
C8051F MCU 应 用 笔 记

Silicon Laboratories Inc. 新华龙电子有限公司
4635 Boston Lane 深圳市福田区华强北路现代之窗大厦 A 座 13F C 室(518013)
Austin, TX 78735 0755-83645240 83645242 83645244 83645251

AN013 — 用 SMBus 实现串行通信

相关器件
本应用笔记适用于下列器件：
C8051F000、C8051F001、C8051F002、C8051F005、C8051F006、C8051F010、C8051F011

和 C8051F012。

引言
C8051F0xx系列器件有一个符合系统管理总线标准 1.1 版以及I2C串行总线标准的SMBus串行

I/O器件。SMBus是一个双向、二线接口，能与多个器件通信。SMBus是英特尔公司的商标；I2C是
菲力浦半导体公司的商标。

本应用笔记介绍 SMBus 总线的配置和操作。本文提供示例汇编代码和‘C’代码：（1）与单

个具有一字节地址空间的 EEPROM 接口的汇编语言程序；（2）与多个具有二字节地址空间的

EEPROM 接口的 C 语言程序；（3）两个 C8051F0xx 点对点通信的 C 语言程序。

SMBus 规范
本节介绍 SMBus 协议。对 SMBus 的讨论从下一节 --“使用 SMBus”开始。

SMBus 结构
一个 SMBus 系统是一个二线网络，网络中的每一个器件有一个唯一的地址并可以被网络中的

其它器件访问。所有的传输过程都由一个主器件启动；如果一个器件识别出自己的地址并回应，它

就是那次传输的从器件。值得注意的是，没有必要指定一个主器件。对于任何一次数据传输，任何

一个器件都可以作为主器件或从器件。当两个器件试图同时启动一次传输时，仲裁机制将强迫一个

器件放弃总线。这种仲裁机制是非破坏性的（一个器件赢得总线，但没有信息丢失）。我们将在仲

裁一节深入讨论仲裁机制。

SMBus 通信使用两根线：SDA（串行数据）和 SCL（串行时钟）。每根线都是双向的，其方向

取决于器件所处的工作方式。主器件总是提供 SCL；主、从器件都可以在 SDA 上传输数据。两根

线都应通过一个上拉电路接到正电源。SMBus 线上的所有器件都应有漏极开路或集电极开路输出，

这样可使总线空闲时保持高电平。如果一个或多个器件输出低电平信号，总线被拉为低电平。要使

总线保持在高电平，所有的器件都必须输出高电平。第二页中的图 1 给出一个典型的 SMBus 总线

配置。

 电话：

Email: mcuinfo@silabs.com （版权所有） 电邮：shenzhen@xhl.com.cn
Internet: www.silabs.com 网址：www.xhl.com.cn

AN013 — 用 SMBus 实现串行通信

VDD = +5V/+3V

SDA

SCL

器件3器件2器件1

图 1. 典型的 SMBus 总线配置

握手
SMBus 采用多种线路条件作为器件间的握手信号。注意，在一次数据传输中，SDA 只能在 SCL

为低时改变电平。在 SCL 为高电平时 SDA 发生改变则是代表如下的开始和停止信号：

开始：该条件启动一次传输过程。当 SCL 为高电平时 SDA 上出现一个下降沿。

结束：该条件结束一次传输过程。当 SCL 为高电平时 SDA 上出现一个上升沿。

应答：也称为 ACK，接收器件发送该信号表示确认。例如，在器件 X 收到一个字节后，它将

发送一个 ACK 确认传输成功。ACK 条件是在 SCL 为高时采样到 SDA 为低电平。

非应答：也称为 NACK，这是在 SCL 为高电平时采样到 SDA 为高电平。当接收器件不能产生

ACK 时，发送器件看到的是 NACK。在典型的数据传输中，收到 NACK 信号表示所寻址的从器件

没有准备好或不在总线上。一个处于接收状态的主器件发送 NACK 表示这是传输的最后一个字节。

在下一节中将对这两种情况进行进一步讨论。图 2 给出了握手信号时序。

SLA6 R/WSLA5-0 D7 D6-0

START STOP NACK STOP

SDA

SCL

STARTACK

图 2. SMBus 时序

传输方式
有两种可能的传输方式：写（从主器件到从器件）和读（从从器件到主器件）。在一次传输中，

任何一个器件都可以是四种角色之一。这四种角色将在下面说明。注意，‘从地址+R/W’是指一个

8 位传输（7 位地址，1 位 R/W）。

1）主发送器：在该方式下，器件在 SDA 上发送串行数据，在 SCL 上输出时钟。器件用一个

起始条件启动传输过程，发送从地址+W，然后等待从器件的 ACK。收到 ACK 后，器件发送一个

或多个字节数据，每个字节都要由从器件确认。在发送完最后一个字节后，器件发送一个停止条件。

2 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

2）主接收器：在该方式下，器件在 SDA 上接收串行数据，在 SCL 上输出时钟。器件用一个

起始条件启动传输过程，之后发送从地址+R。在收到从器件对地址的 ACK 后，在 SCL 上输出时

钟并在 SDA 上接收数据。在接收完最后一个字节后，器件将发送一个 NACK 和一个停止条件。

3）从发送器：在该方式下，器件在 SDA 上输出串行数据，在 SCL 上接受时钟。器件接收一

个起始条件和它自己的从地址+R，然后发出 ACK 并进入从发送方式。器件在 SDA 上发送数据，

在发送完每个字节后都要收到一个 ACK。在传输完最后一个字节后，主器件发送一个 NACK 和一

个停止条件。

4）从接收器：在该方式下，器件收到来自主器件的起始条件和和它自己的从地址+W。然后发

出 ACK 并进入从接收方式。现在器件在 SDA 上接收串行数据，在 SCL 上接收时钟。在接收完每

个字节后都要发送一个 ACK，在接收到主器件的停止条件后退出从接收方式。图 3 示出典型的写

操作情况。（1）示出一个成功的传送过程。

在（2）中，主器件在发送完从地址+W 后收到一个 NACK。这种情况发生在从器件‘离线’

时，表示它不能回应其从地址。在这种情况下主器件应发出一个停止条件或重新发出起始条件。为

了重试传输过程，主器件在发出停止条件后重新发送起始条件和从地址+W。主器件将一直重复该

循环过程，直到收到一个 ACK 为止。这被称为“应答查询”。

PA(2)

(3) ASLA + RS

(4) PA

S =
SLA = (7)
W =
R =
Data =
A =
A =
P =

S SLA + W A Data PA AData(1)

Data

写成功

在SLA + W 后收到 NACK

在应答后发出重复起始条件

在数据之 后收 NA到 CK

从主器件到从器件

从从器件到主器件

任意数据字节数和应答

起始

从地址 位

写 (1位)
读 (1位)

串行数据 (8位)
确认

非确认
停止

图 3. 典型的写操作情况

在（3）中，主器件在收到一个 ACK 后重新发出起始条件。这一过程允许主器件在不放弃总线

的情况下启动一个新的传输过程（例如，从写操作切换到读操作）。重复起始条件通常在访问

EEPROM 时使用，因为一个读操作前面必须有一个写存储器地址的操作。在所提供的三个代码示

 AN013-1.0 MAR01 3

AN013 — 用 SMBus 实现串行通信

例中都有重复起始条件。

在（4）中，NACK 是在接收完一个数据字节后收到的。在典型的 SMBus 总线中，这是接收器

指示错误的方式。主器件或者象在（2）中那样发送一个停止条件后重试传输过程，或者放弃这次

传输。注意：NACK 的使用并不仅限于发生错误的情况，应答级别是一个用户可定义的特性，可以

随着应用的不同而变化。

图 4 示出典型的读操作情况。（1）示出一个成功的读过程。

在（2）中，主器件在发送完从地址+R 后收到一个 NACK。这种情况的处理与在写操作的（2）
中讨论的一样。主器件可用应答查询来重试传输过程或放弃这次传输。（3）示出主器件在发送完一

个字节数据后重复发出起始条件的过程。这与写操作中讨论的重复起始条件状态是一样的。一个主

器件可以在传输完任何一个字节后重新发出起始条件，可以在重复起始条件之后启动读或写操作。

一般来说，重复起始条件用于改变方向（R/W）或改变地址（从器件）。

注意，在读和写的示意图中所看到的只是典型情况。总线错误、超时和总线竞争都有可能发生。

超时用于检测一次传输过程是否停止或总线何时空闲。常常有这样的情况：一个器件保持 SCL 为

低电平，直到它准备好继续传输过程为止。这种过程允许一个低速从器件与一个快速的主器件通信，

因为停止总线操作实际上相当于降低了 SCL 频率。系统管理总线协议规定：SMBus 系统中的所有

器件必须将任何大于 25ms 的 SCL 低电平视为“超时”。发生种情况时，总线上的所有器件必须进

行通信复位。也有可能发生高电平 SCL 超时。如果 SDA 和 SCL 同时为高电平的时间大于 50 微秒，

则可认为总线处于空闲状态。

S =
SLA =
W =
R =
Data =
A =
A =
P =

Data

PA(2)

(3) ASLA + RS

(1) S SLA + R A Data PA AData读成功

在SLA + R 后收到NACK

在ACK后发出重复起始条件

从主器件到从器件

从从器件到主器件

任意数据字节数和应答

起始

停止

从地址

写(1位)
读(1位)

串行数据 (8位)
确认

非确认

(7)位

图 4. 典型的读操作情况

4 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

总线竞争
如果在同一个 SMBus 系统中有多个主器件，有可能出现两个主器件同时启动传输过程的情况。

如果发生这种情况，总线仲裁机制就会强迫一个器件放弃总线。

总线仲裁机制是什么：两个主器件继续发送过程，直到其中一个试图发送高电平而另一个试图

发送低电平为止。由于总线是漏极开路的，试图发送低电平的器件将获得总线控制权。发送高电平

的器件放弃总线，其它器件继续其传输过程。注意，这种总线争用是非破坏性的：总会有一个器件

赢得总线。

总线仲裁机制如何工作：假设器件 X 和器件 Y 争用总线。赢得总线的器件 X 不受仲裁机制的

任何影响。因为数据是在移位寄存器中移出、移入，所以器件 Y 不丢失任何数据。图 5 给出了两

个器件在总线竞争期间输出时序示例。注意：器件 Y 在放弃总线后开始接收数据。

01 1 1 0 1 1 0

01 1 1 1

01 1 1 0 1 1 0

器件X

器件Y

总线上的信号

器件Y
放弃总线

图 5. 总线竞争过程

使用 SMBus
SMBus 可以工作在主和从方式。总线硬件为串行传输提供了时序和移位控制；字节控制是用

户定义的。SMBus 硬件完成下列与应用无关的任务：

时序控制：在主方式，硬件在 SCL 上产生时钟信号用来同步 SDA 上的数据。硬件还识别超时

和总线错误。

串行数据传输：硬件控制所有在 SDA 上移入和移出的数据，包括应答级别。应答级别是用户

定义的，细节在下面的寄存器定义中解释。

从地址识别：硬件能识别来自另一个器件的起始条件，并读取随后的从器件地址。如果从地址

与 SMBus 地址寄存器（下面将定义）中的内容匹配，则硬件应答该地址。注意：只有在 AA（地

址应答）被置位时该功能才被允许。

配置与控制
SMBus 的工作由下列寄存器中的内容决定。

SMB0STA。SMBus 状态寄存器保持着代表 SMBus 当前状态的 8 位状态代码。只有在 SI 位被

 AN013-1.0 MAR01 5

AN013 — 用 SMBus 实现串行通信

置‘1’时 SMB0STA 才有意义。共有 28 种可能的状态，所有的状态都有一个唯一的代码（代码是

8 的整数倍）。永远不要对 SMB0STA 写入。第 12 页中的表 1 给出了这 28 种状态和它们的说明。

SMB0CN。SMBus 控制寄存器用于允许 SMBus 总线并操纵可能的 SMBus 状态。该寄存器包

含起始和停止控制以及中断、应答和超时控制。

一次传输过程是通过将 STA 位置 1 来启动的。SMBus 硬件将等待到总线空闲后发送一个起始

条件。注意：STA 不是由硬件来清除的。用户必须用软件来清除 STA，以避免产生不希望的重复

起始条件。

一次传输过程是通过将 STO 位置 1 来中止的。在主方式，置位 STO 将导致产生一个停止条件。

如果在 STO 置‘1’时 STA 也被置‘1’，则在起始条件后会跟随一个停止条件。在从方式，置位

STO 会导致硬件产生象接收到一个停止条件那样的动作，尽管实际上发送没有停止条件。

当进入到 28 种可能状态中的任何一个（空闲状态除外）时，SI 位被置‘1’。注意：在 SI 位被

置‘1’期间，SCL 保持低电平。这意味着在 SI 被清除之前总线将停止工作，使主器件与从器件同

步。

AA 位决定了在应答期间返回的应答类型。如果 AA=1，将发送一个 ACK；如果 AA=0，将发

送一个 NACK。这意味着只有在 AA 为被置‘1’时器件才能应答它的从地址。

SCL 高电平和低电平超时检测允许是通过分别将 FTE 和 TOE 位置‘1’来实现的。

通过置位 SMBus 允许位 ENSMB 来允许 SMBus。

SMB0CR。在器件工作于主方式时 SMBus 时钟寄存器用于控制 SCL 时钟速率。SMB0CR 中

的 8 位数决定了时钟速率，公式如下：

SCLF
SYSCLKCRSMB
×

−≅
2

0 <1>

其中，SMB0CR 是一个负数的补码。因此，对于 100kHz 的 SCL 频率和 16MHz 的 SYSCLK，

应向 SMB0CL 装入-80，即 0xB0。

SMB0CR 还定义总线空闲时间周期的极限值（SCL 高电平超时）。总线空闲时间由下面的公式

定义：

SYSCLK
CRSMBTFree

1)010(+×
−= <2>

SMB0ADR。SMBus 地址寄存器保存器件在从方式时将要应答的从地址。位（7:1）保存从地

址；位 0 是通用呼叫允许。如果位 0 被置位，器件将应答通用呼叫地址（0x00）。

SMB0DAT。SMBus 数据寄存器用于保存将要发送或刚刚接收的数据。只有在 SI=1 时，从该

寄存器读出的数据才是有效的。当 SI 不为 1 时，SMBus 可能处在向 SMB0DAT 移入数据或从

SMB0DAT 移出数据的过程中。注意：在传输过程中，从 SMB0DAT 移出的最高位又移回到最低位，

因此在一次传输完成后 SMB0DAT 中仍然保存着原始数据。

6 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

实现选择
用户软件基于状态变迁来控制 SMBus。每当发生状态改变时，SI 位被硬件置‘1’，并在中断

被允许的情况下产生一个中断。SMBus 接着被停止，直到用户软件完成状态变化服务并清除 SI 位。

SMBus 操作很容易用一个状态表定义；但是没有必要定义全部 28 个状态。例如，如果 SMBus 是

系统中唯一的主器件，则可以不定义从状态和竞争状态。如果 SMBus 永远不作为主器件出现，则

可以不定义主状态。如果状态没有被定义，在程序设计中应有缺省的响应来处理预想不到的或错误

的情况。

SMBus 状态表在 C 程序中用开关语句处理。但是对于简单或有时间限制的系统，汇编语言状

态译码可能更有效。需要注意的是，SMB0STA 中的状态代码是 8 的倍数。如果 SMBus 状态服务

程序在 8 字节以内，则 SMB0STA 可以用作软件索引。在这种情况下，一个状态代码的译码在三个

汇编命令以内完成。对于每个状态定义只有 8 字节的代码空间可用。对于那些需要多于 8 个字节空

间的状态，程序必须从状态表跳出，以使后续状态不受干扰。

示例
本文提供了三个例子：与单个具有一字节地址空间的 EEPROM 接口的汇编语言程序；与多个

具有二字节地址空间的 EEPROM 接口的 C 语言程序；两个器件点对点通信的 C 语言程序。每个例

子都使用中断驱动操作。

单个 EEPROM
这是 SMBus 与一个 256 字节 EEPROM 接口的简单例子。SMBus 在所有时间内都作为主器件。

传输过程与任何二线 EEPROM 接口类似。

发送操作是一个单字节随机写。SMBus 发出一个起始条件并接着发出三个字节：EEPROM 的

器件地址+W（该地址可以在 EEPROM 数据表中查到）、待写存储器地址和数据字节。从器件应在

收到每个字节后发出 ACK。如果主器件在发送完每个字节后都收到一个 ACK，它就发出停止条件

结束传输过程。如果在任何时间主器件收到一个 NACK，它会用应答查询重试传输过程。如果连续

对 EEPROM 进行多次要读/写操作，收到 NACK 是很正常的，这是因为大多数自定时的 EEPROM
在实际进行存储器写操作时会进入离线状态。图 6 示出单个 EEPROM 情况下 SDA 上的发送操作。

图 6. 单个 EEPROM 发送时序

S SLA W A 8 位地址 A 数据字节 A P

接收操作是一个单字节随机读。与写操作一样，SMBus 首先发出一个起始条件并接着发出

EEPROM 器件地址+W（写操作用于设置 EEPROM 的当前地址）。在收到从器件的 ACK 后，主器

件发出待读存储器地址。在收到一个 ACK 后，主器件发出重复起始条件和从器件地址+R。从器件

在发出 ACK 后将发送由前面“放弃”的写操作所给定的地址内读出的数据字节。主器件发出一个

NACK（因为这是最后也是唯一的数据字节）并接着发出停止条件。此处用了重复起始条件，使写

存储器地址和读数据字节之间不能开始其它传输过程。图 7 示出单个 EEPROM 情况下 SDA 上的读

操作。

 AN013-1.0 MAR01 7

AN013 — 用 SMBus 实现串行通信

图 7. 单个 EEPROM 接收时序

S SLA W A 8 位地址 A S SLA R A 数据字节 N P

本例中的软件是用汇编语言写的，目的是为了说明用 SMB0STA 作为软件索引的优点。SMBus
状态表写在 8 字节的存储段内（每个状态 8 字节）。这是通过对每个状态使用‘ORG’语句来实现

的，从表的起始地址按对应的状态码向下偏移。例如，如果状态表的标识符为 STATE_TABLE，状

态 1 是 0x08，则状态 1 的代码段应从下面的地址开始：

 ;状态 1

 org STATE_TABLE + 08h

 状态 1 程序代码

现在，当 SMB0STA 中的状态码为 0x80 时，可按如下过程访问状态 1：

;装入当前状态

 mov a, SMB0STA ;

 将 DPTR 指向表的起始地址

 mov DPTR, #STATE_TABLE ;

 跳转到被索引的状态

 jmp @A+DPTR

这一过程使得状态译码非常有效。但是需要注意每个状态的代码空间只有 8 字节。如果一个状

态所需代码空间大于 8 字节，则程序必须跳转到状态表以外的一个代码段内，以保证下一个状态定

义不受干扰。

为使状态表简单且易于理解，本例的 SMBus 系统中假设只有一个主器件。从状态没有定义，

竞争状态忽略任何接收到的数据。还假设重复起始状态对应的是一个读操作。第 14 页给出了源码

清单。

多个 EEPROM
例 2 中使用多个具有二字节地址空间的 EEPROM。软件是用 C 语言编写的。所用的三个

EEPROM 的存储空间都为 8k 字节。注意，这三个 EEPROM 是完全一样的。这些 EEPROM 有三个

地址选择引脚 A0 – A2，用于设置器件的从地址。器件地址的高 4 位已在 EEPROM 内固定为“0101”；
从地址的低 3 位通过设置地址引脚确定（接 VDD 为 1，接 GND 为 0）。图 9 给出了器件配置图。

本例与上例的区别在于 EEPROM 有二字节地址空间。这意味着对于每次传输过程，读和写操

作必须多发送一个地址字节（见图 8）。当中断服务程序进入到“数据已发出，ACK 收到”状态时，

它必须知道发出的是哪一个字节，是高地址字节、低地址字节还是数据字节。该信息保存在状态变

量 BYTE_NUMBER 中。

图 8. 多个 EEPROM 接收时序

S SLA W A 高地址字节 A 低地址字节 A S SLA R A 数据字节 N P

8 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

SMBus 中断服务程序是用开关语句实现的，用 SMBus 状态代码（SMB0STA）作为开关变量。

本例的程序清单从第 23 页开始。

CHIP_A

A2 A1 A0

CHIP_C

A2 A0A1

CHIP_B

A2 A1
VDD

VDD

SDA SCL

A0

CF000

Addr = 001 Addr = 010

VDD

2.7k Addr = 0002.7k

图 9. 多个 EEPROM 配置

点对点通信接口
最后一个例子是将两个 C8051F0xx 配置为点对点通信。点对点接口使用一组操作码执行下面

的一组任务。每个器件都可以启动传输过程。

写入到从 DAC：主器件发出一个 WRITE_DAC 操作码并接着发出一字节数据。从器件在完成

接收过程后将数据写到其 DAC0 端口。

写入到缓冲区：主器件发出一个 WRITE_BUF 操作码并接着发出让从器件存储在其缓冲区中的

一个字节数据。WRITE_BUF 操作码的高 4 位含有缓冲区索引地址。图 10 给出点对点的写时序（写

DAC 与写缓冲区是相同的）图。

图 10. 点对点的写时序

S SLA W A 写操作码 A 数据字节 A P

 总线停止

直到从器

件完成对

操作译码

读 ADC：主器件发出一个 READ_ADC 操作码并接着发出一个重复起始条件。从器件读它的

ADC 输入并将数据写入到 SMB0DAT 寄存器。在 ADC 转换期间，从器件清除 AA 位并进入‘离线’

状态。在从器件离线期间，主器件在发出重复起始条件和从地址后将收到 NACK。主器件继续应答

查询，直到从器件回应为止。这一技术是很有用的，因为如果该从器件的操作时间长，其它器件可

以在其离线期间使用总线。从器件在准备好后将 AA 位置 1，继续传输过程。在从器件应答之后，

主器件请求一次读操作。传输时序见图 11。

读缓冲区：主器件发出一个 READ_BUF 操作码并接着发出一个重复起始条件。操作码中的高

4 位是缓冲区的索引号。在对操作码译码期间从器件保持 SCL 线为低电平。在 SCL 为低电平期间，

主器件不能继续传输过程。另外，其它主器件也不能试图进行传输。在从器件的延迟时间较短的情

况下，总线冻结技术是很有用的。从器件在结束对操作码的译码后释放 SCL 并准备好传输数据。

主器件此时发出一个重复起始条件和从地址+R。见图 11。

 AN013-1.0 MAR01 9

AN013 — 用 SMBus 实现串行通信

图 11. 点对点的读时序

S SLA W A
Read_Buf
操作码 A S SLA R A 数据字节 N P

总线停止

直到从器

件完成对

操作译码

S SLA W A
Read_Buf
操作码 A S SLA R A 数据字节 N P

 从器件“离

线”，直到

ADC 转换

完成为止

在这个例子的中断服务程序中，用开关语句实现 SMBus 操作。所有可能的状态都被定义，包

括竞争状态。如果出现竞争，未获得总线的器件保存其当前传输数据（目标从地址、操作码、相关

数据）并应答接收到的操作码。在这次传输过程结束后，刚才未获得总线的器件将用保存的数据重

试传输过程。

OP_CODE_HANDLER 函数运行在查询方式，处理接收到的数据。当器件收到一个有效的操作

码时，OP_CODE_HANDLER 对其译码并进行相应的操作。

为了测试总线，将对 CHIP_A 的 OP_CODE_HANDLER 调用的注释符去掉。这就允许 CHIP_A
运行所提供的测试代码。注意：对于总线上的每个器件，常数 MY_ADD 必须是唯一的。

本例的源程序清单从第 28 页开始。

10 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

表 1. SMBus 状态码和状态

方式 状态码 SMBus 状态 典型操作

0x08 起始条件已发出 将从地址+R/W 装入到 SMB0DAT

M
T/

M

R

0x10 重复起始条件已发出 将从地址+R/W 装入到 SMB0DAT

0x18 从地址+W 已发出。收到 ACK。 将要发送的数据装入到 SMB0DAT。清 STA

0x20 从地址+W 已发出。收到 NACK。 应答查询重试。置位 STO+STA

0x28 数据字节已发出。收到 ACK。
1） 将下一字节装入到 SMB0DAT，或
2） 置位 STO，或
3） 置位 STA 以发送重复起始条件

0x30 数据字节已发出。收到 NACK。
1） 重试传输或
2） 置位 STO

主
发
送
器

0x38 竞争失败 保存当前数据

0x40 从地址+R 已发出。收到 ACK。 清 STA。等待接收数据

0x48 从地址+R 已发出。收到 NACK。 应答查询重试。置位 STO+STA

0x50 数据字节收到。ACK 已发出 读 SMB0DAT。等待下一字节。
如果下一字节是最后字节，清除 AA 主

接
收
器

0x58 数据字节收到。NACK 已发出 置位 STO

 AN013-1.0 MAR01 11

AN013 — 用 SMBus 实现串行通信

表 1. SMBus 状态码和状态

方式 状态码 SMBus 状态 典型操作

0x60 收到自己的从地址+W。ACK 已发出。 等待数据

0x68 在作为主器件发送 SLA+R/W 时竞争失

败。收到自身地址+W。ACK 已发出。
保存当前数据以备总线空闲时重试。

0x70 受到通用呼叫地址。ACK 已发出。 等待数据

0x78 在作为主器件发送 SLA+R/W 时竞争失

败。收到通用呼叫地址+W。ACK 已发出。

保存当前数据以备总线空闲时重试。

0x80 收到数据字节。ACK 已发出。 读 SMB0DAT。等待下一字节或停止

条件。

0x88 收到数据字节。NACK 已发出。 置位 STO 以复位 SMBus

0x90 在通用呼叫地址之后收到数据字节。

ACK 已发出。
读 SMB0DAT。等待下一字节或停止

条件。

0x98 在通用呼叫地址之后收到数据字节。

NACK 已发出。
置位 STO 以复位 SMBus

从
接
收
器

0xA0 收到停止条件或重复起始条件。 无操作

0xA8 收到自己的从地址+R。ACK 已发出。 将要发送的数据装入到 SMB0DAT。

0xB0 在作为主器件发送 SLA+R/W 时竞争失

败。收到自身地址+R。ACK 已发出。
保存当前数据以备总线空闲时重试。

将要发送的数据装入到 SMB0DAT。

0xB8 数据字节已发送。ACK 收到。 将要发送的数据装入到 SMB0DAT。

0xC0 数据字节已收到。NACK 已发出 等待停止条件

从
发
送
器

0xC8 最后字节已发送。ACK 收到。 置位 STO 以复位 SMBus

从
器
件

0xD0 SCL 时钟高电平定时器每 SMB0CR 超时 置位 STO 以复位 SMBus

0x00 总线错误（非法起始条件或停止条件） 置位 STO 以复位 SMBus

全
部

0xF8 等待状态 不置位 SI

12 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

;---
;
; Copyright 2001 Cygnal Integrated Products, Inc.
;
; 程序 : SMBus_EX1.asm
; 编写日期 : 2/21/01
; 作者 : JS
;
; 通过 SMBus 实现 C8051F0xx 与一个 256字节的 EEPROM的接口
; 假设将一个 EEPROM连到 SDA和 SCL线上，从地址为 1010000，总线上没有其它主器件。
;
; SEND子程序执行一次向 EEPROM的单字节写操作。这包括：
; (1)START，(2)从地址 + W，(3)写存储器地址字节，(4)写数据字节
;
; 写 EEPROM的步骤：
; 1) 将从地址装入到 SLA_ADD
; 2) 将存储器地址装入到 MEM_ADD
; 3) 将数据字节装入到 TRANSMIT_BYTE.
; 4) 调用 SEND
;
; RECEIVE子程序执行一次从 EEPROM的单字节读操作。这包括：(1)START，(2)从地址+W，
; (3)写存储器地址字节，(4)重复 START，(5) 从地址+R，(6)读数据字节
;
; 接收数据的步骤：
; 1) 将从地址装入到 SLA_ADD
; 2) 将存储器地址装入到 MEM_ADD
; 3) 调用 RECEIVE
; 4) 读 RECEIVE_BYTE
;
; SMBus状态表被分成 8字节的状态段。允许使用 SMBus状态码(SMB0STA)作为状态索引。
;. 注意，这样每个 SMBus状态定义只有 8字节的代码空间。因此，某些任务被做了变动
; 以不受状态定义长度的限制：
:
; 1) SMB_MTDBACK状态(主发送器，数据字节已发送，ACK已收到)被缩减为一个位测试
; 和一个转移操作。转移到状态表之外，以便能在该状态执行更长的代码。
;
; 2) 有三个字字节用于从地址存储：SLA_ADD、WRI_ADD、READ_ADD。
; 每个传输操作都预装地址值，而不使用位操作。由于一次接收过程包括写和读两次传输，
; 所以需要两个地址字节 WRI_ADD和 READ_ADD。SLA_ADD用做函数调用前的从器件选择。
;
; 注意 SLA_ADD与 WRI_ADD等价，因为 WRI_ADD = SLA_ADD + W (W=0)。
; 把它们分别命名是为了叙述清晰。
;
;---

;---
; 等价定义
;---

 $MOD8F000 ; SFR 声明

 AN013-1.0 MAR01 13

AN013 — 用 SMBus 实现串行通信

 WRITE EQU 00h ; SMBus 写命令
 READ EQU 01h ; SMBus 读命令

 CHIP_A EQU 0A0h ; EEPROM从地址

 ; SMBus状态
 SMB_BUS_ERROR EQU 00h ; (所有方式)总线错误
 SMB_START EQU 08h ; (MT & MR) 起始条件已发送
 SMB_RP_START EQU 10h ; (MT & MR) 重复起始条件
 SMB_MTADDACK EQU 18h ; (MT) 从地址+W已发送；ACK收到
 SMB_MTADDNACK EQU 20h ; (MT) 从地址+W已发送；NACK收到
 SMB_MTDBACK EQU 28h ; (MT) 数据字节已发送；ACK收到
 SMB_MTDBNACK EQU 30h ; (MT) 数据字节已发送；NACK收到
 SMB_MTARBLOST EQU 38h ; (MT) 竞争失败
 SMB_MRADDACK EQU 40h ; (MR) 从地址+R已发送；ACK收到
 SMB_MRADDNACK EQU 48h ; (MR) 从地址+R已发送；NACK收到
 SMB_MRDBACK EQU 50h ; (MR) 数据字节收到；ACK已发送
 SMB_MRDBNACK EQU 58h ; (MR) 数据字节收到；NACK已发送

;---
; 变量
;---

DSEG

 org 30h

 TRANSMIT_BYTE: DS 1 ; 保存 SMBus待发送的字节
 RECEIVE_BYTE: DS 1 ; 保存 SMBus刚收到的字节
 SLA_ADD: DS 1 ; 保存从地址
 WRI_ADD: DS 1 ; 保存从地址+ WRITE
 READ_ADD: DS 1 ; 保存从地址+ READ
 MEM_ADD: DS 1 ; 要访问的 EEPROM 存储器地址

 ; 用于测试的变量
 TEST_COUNT: DS 1 ; Test counter variable
 TEST_BYTE: DS 1 ; Test data
 TEST_ADDR: DS 1 ; Test memory location

BSEG

 org 00h

 RW: DBIT 1 ; R/W 命令位。 1=READ, 0=WRITE
 SM_BUSY: DBIT 1 ; SMBus忙标志(软件保存)
 BYTE_SENT: DBIT 1 ; 用于指示刚发送的字节：
 ; 1: EEPROM存储器地址

14 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

 ; 0: 数据字节

;---
; 复位和中断向量
;---

CSEG

; 复位向量
 org 00h
 ljmp Reset_ISR

; SMBus中断向量
 org 03Bh
 ljmp SMBus_ISR

;---
; 主程序
;---

MAIN:

 Acall SMBus_Init ; 初始化 SMBus
 setb EA ; 允许全局中断

 mov TEST_BYTE, #0ffh
 mov TEST_ADDR, #00h ; 装入初始测试值
 mov TEST_COUNT, #0feh ;

; TEST
CODE---

TEST:

 ; 发送 TEST_BYTE到存储器地址 TEST_ADDR
 mov SLA_ADD, #CHIP_A ; 装入从地址
 mov TRANSMIT_BYTE, TEST_BYTE ; 将待发送数据装入 TRANSMIT_BYTE
 mov MEM_ADD, TEST_ADDR ; 将存储器地址装入 MEM_ADD
 acall SEND ; 调用发送子程序

 ; 将从存储器地址 TEST_ADDR读到的数据装入 RECEIVE_BYTE
 mov SLA_ADD, #CHIP_A ; 装入从地址
 mov MEM_ADD, TEST_ADDR ; 将存储器地址装入 MEM_ADD
 acall RECEIVE ; 调用接收子程序

 ; 将接收到的字节与发送的字节进行比较
 mov A, RECEIVE_BYTE ; 将接收到的字节装入累加器
 cjne A, TEST_BYTE, END_TEST ; 将接收到的字节与发送的字节进行比较
 ; 如不相等则转到 END_TEST

 AN013-1.0 MAR01 15

AN013 — 用 SMBus 实现串行通信

 ; 改变测试变量
 dec TEST_BYTE ; 如果发送字节=接收字节，改变测试变量
 inc TEST_ADDR ; 并重新开始

 ; 如果 TEST_COUNTER不为 0则重新开始
 djnz TEST_COUNT, TEST ; 计数器减 1，循环到开始处
 mov A, #99h ; 如果测试成功，将 99h装入累加器

END_TEST:

 jmp $; 原地跳转
;---
; 子程序
;---

;---
; SEND子程序。假设从地址、存储器地址和要发送的数据已经装入到它们各自的变量中。
;该子程序管理 SM_BUSY位，设置 RW=WRITE，装入 WRI_ADD，初始化传输过程。
;

 push ACC ; 保存累加器
 jb SM_BUSY, $; 等待 SMBus空闲
 clr RW ; RW = 0 (写)

 mov A, SLA_ADD ; 将 SLA_ADD + WRITE保存到 WRI_ADD
 orl A, #WRITE ;
 mov WRI_ADD, A ;

 setb SM_BUSY ; 占用 SMBus
 setb STA ; 启动传输过程
 pop ACC ; 恢复累加器

 ret

;---
; RECEIVE字程序。假设从地址和存储器已经装入到它们各自的变量中。
;该子程序管理 SM_BUSY位，设置 RW=READ，装入 READ_ADD和 WRI_ADD，初始化传输过程。
;
; 注意，接收传输过程包括一个写待访问存储器地址的操作、一个重复起始条件和一个读操作。
; 因此该子程序使用 WRI_ADD和 READ_ADD。
RECEIVE:

 push ACC ; 保存累加器
 jb SM_BUSY, $; 等待 SMBus空闲
 setb RW ; RW = 1 (读)

 mov A, SLA_ADD ; 保存 SLA_ADD + WRITE到 WRITE_ADD
 orl A, #WRITE ;
 mov WRI_ADD, A ;

16 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

 mov A, SLA_ADD ; 保存 SLA_ADD + READ到 READ_ADD
 orl A, #READ ;
 mov READ_ADD, A ;

 setb SM_BUSY ; 占用 SMBus
 setb STA ; 启动传输过程

 jb SM_BUSY, $; 等待接收结束
 pop ACC ; 恢复累加器

 ret

;---
; SMBus_Init
; Smbus初始化子程序
;

; - 配置并允许 SMBus。
; - 设置 SMBus时钟速率
; - 允许 SMBus中断。
; - 为第一次传输清除 SM_Busy标志

SMBus_Init:

 mov SMB0CN, #04h ; 配置 SMBus在应答周期发送 ACK
 mov SMB0CR, #0B0h ; 时钟速率 = 100KHz，根据 SMB0CR公式：
 ; SMB0CR = -(SYSCLK)/(2*Fscl)

 orl SMB0CN, #40h ; 允许 SMBus

 orl EIE1, #02h ; 允许 SMBus中断
 clr SM_BUSY

 ret

;---
; 中断向量
;---

;---
; 复位中断服务程序
;
; - 禁止看门狗定时器
; - 通过交叉开关将 SDA和 SCL连到通用 I/O引脚
; - 允许交叉开关
; - 转到 MAIN

Reset_ISR:

 mov WDTCN, #0DEh ; 禁止看门狗定时器
 mov WDTCN, #0ADh

 AN013-1.0 MAR01 17

AN013 — 用 SMBus 实现串行通信

 orl OSCICN, #03h ; 将内部振荡器设置为最高频率(16 MHz)

 mov XBR0, #01h ; 通过交叉开关将 SMBus连到通用 I/O引脚
 mov XBR2, #40h ; 允许交叉开关和弱上拉

 ljmp MAIN

18 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

;---
; SMBus ISR
;
; 以状态查找表的形式实现，用 SMBus状态寄存器作为索引值
; SMBus状态码是 8的整数倍；因此状态码可以用于索引 8字节的程序段。
; 每个'org'命令指示一个新状态，从状态表的开始位置向下偏移，偏移量为其状态代码值。
;
; 注意，只有 8字接的空间用于处理每个状态。在需要多于 8字节的场合，程序转到状态表
; 以外的代码空间。只有在状态'SMB_MTDBACK'时才需要这样做。

SMBus_ISR:

 push PSW ;
 push ACC ;
 push DPH ; 保护现场
 push DPL ;
 push ACC ;

 mov A, SMB0STA ; 将当前 SMBus装入累加器
 ; 对于每个状态执行，状态与地址偏移量对应

 anl A, #7Fh ; 屏蔽最高位，因为该位为 1的状态没有定义

 mov DPTR, #SMB_STATE_TABLE ; DPTR指向状态表的起始地址
 jmp @A+DPTR ; 转移到当前状态

; SMBus状态表--

SMB_STATE_TABLE:

 ; SMB_BUS_ERROR
 ; 对所有状态：总线错误
 ; 通过置 1停止位对硬件复位
 org SMB_STATE_TABLE + SMB_BUS_ERROR

 setb STO
 jmp SMB_ISR_END ; 中断返回

 ; SMB_START
 ; 主发送器/接收器：起始条件已发送
 ; 在该状态 R/W 总是为 0(W)，因为对读和写操作来说都必须先写存储器地址。
 org SMB_STATE_TABLE + SMB_START

 mov SMB0DAT, WRI_ADD ; 装入从地址 + W
 clr STA ; 手动清除 START为
 jmp SMB_ISR_END ; 中断返回

 ; SMB_RP_START
 ; 主发送器/接收器：重复起始条件已发送
 ; 该状态只应在读操作期间出现，在存储器地址已发出并已得到确认之后。
 org SMB_STATE_TABLE + SMB_RP_START

 AN013-1.0 MAR01 19

AN013 — 用 SMBus 实现串行通信

 mov SMB0DAT, READ_ADD ; 装入从地址 + R
 clr STA ; 手动清除 START位
 jmp SMB_ISR_END

 ; SMB_MTADDACK
 ; 主发送器：从地址 + WRITE 已发送；收到 ACK
 org SMB_STATE_TABLE + SMB_MTADDACK

 mov SMB0DAT, MEM_ADD ; 装存储器地址
 setb BYTE_SENT ; BYTE_SENT=1: 在下一个 ISR调用时，
 ; 存储器地址刚被发送。
 jmp SMB_ISR_END

 ; SMB_MTADDNACK
 ; 主发送器：从地址 + WRITE 已发送；收到 NACK。从器件不应答。
 ; 用应答查询重试。发送 STOP + START。
 org SMB_STATE_TABLE + SMB_MTADDNACK

 setb STO
 setb STA
 jmp SMB_ISR_END

 ; SMB_MTDBACK
 ; 主发送器：数据字节已发送；收到 ACK。该状态在读和写操作中都要用到。
 ; 检查 BYTE_SENT 如果为 1，说明存储器地址刚刚发出。否则，数据字节已被发出。
 org SMB_STATE_TABLE + SMB_MTDBACK

 jbc BYTE_SENT, ADDRESS_SENT ; 如果 BYTE_SENT=1，清除该位并转到
 ; ADDRESS_SENT去执行状态表以外的
 ; 处理程序

 jmp DATA_SENT ; 如果 BYTE_SENT=0，数据刚被发出，
 ; 传输过程完成，转到传输结束

20 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

 ; SMB_MTDBNACK
 ; 主发送器：数据字节已发送；收到 NACK。从器件不应答。
 ; 用应答查询重试。发送 STOP + START重试。
 org SMB_STATE_TABLE + SMB_MTDBNACK

 setb STO
 setb STA
 jmp SMB_ISR_END

 ; SMB_MTARBLOST
 ; 主发送器：竞争失败
 ; 不应发生。如果发生，重新开始发送。
 org SMB_STATE_TABLE + SMB_MTARBLOST

 setb STO
 setb STA
 jmp SMB_ISR_END

 ; SMB_MRADDACK
 ; 主接收器：从地址 + READ 已发送。收到 ACK。
 ; 设置为在下一次传输后发送 NACK，因为那将是最后（唯一）的字节
 org SMB_STATE_TABLE + SMB_MRADDACK

 clr AA ; 在应答周期发送 NACK
 jmp SMB_ISR_END

 ; SMB_MRADDNACK
 ; 主接收器：从地址 + READ 已发送。收到 NACK。
 ; 从器件不应答。用应答查询重试。发送 STOP + START重试。
 org SMB_STATE_TABLE + SMB_MRADDNACK

 setb STA
 jmp SMB_ISR_END

 ; SMB_MRDBACK
 ; 主接收器：数据字节已收到。ACK已发送。
 ; 不应出现，因为 AA已在前一状态被清除。如果发生，发送 STOP。
 org SMB_STATE_TABLE + SMB_MRDBACK

 setb STO
 jmp SMB_ISR_END

 ; SMB_MRDBNACK
 ; 主接收器：数据字节已收到。NACK已发送。
 ; 读操作完成。读数据寄存器并发送 STOP。

 AN013-1.0 MAR01 21

AN013 — 用 SMBus 实现串行通信

 org SMB_STATE_TABLE + SMB_MRDBNACK

 mov RECEIVE_BYTE, SMB0DAT
 setb STO
 setb AA ; 为下一次传输置位 AA
 clr SM_BUSY
 jmp SMB_ISR_END

; 状态表结束--

;---
; 需要大于 8字节程序空间的处理 SMBus状态的程序段

; 地址字节刚发出。检查 RW。如果为 R(1)，转到 RW_READ。
; 如果为 W，将待发送数据装入 SMB0DAT。
ADDRESS_SENT:

 jb RW, RW_READ
 mov SMB0DAT, TRANSMIT_BYTE ; 装入数据
 jmp SMB_ISR_END ; 中断返回

; 这是一个读操作，地址字节刚被发出。发送重复 START启动存储器读
RW_READ:

 setb STA ; 发送重复 START
 jmp SMB_ISR_END ; 中断返回

; 这是一个写操作，数据字节刚被发出。传输过程结束。发送 STOP，释放总线，中断返回
DATA_SENT:

 setb STO ; 发送 STOP后中断返回
 clr SM_BUSY ; 释放 SMBus
 jmp SMB_ISR_END ; 中断返回
;---

; SMBus ISR exit.
; 恢复寄存器，清除 SI位，从中断返回
SMB_ISR_END:

 clr SI
 pop ACC
 pop DPL
 pop DPH
 pop ACC
 pop PSW

 reti

END

22 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

//--
//
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// 文件名 : SMB_Ex2.c
// 目标器件 : C8051F000
// 编写日期 : 2/20/01
// 作者 : JS
//
//
// C8051F0xx通过 SMBus与三个 EEPROM接口的示例代码。
// 该程序假设三个具有 16位地址空间的 EEPROM连在 SCL和 SDA线上，
// 被配置为具有如下从地址：
// CHIP_A = 1010000
// CHIP_B = 1010001
// CHIP_C = 1010010
//
// 从状态和竞争状态没有定义。假设 CF000为系统中唯一的主器件。
// 功能：SM_Send执行向指定 EEPROM的单字节写操作
// SM_Receive执行从指定 EEPROM地址读一个字节的操作（两者都用到存储器地址）
//
// 包含测试代码部分。

//--
// 包含文件
//--
#include <c8051f000.h> // SFR声明

//--
// 全局常量
//--

#define WRITE 0x00 // SMBus 写命令
#define READ 0x01 // SMBus 读命令

// 器件地址（7位，最低位没使用）
#define CHIP_A 0xA0 // 芯片 A的器件地址
#define CHIP_B 0xA2 // 芯片 B的器件地址
#define CHIP_C 0xA4 // 芯片 C的器件地址

// SMBus状态
// MT = 主发送器
// MR = 主接收器

#define SMB_BUS_ERROR 0x00 // （对所有方式）总线错误
#define SMB_START 0x08 // (MT & MR)起始条件已发送
#define SMB_RP_START 0x10 // (MT & MR)重复起始条件
#define SMB_MTADDACK 0x18 // (MT) 从地址 + W 已发送；收到 ACK
#define SMB_MTADDNACK 0x20 // (MT) 从地址 + W 已发送；收到 NACK
#define SMB_MTDBACK 0x28 // (MT) 数据字节已发送；收到 ACK

 AN013-1.0 MAR01 23

AN013 — 用 SMBus 实现串行通信

#define SMB_MTDBNACK 0x30 // (MT) 数据字节已发送；收到 NACK

#define SMB_MTARBLOST 0x38 // (MT) 竞争失败
#define SMB_MRADDACK 0x40 // (MR) 从地址 + R 已发送；收到 ACK
#define SMB_MRADDNACK 0x48 // (MR) 从地址 + W 已发送；收到 NACK
#define SMB_MRDBACK 0x50 // (MR) 收到数据字节；ACK已发送
#define SMB_MRDBNACK 0x58 // (MR) 收到数据字节；NACK已发送

//--
//全局变量
//--
char COMMAND; // 在 SMBus中断服务程序中用于
 // 保存从地址 + R/W 位。

char WORD; // 保持 SMBus要发送的数据字节
 // 或刚收到的数据

char BYTE_NUMBER; // 在中用于检查发送的是什么数据
 // 高地址字节、低地址字节或数据字节

unsigned char HIGH_ADD, LOW_ADD; // EEPROM存储器地址的高、低字节

bit SM_BUSY; // 该位在发送或接收开始时被置 1，
 // 操作结束后由中断服务程序清 0

//--
// 函数原型
//--

void SMBus_ISR (void);
void SM_Send (char chip_select, unsigned int byte_address, char out_byte);
char SM_Receive (char chip_select, unsigned int byte_address);

24 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

//--
// 主程序
//--
//
// 主程序配置交叉开关和 SMBus，并测试 SMBus与三个 EEPROM之间的接口
void main (void)
{
 unsigned char check; // 用于测试目的

 WDTCN = 0xde; // 禁止看门狗定时器
 WDTCN = 0xad;

 OSCICN |= 0x03; // 设置内部振荡器为最高频率(16 MHz)

 XBR0 = 0x01; // 通过交叉开关将 SMBus连到通用 I/O引脚
 XBR2 = 0x40; // 允许交叉开关和弱上拉

 SMB0CN = 0x44; // 允许 SMBus在应答周期发送 ACK
 SMB0CR = -80; // SMBus时钟频率 = 100kHz.

 EIE1 |= 2; // SMBus中断允许
 EA = 1; // 全局中断允许

 SM_BUSY = 0; // 为第一次传输释放 SMBus。

// 测试代码---
 SM_Send(CHIP_A, 0x0088, 0x53); //发送 0x53（数据）到 CHIP_A的地址 0x88
 SM_Send(CHIP_B, 0x0001, 0x66); //发送 0x66（数据）到 CHIP_B的地址 0x01
 SM_Send(CHIP_C, 0x0010, 0x77);
 SM_Send(CHIP_B, 0x0333, 0xF0);
 SM_Send(CHIP_A, 0x0242, 0xF0);

 check = SM_Receive(CHIP_A, 0x0088); // 读 CHIP_A的地址 0x88
 check = SM_Receive(CHIP_B, 0x0001); // 读 CHIP_B的地址 0x01
 check = SM_Receive(CHIP_C, 0x0010);
 check = SM_Receive(CHIP_B, 0x0333);
 check = SM_Receive(CHIP_A, 0x0242);
// 擦拭代码结束--

}

 AN013-1.0 MAR01 25

AN013 — 用 SMBus 实现串行通信

// SMBus 字节写函数---
// 向给定存储器地址写一个字节
//
// out_byte = 待写数据
// byte_address = 待写存储器地址（2字节）
// chip_select = 待写 EEPROM芯片的器件地址
void SM_Send (char chip_select, unsigned int byte_address, char out_byte)
{
 while (SM_BUSY); // 等待 SMBus空闲
 SM_BUSY = 1; // 占用 SMBus（设置为忙）
 SMB0CN = 0x44; // SMBus允许，应答周期发 ACK

 BYTE_NUMBER = 2; // 2地址字节
 COMMAND = (chip_select | WRITE); // 片选 + WRITE

 HIGH_ADD = ((byte_address >> 8) & 0x00FF); // 高 8位地址
 LOW_ADD = (byte_address & 0x00FF); // 低 8位地址

 WORD = out_byte; // 待写数据

 STA = 1; // 启动传输过程
}

// SMBus随机读函数---
// 从给定存储器地址读一个字节
//
// byte_address = 要读取的存储器地址
// chip_select = 待读 EEPROM的器件地址
char SM_Receive (char chip_select, unsigned int byte_address)
{
 while (SM_BUSY); // 等待总线空闲
 SM_BUSY = 1; //占用 SMBus（设置为忙）
 SMB0CN = 0x44; // 允许 SMBus，应答周期发 ACK

 BYTE_NUMBER = 2; // 2地址字节
 COMMAND = (chip_select | READ); // 片选 + READ

 HIGH_ADD = ((byte_address >> 8) & 0x00FF); // 高 8位地址
 LOW_ADD = (byte_address & 0x00FF); // 低 8位地址

 STA = 1; // 启动传输过程
 while (SM_BUSY); // 等待传输结束
 return WORD;
}
//--
// 中断服务程序
//--

// SMBus中断服务程序

void SMBUS_ISR (void) interrupt 7

26 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

{
 switch (SMB0STA){ // SMBus状态码（SMB0STA寄存器）

 // 主发送器/接收器：起始条件已发送
 // 在该状态发送的 COMMAND字的 R/W位总是为 0(W)，
 // 因为对于读和写操作来说都必须先写存储器地址。
 case SMB_START:
 SMB0DAT = (COMMAND & 0xFE); // 装入要访问的从器件的地址
 STA = 0; // 手动清除 START位
 break;

 //主发送器/接收器：重复起始条件已发送。
 // 该状态只应在读操作期间出现，在存储器地址已发送并得到确认之后
 case SMB_RP_START:
 SMB0DAT = COMMAND; // COMMAND中应保持从地址 + R.
 STA = 0;
 break;

 // 主发送器：从地址 + WRITE已发送，收到 ACK。
 case SMB_MTADDACK:
 SMB0DAT = HIGH_ADD; // 装入待写存储器地址的高字节
 break;

 // 主发送器：从地址 + WRITE已发送，收到 NACK。
 // 从器件不应答，发送 STOP + START重试
 case SMB_MTADDNACK:
 STO = 1;
 STA = 1;
 break;

 // 主发送器：数据字节已发送，收到 ACK。
 // 该状态在写和读操作中都要用到。BYTE_NUMBER看存储器地址状态 – 如果

// 只发送了 HIGH_ADD，则装入 LOW_ADD。如果 LOW_ADD已发送，检查 COMMAND
// 中的 R/W 值以决定下一状态。

 case SMB_MTDBACK:
 switch (BYTE_NUMBER){
 case 2: // 如果 BYTE_NUMBER=2，
 SMB0DAT = LOW_ADD; // 只发送了 HIGH_ADD。
 BYTE_NUMBER--; // 减 1，为下一轮作准备
 break;
 case 1: // 如果 BYTE_NUMBER=1，LOW_ADD已发送。
 if (COMMAND & 0x01) // 如果 R/W=READ，发送重复起始条件
 STA = 1;

 else{
 SMB0DAT = WORD; // 如果 R/W=WRITE，装入待写字节
 BYTE_NUMBER--;}
 break;
 default: // 如果 BYTE_NUMBER=0，传输结束
 STO = 1;
 SM_BUSY = 0; // 释放 SMBus

 AN013-1.0 MAR01 27

AN013 — 用 SMBus 实现串行通信

 }
 break;

 // 主发送器：数据字节已发送，收到 NACK。
 // 从器件不应答，发送 STOP + START重试
 case SMB_MTDBNACK:
 STO = 1;
 STA = 1;
 break;

 // 主发送器：竞争失败
 // 不应出现。如果出现，重新开始传输过程
 case SMB_MTARBLOST:
 STO = 1;
 STA = 1;
 break;

 // 主接收器：从地址 + READ 已发送。收到 ACK。
 // 设置为在下一次传输后发送 NACK，因为那将是最后一个字节（唯一）。
 case SMB_MRADDACK:
 AA = 0; // 在应答周期 NACK。
 break;

 // 主接收器：从地址 + READ 已发送。收到 NACK。
 // 从器件不应答，发送重复起始条件重试
 case SMB_MRADDNACK:
 STA = 1;
 break;

 // 收到数据字节。ACK已发送。
 // 该状态不应出现，因为 AA已在前一状态被清 0。如果出现，发送停止条件。

 case SMB_MRDBACK:
 STO = 1;
 SM_BUSY = 0;
 break;

 // 收到数据字节。NACK已发送。
 // 读操作已完成。读数据寄存器后发送停止条件。
 case SMB_MRDBNACK:
 WORD = SMB0DAT;
 STO = 1;
 SM_BUSY = 0; // 释放 SMBus
 break;

 // 在本应用中，所有其它状态码没有意义。通信复位。
 default:
 STO = 1; // 通信复位。
 SM_BUSY = 0;
 break;
 }

 SI=0; // 清除中断标志

28 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

}

//--
//
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// 文件名 : SMB_Ex3.c
// 目标器件 : C8051F000
// 编写日期 : 2/20/01
// 作者 : JS
//
// 两个 C8051F0xx器件之间用 SMBus接口的示例代码。
// 这两个器件以点对点方式工作。
//
// 该例演示每个器件如何使用操作码命令另一个器件完成：
//
// 1) 向 DAC0写一个字节
// 2) 写一个字节到一个数据缓冲区
// 3) 进行一次 ADC转换
// 4) 从一个数据缓冲区读一个字节
//
// 如果每个器件都将 DAC0连到 AIN0，则最这些操作码的测试是很容易的。
// 在这种配置下，READ_ADC命令可以用于测试 WRITE_DAC的输出。
//
// 本程序假设两个 CF0xx器件通过 SCL和 SDA连在一起，从地址（在寄存器 SMB0ADR中）为：
// CHIP_A = 1111000
// CHIP_B = 1110000
//
// 测试代码已包含在内。为了达到测试目的，一个器件中的测试代码应被去掉，而运行另一个
// 器件的测试代码。这可以通过注释掉假定的主器件中测试代码之前的 OP_CODE_HANDLER()
// 调用来完成。
//
// 请注意，常数 MY_ADD必须与当前器件对应，在向 CHIP_B下载代码时应将其改为 CHIP_B。
//
//--

//--
// 包含文件
//--
#include <c8051f000.h> // 声明
//--
// 全局常量
//--

#define WRITE 0x00 // 写方向位
#define READ 0x01 // 读方向位

 AN013-1.0 MAR01 29

AN013 — 用 SMBus 实现串行通信

// 器件地址
#define CHIP_A 0xF0
#define CHIP_B 0xE0
#define MY_ADD CHIP_A // 对应当前被编程的器件

// 点对点操作码
#define READ_ADC 0x01 // OP_CODE 读从 ADC
#define WRITE_DAC 0x02 // OP_CODE 写从 DAC
#define WRITE_BUF 0x03 // OP_CODE 写从缓冲区
#define READ_BUF 0x04 // OP_CODE 读从缓冲区

//SMBus状态：
// MT = 主发送器
// MR = 主接收器
// ST = 从发送器
// SR = 从接收器

#define SMB_BUS_ERROR 0x00 // （对所有方式）总线错误
#define SMB_START 0x08 // (MT & MR) 起始条件已发送
#define SMB_RP_START 0x10 // (MT & MR) 重复起始条件
#define SMB_MTADDACK 0x18 // (MT) 从地址 + W已发送；收到 ACK
#define SMB_MTADDNACK 0x20 // (MT) 从地址 + W已发送；收到 NACK
#define SMB_MTDBACK 0x28 // (MT) 数据字节已发送；收到 ACK
#define SMB_MTDBNACK 0x30 // (MT) 数据字节已发送；收到 NACK
#define SMB_MTARBLOST 0x38 // (MT) 竞争失败
#define SMB_MRADDACK 0x40 // (MR) 从地址 + R已发送；收到 ACK
#define SMB_MRADDNACK 0x48 // (MR) 从地址 + R已发送；收到 NACK
#define SMB_MRDBACK 0x50 // (MR) 收到数据字节；ACK已发送
#define SMB_MRDBNACK 0x58 // (MR) 收到数据字节；NACK已发送
#define SMB_SROADACK 0x60 // (SR) 收到自己的从地址+W；ACK已发送

#define SMB_SROARBLOST 0x68 // (SR) 收到自己的从地址+W；竞争失败
#define SMB_SRGADACK 0x70 // (SR) 收到通用呼叫地址+W；ACK已发送
#define SMB_SRGARBLOST 0x78 // (SR) 在作为主器件发送从地址 + R/W
 // 时竞争失败。收到通用呼叫地址；
 // ACK已发送
#define SMB_SRODBACK 0x80 // (SR) 收到属于自己从地址的数据字节；
 // ACK已发送
#define SMB_SRODBNACK 0x88 // (SR) 收到属于自己从地址的数据字节；
 // NACK已发送
#define SMB_SRGDBACK 0x90 // (SR) 收到通用呼叫地址的数据字节；
 // ACK已发送
#define SMB_SRGDBNACK 0x98 // (SR) 收到通用呼叫地址的数据字节；
 // NACK已发送
#define SMB_SRSTOP 0xa0 // (SR) 在作为从其间被访问时
 // 收到停止条件或重复起始条件
#define SMB_STOADACK 0xa8 // (ST) 收到自己的从地址+R；ACK已发送

30 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

#define SMB_STOARBLOST 0xb0 // (ST) 在作为主器件发送从地址 + R/W
 // 时竞争失败。收到自己的从地址；
 // ACK已发送
#define SMB_STDBACK 0xb8 // (ST) 数据字节已发送；收到 ACK
#define SMB_STDBNACK 0xc0 // (ST) 数据字节已发送；收到 NACK
#define SMB_STDBLAST 0xc8 // (ST) 最后数据字节已发送（AA=0）；收到 ACK
#define SMB_SCLHIGHTO 0xd0 // (ST & SR) SCL 时钟高电平定时器根据
 // SMB0CR已超时(FTE=1)
#define SMB_IDLE 0xf8 // (对所有方式)等待

//--
//全局变量
//--

char COMMAND; // 在 SMBus ISR中保存从地址 + R/W 位。

char WORD; // 保存 SMBus待发送字节或刚收到的字节

char OP_CODE; // 保存待发送或刚收到的操作码

char LOST_COMMAND, LOST_WORD, LOST_CODE; // 用于在竞争失败后保存相关数据

char DATA_BUF[16]; // 由 OP_CODE_HANDLER访问的数据缓冲区

bit LOST; // 竞争失败标志，在主方式下竞争失败时置位。
 // 用于恢复失败的传输过程

bit SM_BUSY; // 该位在发送或接收开始时置 1。
 // 操作结束后由 ISR清 0

bit VALID_OP; // 用于确定作为从器件收到的字节是操作码
 // 还是数据。

bit DATA_READY; // 由 OP_CODE处理程序使用，用于指示
 // 从主器件接收的数据何时有效

//--
// 函数原型
//--

void SMBUS_ISR (void);
char SLA_READ(char chip_select, char out_op);
void SLA_SEND(char chip_select, char out_op, char out_data);
void OP_CODE_HANDLER(void);

//--
// 主程序
//--

void MAIN (void)

 AN013-1.0 MAR01 31

AN013 — 用 SMBus 实现串行通信

{
 char i, check_1, check_2; // 只用于测试目的的变量

 WDTCN = 0xde; // 禁止看门狗定时器
 WDTCN = 0xad;

 XBR0 = 0x01; // 通过交叉开关将 SMBus连到通用 I/O引脚
 XBR2 = 0x40; // 允许交叉开关和弱上拉

 SMB0CN = 0x44; // 允许 SMBus，应答为低电平(AA = 1)
 SMB0CR = -80; // SMBus时钟频率 = 100 kHz
 SMB0ADR = MY_ADD; // 设置自己的从地址

 ADC0CN = 0x80; // 允许 ADC，用写 ADBUSY启动转换

 ADC0CN |= 0x01; // ADC数据寄存器左对齐

 DAC0CN = 0x84; // 允许 DAC0，数据寄存器左对齐

 REF0CN = 0x03; // 允许电压基准

 EIE1 |= 2; // SMBus中断允许
 EA = 1; // 全局中断允许

 SM_BUSY = 0; // 为第一次传输释放总线
 SI = 0; //

// OP_CODE_HANDLER(); // 该行只能在两个点对点器件中的一个里
 // 被注释掉。只用于测试目的。
 // 在正常设置下 OP_CODE_HANDLER将一直运行，
 // 以便根据发送给该器件的操作码执行相应操作

// 测试代码---
// 本代码只用于测试两个器件间的接口。如果上面的 OP_CODE_HANDLER行被去掉注释标记，
// 该器件被假设为主器件。另一个器件应一直运行 OP_CODE_HANDLER，响应下面的操作码：

 SLA_SEND(CHIP_B, (0x40 | WRITE_BUF), 0x24); // 写到数据缓冲区下标 4
 SLA_SEND(CHIP_B, (0x60 | WRITE_BUF), 0x25); // 写到下标 6
 SLA_SEND(CHIP_B, (0x80 | WRITE_BUF), 0x26); // 写到下标 8
 SLA_SEND(CHIP_B, (0x10 | WRITE_BUF), 0x27); // 写到下标 1

 check_1 = SLA_READ(CHIP_B, (0x40 | READ_BUF)); // 从缓冲区读下标 4
 check_1 = SLA_READ(CHIP_B, (0x60 | READ_BUF)); // 读下标 6
 check_1 = SLA_READ(CHIP_B, (0x80 | READ_BUF)); // 读下标 8
 check_1 = SLA_READ(CHIP_B, (0x10 | READ_BUF)); // 读下标 1

// 在循环内连续增加 CHIP_B的 DAC输出并在每次循环读 ADC。CHIP_B的 DAC输出应斜升。

32 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

 for (i=0;i<50;i++){
 SLA_SEND(CHIP_B, WRITE_DAC, 2*i); // 写 2* i到 CHIP_B的 DAC0
 check_1 = SLA_READ(CHIP_B, READ_ADC); // 读 CHIP_B的 AIN0
 check_2 = 2*i;} // check_1应与 check_2

// 基本一致
// 测试代码结束---

}

//--
// 函数
//--

//向从器件发送
// 发送函数向从器件发送两个字节：一个操作码和一个数据字节。有两个操作码用于发送数据：
// WRITE_DAC和 WRITE_BUF。如果操作码为 WRITE_BUF，则操作码的高 4位应含有缓冲区
// 的下表。例如，为了写数据缓冲区下标 2对应的地址，操作码参数应为(0x20 | WRITE_BUF)。
//
// chip_select = 从器件地址。
// out_op = 要发送的操作码。
// out_data = 要发送的数据。
void SLA_SEND(char chip_select, char out_op, char out_data){

 while(SM_BUSY); // 在 SMBus忙时等待
 SM_BUSY = 1; // SMBus忙标志置位
 SMB0CN = 0x44; // 允许 SMBus，ACK为低电平
 COMMAND = (chip_select | WRITE); // COMMAND = 7个地址位 + WRITE.
 OP_CODE = out_op; // WORD = 要发送的操作码。
 WORD = out_data; // DATA = 要发送的数据。
 STA = 1; // 启动传输过程。

}

// 读从器件
// 读函数发出一个字接的操作码，然后发出一个重复起始条件请求读一个字节。
// 可以在两个操作码 READ_ADC和 READ_BUF之间选择。如果操作码为 READ_BUF，
// 则操作码的高 4位应含有缓冲区的索引下标。例如，要读数据缓冲区下标 5对应的地址，
// 则操作码应为(0x50 | READ_BUF)。
//
// chip_select = 从器件地址。
// out_op = 要发送的操作码。
char SLA_READ(char chip_select, char out_op){

 while(SM_BUSY); // 在 SMBus忙时等待。
 SM_BUSY = 1; // SMBus忙标志置位
 SMB0CN = 0x44; // 允许 SMBus，ACK为低电平
 COMMAND = (chip_select | READ); // COMMAND = 7个地址位 + READ
 OP_CODE = out_op;
 STA = 1; // 启动传输过程。

 AN013-1.0 MAR01 33

AN013 — 用 SMBus 实现串行通信

 while(SM_BUSY); // 等待传输结束
 return WORD; // 返回接收字

}

// OP_CODE handler.
// 对输入操作码译码并根据操作码执行相应的任务。
// 一旦被调用，将一直运行
//
// VALID_OP位指示收到一个有效操作码。收到后，该处理程序对操作码译码并执行相应的任务，
// 然后清除 VALID_OP以等待下一个操作码。
void OP_CODE_HANDLER(void){

 char index; // 数据缓冲区索引下标
 while (1){ // 死循环
 VALID_OP = 0; // 等待有效的 OP_CODE
 while (!VALID_OP); //

 // OP_CODE的低 4位用于确定要执行的动作，而高 4位在收到 READ_BUF或

// WRITE_BUF操作码时用于指示 DATA_BUF数组的下标。
 // 注意 SMBus被冻结直到 OP_CODE被译码。
 switch (OP_CODE & 0x0F){ // 对 OP_CODE译码

 // OP_CODE = READ_ADC – 进行一次 ADC并将结果放到输出缓冲区。
 // 只读 ADC的高字节。
 case READ_ADC:
 SI = 0; // 释放总线
 AA = 0; // 使从器件'离线'
 ADCINT = 0; // 清 ADC中断标志。
 ADBUSY = 1; // 启动转换。
 while (!ADCINT); // 等待转换结束。
 WORD = ADC0H; // 将数据放到输出缓冲区
 AA = 1; // 使从器件返回'在线'状态
 VALID_OP = 0; // 等待新的 OP_CODE
 break;

 // OP_CODE=WRITE_DAC –等待一个有效数据字节，并将其写到 DAC0的高字节。
 case WRITE_DAC:
 SI = 0; // 释放总线
 DATA_READY = 0; // 等待有效数据。
 while (!DATA_READY); //
 DAC0L = 0; // DAC低字节
 DAC0H = WORD; // DAC高字节
 VALID_OP = 0; // 等待新的 OP_CODE
 SI = 0; // 结束时释放总线
 break;

 // OP_CODE = WRITE_BUF – 等待有效数据字节，并将其存入 DATA_BUF数组。
 // 根据 OP_CODE的高 4位确定数组下标。

34 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

 case WRITE_BUF:
 SI = 0; // 释放总线
 index = (OP_CODE & 0xF0); // 用高 4位作为数组下标
 DATA_READY = 0; // 等待有效数据。
 while (!DATA_READY); //
 DATA_BUF[index] = WORD; // 将数据存入数组
 VALID_OP = 0; // 等待新的 OP_CODE
 SI = 0; // 结束时释放总线
 break;

 // OP_CODE = READ_BUF – 读 DATA_BUF数组并将字节存入输出缓冲区。
 // 数组下标由 OP_CODE的高 4位决定。
 case READ_BUF:
 index = (OP_CODE & 0xF0); // 用高 4位作为数组下标
 WORD = DATA_BUF[index]; // 将索引字节存入输出缓冲区
 VALID_OP = 0; // 等待新的 OP_CODE
 SI = 0; // 结束时释放总线
 break;
 }

 if (LOST){ // 如果 LOST 被置位，说明器件在最近
 COMMAND = LOST_COMMAND; // 的竞争中失败。将保存值回装到
 WORD = LOST_WORD; // 传输变量并重试传输过程。
 OP_CODE = LOST_CODE;
 LOST = 0;
 STA = 1;
 }
 }
}

//--
// SMBus中断服务程序
//--

void SMBUS_ISR (void) interrupt 7
{
 switch (SMB0STA){ // SMBus的状态码(SMB0STA寄存器)

 // 主发送器/接收器：起始条件已发出。
 // 将从器件地址装入 SMB0DAT。屏蔽 R/W位，因为所有传输过程都从
 // 写 OP_CODE开始。
 case SMB_START:
 SMB0DAT = (COMMAND & 0xFE); // 装入待访问的从器件地址
 // 屏蔽 R/W位，因为第一次传输
 // 总是写 OP_CODE。
 STA = 0; // 手动清除 STA位
 SI = 0; // 清除中断标志
 break;

 // 主发送器/接收器：重复起始条件已发出。
 // 该状态只出现在读操作，在发出 OP_CODE之后。将器件地址 + READ装入 SMB0DAT。

 AN013-1.0 MAR01 35

AN013 — 用 SMBus 实现串行通信

 case SMB_RP_START:
 SMB0DAT = COMMAND;
 STA = 0; // 手动清除 STA位
 SI = 0;
 break;

 // 主发送器：从地址 + WRITE 已发出。收到 ACK。
 // 将 OP_CODE装入到 SMB0DAT。
 case SMB_MTADDACK:
 SMB0DAT = OP_CODE;
 SI = 0; // 清除中断标志
 break;

 // 主发送器：从地址 + WRITE 已发出。收到 NACK。
 // 从器件不响应。用 ACK查询重试。
 case SMB_MTADDNACK:
 STO = 1;
 STA = 1;
 SI = 0; // 清除中断标志
 break;

36 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

 // 主发送器：数据字节已发出。收到 ACK。
 // 检查 OP_CODE – 如果是读操作码，发出重复起始条件开始读。如果是写操作码，

// 将 WORD装入 SMB0DAT以待传输。如果不是有效操作码，则有两种情况：
// 1) 数据已发送，传输过程结束，或 2) 这是一个错误。

 // 在任何一种情况，发出停止条件结束传输。
 case SMB_MTDBACK:
 switch (OP_CODE & 0x0F){ // 只检查低 4位

 // OP_CODE 为 READ。发出重复起始条件。
 case READ_BUF:
 case READ_ADC:
 OP_CODE = 0; // 当前 OP_CODE不再有用
 STA = 1;
 break;

 // OP_CODE 为 WRITE。将输出数据装入 SMB0DAT。
 case WRITE_BUF:
 case WRITE_DAC:
 SMB0DAT = WORD;
 OP_CODE = 0; // 清除 OP_CODE，使传输过程在下一次
 break; // 出现该状态时结束(在发出数据之后)。

 default: // 无有效 OP_CODE。结束传输
 STO = 1;
 SM_BUSY = 0;
 break;
 }
 SI = 0;
 break;

 // 主发送器：数据字节已发出。收到 NACK。
 // 用 ACK查询并重试传输。
 case SMB_MTDBNACK:
 STO = 1;
 STA = 1;
 SI = 0; // 清除中断标志
 break;

 // 主发送器：竞争失败。
 case SMB_MTARBLOST:
 LOST_COMMAND = COMMAND; //
 LOST_WORD = WORD; // 保存变量，以备总线空闲时使用
 LOST_CODE = OP_CODE; //

 LOST = 1; // 设置总线空闲时的重试标志
 SI = 0; // 清除中断标志
 break;

 // 主接收器：从地址 + READ 已发出。收到 ACK。
 // 设置为在下一次传输后发送 NACK，因为这将是最后（唯一）字节。
 case SMB_MRADDACK:
 AA = 0; // 在应答周期发送 NACK
 SI = 0;

 AN013-1.0 MAR01 37

AN013 — 用 SMBus 实现串行通信

 break;

 // 主接收器：从地址 + READ 已发出。收到 NACK。
 // 从器件不响应。重新发送重复起始条件。
 case SMB_MRADDNACK:
 STA = 1;
 SI = 0;
 break;

 // 主接收器：收到数据字节。ACK已发出。
 // 该状态不应出现，因为 AA已在前一状态被清除。
 // 如果出现，发送停止条件。
 case SMB_MRDBACK:
 STO = 1;
 SM_BUSY = 0;
 SI = 0;
 break;

 // 主接收器：收到数据字节。NACK已发出。
 // 读操作完成。读数据寄存器并发送停止条件。
 case SMB_MRDBNACK:
 WORD = SMB0DAT;
 STO = 1;
 SM_BUSY = 0;
 AA = 1; // 为下一次传输设置 AA
 SI = 0;
 break;

 // 从接收器：竞争失败，收到通用呼叫地址。
 // 置位 LOST标志以备总线空闲时重试。本次传输失败。
 case SMB_SRGARBLOST:

 // 从接收器：竞争失败，收到自己的从地址 + WRITE。
 // 置位 LOST标志以备总线空闲时重试。
 // 置位 STO位以退出主方式
 case SMB_SROARBLOST:
 LOST_COMMAND = COMMAND; //
 LOST_WORD = WORD; // 保存变量，以备总线空闲时使用
 LOST_CODE = OP_CODE; //
 LOST = 1; // 总线空闲时重试。
 SI = 0;
 break;

 // 从接收器：收到自己的从地址 + WRITE。ACK已发出。本次传输失败。
 case SMB_SROADACK:

 // 从接收器：收到通用呼叫地址。ACK已发出。
 case SMB_SRGADACK:
 SI = 0;
 break;

 // 从接收器：在收到通用呼叫地址 + WRITE之后收到数据字节。
 // ACK已发出。本次传输失败。
 case SMB_SRGDBACK:

38 AN013-1.0 MAR01

AN013 — 用 SMBus 实现串行通信

 // 从接收器：在收到自己的从地址 + WRITE之后收到数据字节。ACK已发出。
 // 根据所收到的 OP_CODE或数据进行相应操作。
 case SMB_SRODBACK:
 if (!VALID_OP){ // 如果 VALID_OP=0，该字节为 OP_CODE。
 OP_CODE = SMB0DAT; // 保存 OP_CODE
 VALID_OP = 1; // 下一字节不是 OP_CODE
 }
 else{
 DATA_READY = 1; // 收到有效数据。
 WORD = SMB0DAT; // 在 OP_CODE处理程序中处理
 SI = 0;}
 break;

 // 从接收器：被作为从器件访问时收到数据字节。NACK已发出。
 // 该状态不应出现，因为作为从器件 AA不会被清除。本次失败，进入下一状态。
 case SMB_SRODBNACK:

 // 从接收器：被作为通用呼叫地址访问时收到数据字节。NACK已发出。
 // 该状态不应出现，因为作为从器件 AA不会被清除。
 case SMB_SRGDBNACK:
 AA = 1;
 SI = 0;
 break;

 // 从接收器：被作为从器件访问时收到停止条件或重复起始条件。
 case SMB_SRSTOP:
 SI = 0;
 break;

 // 从发送器：收到自己的从地址 + READ。ACK已发出。
 // 将待输出数据装入到 SMB0DAT。
 case SMB_STOADACK:
 SMB0DAT = WORD;
 SI = 0;
 break;

 // 从发送器：作为主器件竞争失败。收到自己的从地址 + READ。ACK已发出。
 case SMB_STOARBLOST:
 LOST_COMMAND = COMMAND; //
 LOST_WORD = WORD; // 保存变量，以备总线空闲时使用
 LOST_CODE = OP_CODE; //
 LOST = 1; // 总线空闲时重试

 SI = 0;
 break;

 // 从发送器：收到数据字节。收到 ACK。失败。
 case SMB_STDBACK:

 // 从发送器：收到数据字节。收到 NACK。失败。
 case SMB_STDBNACK:

 AN013-1.0 MAR01 39

AN013 — 用 SMBus 实现串行通信

 // 从发送器：最后数据字节已发送。收到 ACK。无需任何操作。
 case SMB_STDBLAST:
 SI = 0;
 break;

 // 所有其它状态码无效。通信复位。
 default:
 STO = 1;
 SM_BUSY = 0;
 break;
 }

}

40 AN013-1.0 MAR01

	引言
	SMBus规范
	SMBus结构
	握手
	传输方式
	总线竞争

	使用SMBus
	配置与控制

	实现选择
	示例
	单个EEPROM
	多个EEPROM
	点对点通信接口

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

