
C8051F MCU 应 用 笔 记

Silicon Laboratories Inc. 新华龙电子有限公司
4635 Boston Lane 深圳市福田区华强北路现代之窗大厦 A 座 13F C 室(518013)
Austin, TX 78735 0755-83645240 83645242 83645244 83645251

AN003 — 使用片内温度传感器

SAR
ADC

+
-

AV+

+

-

+

-

+

-

9 -1
AMUX

AV+

ADWINT

ADCEN

+

-

X

AIN0

AIN1

AIN2

AIN3

AIN4

AIN5

AIN6

AIN7

AGND

AGND

AMX0CF AMX0SL ADC0CF ADC0CN

ADC0LTLADC0LTHADC0GTLADC0GTH

温度传感器
00

01

10

11

CNVSTR

写ADBUSY

定时器3溢出

定时器2溢出

启动转换

(单端
或

差分)

组合
逻辑

AD
C

0H
AD

C
0L

24

12

12

引言
本应用笔记的目的是介绍如何配置和使用片内温度传感器。本文提供了配置说明和示例代码。

温度传感器产生一个与器件基材温度成正比的电压，该电压作为一个单端输入提供给ADC（模

数转换器）的多路开关。当选择温度传感器作为ADC的一个输入并且ADC启动一次转换后，可以

经过简单数学运算将ADC的输出结果转换成用度数表示的温度。

温度传感器的应用包括系统环境监视、系统过热测试和基于热电偶的应用中，测量冷端温度。

关键点：
y 温度传感器的分辨率可以通过求均值得到改善。
y 温度传感器测量的是器件的基材温度。如果希望测量环境温度，则必须考虑器件的自热效应。

 电话：

Email: mcuinfo@silabs.com （版权所有） 电邮：shenzhen@xhl.com.cn
Internet: www.silabs.com 网址：www.xhl.com.cn

AN003 — 使用片内温度传感器

配置说明
为了使用温度传感器，它首先必须被允许。ADC及其相关的偏置电路也必须被允许。ADC可

以使用内部电压基准也可以使用外部电压基准。本应用笔记中的例子使用内部电压基准。ADC转换

的结果代码可以选择为左对齐或右对齐。本应用笔记中的例子使用左对齐，这样可使代码的权值与

ADC的位数无关；也就是说，所用的公式和常数适用于具有9位到16位ADC输出的所有器件。

通过将TEMPE（REF0CN.2）设置为‘1’来允许温度传感器工作。模拟偏置发生器和内部电

压基准的允许位也位于REF0CN中（分别为REF0CN.1和REF0CN.0）；所有这些位可以在一次写操

作中被允许，例如：

mov REF0CN, #07 h
;允许温度传感器、模拟偏置产生器和电压基准

下一步，必须选择温度传感器为ADC的输入，这可以通过写AMX0SL来完成，例如：

mov AMX0SL, #0f h ; 选择温度传感器作为ADC输入

AMX0CF的值为何以及AMUX配置寄存器选择ADC是单端输入还是叉分输入，并不影响温度

传感器工作。

下一步，必须正确设置位于ADC0CF中的ADC SAR时钟分频系数。特别是ADC转换时钟的周

期至少应为400ns。表1给出所需的最小分频系数与SYSCLK的关系。

表1. ADC时钟分频系数与SYSCLK的关系

SYSCLK频率 ADC分频系数 ADCSC2-0
时钟频率 < 2.5 MHz 1 000
2.5 MHz – 5 MHz 2 001
5 MHz – 10 MHz 4 010
10 MHz – 20 MHz 8* 011
时钟频率 > 20 MHz 16 1xx

*表示复位值

接下来选择ADC的增益。在单端方式下，ADC能够接收的最大直流输入电压等于VREF。如果

使用内部电压基准，该值大约为2.4 V。温度传感器所能产生的最大电压值稍小于1V。因此，我们

可以安全地将ADC的增益设置为‘2’，以提高我们的温度分辨率。设置ADC增益的配置位在ADC0CF
中。我们有：

mov ADC0CF, #61h ; 设置ADC的时钟 = SYSCLK/8
; 设置ADC增益 = 2

其余的ADC配置位位于ADC0CN，这是一个可以位寻址的寄存器。可以选择任何一种有效的转

换启动机制：定时器2或定时器3溢出，向ADBUSY写‘1’，或用外部CNVSTR。下面的软件示例使

用定时器3溢出作为转换启动源。这里我们采用向ADBUSY写‘1’。

2 AN03-1.0

AN003 — 使用片内温度传感器

通过写入下面的控制字，我们将ADC配置为低功耗跟踪方式，采用向ADBUSY写‘1’作为转

换启动信号，输出数据采用左对齐格式：

mov ADC0CN, #c1h ; 允许ADC；允许低功耗跟踪方式
; 清除转换完成中断
; 选择ADBUSY作为转换启动源
; 清除窗口比较中断
; 设置输出数据格式为左对齐；

至此，我们可以通过向ADBUSY写‘1’来启动一次转换：

setb ADBUSY ; 启动转换

现在我们等待转换完成：

jnb ADCINT, $; 等待转换完成

一旦转换完成，ADC输出寄存器，即ADC0H和ADC0L中的16位数值包含与器件基材的绝对温

度成正比的代码。下面一节告诉我们如何通过这一代码得到温度的摄氏度数值。

结果阐释
温度传感器产生一个与器件基材绝对温度成正比的电压输出。方程1给出这一电压和温度的摄

氏度数值之间的关系。

方程1

Vtemp = 2.5 mV/C * Temp + 0.603 V

其中：
Vtemp = 温度传感器的输出电压
Temp = 器件基材的摄氏温度值

温度传感器的传输特性如图1所示。

温度传感器的电压不能直接在器件外面观察到。它出现在ADC多路开关的输入端，允许ADC
测量该电压值并产生一个与电压值成正比的输出代码。ADC在左对齐、单端方式下产生的代码与输

入电压成正比，如下所示：

方程2

CODE = Vin * (Gain / Vref) * 2^16

其中：
CODE = 左对齐的ADC输出代码
Gain = ADC的增益
Vref = 电压基准的电压值，如果使用内部Vref，则大约为2.4 V。

把方程1代入方程2，我们得到一个与温度的摄氏度数成正比的输出代码：

 AN03-1.0 3

AN003 — 使用片内温度传感器

CODE = (2.5 mV/C * Temp + 0.603 V) * (Gain / Vref)* 2^16

为了求解Temp，我们重写方程，得到：

方程3

Temp = (CODE - K1) * K2

其中：
K1 = 0.603 * (Gain / Vref) * 2^16
K2 = 1 / (2.5 mV / C * (Gain / Vref) * 2^16

对于 Vref = 2.4V 和 Gain = 2：

K1 = 32,932 = 0x80a4

K2 = 480 / 2^16 = 0x01d4 / 2^16

因为K2是一个分数，为便于实现，在所有的计算中都保持其值为480，而在最后除以216。

0-50 50 100

0.500

0.600

0.700

0.800

0.900

VTEMP = 0.00286(TEMP C) + 0.776

1.000

(摄氏度)

(伏)

PGA 增益 = 1 时

图1．温度传感器传输特性。

实现时的考虑

自热
温度传感器测量的是器件基材的湿度，测量值很可能比环境温度值高几度，这是由于器件功率

消耗的结果。为了得到环境湿度，从结果中减去因自热产生的温度增加值。这一温度增加值可以通

过计算或测量得到。
有很多因素影响器件的自身发热量。其中最主要的是：电源电压、工作频率、封装的热耗散特

性、器件在PCB中的安装方式以及封装外壳周围的空气流通。温度增加值可以通过将器件的功率消

耗乘以封装的热耗散常数（通常称为θJA）来计算。在用这一常数时定采用标准的PCB安装方式，

4 AN03-1.0

AN003 — 使用片内温度传感器

所有的引脚都焊到电路板上，封装周围没有空气流通。

对一个工作在11.0592MHz、采用3.3 V电源电压的C8051F000而言，功率消耗大致为35 mW。

对于64脚的TQFP封装，其θJA值是39.5℃/W。这等价于39.5*35e-3的自热值，大约相当于1.4℃。

因自热而导致的温度增加可以用几种方式来测量。一种方法是在器件上电之后立刻启动一次转

换，得到一个‘冷’温度值。然后，在工作大约经过1分钟之后再测量一次，得到一个‘热’温度

值。这两个测量值的差就是自热产生的影响。

另一种方法是让器件从一个低的SYSCLK频率开始工作，例如32 kHz，进行一次温度测量，然后

再让器件工作在标准的SYSCLK频率，例如11.0592 MHz，取两者之差。在较低时钟频率时自热值是

可忽略的，因为此时器件的功耗很低。

求均值
为了使温度转换结果中的噪声效应降至最低，一种技术是对数据进行‘过采样’，然后求均值。

‘过采样’意味着ADC的采样频率被设置为高于输出字速率。作为一种经验方法，你可以通过每将

采样频率增加到四倍而得到一位额外的输出分辨率。

 AN03-1.0 5

AN003 — 使用片内温度传感器

软件示例

例 1
;--
; CYGNAL INTEGRATED PRODUCTS, INC.
;
; 文件： Temp_1.ASM
; 目标MCU：C8051F000，C8051F010
;
; 本程序提供一个通过ADC配置和使用片内温度传感器的例子
; ADC被设置为左对齐方式，所以本程序不用经过修改就可用于10位或12位ADC。
;
; 用内部振荡器作为系统时钟，使用其缺省工作频率（~1.9MHz）。
;
; ADC被设置为左对齐方式，GAIN = 2，使用定时器3溢出作为转换启动源。
; 定时器3被配置为自动重装载方式，每20ms溢出一次。
; ADC转换完成中断处理程序读ADC的值得并将其与保存在ROOMCODE常数中的
; 室内温度（约25℃）期望值进行比较。如果所测得的温度值低于ROOMCODE，
; 则LED 熄灭。如果所测得的温度值高于ROOMCODE，则LED点亮。
;
; 通过改变ROOMCODE的值可以很容易地修改LED的切换点。
;
;--

;--
; 等价定义
;--

$MOD8F000

LED EQU P1.6 ; 目标板LED控制 ('1' 时LED亮)

TC_20MS EQU 38000 ; 1.9MHz 时的定时器滴答数，对应20ms

ROOMCODE EQU 9800h ; 25℃所对应的左对齐ADC值
;--
; 变量
;--

BSEG

 org 0h

DSEG 位于 30h

; ADC 数据变量

TEMPCODE: DS 2 ; 温度码保持寄存器 (16位)
;-------------------
; 间接地址空间变量

ISEG 位于 80h

6 AN03-1.0

AN003 — 使用片内温度传感器

;-------------------
; 堆栈

 org 0e8h ; 临时设置的堆栈地址

STACK_TOP: DS 1 ; (rev C 勘误)
 ; 符号表中的占位符，表示硬件堆栈起始地址

;--
; 宏定义
;--

;--
; 复位和中断向量表
;--

CSEG
 org 00h
 ljmp Main

 org 7bh
 ljmp ADC0EOC_ISR ; ADC0 转换结束中断
;--
; 主程序代码
;--

 org 0B3h

Main:
 mov WDTCN, #0deh ; 禁止看门狗定时器
 mov WDTCN, #0adh

 mov SP, #STACK_TOP ; 初始化堆栈指针

 mov XBR2, #40h ; 允许交叉开关和弱上拉

 orl PRT1CF,#01000000b ; 设置P1.6（目标板上的LED控制）为弱上拉
 acall ADC0_Init ; 初始化ADC和温度传感器
 acall TIMER3_Init ; 初始化定时器3

 acall TIMER3_Start ; 允许定时器3
 acall ADC0_Enable ; 允许ADC

 setb EA ; 允许全局中断

 sjmp $; 原地跳转

;--
; 中断向量
;--
;--
; ADC0EOC_ISR
;
; 该ISR在ADC转换完成后被调用。当该事件发生时，ADC的值被拷贝到保持

 AN03-1.0 7

AN003 — 使用片内温度传感器

; 变量TEMPCODE，并与25℃对应的代码比较。如果温度值高于25℃，
; 则LED点亮。如果温度值低于25℃，则LED熄灭。没有考虑自热校正。
;
ADC0EOC_ISR:
 push PSW
 push acc

 clr ADCINT ; 清除ADC中断标志

 mov TEMPCODE, ADC0L ; 拷贝ADC结果之低字节到TEMPCODE
 mov TEMPCODE+1, ADC0H ; 拷贝ADC结果之高字节到TEMPCODE

 ; 将TEMPCODE与对应于25摄氏度的期望值比较
 ; 如果(TEMPCODE - ROOMDEG) < 0，则熄灭LED，否则点亮。
 ; 计算TEMPCODE - ROOMREG 并存于TEMPCODE (16-bit 减法)

 clr C
 mov a, TEMPCODE ; 减去低字节
 subb a, #LOW(ROOMCODE)
 mov TEMPCODE, a ; 保存新的低字节
 mov a, TEMPCODE+1 ; 减去高字节（带借位）
 subb a, #HIGH(ROOMCODE)
 mov TEMPCODE+1,a ; 保存新的高字节

 setb LED ; 点亮LED。
 jnc ADC0EOC_ISR_END ; 如结果为正则返回，
 clr LED ; 熄灭LED后返回

ADC0EOC_ISR_END:
 pop acc
 pop PSW

 reti
;---
; 子程序
;---
;---
; TIMER3_Init
;---
; 该子程序将定时器3配置为：自动重装载方式、在TC_20MS时溢出、用SYSCLK作为计数时钟。
; 返回前停止定时器3并禁止其中断。
;
TIMER3_Init:
 mov TMR3CN, #02h ; 停止3，清除TF3，
 ; 用SYSCLK作为时基
 mov TMR3RLH, #HIGH(-TC_20MS); 初始化重载值
 mov TMR3RLL, #LOW(-TC_20MS)
 mov TMR3H, #0ffh ; 立即重装载
 mov TMR3L, #0ffh
 anl EIE2, #NOT(00000001b) ; 禁止定时器3中断

 ret

8 AN03-1.0

AN003 — 使用片内温度传感器

;---
; TIMER3_Start
;---
; 该子程序启动定时器3
;
TIMER3_Start:
 orl TMR3CN, #00000100b ; 置位 TR3
 ret

;---
; ADC0_Init
;---
; 该子程序初始化 ADC 为左对齐方式，用于监测片内温度传感器，增益为2，禁止 ADC
;
ADC0_Init:
 clr ADCEN ; 禁止 ADC
 mov REF0CN, #07h ; 允许温度传感器，偏置发生器
 ; 和输出缓冲器
 mov AMX0SL, #0fh ; 选择温度传感器为 ADC 输入
 mov ADC0CF, #01100001b ; ADC 转换时钟 = SYSCLK/8
 ; 对于 18.432MHz，GAIN = 2x
 mov ADC0CN, #01000101b ; 禁止ADC，低功耗跟踪方式，
 ; 由定时器3溢出启动ADC转换，
 ; 数据左对齐
 ret

;---
; ADC0_Enable
;---
; 该子程序允许ADC和ADC中断
;
ADC0_Enable:
 setb ADCEN ; 允许 ADC
 orl EIE2, #00000010b ; 允许 ADC 转换结束中断
 ret

;---
; 文件结束。

END

 AN03-1.0 9

AN003 — 使用片内温度传感器

例 2
//--
// CYGNAL INTEGRATED PRODUCTS, INC.
//
// 文件： Temp_2.c
// 目标MCU： C8051F000，C8051F010
//
// 本程序将C8051Fxxx 的基底温度由硬件UART输出，波特率为115.2kbps，8个数据位，
// 无奇偶校验，一个停止位。假定在XTAL1和XTAL2之间连接一个11.0592MHz的晶体。
//
// 工具链：KEIL C51
//
// Make.bat 为：
// C:\Keil\C51\BIN\C51.EXE temp_2.c CD OE DB SB
// C:\Keil\C51\BIN\BL51.EXE temp_2.obj
//

//--
// 编译命令
//--

// 编译器命令行选项

//--
// 包含文件
//--

#include <c8051f000.h> // SFR 声明
#include <stdio.h>

//--
// 全局常数
//--

#define ON 1
#define OFF 0
#define XTLVLD_BIT 0x80 // OSCXCN.7 晶体振荡器有效标志
#define TC_20MS 18432 // 定时器在 11.0592MHz/12时对应于
 // 20ms的嘀答数
#define LED P1.6 // LED='1' 表示点亮

//--
// 函数原型
//--

void sysclk_init (void);
void xbar_init (void);
void uart_init (void);
void ADC_init (void);
void ADC_enable (void);

10 AN03-1.0

AN003 — 使用片内温度传感器

void Timer3_init (void);
void ADC_isr (void);

//--
// 全局变量
//--

long temperature; // 以百分之一度表示的温度值
unsigned idata temp[16]; // 温度采样值的循环缓冲区
int temp_ptr; // 指向 temp[]的指针
int temp_int; // 温度值的整数部分
int temp_frac; // 温度值的小数部分（以百分之一度为单位）

//--
// 主程序
//--

void main (void) {

 sysclk_init (); // 初始化振荡器
 xbar_init (); // 初始化交叉开关和GPIO
 uart_init (); // 初始化 UART
 Timer3_init (); // 初始化定时器3为 20ms 溢出
 ADC_init (); // 初始化 ADC 的输入为温度传感器
 ADC_enable (); // 允许 ADC转换结束中断

 temperature = 0L;
 temp_ptr = 0;

 EA = 1; // 允许中断

 while (1) {
 // 将以百分之一度表示的温度值转换成两个十进制数，整数部分和小数部分
 temp_int = temperature / 100;
 temp_frac = temperature - (temp_int * 100);
 printf ("Temperature is '%d.%02d'\n", temp_int, temp_frac);
 }
}
// 将器件配置为使用外部 CMOS 时钟。
void sysclk_init (void)
{
 WDTCN = 0xde; // 禁止看门狗定时器
 WDTCN = 0xad;

 // 启动外部振荡器
 OSCXCN = 0x65; // 对于11.0592MHz的晶体，允许SYSCLK/1

 // 等待外部振荡器起动
 while ((OSCXCN & XTLVLD_BIT) == 0)
 {
 }

 OSCICN = 0x88; // 选择外部振荡器作为系统时钟
 // 禁止内部振荡器

 AN03-1.0 11

AN003 — 使用片内温度传感器

}

// 配置交叉开关和 GPIO 端口
void xbar_init (void)
{
 XBR0 = 0x07; // 允许 I2C、SPI和 UART
 XBR1 = 0x00; //
 XBR2 = 0x40; // 允许交叉开关和弱上拉
 PRT0CF |= 0xff; // 允许P0口的所有输出为弱上拉；
 // 让交叉开关将这些引脚配置为输入
 PRT1CF |= 0x40; // 允许 P1.6 (LED) 为弱上拉输出
}

// 配置 UART 使用定时器1，115.2k的波特率， 8-N-1 帧格式，使用 11.0592MHz sysclk
void uart_init (void)
{
 SCON = 0x50; // SCON：方式 1，8位UART，允许 RX
 TMOD = 0x20; // TMOD：定时器 1，方式 2，8为重装载
 TH1 = -6; // TH1：重载值，115.2kbps @ 11.0592MHz
 TR1 = 1; // 启动定时器1
 CKCON |= 0x10; // 定时器1使用 sysclk 作为时基
 PCON |= 0x80; // SMOD = 1
 TI = 1; // 指示 TX 准备好
}

12 AN03-1.0

AN003 — 使用片内温度传感器

// 配置 A/D 转换器使用定时器3溢出为转换启动源，并在转换完成时产生中断
void ADC_init (void)
{
 ADCEN = 0; // 禁止 ADC
 REF0CN = 0x07; // 允许温度传感器，片内偏置发生器
 // 和偏置输出缓冲器
 AMX0SL = 0x0f; // 选择温度传感器为ADC多路开关的输出
 ADC0CF = 0x61; // ADC 转换时钟 = sysclk/8，
 // 对11.0592MHz，GAIN = 2x
 ADC0CN = 0x45; // 禁止ADC，低功耗跟踪方式，
 // ADC 由定时器3溢出启动，数据左对齐
}

// 允许 ADC；定时器3溢出启动转换；允许ADC中断
void ADC_enable (void)
{
 ADCEN = 1; //允许 ADC
 EIE2 |= 0x02; //允许ADC中断（正常优先级）
}

// 配置定时器3为自动重装载方式，定时间隔为 20ms（不产生中断）
void Timer3_init (void)
{
 TMR3CN = 0; // 停止定时器3，清除TF3，使用SYSCLK/12
 // 作为时基
 TMR3RLH = 0xff & ((-TC_20MS) >> 8);// 初始化重载值
 TMR3RLL = 0xff & (-TC_20MS);
 TMR3H = 0xff; // 立即重装载
 TMR3L = 0xff;
 EIE2 &= ~0x01; // 禁止定时器3中断
 TMR3CN |= 0x04; // 启动定时器3
}

// ADC 转换结束 ISR
// 在此我们读 ADC 采样值，将其放入到16个采样值的缓冲区内，求所有采样值的平均值
// 并将其转换为以百分之一摄氏度为单位的温度值
void ADC_isr (void) interrupt 15
{
 int i; // 循环计数器
 long temp_temp; // 临时温度值

 ADCINT = 0; // 清除ADC转换结束中断标志

 temp_temp = (ADC0H << 8) | ADC0L; // 装入16位ADC结果

 temp[temp_ptr] = temp_temp; // 加到缓冲区中
 temp_ptr++;
 temp_ptr = temp_ptr % 16; // 回绕缓冲区指针

 temp_temp = 0L;

 AN03-1.0 13

AN003 — 使用片内温度传感器

 for (i=0; i<16; i++) {
 temp_temp = temp_temp + temp[i]; // 累加采样值，以便求均值
 }

 temp_temp = temp_temp >> 4; // 总和/16，求得平均值

 // 至此，temp_temp 中为16个采样值得平均值。
 //现在我们需要将其转换为以百分之一摄氏度表示的温度值。
 //
 // 在左对齐方式，ADC 产生的代码（CODE）与输入电压成正比：
 // CODE = Vin * Gain / Vref * 2^16
 //
 // 温度传感器产生的电压（Vtemp）与以摄氏度表示的绝对温度（Temp）成正比：
 // Vtemp = 2.5mV/C * Temp + 0.603V
 //
 // 结合这两个方程，我们可以将输出码（左对齐）与输入温度的关系表示为：
 // CODE = (2.5mV/C * Temp + 0.603V) * Gain / Vref * 2^16
 //
 // 解上面的方程求Temp：
 // CODE = 2.5mV/C * Temp * Gain/Vref * 2^16 + 0.603V * Gain/Vref * 2^16
 // Temp =(CODE-(0.603V * Gain/Vref * 2^16))/(2.5mV/C * Gain/Vref * 2^16)
 //
 // 可以表示为：
 // Temp = (CODE - K1) * K2
 //
 // 其中 K1 = 0.603 * Gain/Vref * 2^16
 // K2 = 1/(2.5mV/C * Gain/Vref * 2^16)
 //
 // 对于 Vref = 2.4V 和 Gain = 2,
 // K1 = 32,932 = 0x80a4
 // K2 = 480 / 2^16 – 我们在所有计算中保持该值为480，在最后除以2^16。480=0x01d6

 temp_temp = temp_temp - 0x80a4; // 将偏差校正到 0度， 0V
 temp_temp = temp_temp * 0x01d6; // 2.5mV/摄氏度
 temp_temp = temp_temp * 100; // 显示结果，以百分之一摄氏度表示
 temperature = temp_temp >> 16; // 除以 2^16
}

14 AN03-1.0

	引言
	关键点：
	配置说明
	结果阐释
	实现时的考虑
	自热
	求均值

	软件示例
	例1
	例2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

