
C8051F MCU 应 用 笔 记

Silicon Laboratories Inc. 新华龙电子有限公司
4635 Boston Lane 深圳市福田区华强北路现代之窗大厦 A 座 13F C 室(518013)
Austin, TX 78735 0755-83645240 83645242 83645244 83645251

AN007 — 用 PCA 实现 16 位 PWM

相关器件
本应用笔记适用于下列器件：
C8051F000、C8051F001、C8051F002、C8051F005、C8051F006、C8051F010、C8051F011和

C8051F012。

引言
脉冲宽度调制（PWM）波形常用于闭环反馈和控制应用，例如：控制加热单元的开关状态以

调节DWDM（波分复用）系统中激光器的温度。在某些应用中，可编程计数器阵列（PCA）的内

建8位PWM方式不能提供任务所需的足够的分辨率。本应用笔记介绍如何用PCA的‘高速输出’方

式和最小的软件开销来产生一个16位分辨率的PWM波形。

背景
图1给出了PWM波形的一个例子。用于闭环控制应用的PWM信号的频率并不重要，只要波形

‘足够快’就可以了，象控制系统的阶跃响应时间就应远远小于PWM信号的周期。信号所携带的

的信息用波形的占空度来编码，占空度是波形为高电平的时间与PWM信号的周期之比。对于一个

PWM实现来说，其输入是一个数值，通常为整数，该数值与所要求的输出波形的占空度成正比。

t H

tP

tH
tP
-----=占空比

图1. PWM波形示例

实现
在一个基于8051的设计中，有很多方法用于产生PWM波形：软件循环、查询或中断驱动的定

时器等等。本应用笔记中的例子使用可编程计数器阵列（PCA）。相对于任何查询机制（基于软件

或定时器）而言，使用PCA产生PWM可以大大降低所需要的CPU带宽，并可以消除在中断驱动的

基于定时器的设计中因中断延迟不一致而产生的时序抖动。

 电话：

Email: mcuinfo@silabs.com （版权所有） 电邮：shenzhen@xhl.com.cn
Internet: www.silabs.com 网址：www.xhl.com.cn

AN007 — 用 PCA 实现 16 位 PWM

PCA 简介
PCA包含一个16位的计数器/定时器和5个捕捉/比较模块，如图2所示。计数器/定时器有一个16

位的计数器/定时器寄存器（PCA0H:PCA0L）、一个用于选择时间基准的方式寄存器（PCA0MD）

和一个包含计数器/定时器运行控制及各模块捕捉/比较标志的控制寄存器（PCA0CN）。每个捕捉/
比较模块有一个用于选择模块工作方式（边沿触发捕捉、软件定时器、高速输出或PWM）的配置

寄存器（PCA0CPMx）和一个16位的捕捉/比较寄存器（PCA0CPHn:PCA0CPLn）。

由于所有的捕捉/比较模块共享一个时间基准，因此它们同步工作，例如在电机控制应用中可

以提供锁相激励波形。另外，由于每个模块有其自己的控制和捕捉/比较寄存器，因此每一个模块

工作上又独立于其它模块，只要任何一个模块的服务程序都不影响共享的时间基准（停止或重新设

置计数器/定时器、改变计数器/定时器的时钟源）。

本应用笔记中的例子将PCA配置为独立工作；每个模块的服务程序只影响该模块的配置寄存器

和捕捉 /比较寄存器。PCA方式寄存器只设置一次，不再改变，让计数器 /定时器寄存器

（PCA0H:PCA0L）自由运行。

/4

/12
00

01

10

CPS=11

系统时钟

T0溢出

16位计数器 /定时器

捕捉/比较模块0 捕捉/比较模块 1 捕捉/比较模块 2 捕捉/比较模块 4 捕捉/比较模块 5

交叉开关

端口I/O

图2. PCA原理框图

2 AN007-1.0 DEC00

AN007 — 用 PCA 实现 16 位 PWM

选择 PCA 的时基信号
PCA的时基信号可以是下述四个时钟源之一：SYSCLK/12、SYSCLK/4、定时器0溢出、或出

现在一个外部引脚ECI上的下降沿。图3给出了PCA计数器/定时器的方框图。

在下面的几节中我们将看到，PCA时基信号的选择决定PWM波形的频率。如前所述，PWM波

形的频率通常并不重要，只要‘足够快’就可以了。

一个不很明显的时序选择是：PCA可以按SYSCLK的时钟频率工作。这可以通过选择定时器0
溢出作为PCA时钟源，将定时器0设置为8位自动重装载方式并设重载值为‘0xFF’来实现。

本应用笔记中的所有例子都将PCA配置为用SYSCLK/4作为时钟源。

PCA0H PCA0L

PCA0CN
C
F

C
R

C
C
F
0

C
C
F
2

C
C
F
1

C
C
F
4

C
C
F
3

SYSCLK/12

SYSCLK/4

ECI

00

01

10

11

PCA0MD
C
I
D
L

E
C
F

C
P
S
1

C
P
S
0

IDLE

0

1

CF

定时器0溢出

去PCA模块

去PCA中断系统
溢出

读PCA0L
去SFR总线

瞬象寄存器

图3. PCA计数器/定时器原理框图

用 PCA 实现 8 位 PWM
我们首先介绍一个能产生8位精度PWM波形的方法。为了叙述的完整性，先介绍PCA的PWM

方式。

在该方式中，捕捉/比较模块被配置为图4所示的PWM方式。出现在CEXn的波形的周期等于256
个PCA时钟周期。该信号的低电平时间等于在模块的捕捉／比较寄存器（PCA0CPLn）的低字节中

所存储的8位数值。这种关系如图5所示。

在主PCA计数器（PCA0L）的低字节发生溢出时，模块的比较寄存器的高字节被拷贝到模块的

比较寄存器的低字节（PCA0CPLn=PCA0CPHn）。通过更新PCA0CPHn就能改变占空度。拷贝过程

保证在输出端不产生毛刺。

输出波形的占空度（用％表示）由下式给出：

 AN007-1.0 DEC00 3

AN007 — 用 PCA 实现 16 位 PWM

100
256

CPHn0PCA256
×

−
占空度＝

因为PCA0CPHn可以含有一个0~255的数值，所以可编程的最大和最小占空度为0.38%
（PCA0CP0H=0xFF）到100% (PCA0CP0H=0x00)。占空度选择的分辨率为：

38.0100
256
1

＝分辨率 ×=

8位PWM方式的最大优点是不需要CPU的干预就可以输出一个固定占空度的波形。事实上，如

果CIDL位（PCA0MD.7）被设置为‘0’（复位状态），即使CPU处于休眠状态，输出波形也将保持。

改变占空度是通过向PCA0CPHn写入一个8位数来完成。

在本应用笔记最后包含的文件‘PWM8_1.C’提供了一个8位PWM方式的例子。

8位PWM方式的其它注意事项：

1． 可以通过将模块配置寄存器中的ECOMn位（PCA0CPMn.6）清0使CEXn输出保持为低电平。这

样就可以产生一个0%占空度的波形。可以通过向该位写‘1’或向PCA0CPHn写入一个任意值

来恢复正常的PWM输出。
2． 将MATn和ECCFn位（分别为PCA0CPMn.3 和 PCA0CPMn.0）设置为‘1’会导致在CEXn的下

降沿产生个中断。

PCA0L

PCA0CPLn

PCA0CPHn

CEXn

PCA0CPMn
E
C
O
M
n

E
C
C
F
n

T
O
G
n

P
W
M
n

C
A
P
P
n

C
A
P
N
n

M
A
T
n

0 0 x 0 x

Q

Q
SET

CLR

S

R

8位比较器
允许 匹配

溢出

PCA时基

交叉开关 端口I/O

图4. PCA被配置为8位PWM方式

4 AN007-1.0 DEC00

AN007 — 用 PCA 实现 16 位 PWM

256

PCA0CPHn
CEXn

图5. 8位PWM方式的输出波形

用 PCA 产生 16 位 PWM
为了产生一个具有16位精度的PWM波形，我们将PCA模块配置为高速输出方式，如图6所示。

在该方式下，每当主定时器／计数器的寄存器（PCA0H:PCA0L）与模块的捕捉 /比较寄存器

（PCA0CPHn:PCA0CPLn）相匹配时，CEXn引脚发生电平转换，并可以选择产生中断。

在示例代码中，PCA模块的中断服务程序用两个状态中实现：上升沿状态和下降沿状态，取决

于CEXn引脚上哪一个边沿触发中断。注意，现在所说的的CEXn引脚被看作状态变量。

在上升沿状态，模块的捕捉/比较寄存器被下一个下降沿的比较值更新（该值在示例代码中被

称为PWM）。在下降沿状态，下一个上升沿的比较值被装入模块的捕捉/比较寄存器，该值为０

（0x0000）。这一过程如图7所示。注意，PWM波形的周期为65536个PCA时钟周期。

占空度（用％表示）由下式给出：

100
65536
PWM

×=占空度

PCA0H

PCA0CPHn

PCA0L

PCA0CPLn

PCA0CN
C
F

C
R

C
C
F
0

C
C
F
2

C
C
F
1

C
C
F
4

C
C
F
3

0

1

PCA0CPMn
E
C
O
M
n

E
C
C
F
n

T
O
G
n

P
W
M
n

C
A
P
P
n

C
A
P
N
n

M
A
T
n

0 0 0 x

CEXn

ENB

ENB

0

1

PCA0CPLn

PCA0CPHn

0

1

TOGn

写到

写到

PCA时基

允许 匹配
16位比较器

交叉开关 端口I/O

电平切换

PCA中断

图6. PCA配置为高速输出方式

 AN007-1.0 DEC00 5

AN007 — 用 PCA 实现 16 位 PWM

CEXn

PCA0CPn 0x0000 PWMPWM

匹配发生；
中断已调用

匹配发生；
中断已调用

比较寄存
器已更新

比较寄存
器已更新

图7. 16位PWM的捕捉/比较寄存器装载过程

所允许的最大和最小占空度由CEXn发生变化（它触发过程中断）后更新比较值所需要的最大

时间决定。在‘C’示例代码和汇编示例代码中（分别为‘pwm16_1.c’和‘pwm16_1.asm’），PWM
的最小值7个PCA时钟（对于本例为28个SYSCLK周期）。在这种情况下最小和最大占空度的值分别

为0.01%和99.99%。占空度的分辨率（用％表示）为：

0015.0100
65536

1
＝分辨率 ×=

或大约15个ppm（1ppm=百万分之一）。

处理该中断的CPU开销是最小的。在汇编示例代码中处理两个边沿共需要41个SYSCLK周期，

这不包括中断调用和中断返回所需的时间。两个边沿都必须每隔65536个PCA时钟被处理一次，或

65536*4=262144个SYSCLK周期（如果PCA时钟等于SYSCLK／4）。所消耗的CPU带宽（用％表示）

等于（41/262144*100）=0.015%。

还应注意到CPU可以在保留在等待方式，如示例中所做的那样，这是因为PCA模块中断在需要

处理时将‘唤醒’CPU内核。

在示例中，占空度是通过向变量PWM写入一个16位的值来改变的。

用 PCA 实现 n 位 PWM
作为16位PWM的推广，我们介绍在一些应用中所需要的高于8位精度但低于16位精度的n位

PWM。采用n位PWM方案的动机之一是为了获得比16位实现方式更高的PWM输出频率。

在该例中（‘PWMn_1.c’）用到两个16位变量：PWM＿HIGH（保持用于使输出波形处于高电

平所需要的PCA时钟数），PWM＿LOW（保持用于使输出波形处于低电平所需要的PCA时钟数）。

输出波形的周期为这两个变量的和：

周期=PWM_HIGH+PWM_LOW

占空度（用%表示）由下式给出：

100×
+

==
PWMLOWPWMHIGH

PWMHIGH
占空度

6 AN007-1.0 DEC00

AN007 — 用 PCA 实现 16 位 PWM

占空度的分辨率（用%表示）为：

100×
+

==
PWMLOWPWMHIGH

1
分辨率

与16位PWM的情况类似，中断处理过程在两个状态中实现：一个用于上升沿状态，另一个用

于下降沿状态。主要区别是在16位的情况下被装入到PCA模块比较寄存器的数值是一个常数（PWM
或0）。在n位的情况下，常数（PWM_HIGH或PWM_LOW）被加到模块的比较寄存器的当前值。这

一加法操作比装载一个常数需要多花几个时钟周期，这就导致了输出波形的高电平或低电平的最小

时间略大于相应的16位解决方案。

注：通过向PWM_HIGH和PWM_LOW写入合适的高电平和低电平值，n位PWM方案可以用于产

生一个任意频率的波形。

 AN007-1.0 DEC00 7

AN007 — 用 PCA 实现 16 位 PWM

软件示例

PWM8_1.c

//--
// PWM8_1.c
//--
//
// AUTH: BW
//
// 目标器件： C8051F000、F001、F002、F005、F006、F010、F011或F012
// 工具链： KEIL C51
//
// 说明：
// 实现8位PWM的示例代码。
// PCA被配置为8位PWM方式，使用SYSCLK/4作为时基信号。
// <PWM>中保持着每256个计数周期内输出波形为低电平的PCA周期数。
// 波形为高电平的时间占（256 - PWM）个周期。
// 输出波形的占空度=(256 - PWM)/256。
//
// 由于该8位PWM完全受硬件控制，不需要额外的CPU周期来维持固定的
// 占空度。在本例中，改变占空度只需要向模块的比较寄存器PCA0CP0H
// 的高字节写一个8位数。
//
// 可以达到的占空度范围是0.38%(PCA0CP0H = 0xff)
// 到100%(PCA0CP0H = 0x00)。
//

//--
// 包含文件
//--

#include <c8051f000.h> // SFR 声明

//--
// 全局常量
//--

#define PWM 0x80 // 波形为低电平的PCA周期数
 // 占空度 = (256 - PWM) / 256
 // 注：这是一个8位数

8 AN007-1.0 DEC00

AN007 — 用 PCA 实现 16 位 PWM

//--
// 函数原型
//--

void main (void);

//--
// 主程序
//--

void main (void) {

 WDTCN = 0xde; // 禁止看门狗定时器
 WDTCN = 0xad;

 OSCICN = 0x07; // 设置SYSCLK到16MHz，内部振荡器。

 XBR0 = 0x08; // 使CEX0输出到P0.0
 XBR2 = 0x40; // 允许交叉开关和弱上拉

 PRT0CF = 0x01; // 设置P0.0输出为推挽方式
 PRT1CF = 0x20; // 设置P1.6输出为推挽方式(LED)

 // 配置PCA
 PCA0MD = 0x02; // 禁止CF中断
 // PCA时基= SYSCLK / 4
 PCA0CPL0 = PWM; // 初始化PCA的PWM值
 PCA0CPH0 = PWM;
 PCA0CPM0 = 0x42; // CCM0为8位PWM方式
 PCA0CN = 0x40; // 允许PCA计数器

 while (1) {
 PCON |= 0x01; // 设置等待方式
 }
}

 AN007-1.0 DEC00 9

AN007 — 用 PCA 实现 16 位 PWM

PWM16_1.c

//--
// PWM16_1.c
//--
//
// 作者： BW
//
// 目标器件： C8051F000、F001、F002、F005、F006、F010、F011或F012
// 工具链： KEIL C51
//
// 说明：
// 实现16位PWM的示例代码。
// PCA被配置为高速输出方式，使用SYSCLK/4为时基信号。
// <PWM>保持输出波形为高电平的PCA周期数。
// 波形的低电平时间为(65536-PWM)个周期。输出的占空度=PWM/65536。
//
// 由于有中断服务时间，所以PWM有最小和最大值，
// 占空度也是如此，取决于中断服务时间
// 在使用Keil C51编译器（评估版）时，最小的PWM值是7个PCA时钟。
// 最大值是65530。这相当于最小的占空度0.01%最大的占空度99.99%。
// 这是基于如下假设：PCA时基信号为SYSCLK/4，没有其它中断服务。
//

//--
// 包含文件
//--

#include <c8051f000.h> // SFR声明

//--
// 全局常量
//--

#define PWM_START 0x4000 // 对应于PWM高电平时间的起始值
sbit PWM_OUT = P0^0; // 定义PWM输出端口引脚

//--
// 函数原型
//--

void main (void);
void PCA_ISR (void); // PCA中断服务程序

//--
// 全局变量
//--
unsigned PWM = PWM_START; // 使波形为高电平的PCA周期数
 // 占空度 = PWM/65536
 // 注：这是一个16位数

10 AN007-1.0 DEC00

AN007 — 用 PCA 实现 16 位 PWM

//--
// 主程序
//--

void main (void) {

 WDTCN = 0xde; // 禁止看门狗定时器
 WDTCN = 0xad;

 OSCICN = 0x07; // 设置SYSCLK为16MHz，内部振荡器

 XBR0 = 0x08; // 使CEX0输出到P0.0
 XBR2 = 0x40; // 允许交叉开关和弱上拉

 PRT0CF = 0x01; // 设置P0.0输出为推挽方式
 PRT1CF = 0x20; // 设置P1.6输出为推挽方式(LED)

 // 配置PCA
 PCA0MD = 0x02; // 禁止CF中断
 // PCA时基 = SYSCLK/4
 PCA0CPL0 = (0xff & PWM); // 初始化PCA比较值
 PCA0CPH0 = (0xff & (PWM >> 8));
 PCA0CPM0 = 0x4d; // CCM0为高速输出方式

 EIE1 |= 0x08; // 允许PCA中断

 EA = 1; // 允许全局中断

 PCA0CN = 0x40; // 允许PCA计数器

 while (1) {
 PCON |= 0x01; // 设置等待方式
 }
}

//--
// PCA_ISR
//--
//
// 该ISR在PCA CCM0得到一次匹配时被调用。
// PWM_OUT是CEX0端口引脚，它保持当前边沿的状态：1 = 上升沿；0 = 下降沿
// 在上升沿，PWM_HIGH 被装入比较寄存器。在下降沿，比较寄存器被装入0。
//
void PCA_ISR (void) interrupt 9
{
 if (CCF0) {
 CCF0 = 0; // 清除比较标志
 if (PWM_OUT) { // 处理上升沿

 PCA0CPL0 = (0xff & PWM); // 设置PWM的下一个匹配值
 PCA0CPH0 = (0xff & (PWM >> 8));

 AN007-1.0 DEC00 11

AN007 — 用 PCA 实现 16 位 PWM

 } else { // 处理下降沿

 PCA0CPL0 = 0; // 设置下一个匹配值为0
 PCA0CPH0 = 0;

 }
 } else if (CCF1) { // 处理其它PCA中断
 CCF1 = 0;
 } else if (CCF2) {
 CCF2 = 0;
 } else if (CCF3) {
 CCF3 = 0;
 } else if (CCF4) {
 CCF4 = 0;
 } else if (CF) {
 CF = 0;
 }

PWM16_1.asm

;---
; CYGNAL INTEGRATED PRODUCTS, INC.
;
;
; 文件名： pwm16_1.ASM
; 目标MCU： C8051F000、F001、F002、F005、F006、F010、F011或F012
; 说明： 实现16位PWM的示例代码。
； PCA被配置为高速输出方式，使用SYSCLK/4作为时基信号。
； <PWM>保持输出波形为高电平的PCA周期数。
； 波形的低电平时间为(65536-PWM)个周期。输出的占空度=PWM/65536。
；
； 由于有中断服务时间，最小的PWM值是7个PCA时钟，最大值是65529。
； 这相当于最小的占空度0.01068%，最大的占空度99.9893%。
； 这是基于如下假设：PCA时基信号为SYSCLK/4，没有其它中断服务。
;
; 如果PCA时基信号变为 SYSCLK/12，则最小和最大PWM值分别为3和65533，
; 对应的最小和最大占空度分别为0.0046%和99.9954%。
;
; 处理上升沿中断需要18个周期。处理下降沿中断需要19个周期。
;
; 中断处理程序在每个边沿被调用，每65536个PCA时钟有两个边沿。
; 用SYSCLK/4作为PCA时基信号时，每(65536*4)=262,144个SYSCLK中
; 有37个周期用于边沿处理，这里未计中断调用和返回时间。
; CPU占用率为(37/262,144)*100% = 0.0141%。
;
; 用SYSCLK/12作为PCA时基信号时，每(65536*12)= 786,432个SYSCLK中
; 有37个周期用于边沿处理。CPU占用率为(37/786,432)*100% = 0.0047%。
;
; 波形的周期是65536个PCA时钟。用SYSCLK/4作为PCA时基信号时，
; 该周期为262,144个SYSCLK周期。用缺省的内部振荡器工作于2MHz，

12 AN007-1.0 DEC00

AN007 — 用 PCA 实现 16 位 PWM

; 该周期为131ms(7.6Hz)。使用16MHz的内部振荡器时（如本例），
; 该周期为16.4ms(61Hz)。
;
; 用SYSCLK/12作为PCA时基信号时，该周期为65536*12 =786,432
; 个SYSCLK周期。用缺省的内部振荡器工作于2MHz，该周期为393ms(2.5Hz)。
; 使用16MHz的内部振荡器时（如本例），该周期为49.2ms(20Hz)。
;
; 在本例中，输出被连到P0.0，也被标识为‘PWM_OUT’。
;
;---

;---
; 等价定义
;---

$MOD8F000

PWM EQU 32768 ; 波形为高电平的PCA周期数
 ; 占空度 = PWM / 65536
 ; 最大值 = 65529 (99.9893% 占空度)
 ; 最小值 = 7 (0.01068% 占空度)
 ; 注：这是一个16位的常数

PWM_OUT EQU P0.0 ; 定义PWM输出端口引脚

;---
; 复位和中断向量表
;---

CSEG
 org 00h
 ljmp Main

 org 04bh
 ljmp PCA_ISR ; PCA中断服务程序

;---
; 主程序
;---
 org 0b3h ; 在中断处理空间之后开始
Main:
 ; 禁止看门狗定时器
 mov WDTCN, #0deh
 mov WDTCN, #0adh

 ; 允许内部振荡器工作于 16MHz
 mov OSCICN, #07h

 ; 允许交叉开关和弱上拉
 mov XBR0, #08h ; CEX0连到P0.0
 mov XBR2, #40h

 orl PRT0CF, #01h ; 配置 P0.0

 AN007-1.0 DEC00 13

AN007 — 用 PCA 实现 16 位 PWM

 ; 配置 PCA
 mov PCA0MD, #02h ; 禁止 cf 中断，PCA时基 = SYSCLK/4
 mov PCA0CPL0, #LOW(PWM) ; 初始化PCA比较值
 mov PCA0CPH0, #HIGH(PWM)
 mov PCA0CPM0, #4dh ; CCM0 为高速输出方式

 ; 允许中断
 orl EIE1, #08h ; 允许PCA中断
 setb EA ; 允许全局中断

 mov PCA0CN, #40h ; 允许PCA计数器

 jmp $

;---
; CCF0 中断向量
;
;
// 该ISR在PCA CCM0得到一次匹配时被调用。
// PWM_OUT是CEX0端口引脚，它保持当前边沿的状态：1 = 上升沿；0 = 下降沿
// 在上升沿，PWM_HIGH 被装入比较寄存器。在下降沿，比较寄存器被装入0。

PCA_ISR:
 jbc CCF0, CCF0_HNDL ; 处理CCF0比较
 jbc CCF1, PCA_STUB ; 分支程序
 jbc CCF2, PCA_STUB
 jbc CCF3, PCA_STUB
 jbc CCF4, PCA_STUB
 jbc CF, PCA_STUB

PCA_STUB:
PCA_ISR_END:
 reti

CCF0_HNDL:
 jnb PWM_OUT, CCF0_FALL
 ; 处理上升沿
CCF0_RISE:
 mov PCA0CPL0, #LOW(PWM)
 mov PCA0CPH0, #HIGH(PWM)

 reti

CCF0_FALL: ; 处理下降沿
 mov PCA0CPL0, #00
 mov PCA0CPH0, #00

 reti

; 上升沿需要 4+3+11 = 18 个周期
; 下降沿需要 4+4+11 = 19 个周期

;---

14 AN007-1.0 DEC00

AN007 — 用 PCA 实现 16 位 PWM

; END
;---

END

 AN007-1.0 DEC00 15

AN007 — 用 PCA 实现 16 位 PWM

PWMn_1.c

//--
// PWMn_1.c
//--
//
// 作者： BW
//
// 目标器件： C8051F000、F001、F002、F005、F006、F010、F011或F012
// 工具链： KEIL C51
//
// 说明：
// 实现n位PWM的示例源代码。
// PCA被配置为高速输出方式，使用SYSCLK/4为时基信号。
// <PWM_HIGH>保持输出波形为高电平的PCA周期数。
// <PWM_LOW>保持输出波形为低电平的PCA周期数。
// 输出的占空度= PWM_HIGH /(PWM_HIGH+ PWM_LOW)。
//
// 由于有中断服务时间，因此PWM_HIGH和PWM_LOW有最小和最大值，
// 占空度也是如此，取决于中断服务时间。如果不考虑编译器的效率，
// 1%和99%之间的占空率很容易达到。
// 在使用评估版的Keil C51编译器时，最小的高电平和低电平时间各为
// 20个PCA时钟（最大频率约为100kHz w/16MHz内部SYSCLK）。
// 这是基于如下假设：PCA时基信号为SYSCLK/4，没有其它中断服务。
//

//--
// 包含文件
//--

#include <c8051f000.h> // SFR声明

//--
// 全局常量
//--

#define PWM_START 0x8000 // PWM_HIGH时间和PWM_LOW时间的起始值
sbit PWM_OUT = P0^0; // 定义PWM输出端口引脚

//--
// 函数原型
//--

void main (void);
void PCA_ISR (void); // PCA中断服务程序

//--
// 全局变量
//--
unsigned PWM_HIGH = PWM_START; // 波形为高电平的PCA周期数

16 AN007-1.0 DEC00

AN007 — 用 PCA 实现 16 位 PWM

unsigned PWM_LOW = ~PWM_START; // 波形为低电平的PCA周期数
 //占空度=PWM_HIGH/(PWM_HIGH+PWM_LOW)

//--
// 主程序
//--

void main (void) {

 WDTCN = 0xde; // 禁止看门狗定时器
 WDTCN = 0xad;

 OSCICN = 0x07; // 设置SYSCLK为16MHz，内部振荡器

 XBR0 = 0x08; // CEX0输出到P0.0
 XBR2 = 0x40; // 允许交叉开关和弱上拉

 PRT0CF = 0x01; // 设置P0.0为推挽输出方式
 PRT1CF = 0x20; // 设置P1.6为推挽输出方式(LED)

 // 配置PCA
 PCA0MD = 0x02; // 禁止CF中断
 // PCA时基=SYSCLK/4
 PCA0CPL0 = (0xff & PWM_HIGH); // 初始化PCA比较值
 PCA0CPH0 = (0xff & (PWM_HIGH >> 8));
 PCA0CPM0 = 0x4d; // CCM0为高速输出方式

 EIE1 |= 0x08; // 允许PCA中断

 EA = 1; // 允许全局中断

 PCA0CN = 0x40; // 允许PCA计数器

 while (1) {
 PCON |= 0x01; // 设置等待方式
 }
}

//--
// PCA_ISR
//--
//
// 该ISR在PCA CCM0得到一次匹配时被调用。
// PWM_OUT是CEX0端口引脚，它保持当前边沿的状态：1 = 上升沿；0 = 下降沿
// 在上升沿，比较寄存器被更新，以触发下一个下降沿。
// 在下降沿，比较寄存器被更新，以触发下一个上升沿。
//

void PCA_ISR (void) interrupt 9
{
 unsigned temp; // 保存16位匹配值

 AN007-1.0 DEC00 17

AN007 — 用 PCA 实现 16 位 PWM

 if (CCF0) {
 CCF0 = 0; // 清除比较标志
 if (PWM_OUT) { // 处理上升沿

 // 为下一个下降沿更新比较匹配值
 temp = (PCA0CPH0 << 8) | PCA0CPL0; // 取当前比较值
 temp += PWM_HIGH; // 加上合适的偏移量

 PCA0CPL0 = (0xff & temp); // 更换比较值
 PCA0CPH0 = (0xff & (temp >> 8));

 } else { // 处理下降沿

 //为下一个上升沿更新比较匹配值
 temp = (PCA0CPH0 << 8) | PCA0CPL0; // 取当前比较值
 temp += PWM_LOW; // 加上合适的偏移量

 PCA0CPL0 = (0xff & temp); // 更换比较值
 PCA0CPH0 = (0xff & (temp >> 8));

 }
 } else if (CCF1) { // 处理其它PCA中断
 CCF1 = 0;
 } else if (CCF2) {
 CCF2 = 0;
 } else if (CCF3) {
 CCF3 = 0;
 } else if (CCF4) {
 CCF4 = 0;
 } else if (CF) {
 CF = 0;
 }
}

18 AN007-1.0 DEC00

	引言
	背景
	实现
	PCA简介

	选择PCA的时基信号
	用PCA实现8位PWM
	用PCA产生16位PWM
	用PCA实现n位PWM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

