
C8051F MCU 应 用 笔 记

Silicon Laboratories Inc. 新华龙电子有限公司
4635 Boston Lane 深圳市福田区华强北路现代之窗大厦 A 座 13F C 室(518013)
Austin, TX 78735 0755-83645240 83645242 83645244 83645251

AN005 — 通过 JTAG 接口对 FLASH 编程

相关器件

本应用笔记适用于下列器件：
C8051F000、C8051F001、C8051F002、C8051F005、C8051F006、C8051F010、C8051F011 和

C8051F012。

引言
本文介绍如何通过 JTAG 接口对 C8051 器件的 FLASH 存储器编程。在本应用笔记的最后提供

了示例源代码。

通过 JTAG 接口对 FLASH 编程所需要的信息可以分为三大类：

1． JTAG 接口信息：
a． 4 脚物理层接口（TCK、TMS、TDI 和

TDO）
b． 测试访问端口（TAP）状态机
c． TAP 复位、指令寄存器扫描和数据寄存

器扫描基本操作
2． JTAG 间接寄存器操作：

a． 读间接寄存器
b． 写间接寄存器
c． 查询“忙”标志位看读或写操作是否完

成
3． FLASH 编程操作：

a． 读一个 FLASH 字节
b． 写一个 FLASH 字节
c． 擦除一个 FLASH 页
d． 擦除整个 FLASH

图 1 示出通过 JTAG 端口访问 FLASH 的编

程层次结构。

FLASH 操作：

字节读、字节写、页擦除和全擦除

FLASH 接口寄存器：
FLASHCON、FLASHDAT、FLASHADR

和 FLASHSCL

间接寄存器操作

间接读
间接写

查询 Busy（忙）

JTAG 接口基本操作
TAP 复位

指令寄存器扫描
数据寄存器扫描

JTAG 物理层：
TCK、TMS、TDI、TDO

和 TAP 状态机

图 1. JTAG 闪存编程层次结构

 电话：

Email: mcuinfo@silabs.com （版权所有） 电邮：shenzhen@xhl.com.cn
Internet: www.silabs.com 网址：www.xhl.com.cn

AN005 — 通过 JTAG 接口对 FLASH 编程

JTAG 接口
本应用笔记为FLASH编程提供了足够的JTAG接口信息。若需要更多的信息，请参见JTAG标准

— IEEE 1149.1-1990，该标准可以从“电气与电子工程师协会”得到（更多的信息见 http：
//standards.ieee.org）。C8051 系列器件的JTAG接口完全符合IEEE 1149.1 规范。已经熟悉JTAG接口

的读者可跳到第 7 页的“C8051 器件指令寄存器”一节。

测试访问口接口（TAP）
JTAG 口的硬件接口包括四个信号，如图 2 所示：

TCK
TMS
TDI

TDO

C8051Fxxx

图 2. TAP 接口

1． TCK：输入移位时钟。TMS 和 TDI 的数据在 TCK 的上升沿被采样。数据在时钟的下降沿输出

到 TDO。
2． TMS：输入方式选择。TMS 用于控制 TAP 状态机。
3． TDI：输入。输入到指令寄存器（IR）或数据寄存器（DR）的数据出现在 TDI 输入端，在 TCK

的上升沿被采样。
4． TDO：输出。来自指令寄存器或数据寄存器的数据在时钟的下降沿被移出到 TDO。

TAP 状态机
如图 3 所示，测试访问口状态机的主要目的是选择指令寄存器或数据寄存器中的一个，使其连

接到 TDI 和 TDO 之间。一般来说，指令寄存器用于选择要扫描的数据寄存器。在状态机框图中，

位于箭头旁边的数字表示 TCK 变高时 TMS 的逻辑状态。

2 AN005-1.1 DEC00

AN005 — 通过 JTAG 接口对 FLASH 编程

Test Logic
Reset

Run_Test/Idle Select
DR_Scan

Select
IR_Scan

Capture_DR

Shift_DR

Exit1_DR

Pause_DR

Exit2_DR

Update DR

Capture_IR

Shift_IR

Exit1_IR

Pause_IR

Exit2_IR

Update IR

1

1 1

1 1

1

1

1

1

10 0

0 0

0 0

0 0

0

0

1

图 3. TAP 状态机

TAP 复位
通过保持 TMS 为高电平（逻辑‘1’）并在 TCK 端输入至少 5 个选通脉冲（变高后再变低）后

TAP 逻辑被复位，如图 4 所示。这使 TAP 状态机的状态从任何其它状态转到测试逻辑复位状态，

对 JTAG 口和测试逻辑复位。该状态不复位 CPU 和外设。

TAP 注意事项：
1． 在进入 Shift_DR 或 Shift_IR 状态时，TDO 上的数据从 TCK 的下降沿开始有效。
2． 在进入 Shift_DR 或 Shift_IR 状态时数据不移位。
3． 在离开 Shift_DR 或 Shift_IR 时数据被移位。
4． 最先移出的是数据的最低位（LSB）。

 AN005-1.1 DEC00 3

AN005 — 通过 JTAG 接口对 FLASH 编程

TCK

TDI

TDO

TMS

测
试

逻
辑

复
位

运
行

-
测

试
/
等

待

图 4. TAP 复位时序

IR 和 DR 扫描
除了测试逻辑复位之外，状态机还控制两个基本操作：指令寄存器（IR）扫描和数据寄存器（DR）

扫描。在一次扫描操作中，出现在 TDI 的数据在 TCK 的上升沿被采样，在 TCK 的下降沿数据被

输出到 TDO。在一次指令寄存器扫描操作中，指令寄存器在 Shift_IR 状态被传送。在一次数据寄

存器扫描操作中，数据寄存器在 Shift_DR 状态被传送。数据移位时总是 LSB 在先。

在 C8051 器件中，指令寄存器的长度总是 16 位。数据寄存器的长度是变化的，取决于所选择

的寄存器。图 5 给出了指令寄存器访问的时序图，图 6 给出了数据寄存器访问的时序图。

TCK

TDI

TDO

TMS

IR0 IR1 IR2 IR3 IR4 IR5 IR6 IR7 IR8 IR9 IR10 IR11 IR12 IR13 IR14 IR15

图 5. 指令寄存器访问时序图

4 AN005-1.1 DEC00

AN005 — 通过 JTAG 接口对 FLASH 编程

TCK

TDI

TDO

TMS

DI0 DI1 DI2 DI3 DI4 DIn

DO0 DO1 DO2 DO3 DO4 DOn

图 6. 数据寄存器访问时序图

IDCODE 举例
为了更好地说明一个典型的 JTAG 操作是如何工作的，我们举一个读 IDCODE 寄存器的例子。

读 IDCODE 是一个两步的过程。首先启动一个指令寄存器扫描操作，将 IDCODE 的地址装入

指令寄存器，从 TDI 移入 16 位，如图 7 所示。一旦指令寄存器装入完成，则启动数据寄存器扫描

操作，从器件中读出 32 位的 IDCODE 输出到 TDO，如图 8 所示。

TCK

TDI

TDO

TMS

IR0 IR1 IR2 IR3 IR4 IR5 IR6 IR7 IR8 IR9 IR10 IR11 IR12 IR13 IR14 IR15

对于IDCODE扫描，指令寄存器 = 0x1004

图 7. 读 IDCODE 的指令寄存器扫描时序

 AN005-1.1 DEC00 5

AN005 — 通过 JTAG 接口对 FLASH 编程

TCK

TDI

TDO

TMS

DR0 DR1 DR2 DR3 DR4 DR5 DR6 DR7 DR8 DR9 DR10 DR11 DR12 DR13 DR14 DR16 DR17 DR18 DR19 DR20 DR21 DR22 DR23 DR24 DR25 DR26 DR27 DR28 DR29 DR30 DR31DR15

对D版C8051F000进行 IDCODE扫描时，从数据寄存器读到‘0x100024 3’

图 8. 读 IDCODE 的数据寄存器扫描时序

C8051 器件的指令寄存器
C8051 器件中的指令寄存器的长度总是 16 位，指令格式如下：

指令寄存器格式

15:12 11:0
StateCntl DRAddress

StateCntl 字段控制调试硬件的状态。在一次 FLASH 编程操作中，系统首先停止运行，CPU 内

核被保持在暂停执行状态，使看门狗定时器不起作用。
StateCntl 字段译码

StateCntl* 器件状态
0000 正常
0001 停止
0010 系统复位
0100 CPU 内核挂起
1111 正常

*未列出的状态为保留状态

6 AN005-1.1 DEC00

AN005 — 通过 JTAG 接口对 FLASH 编程

DRAddress 字段译码

寄存器 DRAddress*
EXTEST 0x000
SAMPLE/PRELOAD 0x002
IDCODE 0x004
BYPASS 0xFFF
FLASHCON 0x082

FLASHDAT 0x083

FLASHADR 0x084

FLASHSCL 0x085

*未列出的状态为保留状态

间接寄存器
4 个 FLASH 寄存器（FLASHCON、FLASHADR、FLASHDAT 和 FLASHSCL）都是采用相同

的间接方式进行访问的。这种间接访问机制处理 JTAG 时钟域（受 TCK 控制）和 CPU 时钟域（受

SYSCLK 控制）之间的信息传送。不应将这些间接寄存器与标准 8051 的间址寄存器 R0 和 R1 相混

淆。

间接寄存器访问概述
为了读或写一个间接寄存器，指令寄存器中必须装入正确的数据寄存器地址（DRAddress）。

然后通过向所选择的数据寄存器写入适当的间接操作码（IndOpCode）来启动读和写操作。在进行

写操作时，‘写’操作码位于待写数据之后。

对于输入命令，数据寄存器的格式如下：

间接写数据寄存器格式

19:18 17:0
IndOpCode WriteData（待写数据）

间接操作码的各位译码如下：
IndOpCode 字段译码

IndOpCode 操作
0x 查询
10 读
11 写

数据寄存器输出数据的格式如下：

 AN005-1.1 DEC00 7

AN005 — 通过 JTAG 接口对 FLASH 编程

间接读数据寄存器格式

19 18:1 0
0 读出的数据 Busy（忙）

间接读
读（Read）操作启动一次从由 DRAddress 选择的寄存器中读取数据的过程。读过程可以通过

向间接寄存器移入两位来启动（‘读’的 IndOpCode 位）。在读操作被启动后，可以通过查询 Busy
位来确定操作何时完成和何时可以读取数据。图 9 给出了描述如何对一个间接寄存器进行读操作的

流程图。

间接写
写操作启动一次向由 DRAddress 选择的寄存器内写数据的过程。可以写长度不大于 18 位的任

意长度的寄存器。如果待写寄存器的长度小于 18 位，WriteData（写数据）应左对齐（MSB 占据位

17）。这样允许较短的寄存器可以用较少的 JTAG 时钟周期写入。例如，写一个 8 位的间接寄存器

只需移 10 位（2 位‘写’操作码+8 个数据位）即可完成。在启动一个写操作之后，应查询‘Busy’
位来确定该操作何时完成。图 10 给出了描述如何对一个间接寄存器进行写操作的流程图。

查询‘Busy’位
‘Busy’位用于指示当前的读或写操作是否完成。它在操作启动后变高（‘1’），在操作完成后

回到低电平（‘0’）。由于‘Busy’位占据返回数据的 LSB，因此对‘Busy’位的查询可以在一个

DR 移位周期内完成（在退出 Shift_DR 状态时）。

在进行间接读时，一旦‘Busy’位变低，ReadData 即可被移出。注意，ReadData 总是右对齐

的。这就允许长度小于 18 位的寄存器可以用较少的 JTAG 时钟周期读取。例如：一个 8 位的读操

作可以用 9 个 DR 移位（8 个数据位+1 个‘Busy’位）完成。

图 11 给出了查询‘Busy’位的数据寄存器扫描时序图。

当一个读或写操作正在进行时，不应改变指令寄存器的内容。

8 AN005-1.1 DEC00

AN005 — 通过 JTAG 接口对 FLASH 编程

1

0

间接读

将待读寄存器装入IR
IR<=4xxxh

xxx=DRAddress

将DR装入'读'操作码
DR<=10b(2位)

查询DR中的Busy位
DR<=0b(1位)

Busy

读DR
DR<=0(n+1位)

n=间接寄存器字长

结束

1

0

间接写

将待写寄存器装 IR入
IR<=4xxxh

xxx=DRAddress

将DR装入'写'操作码和数据
DR<=11yyyyb(2+n位)

yyyy=待写数据

查询DR中的Busy位
DR<=0b(1位)

Busy

结束

图 9. 间接读流程图 图 10. 间接写流程图

 AN005-1.1 DEC00 9

AN005 — 通过 JTAG 接口对 FLASH 编程

TCK

TDI

TDO

TMS

Busy

图 11. 查询‘Busy’位的数据寄存器扫描时序图

FLASH 编程

FLASH 寄存器说明
通过 4 个间接寄存器访问 FLASH：FLASHCON、FLASHADR、FLASHDAT 和 FLASHSCL。

用前节所述的间接读或间接写来对每一个寄存器访问。

FLASHCON
FLASHCON 是一个 8 位寄存器，它控制 FLASH 逻辑如何响应对 FLASHDAT 寄存器的读和写

操作。FLASHCON 寄存器包含一个读方式（ReadMode）设置和一个写方式（WriteMode）设置，

意义如下：

FLASHCON 格式

7:4 3:0
WriteMode ReadMode

ReadMode 字段译码

ReadMode* 操作
0000 FLBusy 查询
0010 启动 FLASH 读；

FLASHADR 加 1
*未列出的状态为保留状态

WriteMode 字段译码

10 AN005-1.1 DEC00

AN005 — 通过 JTAG 接口对 FLASH 编程

WriteMode* 操作
0000 FLBusy 查询
0001 启动 FLASH 写；

FLASHADR 加 1
0010 如果 FLASHDAT = 0xA5，则

启动对当前页的页擦除操作；

如果 FLASHDAT = 0xA5，且

FLASHADR 为 0x7DFE 或
0x7DFF，则启动对整个
FLASH 的擦除操作；

*未列出的状态为保留状态

FLASHADR
FLASHADR 是一个 16 位寄存器，它包含待读或待写的 FLASH 字节的地址。FLASHADR 在

完成一个读或写操作后自动加一。

FLASHDAT
FLASHDAT 是一个 10 位的寄存器，它包含 8 位数据，一个 FLFail 位和一个 FLBusy 位，如下

所示：
FLASHDAT 读格式

9:2 1 0
FLData FLFail FLBusy

写 FLASHDAT 只需要 8 位，因为最后一个被锁存的位处于 MSB 位置。

读FLASHDAT需要11个DR_SHIFT周期（8个用于FLData，一个用于FLFail，一个用于FLBusy，
一个用于 Busy）。

查询 FLBusy 至少需要 2 个 DR_SHIFT周期，一个用于 FLBusy，一个用于 Busy。

FLASHSCL
FLASHSCL 是一个 8 位寄存器，用它设置 FLASH 操作时序所需要的预分频值。当使用内部的

2MHz 系统时钟时，该寄存器应配置如下：

FLASHSCL 配置

7:4 3:0
1000 0110

 AN005-1.1 DEC00 11

AN005 — 通过 JTAG 接口对 FLASH 编程

FLASH 访问流程
在对 FLASH 编程之前，需要对器件复位并禁止看门狗。否则看门狗定时器可能在 FLASH 操

作期间启动系统复位，导致预想不到的后果。

禁止卡门狗定时器（WDT）
图 12 给出了禁止看门狗定时器的流程图。该过程描述如下：

1． 通过向指令寄存器（IR）装入 0x2FFF 使系统复位。
2． 通过向 IR 装入 0x1004 进行 IDCODE 扫描，然后用 0x00000000 进行 32 位的 DR 扫描。
3． 在 IR 地址后设置 StateCntl 为‘0x04’，使内核挂起，FLASH 离线。

禁止WDT

执行系统复位
IR<=2FFFh

读IDCODE
IR<=1004h

DR<=0(32位)

结束

图 12. 旁路看门狗定时器的流程图

读一个 FLSH 字节
图 13 给出了读一个 FLASH 字节的流程图。该过程描述如下：

1． 向 FLASHSCL 装入 0x86，设置正确的 FLASH 时序，使用内部的 2MHz 系统时钟。这可以通

过对 FLASHSCL 进行间接写来完成。
2． 向 FLASHADR 装入待读字节的 16 位地址，这可以通过对 FLASHADR 进行 16 位的间接写来

完成。
3． 向 FLASHCON 装入启动读操作的操作码（0x01），这可以通过对 FLASHCON 进行 8 位的间接

写来完成。
4． 通过读 FLASHDAT 启动读操作。这是一个 0 位的间接读（DR 扫描只包含 2 位读操作码）。注

意这只是启动读过程。
5． 向 FLASHCON 装入查询 FLBusy 的操作码（0x00），这是一个对 FLASHCON 的 8 位间接写操

作。
6． 查询 FLBusy，直到它变为低电平，表示读操作已经完成。这是一个一位的间接读。图 14 给出

查询 FLBusy 的 DR 扫描时序图。
7． 读 FLASHDAT。这是一个 10 位的间接读（8 个数据位，一个 FLFail 位和一个 FLBusy 位）。图

15 给出读 FLASHDAT 的 DR 扫描时序图。

12 AN005-1.1 DEC00

AN005 — 通过 JTAG 接口对 FLASH 编程

如果进行连续读，则该过程可以从步骤 3 重新开始，因为 FLASHADR 在进行一次读或写操作

后自动加 1。

如果试图对一个已被设置为读锁定的扇区进行读操作，则 FLFail 位置‘1’。

1

0

FLASH读

将0x86装入FLASHSCL:
间接写(0x4085, 0x86)

向FLASHADR装入待读地 址:
间 (0x4084, yyyy)接 写

yyyy = 16位地址

查询FLBusy位:
间接 (0x4083, 1读 位)

FLBusy

读FLASHDAT:
(0x4083, 10间 接 读 位)

结束

向FLASHCON装入“ 启动读”
操作码 :

(0x4082, 0x02)间 接 写

通过读FLASHDAT
启动读操作:

间接读(0x4083, 0位)

向FLASHCON装入
“ 查询 FLbusy” 操作码 :

(0x4082, 0x00)间 接 写

读下一个地址？
是

否

图 13. 读一个 FLASH 字节的流程图

 AN005-1.1 DEC00 13

AN005 — 通过 JTAG 接口对 FLASH 编程

TCK

TDI

TDO

TMS

Busy FLBusy

图 14. 查询 FLBusy 的 DR 扫描时序图

TCK

TDI

TDO

TMS

Busy FLBusy D4 D6 D7D0 D1 D2 D3 D5FLFail

图 15 读 FLASHDAT 的 DR 扫描时序图

写一个 FLSH 字节
图 16 给出了写一个 FLASH 字节的流程图。该过程如下：

1． 向 FLASHSCL 装入 0x86，设置正确的 FLASH 时序，使用内部的 2MHz 系统时钟。这可以通

过对 FLASHSCL 进行间接写来完成。
2． 向 FLASHADR 装入待写字节的 16 位地址。
3． 向 FLASHCON 装入启动写操作的操作码（0x10）。
4． 向 FLASHDAT 装入待写数据。这是一个 8 位的间接写。
5． 向 FLASHCON 装入查询 FLBusy 的操作码（0x00）。
6． 查询 FLBusy。这是通过启动一个对 FLASHDAT 寄存器的一位间接读来完成的。

如果进行连续写，则该过程可以从步骤 3 重新开始。FLASHADR 在进行一次读或写操作后自

14 AN005-1.1 DEC00

AN005 — 通过 JTAG 接口对 FLASH 编程

动加 1。

如果试图对一个已被设置为写锁定的扇区进行写操作，则 FLFail 位置‘1’。

1

0

FLASH写

将0x86装入FLASHSCL:
间接写(0x4085, 0x86)

向FLASHADR装入待写地址:
(0x4084, yyyy)间接写

yyyy = 16位地址

查询FLBusy位:
间接 (0x4083, 1读 位)

FLBusy

结束

向FLASHCON装入
“ 启动写” 操作码：
间接写(0x4082, 0x10)

将待写数据装入FLASHDAT:
间接写(0x4083, zz)
zz = 16位待写数据

向FLASHCON装入
“ FL查询 busy” 操作码:

(0x4082, 0x00)间接写

写下一个地址？
是

否

图 16. 写一个 FLASH 字节的流程图

 AN005-1.1 DEC00 15

AN005 — 通过 JTAG 接口对 FLASH 编程

图 17 给出了步骤 4 以前的写 FLASHDAT 的 DR 扫描时序图。

TCK

TDI

TDO

TMS

D7D0 D1 D2 D3 D4 D5 D6

图 17. 写 FLASHDAT 的 DR 扫描时序图

擦除一个 FLASH 页
FLASH 存储器是由一系列的页组成的，每页 512 字节。擦除一个 FLASH 页的过程与写一个

FLASH 字节类似，区别在于 FLASHCON 寄存器应设置为 0x20，FLASHDAT 需设置为 0xA5。
FLASHADR 可以设置为要擦除的页内的任何一个地址。如果 FLASHADR 被设置为锁定字节地址

中的任何一个（0x7dfe 或 0x7dff），则该擦除操作将擦除整个 FLASH 存储器，位于 0x7e00 和 0x7fff
之间的保留区除外。

与读和写操作不同，在擦除操作完成后 FLASHADR 并不自动加 1。

图 18 给出了 FLASH 页擦除过程的流程图。

16 AN005-1.1 DEC00

AN005 — 通过 JTAG 接口对 FLASH 编程

1

0

FLASH
页擦除

将0x86装入FLASHSCL:
间接写(0x4085, 0x86)

向FLASHADR装入待擦页内地址:
间 (0x4084, yyyy)接写

yyyy = 16位地址

查询FLBusy位:
间接 (0x4083, 1读 位)

FLBusy

结束

向FLASHCON装入
“ 启动擦除” 操作码：
间接写(0x4085, 0x20)

通过向FLASHDAT写
'0xA5'启动擦除操作:

(0x4083, 0xA5)间接写

向FLASHCON装入
“查 询FLbusy”操作码 :

(0x4082, 0x00)间接写

图 18. 擦除一个 FLASH 页的流程图

 AN005-1.1 DEC00 17

AN005 — 通过 JTAG 接口对 FLASH 编程

对 JTAG 链中的器件编程
如果一个 C8051 器件与其它器件一起组成了一个边界扫描链，或多个 C8051 器件的 JTAG 口

如图 19 所示那样连接在一起，则除了正在被编程的器件外，每个指令寄存器扫描操作都被配置为

置所有其它器件于 BYPASS（旁路）方式。这可以通过向待编程器件之前或之后的所有器件的指令

寄存器中移入‘1’来完成。

数据寄存器扫描操作向待编程器件之前或之后的器件各插入一位以累计器件中的 BYPASS 寄

存器的个数。

1． IR 扫描操作前面有 m 个‘1’，后面有 n 个‘1’，其中 m 是待编程器件之前的指令寄存器位数，

n 是待编程器件之后的指令寄存器位数。
2． DR 扫描操作中，前面有 x 个‘0’，后面有 y 个‘0’，其中 x 是待编程器件之前的 JTAG 器件

的个数，y 是待编程器件之后的 JTAG 器件的个数。

图 20 给出了 IR 扫描操作和 DR 扫描操作的示例。

TDO
TDI

TMS
TCK

TDI

TCK TMS

TDO TDI

TCK TMS

TDO TDI

TCK TMS

TDO

JTAG控制器 JTAG器件 #1 JTAG器件 #2 JTAG器件 #3

图 19. 典型 JTAG 链连接

1111111111111111

0

0x4yyy

xxxx

1111111111111111

0

TDI TDO

指令寄存器 指令寄存器 指令寄存器

数据寄存器 数据寄存器 数据寄存器

图 20. 隔离待编程的 C8051 器件

18 AN005-1.1 DEC00

AN005 — 通过 JTAG 接口对 FLASH 编程

软件示例
//--
// JTAG_FLASH.c
//--
// 该程序包含一些通过 C8051Fxxx器件测试方式下的 JTAG口对 FLASH进行读、写、擦除
// 操作的基本例程。测试方式的 JTAG引脚接到 C8051F000主器件的端口引脚。
//
// 目标器件： C8051F000，C8051F010
//
// 工具链： KEIL Eval 'c'
//

//--
// 包含文件
//--
#include <c8051f000.h> // SFR 声明

//--
// 全局常量
//--
sbit LED = P1^6; // 绿色 LED：'1' = 亮，'0' = 灭

// 连接到待编程器件 JTAG引脚的通用 I/O引脚
sbit TCK = P3^7; // JTAG 测试时钟
sbit TMS = P3^6; // JTAG 方式选择
sbit TDI = P3^5; // JTAG 数据输入
sbit TDO = P3^4; // JTAG 数据输出

#define TRUE 1
#define FALSE 0

// JTAG 指令寄存器地址
#define INST_LENGTH 16 // 指令寄存器位数
#define BYPASS 0xffff
#define EXTEST 0x0000
#define SAMPLE 0x0002

#define RESET 0x2fff // 系统复位指令

#define IDCODE 0x1004 // IDCODE 指令地址/HALT
#define IDCODE_LEN 32 // ID码的位数

#define FLASHCON 0x4082 // FLASH 控制指令地址
#define FLCN_LEN 8 // FLASHCON的位数

#define FLASHDAT 0x4083 // FLASH数据指令地址
#define FLD_RDLEN 10 // FLASHDAT读的位数
#define FLD_WRLEN 8 // FLASHDAT写的位数

#define FLASHADR 0x4084 // FLASH地址指令地址

 AN005-1.1 DEC00 19

AN005 — 通过 JTAG 接口对 FLASH 编程

#define FLA_LEN 16 // FLASHADR的位数

#define FLASHSCL 0x4085 // FLASH预分频指令地址
#define FLSC_LEN 8 // FLASHSCL的位数

//--
// 函数原型
//--

void init (void);
void JTAG_StrobeTCK (void);
void JTAG_Reset (void);
unsigned int JTAG_IR_Scan (unsigned int instruction, int num_bits);
unsigned long JTAG_DR_Scan (unsigned long dat, int num_bits);
void JTAG_IWrite (unsigned int ireg, unsigned long dat, int num_bits);
unsigned long JTAG_IRead (unsigned int ireg, int num_bits);
int FLASH_ByteRead (unsigned int addr, unsigned char *pdat);
int FLASH_ByteWrite (unsigned int addr, unsigned char dat);
int FLASH_PageErase (unsigned int addr);

//---

// 主程序

void main (void) {

 unsigned long id;
 unsigned char dest;
 int pass;

 id = 0x12345678L;

 init (); // 初始化端口

 JTAG_Reset (); // 复位测试方式下的 JTAG状态机
 JTAG_IR_Scan (RESET, INST_LENGTH); // 复位 DUT

 JTAG_IR_Scan (IDCODE, INST_LENGTH); // 向 IR装入 IDCODE并停止 DUT
 id = JTAG_DR_Scan (0x0L, IDCODE_LEN); // 读 DCODE
 // IDCODE 应 = 0x10000243，
 // 对 8051F000 Rev D

 // 我们擦除 FLASH页 0x1000 - 0x11ff，读 0x1000（内容为 0xff），
 // 写 0x66到 0x1000，重读 0x1000（其值应变为 0x66）。
 while (1) {
 pass = FLASH_PageErase (0x7c00); // 在写之前先擦除页
 while (!pass); // 处理写锁定的情况

 dest = 0x5a; // 设置测试变量为非 0xff的值

 pass = FLASH_ByteRead (0x7c00, &dest); // dest应返回 0xff
 while (!pass); // 处理读锁定的情况

20 AN005-1.1 DEC00

AN005 — 通过 JTAG 接口对 FLASH 编程

 dest = 0x66;
 pass = FLASH_ByteWrite (0x7c00, dest); // 写 0x66到 0x1000
 while (!pass); //处理读锁定的情况

 pass = FLASH_ByteRead (0x7c00, &dest); // dest应返回 0x66
 while (!pass); //处理读锁定的情况

 pass = FLASH_PageErase (0x7c00);
 while (!pass);

 pass = FLASH_ByteRead (0x7c00, &dest);
 while (!pass);
 }
}

//--
// 函数和过程
//--

//--
// init
//--
// 该函数禁止看门狗定时器并初始化通用 I/O引脚
//
void init (void) {

 WDTCN = 0xde; // 禁止看门狗定时器
 WDTCN = 0xad;

 XBR2 |= 0x40; // 允许交叉开关
 PRT1CF |= 0x40; // 允许 P1.6 (LED) 上拉输出
 PRT3CF |= 0xe0; // 设置 P3.7-5为推挽输出
 P3 &= 0x1f; // TCK、TMS和 TDI全为低电平

}

//--
// JTAG_StrobeTCK
//--
// 该函数向目标系统的 TCK引脚发出选通脉冲（置高电平后再变为低电平）。
//
void JTAG_StrobeTCK (void) {

 TCK = 1;
 TCK = 0;
}

//--
// JTAG_Reset
//--
// 该函数将目标系统的 JTAG状态机置于测试逻辑复位状态，通过在保持 TMS高电平时向 TCK
// 发出 5个选通脉冲来实现。让 JTAG状态机保持在 Run_Test/Idle状态。
//
void JTAG_Reset (void) {

 AN005-1.1 DEC00 21

AN005 — 通过 JTAG 接口对 FLASH 编程

 TMS = 1;

 JTAG_StrobeTCK (); // 转到测试逻辑复位状态
 JTAG_StrobeTCK ();
 JTAG_StrobeTCK ();
 JTAG_StrobeTCK ();
 JTAG_StrobeTCK ();

 TMS = 0;

 JTAG_StrobeTCK (); // 转到 Run_Test/Idle状态
}

//--
// JTAG_IR_Scan
//--
// 该函数将<num_bits>长度的<instruction>装入目标系统的 JTAG 指令寄存器。
// 使其停在 Test/Idle状态。返回值是从 IR读到的 n位值。
// 假定 JTAG状态机从 Run_Test/Idle state开始运行。
//
unsigned int JTAG_IR_Scan (unsigned int instruction, int num_bits) {

 unsigned int retval; // JTAG指令读
 int i; // JTAG IR位计数器

 retval = 0x0;

 TMS = 1;
 JTAG_StrobeTCK (); // 转到 SelectDR
 TMS = 1;
 JTAG_StrobeTCK (); // 转到 SelectIR
 TMS = 0;
 JTAG_StrobeTCK (); // 转到 Capture_IR
 TMS = 0;
 JTAG_StrobeTCK (); // 转到 Shift_IR state

 for (i=0; i < num_bits; i++) {

 TDI = (instruction & 0x01); // 移位 IR, LSB先移
 instruction = instruction >> 1;

 retval = retval >> 1;
 if (TDO) {
 retval |= (0x01 << (num_bits - 1));
 }

 if (i == (num_bits - 1)) {
 TMS = 1; // 转到 Exit1_IR状态
 }

 JTAG_StrobeTCK();
 }

 TMS = 1;
 JTAG_StrobeTCK (); // 转到 Update_IR

22 AN005-1.1 DEC00

AN005 — 通过 JTAG 接口对 FLASH 编程

 TMS = 0;
 JTAG_StrobeTCK (); // 转到 RTI state

 return retval;
}

//--
// JTAG_DR_Scan
//--
// 该函数将<data>的<num_bits>位移入到数据寄存器，返回从数据寄存器读到的数据，
// 最多 32位。使状态机停在 Run_Test/Idle状态。
//假定 JTAG状态机从 Run_Test/Idle state开始运行。
//

unsigned long JTAG_DR_Scan (unsigned long dat, int num_bits) {

 unsigned long retval; // JTAG返回值
 int i; // JTAG DR位计数器

 retval = 0x0L;

 TMS = 1;
 JTAG_StrobeTCK (); // 转到 SelectDR
 TMS = 0;
 JTAG_StrobeTCK (); // 转到 Capture_DR
 TMS = 0;
 JTAG_StrobeTCK (); // 转到 Shift_DR state

 for (i=0; i < num_bits; i++) {

 TDI = (dat & 0x01); // 移位 DR, LSB先移
 dat = dat >> 1;

 retval = retval >> 1;
 if (TDO) {
 retval |= (0x01L << (num_bits - 1));
 }

 if (i == (num_bits - 1)) {
 TMS = 1; // 转到 Exit1_DR状态
 }

 JTAG_StrobeTCK();
 }
 TMS = 1;
 JTAG_StrobeTCK (); // 转到 Update_DR
 TMS = 0;
 JTAG_StrobeTCK (); // 转到 RTI状态

 return retval;
}

//--
// JTAG_IWrite

 AN005-1.1 DEC00 23

AN005 — 通过 JTAG 接口对 FLASH 编程

//--
// 该函数执行一个间接写 <ireg>寄存器的操作，写数据为<dat>，数据长度为<num_bits>
// 它在写操作后进行查询，操作完成后返回。注意：此处的查询操作是看 JTAG寄存器
// 的写操作是否完成，而不是指 FLASH写操作。对 FLASH写操作的查询在更高一级处理。
// 有效间接寄存器为：
// FLCN – FLASH控制
// FLSC – FLASH预分频器
// FLA – FLASH地址
// FLD – FLASH数据
// 停留在 Run_Test/Idle状态
//
void JTAG_IWrite (unsigned int ireg, unsigned long dat, int num_bits) {

 int done; // TRUE = 写完成；否则为 FALSE

 JTAG_IR_Scan (ireg, INST_LENGTH); // 将<ireg>装入 IR

 dat |= (0x03L << num_bits); // 在数据后面加‘写’操作码

 // load DR with <dat>
 JTAG_DR_Scan (dat, num_bits + 2); // 启动 JTAG写

 // 将 DR装入'0'，并检查 BUSY位是否变为'0'.
 do {
 done = !(JTAG_DR_Scan (0x0L, 1)); // 查询 JTAG_BUSY位
 } while (!done);
}

//--
// JTAG_IRead
//--
// 该函数执行一个间接读 <ireg>寄存器的操作，数据长度为<num_bits>。
// 它在读操作后进行查询，操作完成后返回。注意：此处的查询操作是看 JTAG寄存器
// 的读操作是否完成，而不是指 FLASH读操作。对 FLASH读操作的查询在更高一级处理。
// 有效间接寄存器为：
// FLCN – FLASH控制
// FLSC – FLASH预分频器
// FLA – FLASH地址
// FLD – FLASH数据
// 使状态机停留在 Run_Test/Idle状态
//
//
unsigned long JTAG_IRead (unsigned int ireg, int num_bits) {

 unsigned long retval; // 读操作返回的数值
 int done; // TRUE = 写完成，否则为 FALSE

 JTAG_IR_Scan (ireg, INST_LENGTH); // 将<ireg>装入 IR

 // 将 DR装入读操作码(0x02)

24 AN005-1.1 DEC00

AN005 — 通过 JTAG 接口对 FLASH 编程

 JTAG_DR_Scan (0x02L, 2); // 启动 JTAG读

 do {
 done = !(JTAG_DR_Scan (0x0L, 1)); // 查询 JTAG_BUSY位
 } while (!done);

 retval = JTAG_DR_Scan (0x0L, num_bits + 1); // 允许查询操作读其余的位
 retval = retval >> 1; // 移出 JTAG_BUSY位

 return retval;
}

//--
// FLASH_ByteRead
//--
// 该函数读地址为<addr>的字节并存于<pdat>指向的地址
// 如果操作成功则返回 TRUE，否则返回 FALSE（被设置为读保护的页）。
//
int FLASH_ByteRead (unsigned int addr, unsigned char *pdat)
{
 unsigned long testval; // 保存 FLASHDAT读的结果
 int done; // TRUE/FALSE标志
 int retval; // 操作成功为 TRUE

 JTAG_IWrite (FLASHSCL, 0x86L, FLSC_LEN);// 根据 SYSCLK频率设置 FLASHSCL
 // (2MHz = 0x86)

 // 将 FLASHADR设置为要读的地址
 JTAG_IWrite (FLASHADR, (unsigned long) addr, FLA_LEN);

 JTAG_IWrite (FLASHCON, 0x02L, FLCN_LEN); // 设置 FLASHCON以执行
 // FLASH读操作(0x02)

 JTAG_IRead (FLASHDAT, FLD_RDLEN); // 启动读操作

 JTAG_IWrite (FLASHCON, 0x0L, FLCN_LEN); // 设置 FLASHCON以执行查询操作

 do {
 done = !(JTAG_IRead (FLASHDAT, 1)); // 查询 FLBUSY，等待操作完成
 } while (!done);

 testval = JTAG_IRead (FLASHDAT, FLD_RDLEN); // 读结果数据

 retval = (testval & 0x02) ? FALSE: TRUE; // FLFail是 LSB的前一位

 testval = testval >> 2; // 将 data.0移入 LSB位置

 *pdat = (unsigned char) testval; // 将数据存入返回位置

 return retval; // 返回 FLASH成功/失败
}

//--

 AN005-1.1 DEC00 25

AN005 — 通过 JTAG 接口对 FLASH 编程

// FLASH_ByteWrite
//--
// 该函数将数据<dat>写入 FLASH，地址为<addr>
// 如果操作成功则返回 TRUE，否则返回 FALSE（被设置为写保护的页）。
//
int FLASH_ByteWrite (unsigned int addr, unsigned char dat)
{
 unsigned long testval; //保存 FLASHDAT读的结果
 int done; // TRUE/FALSE标志
 int retval; //操作成功为 TRUE

 JTAG_IWrite (FLASHSCL, 0x86L, FLSC_LEN); //根据 SYSCLK频率设置 FLASHSCL
 // (2MHz = 0x86)

 // 设置 FLASHADR为要写的地址
 JTAG_IWrite (FLASHADR, (unsigned long) addr, FLA_LEN);

 JTAG_IWrite (FLASHCON, 0x10L, FLCN_LEN); // 设置 FLASHCON以执行
 // FLASH写操作(0x10)

 // 启动写操作
 JTAG_IWrite (FLASHDAT, (unsigned long) dat, FLD_WRLEN);

 JTAG_IWrite (FLASHCON, 0x0L, FLCN_LEN); // 设置 FLASHCON以执行查询操作

 do {
 done = !(JTAG_IRead (FLASHDAT, 1)); // 查询 FLBusy，等待操作完成
 } while (!done);

 testval = JTAG_IRead (FLASHDAT, 2); // 读 FLBusy和 FLFail

 retval = (testval & 0x02) ? FALSE: TRUE; // FLFail是 LSB的前一位

 return retval; // 返回 FLASH成功/失败
}

//--
// FLASH_PageErase
//--
// 该函数擦除包含<addr>的页。该函数假定目前没有进行 FLASH操作。
// 该函数返回时保证没有 FLASH操作在进行。如果操作成功则返回 TRUE，
// 否则返回 FALSE（页保护）。
//
int FLASH_PageErase (unsigned int addr)
{
 unsigned long testval; //保存 FLASHDAT读的结果
 int done; // TRUE/FALSE标志
 int retval; //操作成功为 TRUE

 JTAG_IWrite (FLASHSCL, 0x86L, FLSC_LEN); //根据 SYSCLK频率设置 FLASHSCL
 // (2MHz = 0x86)

26 AN005-1.1 DEC00

AN005 — 通过 JTAG 接口对 FLASH 编程

 // 将 FLASHADR设置为待擦除页内的地址
 JTAG_IWrite (FLASHADR, (unsigned long) addr, FLA_LEN);

 JTAG_IWrite (FLASHCON, 0x20L, FLCN_LEN); // 设置 FLASHCON以执行
 // FLASH擦除操作(0x20)

 JTAG_IWrite (FLASHDAT, 0xa5L, FLD_WRLEN); // 设置 FLASHDAT为 0xa5
 // 以启动擦除过程

 JTAG_IWrite (FLASHCON, 0x0L, FLCN_LEN); // 设置 FLASHCON以执行查询操作

 do {
 done = !(JTAG_IRead (FLASHDAT, 1)); //查询 FLBusy，等待操作完成
 } while (!done);

 testval = JTAG_IRead (FLASHDAT, 2); // 读 FLBusy和 FLFail

 retval = (testval & 0x02) ? FALSE: TRUE; // FLFail是 LSB的前一位

 // 根据 FLFail位设置返回值
 return retval; // 返回 FLASH成功/失败
}
//***文件结束***

 AN005-1.1 DEC00 27

	引言
	JTAG接口
	测试访问口接口（TAP）
	TAP状态机
	TAP复位
	IR和DR扫描
	IDCODE举例
	C8051器件的指令寄存器

	间接寄存器
	间接寄存器访问概述
	间接读
	间接写
	查询‘Busy’位

	FLASH编程
	FLASH寄存器说明
	FLASHCON
	FLASHADR
	FLASHDAT
	FLASHSCL

	FLASH访问流程
	禁止卡门狗定时器（WDT）
	读一个FLSH字节
	写一个FLSH字节
	擦除一个FLASH页

	对JTAG链中的器件编程
	软件示例

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

