS 1 ; 符号表中的占位符，定义硬件堆栈的起始地址

;---
; 宏定义
;---

;---
; 复位和中断向量表
;---

CSEG
 org 00h
 ljmp Reset ; 系统复位初始化向量

 org 03h
 ljmp INT0_ISR ; 软件 UART接收起始位检测

 org 0bh
 ljmp Timer0_ISR ; 软件 UART接收状态机中断

 org 1bh
 ljmp Timer1_ISR ; 软件 UART发送状态机中断

 org 9bh
 ljmp IE7_ISR ; 用户级软件 UART中断

;---
; 主程序代码
;---

 org 0B3h

Main:
 ajmp PolledRX_PolledTX ; 这些行中留一行不被注释掉

; ajmp InterruptRX_InterruptTX ;

 sjmp $; 原地跳转

;---

22 AN015-1.0

AN015 — 软件 UART 示例

; 主例程
;---

;---
; PolledRX_PolledTX
;---
; 该例程演示查询方式访问 SW UART。
;
; 发送器发送从$00到$ff的序列
;
; 接收器接收字符并存入一个循环缓冲区。
;
PolledRX_PolledTX:
 acall SW_UART_Init ; 初始化 SW UART（保持在禁止状态）

 setb SREN ; 允许 SW UART接收器
 clr SES ; 禁止用户级中断支持
 acall SW_UART_Enable ; 允许 SW UART

 ; 发送消息 – 查询方式
 jb STXBSY, $; 等待 SW TX可用

 ; 发送字符$00到$ff
 clr a
TX_LOOP: setb STXBSY ; 占用 SW UART发送器
 mov TDR, a ; 写字符到发送数据寄存器
 setb ET1 ; 启动 SW TX操作
 inc a ; 设置下一个发送值
 jnb STI, $; 等待发送结束
 clr STI ; 清除发送完成标志
 jnz TX_LOOP
TX_LOOP_END:

 mov RX_TAIL, #RX_BUF ; 初始化尾指针

 ; 接收消息 – 查询方式
RX_LOOP: mov r0, RX_TAIL ; 待写字符的间接地址
 jnb SRI, $; 等待接收字符
 clr SRI ; 清除接收完成标志
 mov @r0, RDR ; 保存接收值
 inc RX_TAIL ; 尾指针加 1
 mov a, RX_TAIL ; 处理尾指针回绕
 add a, #-(RX_BUF + RX_BUFSIZE)
 jnc RX_LOOP
 mov RX_TAIL, #RX_BUF ; 尾指针回绕

 sjmp RX_LOOP ; 一直重复下去

;---
; InterruptRX_InterruptTX
;---

 AN015-1.0 23

AN015 — 软件 UART 示例

; 该例程演示中断访问 SW UART。
;
; 接收器接收字符并存入一个循环缓冲区。
; 发送和接收例程都位于 IE7_ISR处理程序中
;
InterruptRX_InterruptTX:

 acall SW_UART_Init ; 初始化 SW UART（保持在禁止状态）
 setb SES ; 允许用户级中断支持
 setb SREN ; 允许 SW UART接收器

 mov RX_TAIL, #RX_BUF ; 初始化尾指针

 acall SW_UART_Enable ; 允许 SW UART

 setb STI ; 通过允许并触发 IE7强制启动 SW UART
 orl EIE2, #00100000b ; 发送器
 orl PRT1IF, #10000000b;

 sjmp $

;---
; 中断向量
;---
;---
; 复位中断向量
;
; 该例程初始化器件和所有外设及变量。
; - 启动外部振荡器（一旦 XTLVLD变高，sysclk将被切换到外部振荡器）
; - 禁止看门狗定时器
; - 定义交叉开关和 GPIO输出方式
; - 初始化硬件堆栈指针
; - 初始化中断优先级和中断允许
; - /INT0
; - 定时器 0
; - 定时器 1

Reset:

mov OSCXCN, #01100110b ; 允许晶体振荡器，不分频
 ; XFCN = '110'（对于 18.432MHz的晶体）
 ; 在 XTLVLD变高后选择外部振荡器，
 ; XTLVLD变高表示外部振荡器已经启动
 ; 并稳定（几百毫秒之后）

 mov WDTCN, #0deh ; 禁止看门狗定时器
 mov WDTCN, #0adh

 ; 初始化交叉开关和端口 I/O
 mov XBR0, #00000100b ; 允许 HW UART，在 P0.0 (TX)和 P0.1 (RX)
 mov XBR1, #10000100b ; 允许/INT0在 P0.2；/SYSCLK在 P0.3

24 AN015-1.0

AN015 — 软件 UART 示例

 mov XBR2, #01000000b ; 允许交叉开关/允许上拉
 orl PRT0CF, #00011101b ; 允许 P0.0、0.2、0.3、0.4 为推挽方式
 ; P0.4 为 SW UART发送引脚
 ; P0.2 为 SW UART接收引脚
 orl PRT1CF, #01000000b ; 允许 P1.6 （目标板 LED）为推挽方式

 mov SP, #STACK_TOP ; 初始化堆栈指针（在所用 RAM单元之后）

 ; 在检查外部振荡器是否稳定之前等待>1 ms
 clr a
 mov r0, a ; 清 r0

 djnz r0, $; 延时~380 us
 djnz r0, $; 延时~380 us
 djnz r0, $; 延时~380 us

OSC_WAIT:
 mov a, OSCXCN ; 等待晶体振荡器稳定
 jnb acc.7, OSC_WAIT

 orl OSCICN, #00001000b ; 选择外部振荡器作为系统时钟源
 anl OSCICN, #NOT(00000100b); 禁止内部振荡器
 orl OSCICN, #10000000b ; 允许时钟丢失检测器，必须在选择外部
 ; 振荡器作为系统时钟源之后完成。

 setb EA ; 允许全局中断

 ljmp Main

;---
; Timer0_ISR / INT0_ISR
;
; 这些中断启动并驱动 SW UART接收状态机
;
SWRX_STATE_TABLE: ; 每个表项为 1个字节
 DB SWRX_S0 - SWRX_STATE_TABLE ; 等待/起始位检测
 DB SWRX_S1 - SWRX_STATE_TABLE ; b0
 DB SWRX_S2 - SWRX_STATE_TABLE ; b1
 DB SWRX_S3 - SWRX_STATE_TABLE ; b2
 DB SWRX_S4 - SWRX_STATE_TABLE ; b3
 DB SWRX_S5 - SWRX_STATE_TABLE ; b4
 DB SWRX_S6 - SWRX_STATE_TABLE ; b5
 DB SWRX_S7 - SWRX_STATE_TABLE ; b6
 DB SWRX_S8 - SWRX_STATE_TABLE ; b7
 DB SWRX_S9 - SWRX_STATE_TABLE ; 停止位捕捉

INT0_ISR:
Timer0_ISR:
 push PSW ; 资源保护
 push acc

 AN015-1.0 25

AN015 — 软件 UART 示例

 mov a, BCRHI ; 如果 BCRHI不为 0，我们需要继续
 ; 等待定时器溢出
 jz SWRX_PROCESS_STATE
 dec BCRHI
 ajmp Timer0_ISR_EXIT

SWRX_PROCESS_STATE:
 push DPH ; 资源保护
 push DPL

 mov a, SURXST ; 从表中读状态偏移量
 mov DPTR, #SWRX_STATE_TABLE
 movc a, @A+DPTR ; 'a' 中现在为状态偏移量(PC)
 jmp @A+DPTR ; 执行该状态

Timer0_ISR_END: ; 所有 RX状态都返回到此

 pop DPL ; 资源恢复
 pop DPH
Timer0_ISR_EXIT:
 pop acc ; 资源恢复
 pop PSW
 reti

;SWRX_S0：RX等待状态
; 在该状态，已经检测到/INT0上有一个下降沿。
; 我们首先检查 SW UART接收器是否被允许。如果是，再检查一次 RX引脚看是否仍为低
; 电平（起始位有效）。如果是，我们初始化定时器 0使其计 3/2位时间以接收 LSB。
; 在此，我们还要禁止/INT0中断。
; - 检查 SREN = '1': 如果为'1'：
; - 将 3/2位时间值装入 TL0
; - 启动定时器
; - 允许 TF0中断
; - 禁止/INT0中断
; - 状态变量加 1，转到 S1
; - 如果 SREN = '0' (SW UART RX被禁止)
; - 退出，下一个状态为 S0
;
SWRX_S0:
 jnb SREN, SWRX_S0_END ; 检查 SW UART RX是否被允许
 ; 如果未允许，退出并停在等待状态

 jb SW_RX_GPIO, SWRX_S0_END ; 检查是否为真正的起始位

 clr EX0 ; 禁止/INT0

 clr TR0 ; 停止定时器 0（低）
 clr TF0 ; 清除任何中断

 mov BCRHI, #HIGH(THALF_BT); 设置定时器 0（低）+BCRHI，从现在

26 AN015-1.0

AN015 — 软件 UART 示例

 mov TL0, #-LOW(THALF_BT) ; 起 1.5位的时间(我们假设起始位
 ; 有效)

 setb ET0 ; 允许定时器 0中断
 setb TR0 ; 启动定时器 TL0

 inc SURXST ; 下一个状态为 SWRX_S1(我们假设起始位
 ; 有效)

SWRX_S0_END:
 ajmp Timer0_ISR_END

;SWRX_S1到 SWRX_S8: 接收 b0..b7
; 到此为止，我们已经确定起始位有效，我们将在位间隔时间查询 RX_GPIO，
; 将结果移入 RXSHIFT。
; - 如果 BCRHI不为 0，我们需要继续等待定时器溢出
; - BCRHI减 1
; - 等待定时器重新溢出
; - 保持现状态
; - 如果 BCRHI为 0:
; - 停止定时器
; - 将 RX_GPIO状态传送到进位位
; - 右移进位位到 RXSHIFT
; - 设置定时器以接收下一位
; - 允许定时器
; - 更新状态变量
;
SWRX_S1:
SWRX_S2:
SWRX_S3:
SWRX_S4:
SWRX_S5:
SWRX_S6:
SWRX_S7:
SWRX_S8:
 clr TR0 ; 停止定时器 0（低）
 clr TF0 ; 清除任何中断

 mov BCRHI, #HIGH(RX_BT); 将位时间值装入 16位虚拟计数器
 mov TL0, #-LOW(RX_BT)

 setb TR0 ; 启动 RX位定时器

 mov C, SW_RX_GPIO ; 在右移之前将 RX状态移入进位标志

 mov a, RXSHIFT
 rrc a ; 右移，将进位标志移入移位寄存器
 mov RXSHIFT, a ; 重存

 inc SURXST ; 状态变量加 1

 AN015-1.0 27

AN015 — 软件 UART 示例

SWRX_S2_END:
 ajmp Timer0_ISR_END

;SWRX_S9: 捕捉停止位
; 到此为止，我们已经将所有数据位移入 RXSHIFT，我们已准备好采样停止位。
; 在此，我们表明已收到一个字符，并将状态机复位到等待状态。在本例中，我们实际上
; 没有捕捉停止位；我们假设停止位是有效的。此处应是我们加入帧错误检测的地方。
; -如果 BCRHI不为 0，我们需要等待定时器重新溢出
; - BCRHI减 1
; - 等待定时器重新溢出
; - 保持现状态
;
; - 如果 BCRHI为 0：
; - 停止定时器
; - 将数据从移位寄存器传送到数据寄存器
; - 置位 SRI
; - 禁止定时器中断
; - 允许/INT0中断
; - 复位状态变量到等待状态
; - 检查用户级中断是否被允许(EIS)，如是：
; - 允许 IE7
; - 切换 P1.7以触发 IE7
SWRX_S9:
 clr TR0 ; 停止定时器 TL0
 mov RDR, RXSHIFT ; 将数据从移位寄存器保存到数据寄存器

 setb SRI ; 置‘1’SW UART SRI 位表示接收完成
 clr ET0 ; 禁止定时器 TL0中断
 clr IE0 ; 禁止挂起的/INT0中断
 setb EX0 ; 允许/INT0中断
 mov SURXST, #00 ; 复位 RX状态到等待状态

 jnb SES, SWRX_S9_END ; 检查用户级中断是否被允许
 orl EIE2, #00100000b ; 允许 IE7；
 orl PRT1IF, #10000000b ; 触发 IE7
SWRX_S9_END:
 ajmp Timer0_ISR_END

;---
; Timer1_ISR（注意，该 ISR实际上由定时器 0的高半部分调用，定时器 0工作于方式 3）
;
; 该中断驱动 SW UART发送状态机
;
SWTX_STATE_TABLE: ; 每个表项为 1个字节；共 11个表项
 DB SWTX_S0 - SWTX_STATE_TABLE ; 起始位
 DB SWTX_S1 - SWTX_STATE_TABLE ; b0
 DB SWTX_S2 - SWTX_STATE_TABLE ; b1
 DB SWTX_S3 - SWTX_STATE_TABLE ; b2

28 AN015-1.0

AN015 — 软件 UART 示例

 DB SWTX_S4 - SWTX_STATE_TABLE ; b3
 DB SWTX_S5 - SWTX_STATE_TABLE ; b4
 DB SWTX_S6 - SWTX_STATE_TABLE ; b5
 DB SWTX_S7 - SWTX_STATE_TABLE ; b6
 DB SWTX_S8 - SWTX_STATE_TABLE ; b7
 DB SWTX_S9 - SWTX_STATE_TABLE ; 停止位开始
 DB SWTX_S10 - SWTX_STATE_TABLE ; 停止位结束

Timer1_ISR:
 push PSW ; 资源保护
 push acc

 mov a, BCTHI ; 如果 BCTHI不为 0，我们需要
 ; 等待定时器重新溢出...
 jz SWTX_PROCESS_STATE
 dec BCTHI
 ajmp Timer1_ISR_EXIT

SWTX_PROCESS_STATE:
 push DPH ; 资源保护
 push DPL

 mov a, SUTXST ; 从表中读状态偏移量
 mov DPTR, #SWTX_STATE_TABLE
 movc a, @A+DPTR ; acc现在包含状态偏移量
 jmp @A+DPTR ; 执行状态 x

Timer1_ISR_END: ; 所有 TX状态返回到此

 pop DPL ; 资源恢复
 pop DPH
Timer1_ISR_EXIT:
 pop acc ; 资源恢复
 pop PSW

 reti

;SWTX_S0: TX起始位状态
; 到此为止，用户程序已经将待发送字符装入 TDR并通过置位 TF1调用了定时器 1中断
; 处理程序。
; - 清除 STI
; - 使 TX_GPIO变低(起始位开始)
; - 为下一个位时间配置 TH0、BCTHI，下一位将是 LSB
; - 允许 TH0
; - 设置下一个状态为 SWTX_S1
;
SWTX_S0:
 mov BCTHI, #HIGH(TX_BT) ; 将位时间值装入 16位虚拟计数器
 mov TH0, #-LOW(TX_BT)
 clr SW_TX_GPIO ; 起始位开始
 clr TF1 ; 清除任何挂起的中断

 AN015-1.0 29

AN015 — 软件 UART 示例

 inc SUTXST ; 下一个状态是 SWTX_S1
SWTX_S0_END:
 ajmp Timer1_ISR_END

;SWTX_S1到 SWTX_S9: 发送 b0..b7 和停止位
; 至此，我们开始将 TDR中的字符逐位移出到 TX_GPIO引脚，每移一位状态变化一次。
; 我们移入一个额外的‘1’到 MSB作为停止位。
; -如果 BCTHI不为 0，我们需要等待定时器重新溢出。
; - BCRHI减 1
; - 等待定时器重新溢出
; - 保持现状态
;
; - 如果 BCRHI为 0：
; - 停止定时器
; - 为下一位设置定时器
; - TDR右移
; - 允许定时器
; - 输出位
; - 状态变量加 1
;
SWTX_S1:
SWTX_S2:
SWTX_S3:
SWTX_S4:
SWTX_S5:
SWTX_S6:
SWTX_S7:
SWTX_S8:
SWTX_S9:
 mov BCTHI, #HIGH(TX_BT); 将位时间值装入 16位虚拟计数器
 mov TH0, #-LOW(TX_BT)

 mov a, TDR ; 将下一位右移到进位标志
 setb C ; 将停止位移入 MSB
 rrc a
 mov TDR, a ; 重存
 mov SW_TX_GPIO, C ; 输出一位到 GPIO引脚
 clr TF1 ; 清除任何挂起的中断

 inc SUTXST ; 进入下一状态

SWTX_S1_END:
 ajmp Timer1_ISR_END

;SWTX_S10 停止位完成/复位到等待状态
; 到此为止，我们已经移出了停止位，我们已准备好对状态机复位和指示发送完成，
; 包括触发一个用户级中断（如果被允许）。
; -如果 BCTHI不为 0，我们等待定时器重新溢出。
; - BCRHI减 1
; - 等待定时器重新溢出

30 AN015-1.0

AN015 — 软件 UART 示例

; - 保持现状态
; - 如果 BCRHI为 0:
; - 停止定时器
; - 置位 STI
; - 清除 STXBSY
; - 检查 IE7支持，如果被允许则触发中断
; - 设置状态变量为 S0
;
SWTX_S10:
 clr ET1 ; 禁止定时器 1中断
 setb TF1 ; 强制一个定时器 1中断。这允许
 ; 立即触发一次发送操作

 mov SUTXST, #00h ; 复位状态变量到等待状态
 setb STI ; 置‘1’STI，表示发送完成
 clr STXBSY ; 清除 TXBSY，表示发送器可用
 jnb SES, SWTX_S10_END ; 触发用户级中断 IE7（如果被允许）
 orl EIE2, #00100000b ; 允许 IE7
 orl PRT1IF, #10000000b ; 触发 IE7
SWTX_S10_END:
 ajmp Timer1_ISR_END

;---
; IE7_ISR
;
; 这是 SW UART的用户级中断处理程序。注：该程序必须检查 SRI和 TRI，在两者
; 都为 1时必须先处理一种情况，然后重新触发 IE7以处理另一情况（或在同一次调用中
; 处理）。如果只有一种情况需要中断处理则不需要这样做，例如，RX由中断处理，而 TX
; 用查询处理。
;
; 注意，如果 TX情况用查询方式处理，则此处不应清除 STI。
;
; 在本例中，如果 SRI置位，表示 SW UART已收到一个字符，该字符被保存到一个循环
; 缓冲区（RX_BUF）。如果 STI置位，表示发送完成，保存在 TX_VAL的字符被发送。
;
;
IE7_ISR:
 push PSW
 push acc

 anl PRT1IF, #NOT(10000000b); 清 IE7
 jbc SRI, SW_RX_HANDLE ; 首先处理接收，因为接收对延迟最敏感
 jbc STI, SW_TX_HANDLE ; 处理发送
IE7_ISR_END:
 pop acc
 pop PSW
 reti ; 所有 IE7_ISR例程返回到此
SW_RX_HANDLE:
 push ar0 ; 资源保护

 AN015-1.0 31

AN015 — 软件 UART 示例

 mov r0, RX_TAIL ; 使 r0指向保存地址
 mov @r0, RDR ; 将数据读到缓冲区
 inc RX_TAIL ; 更新尾指针
 mov a, RX_TAIL ; 必要时指针回绕
 add a, #-(RX_BUF+RX_BUFSIZE)
 jnc SW_RX_HANDLE_END
 mov RX_TAIL, #RX_BUF ; 指针回绕

SW_RX_HANDLE_END:
 jnb STI, NO_TX_PENDING ; 如果有挂起的 TX中断
 orl PRT1IF, #10000000b ; 触发该中断（IE7）

NO_TX_PENDING:
 pop ar0
 ajmp IE7_ISR_END

SW_TX_HANDLE:

Setb STXBSY ; 占用 SW UART发送器
 mov TDR, TX_VAL ; 将字节装入 TDR
 setb ET1 ; 启动 SW UART发送器
 inc TX_VAL ; 下一个字节

SW_TX_HANDLE_END:
 jnb SRI, NO_RX_PENDING ; 如果有挂起的 RX中断，
 orl PRT1IF, #10000000b ; 触发该中断（IE7）
NO_RX_PENDING:
 ajmp IE7_ISR_END ; 中断返回

;---
; 子程序
;---

;---
; SW UART 子程序(非用户代码)
;---

;---
; SW_UART_Init
;
; 初始化:
; - /INT0为下降沿触发
; - 定时器 0工作于方式 3（两个 8位定时器），TL0、TH0（TF0、TF1）定时器的
; 中断处理程序被禁止。
; - RX/TX 状态机和状态变量
; - SW UART TX 状态机和 RX状态机工作在高优先级
SW_UART_Init:
 ; 初始化/INT0
 clr EX0 ; 禁止/INT0中断
 setb IT0 ; /INT0为下降沿触发
 clr IE0 ; 清除/INT0中断标志
 setb PX0 ; /INT0为高优先级中断

32 AN015-1.0

AN015 — 软件 UART 示例

 ; 初始化定时器 0
 clr ET0 ; 禁止定时器 0中断
 clr ET1 ; 禁止定时器 1中断
 clr TR0 ; 停止定时器 0
 clr TR1 ; 停止定时器 1
 clr TF0 ; 清除中断标志
 clr TF1
 orl TMOD, #00000011b ; 定时器 0工作于方式 3（两个 8位定时器）
 anl TMOD, #NOT(00001100b); GATE0=0，C/T0 = 0
 orl CKCON, #00001000b ; 定时器 0使用系统时钟作为时间基准
 setb PT0 ; 定时器 0中断为高优先级
 setb PT1 ; 定时器 1中断为高优先级

 ; 用户级中断（IE7）由状态机初始化

 ; 初始化状态机和状态变量
 clr a ; 初始化状态机
 mov SURXST, a ; RX状态变量
 mov SUTXST, a ; TX状态变量
 mov BCRHI, a ; RX位定时器 MSB
 mov BCTHI, a ; TX位定时器 MSB
 clr SES ; 禁止用户级中断支持
 clr SREN ; 禁止 SW UART接收器
 clr TXBSY ; 清除 TXBSY标志
 clr SRI ; 清除 RX完成标志
 clr STI ; 清除 TX完成标志

 ret

;---
; SW_UART_Enable
;
; 通过允许中断处理程序，使发送和接收状态机从等待状态转到相对应的下一状态
; 来允许 SW_UART。/INT0使 RX状态机从等待状态转到起始状态。由用户代码
; 设置定时器 1（setb TF1）使发送状态机从等待状/起始状态转到 TX_LSB。
;
; 用户级中断（IE7）是在状态机查询了 EIS（外部中断支持）后被允许的。
;
SW_UART_Enable:
 clr IE0 ; 清除挂起的/INT0中断
 setb TF1 ; 产生一个定时器 1中断
 setb EX0 ; 允许/INT0中断
 clr ET1 ; 禁止定时器 1中断
 setb TR1 ; 启动定时器 1

 ret
;---
; SW_UART_Disable

 AN015-1.0 33

AN015 — 软件 UART 示例

;
; 通过禁止所有的状态机中断，包括用户级中断 IE7（如果状态寄存器指示该中断已被
; 允许），来禁止 SW UART。
SW_UART_Disable:
 clr EX0 ; 禁止/INT0中断
 clr ET0 ; 禁止定时器 0中断
 clr ET1 ; 禁止定时器 1中断
 jnb SES, SW_UART_Dis_End; 检查 IE7是否被允许
 anl EIE2, #NOT(00100000b); 禁止 IE7中断
SW_UART_Dis_End:
 ret

;---
; 文件结束。

; 例 2结束。

END

34 AN015-1.0

	引言
	关键特性
	实现选项
	波特率源
	其它考虑

	例1：可编程计数器阵列实现方案
	程序结构
	实现
	接收状态机
	发送状态机

	程序接口

	例2：8位定时器实现方案
	程序结构
	实现
	发送状态机
	接收状态机

	程序接口

	示例代码

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

