AN278

SILICON LABORATORIES

VOICE RECORDER REFERENCE DESIGN

Relevant Devices

This application note applies to the following devices:
C8051F410, C8051F411, C8051F412, C8051F413

1. Introduction

The C8051F411 offers a versatile, small (5 x 5 mm), highly integrated, low-power solution for voice applications.
The 12-bit ADC and DAC allow for reasonable quality sound at a 8 kHz sampling rate, and the hardware
Accumulation and Burst Mode features of the ADC provide for further improvements with small processing trade-
offs. The Suspend mode operating feature allows the voice recorder to "sleep" while idle, saving power in a similar
fashion to the traditional 8051 Stop mode, but still allows the recorder to wake and respond to the user without a
hardware reset. This document describes the solution for a telephone-quality voice recorder using the C8051F411.

This document includes the following:

m A description of the system hardware and software

m Usage notes and customization considerations

m A schematic, bill of materials, and detailed layout diagrams

m The implementation of the software showing how to sample, compress, store, and play back a voice signal

1.1. Key Points

m Because of its small size, versatile peripherals, and low-power features, the 'F411 readily lends itself to battery-
operated voice applications.

m The system uses a DPCM (Differential Pulse Code Modulation) compression algorithm for data storage to
extend the total recording time.

m The recorder takes steps to minimize power usage while active and uses the "Suspend" feature of the 'F411 to
reduce power consumption when idle.

Rev. 0.1 2/06 Copyright © 2006 by Silicon Laboratories AN278

AN278

2. Overview

The system, depicted in Figure 1, consists of a microphone and speaker, input and output filtering, the
microcontroller, the external Flash memory storage, and push-buttons and LEDs for user interaction. This section
describes each aspect of this system.

Push-buttons
and LEDs

Microphone ‘
Anti-aliasing
] :> flter and :> ADC
amplifier SST 512 k
Flash
Filter and Memory
D] <: speaker <: DAC
driver
Speaker C8051F411-GM

Figure 1. Voice Recorder Physical System Overview
2.1. Anti-Aliasing and Output Filtering

Both the input to the ADC and the output from the IDAC are filtered through low-pass, op-amp filters. The filters
before the ADC help prevent aliasing, where sound waveforms with frequencies above half of the sampling
frequency (the Nyquist frequency) "sound" much lower because the sampling is not adequately fast enough to
properly reconstruct the original waveform. The filtering on the output eliminates the high-frequency content of the
IDAC output and smoothes out the waveform before it is passed through the speaker driver.

2.2. Microcontroller (C8051F411)

The 'F411 samples the voice signal using the ADC, compresses the sample using DPCM (Differential Pulse Code
Modulation), and sends the sample to the external Flash using the SPI. The microcontroller later retrieves the
samples from the external Flash, decompresses them, and sends them to the speaker through the DAC. Figure 2
shows this dataflow path.

DPCM External DPCM
ADC I:> algorithm I:> Flash I:> algorithm I:> DAC

Figure 2. Voice Recorder Dataflow Path

®
2 Rev. 0.1 @

SILICON LABORATORIES

AN278

To achieve telephone-quality sound, the microcontroller uses a sampling frequency of 8 kHz. This sampling rate
can adequately reconstruct voice frequencies below 4 kHz, and still allots plenty of time between samples for the
microcontroller to compress each sample and send it to external Flash memory. The microcontroller uses the
hardware Burst Mode and Repeat Count features to automatically oversample and average the ADC samples,
providing greater ADC accuracy. When the voice recorder is idle, the microcontroller shuts the system down using
the Suspend mode feature, which minimizes the power consumption and allows the microcontroller to wake when
the user presses either the Record/Play or Erase button without a hardware reset.

2.3. SPI Flash storage

With DPCM, the 'F411 compresses each 12-bit ADC sample into 6 bits, so four samples can be stored in every 3
bytes. With an 8 kHz sampling rate and 32 kB of internal Flash, the 'F411 can store approximately 5-6 seconds’
worth of recordings by itself. An additional 512 kB serial (SPI) Flash memory is included on the board to extend the
total storage to 1 minute 27 seconds.

2.4. Push-buttons and LEDs

The voice recorder uses simple LEDs and push-buttons to interact with the user. These LEDs indicate which
function the recorder is using and whether the recorder is active or idle. In order to have the basic functionality of a
voice recorder, the user needs to be able to record, play, erase, increase volume, and decrease volume. The two
switches and potentiometer on the board provide these functions.

3. Hardware Description

This section includes the detailed descriptions of the hardware components for the voice recorder.
3.1. Audio Paths

The voice recorder includes an on-board microphone for mobility and ease of design, since different microphones
require different biasing circuits. The microphone signal is sent through a rough low-pass filter and gain op-amp
circuit to utilize the full range of the ADC, and then through a 3-pole Butterworth filter with a corner frequency of
4 kHz. The op-amps operate using 3.3 V rail-to-rail, but the ADC uses the programmed internal VREF of 2.2 V, so
a voltage divider and DC-blocking capacitor provide the voltage translation from the filters to the ADC. A 5-pole
Butterworth filter smoothes the output of the IDAC, which is then used by the speaker driver to output the waveform
to the speaker jack.

3.2. Low-power Suspend

The 'F411 has a low power Suspend mode, during which the internal oscillator is completely dormant. An external
transistor, controlled by one of the Port 1/0, allows the 'F411 to disconnect the power to all of the external circuitry
(op-amps, SST Flash, and speaker driver). Only the external voltage regulator and the 'F411 consume power while
the system is idle.

3.3. MCU Peripherals

The voice recorder uses four of the 'F411 peripherals: Analog-Digital Converter (ADC), Serial Peripheral Interface
(SPI), Current Digital-Analog Converter (IDAC), and Programmable Counter Array (PCA). The 12-bit ADC samples
the voice input and provides hardware accumulation and oversampling. The SPI communicates with the external
Flash memory in 4-wire master-mode to store compressed samples. The 12-bit DAC outputs the decompressed
sample from memory to the speaker driver. Finally, the PCA in 8-bit PWM mode controls the brightness of the
LEDs for user interaction.

3.4. Layout Considerations

This project does not include any extremely sensitive analog devices, so the main concerns during layout are size
and cost. However, some care needs to be taken when routing peripherals and signals to the microcontroller Port
I/0. For example, coupling can occur between the high-frequency SPI and the sensitive analog ADC and DAC
peripherals, so these signals should be separated. Additionally, the DAC and VREF are only available on specific

@ Rev. 0.1 3

SILICON LABORATORIES

AN278

Port I/O pins. Furthermore, the SPI has higher precedence in the crossbar priority than the PCA when both are
enabled, so the crossbar will route the SPI first. Careful planning of all I/O will ensure that all pins are routed
correctly.

4. Software Description

The voice recorder microcontroller is responsible for checking the switches for user interaction, sampling the voice
input, compressing and decompressing the samples, storing the samples in external Flash, outputting the samples
to the output filters, and controlling the PWM of the LEDs. This section describes each of these functions and their
implementation in detail.

4.1. Push-buttons

The 'F411 has two external interrupt pins that may be routed to any Port O pin. The voice recorder could
successfully use these interrupts for the push-buttons, but this would limit the voice recorder design to only having
two buttons. If the voice recorder is integrated into another design or if more features are added, more than two
buttons would be needed.

Instead, the voice recorder uses a polling scheme, where a Timer checks the switches periodically, but the rate at
which they are pressed is relatively slow compared to the other functions the voice recorder performs. The
switches need to be checked quickly enough that they're adequately responsive to the user, but not so quickly that
they constantly toggle before the switch is released. To account for both needs, the switches are checked every 15
ms and a 150 ms delay is added every time a switch is pressed.

4.2. Sampling Considerations

The sampling frequency for both the ADC and the DAC must be controlled as precisely as possible so that the
output doesn't shift frequencies from the original input. The 'F411 uses the two 16-bit timers (Timer 2 and Timer 3)
with auto reload to accomplish this. The ISR associated with each timer must be short enough that it doesn't
interfere with the sampling frequency of 8 kHz, so each ISR execution must be less than 125 pys. Thus, all
extraneous activities, such as the switch polling and LED control, must be executed in another, lower priority ISR
that can be interrupted as necessary to meet the timing requirements of the sampling. Since these routines must
communicate with one another, the 'F411 demo software uses global flags to indicate whether the sampling ISR
should start, stop, or complete some other action.

4.3. DPCM Compression

The voice recorder uses a DPCM, or Differential Pulse Code Modulation, compression scheme, which is lossy
because of the error incurred due to the nature of the algorithm. This scheme reduces each 12-bit sample down to
a 6-bit code representing the difference between the actual sample and the predicted value of the sample. This
predicted value can be calculated from sample averaging or some other complex algorithm, but, because voice
samples tend to be highly correlated and the ISR needs to be short, the voice recorder simply uses the previous
iteration's result as the predictor. The DPCM compression algorithm is shown in Figure 3.

Sn+1
. to storage
- Quantize Encode ﬂ
| | (External Flash)
Sh
Pn
Store
predictor for | + Decode <:
one cycle Ph+1

Figure 3. DPCM Compression Algorithm

®
4 Rev. 0.1 @

SILICON LABORATORIES

AN278

The difference between the predictor and the sample is quantized, or separated into different "ranges" or "bins,"
and the 6-bit code represents the 64 possible ranges of values. This coded and quantized difference is then stored
in memory. To calculate the new predicted value, the compression algorithm then decodes the difference and adds
it to the current predicted value.

The decompression algorithm, shown in Figure 4, simply consists of matching the code in memory with the
quantized difference and adding that difference to the predictor.

to storage —— N Decode +)
(External Flash) > St
Sn/ P
Store
predictor for K ——1 Pp+1
one cycle

Figure 4. DPCM Decompression Algorithm

The initial predicted values from both the compression and decompression schemes should match so that the
DPCM input and output are as similar as possible.

The following example uses a 4-bit (with 16 values) DPCM algorithm for an 8-bit ADC. If the first ADC sample is
0x89 (137 in unsigned decimal) and the initial predicted value is 0x80 (128 in unsigned decimal), the difference
between the sample and the predicted value (sample - predicted value) is 9. When quantized, this difference of 9
falls in the "between 8 and 16" range, so the resulting DPCM code is 12. This code of 12 is then sent to storage.

Difference <-64 -32 -16 -8 -4 2 1 0 1 2 4 8 16 32 264

10 11 12 13 14 15

DPCM code 1 2 3 4 5 6

0,8
Figure 5. Example DPCM Code Quantization

To calculate the new predicted value for the second ADC sample, the DPCM code is reverted back to a difference
value, which, for a DPCM code of 12, is a difference of 8. This difference is added back to the predicted value of
0x80 (128), which yields a new predicted value of 0x88 (136) for the next ADC sample. This is the same process
that occurs during DPCM decompression, so that the same error is introduced on both sides. By using the
decompression output (0x88) rather than the real sample (0x89), the compression and decompression schemes
can include the same "DPCM" error and lessen the relative error. The predicted values in the compression scheme
should match the predicted values and output of the decompression scheme exacily.

DPCMCOde‘1‘2‘3‘4‘5‘6‘7

Difference -64 -32 | -16

-8‘-4‘-2‘-1

Figure 6. Example DPCM Decoding Scheme

@ Rev. 0.1 5

SILICON LABORATORIES

AN278

If the second ADC value is 0x87 (135), this is compared to the predicted value of 0x88 (136), which yields a
difference of —1 and a DPCM code of 7, which is sent to memory. The new predicted value is the current predicted
value 0x88 (136) added to the decoded DPCM value (—1), or 0x87 (135). The predicted value of 0x87 (135) will
then be compared to the next ADC sample, and so on.

With the compression quantization, any difference between 4 and 8 will yield a DPCM code of 11, a difference less
than —64 will result in a DPCM code of 1, and a difference of 0 will result in a DPCM code of either 0 or 8. In the
case of this DPCM algorithm implementation, the DPCM values are "snapped down" to the smaller difference value
in the range bin for positive numbers and "snapped up" to the larger difference value in the range bin for negative
numbers. For example, a difference of 15 uses the same code as a difference of 8. This is done to eliminate the
chance of a DAC rollover upon play back.

The following table and graph continue the DPCM algorithm on a set of example ADC samples. Notice how the
DPCM algorithm follows the real ADC samples and is oftentimes close to the ADC sample. The more bits the
DPCM algorithm uses relative to the number of ADC bits, the more accurate the results will be, as it allows for more
differences to be represented by a DPCM code.

Table 1. Example DPCM Algorithm Results

Algorithm | Example | Difference (Sample [DPCM| DPCM Compression Predicted |Decompression
Iteration Real - Predicted_Value) | Code | Decoded | Values (Predicted_Value Output
Samples Difference | + Decoded_Difference)
0 — — — — 128 128
1 137 9 12 8 136 136
2 135 -1 7 -1 135 135
3 138 3 10 2 137 137
4 140 3 10 2 139 139
5 132 -7 5 -4 135 135
6 120 -15 4 -8 127 127
7 100 -27 3 -16 111 111
8 107 -4 5 -4 107 107
9 111 4 11 4 111 111
10 114 3 10 2 113 113
11 113 0 0 0 113 113
12 110 -3 6 -2 111 111
13 112 1 9 1 112 112

®
6 Rev. 0.1 @

SILICON LABORATORIES

AN278

145
135 2=
/ Input waveform
/ \ Sampled waveform (ADC output)
J \ —+«&— DPCM output values
125 \
\
\
115
105
95 T T T T T T T T T T T T T T 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 7. Example Input Waveform and DPCM Output

During the DPCM decompression process, the first DPCM code of 12 is retrieved from memory, decoded to a
difference of 8, and added to the initial predicted value of 0x80 to yield the output sample of 0x88 (136). The
second DPCM code of 7 is then retrieved from memory, decoded to a difference of —1, and added to the predicted
value of 0x88 (136) to yield the second output sample of 0x87, and so on.

The Voice Recorder DPCM algorithm behaves the same as the above example, except the DPCM codes are 6 bits
for a 12-bit ADC.

@ Rev. 0.1 7

SILICON LABORATORIES

AN278

4.4. SPI Interface

The SST Flash memory used in the voice recorder has various commands that consist of a specified op-code and
operands. The datasheet for the Flash memory describes each command and the timing involved in great detail.
The pertinent commands for this application are the byte-program writes, status register read and enable, read,
and chip erase. Upon power-up, the Flash must have the block protection bits in the status register cleared in order
to write to the memory. Additionally, every write and erase operation must be preceded by a write enable
command. Furthermore, the timing for the /NSS line is critical, as the Flash will abort any command it has not fully
received before /NSS is disabled. The software controlling the SPI uses both the TXBMT and SPIF flags to verify
that all necessary transactions between the Flash and the 'F411 occur before disabling /NSS.

4.5. Suspend Mode

The low power 'F411 includes a special Suspend mode feature that turns off the internal oscillator until a waking
event occurs. The 'F411 controls a transistor that can shut off the power output from the external voltage regulator
to conserve power in all other devices, as well. The lone red LED (PWR_LED) indicates whether the 'F411 has
shut off power to all other devices. For the voice recorder, a port match event terminates the Suspend mode. This
event can occur when the user presses one of the switches and the Port I/O, after a check with the port mask
registers, mismatch the value in the port match registers. Once the 'F411 awakens, the peripherals and external
SST Flash must be reinitialized after the memory's initial hold time of 10 us. Normal voice recorder operation can
then resume.

4.6. Detailed Descriptions

Figure 8 depicts the main software routine. The voice recorder completes all system initializations and begins
polling on the buttons. If a specified time period passes without any interaction, the system automatically switches
to Suspend mode. When the user presses a switch, the recorder acknowledges the interaction by brightening an
LED and the associated action takes place. When the action completes, the LED dims.

®
8 Rev. 0.1 @

SILICON LABORATORIES

AN278

System
Initializations

Memory already
contains data?

Update
recording
ending address

I

Check
switches

0oob0DO0D0D0CE

Switch
pressed?

No Yes
Brighten
5 seconds LED
passed? ‘ ‘
Execute
switch-

specific action
Enter
SUSPEND ‘
mode
0
o Dim LED
E \i
%4
Turn off
switch timer

Figure 8. Initialization and Switch Polling Routine

If the user presses the Record/Play push-button, the 'F411 first determines if the recorder should start recording
(button held down) or playing (button pressed and released).

Once recording, the 'F411 checks if the memory was erased and resets the beginning address of the new
recording appropriately. The recorder then checks if the recording must end because the memory is full or because
the user released the Record/Play push-button. If neither of these two conditions occur, then the recorder reads the
sample from the ADC, executes the DPCM algorithm, and packs the 6-bit code into the byte to be sent to storage.
If that byte now contains 8 bits of data, it's sent to memory; otherwise, the routine stores the byte until the next
sampling time. This ISR is executed every 125 ys, or at a frequency of 8 kHz.

@ Rev. 0.1 9

SILICON LABORATORIES

AN278

Was memory
erased?

No

Restart at No
beginning of
memory

Yes

Send to memory

I

Increment
address

I

L——> Decode sample

Encode ADC JL

sample

ﬂ Update predictor

Pack code into a

databyte @

Switch released?

Figure 9. Record Function and Sampling Interrupt Service Routine

When the user plays the recording, as shown in Figure 10, the ISR first checks whether or not the playback should
end because the user pressed the push-button again or the ISR reached the last memory address of the recording.
If these checks prove to be false, the recorder unpacks a 6-bit code from the byte from memory, decodes it using

the DPCM algorithm, updates the DAC output, and checks if a new byte should be fetched from memory. This ISR
is also run every 125 ps.

®
10 Rev. 0.1 @

SILICON LABORATORIES

AN278

Switch pressed
again?

&

Read packed code
from memory

Increment Address

End of recording
reached?

Unpack DPCM
Data by'ze code from data
empty” byte

%

Decode
sample

H

Update output

I
<

Figure 10. Playback Interrupt Service Routine

The other functions available to the recorder include recording erase and volume control. The erase uses the chip-
erase command available to the SST and is controlled in the switch-polling function, as it is a lower priority than
record and playback. The volume control is accomplished through a potentiometer that changes the voltage divider
at the IDAC output.

Suspend mode, the final feature of the recorder, occurs after a set period of idle time. As shown in Figure 11, the
recorder first turns off the timer controlling the push-button polling, for the functions associated with the switches
should not be active until the 'F411 completes all re-initializations after exiting Suspend mode. The recorder also
turns off all the peripherals and the power to the op-amps, external Flash memory, and speaker driver to conserve
power. The C8051F411's internal oscillator halts while in Suspend mode until a waking event occurs. In this
application, the relevant waking event is the port match, where the device will return to normal operation if one of
the switches is pressed. After the port match event, the recorder reinitializes all peripherals, waits the power-up
hold time specified for the SST Flash, initializes the SST Flash, and begins to poll the switches.

@ Rev. 0.1 11

SILICON LABORATORIES

AN278

pooooQd

7

Turn off
switch timer

Turn off
peripherals and
external devices

Wait for switch to be
pressed (port match
event)

Turn on
peripherals and
external devices

Wait until
external Flash
is ready

Initialize
external Flash
‘ ‘ Check

switches

VAN

Turn on switch
timer

=
O
O
O
) =
O O
= =

ull

(booooooooooooaO

Figure 11. Suspend Mode

12

Rev. 0.1

&~

SILICON

LABORATORIES

AN278

5. Usage Notes

The voice recorder may be powered from either a 9 V battery or a 9 V DC Power Adapter. Protection diodes will
stop any mishaps from occurring if both are in place at the same time. Each button activates and deactivates the
corresponding function, and the LED will indicate whether the function is active. Certain functions can only be used
during certain times; for example, the erase operation can only occur if no other action is taking place. Recording
multiple times without erasing appends the new recording to the end of the first. The play function always begins at
the very first recording.

6. Design Customization

All of the polling, sampling periods, and DPCM quantization values are constants declared at the beginning of the
software files. Any of the chosen values in this project may be changed, but take caution to observe that all
requirements are met by each change. For example, changing the system clock divider may result in a sampling
ISR that doesn't meet the 125 ps timing requirement, or changing the low-pass filter corner frequency may cause
unwanted aliasing.

7. References

Chipcon. "AN026: Wireless Audio using CC1010." Rev 1.0, 9/8/2004.
Silicon Laboratories. "AN147: Wireless Digital Full-Duplex Voice Transceiver." Rev 1.1.
SST. SST25VF040 Data Sheet. 6/04.

@ Rev. 0.1 13

SILICON LABORATORIES

AN278

APPENDIX A—SCHEMATIC

(z Jo | abed) ai3ewayosg ubisag 9oUdI3}0Y 19PI023Y 3II0A “Z| 24nbi4

SM3YIS HIIM S.440 ONVIS
[SZUHN [SZLIHA [STLHA (SZLIHN

EIRNE)

YHA SHA

IMs

AV1d/03d

4/0

ano V'2d SXTHOH "
= o881
8| L
o3y see A=
aza/rzd LYg©
00z 78,
Y ang Q30ND¥HS—SXTYAH mxx(1383y
= i
x |z ozd vid H923/1SY
T
wRA 031 9IUA 5 fon BT
vid |
! AVd Tid 2 2Wix/iid on
old g1 VIviX/0ld
PIVIX
a1 0 2L — B ESXMH_
VLAELYEdAXZ sz L2d . y
o ¥z ¢ fodre & o
€14 Lava/iod-d & 104 ®:1
I T s
9id
57| X1/90d LNEEN
151 X¥/50d S'ld 7 oav
321 UISAND/9'0d
£ L'od aav
gi] 03val/o0d ano
2H H3un/zd =
ASITIA RECTY Ng ang I
- = LVEA [
- ez O
OIh (57 EEYY
) aaa NIOIYA 7
ancy Ao ancy| o anco 1415080
INVI== WIX INVL X n
99T+ mulﬁ Zlﬁ Glﬁ
A
o) i
S3A aan
ang BECTY
31554 Smu 7
e
QN9
300 SSN g
A () s
3 ISON o
OSIN 0s aa ——

i

VDIZOYDIAGZ-+0B
en

40’1
o ASA
MSI3IA 13

g €1-MO£0L0S €l-Mogolas
e 23 1z 11SV1d™¥3Q10H™ A¥ILLYE AB
LHg

934N

Rev. 0.1

14

LABORATORIES

SILICON

AN278

o
|2
3

(z Jo z abed) anewayog ubisag 9ouUa13}9Yy J9P1023Y 92I0A "¢ aInbi4

=

4d00LY

z
&

-

d0042
0£d

Z3a¥0ZECIN

ALT
12y

4400089

an9 g Z0A NMOOL T
ani’o N0t /T:E
s N N9 SSVdAS| INVL
T i
nw 51007 NI ¥ ano
N 1t
S +{10A 5 N
6Ly (740
Q198¥vdl ZH0Y0ZEEON
9n
1d0051
m
%> ¥29
b1t NEWT
[1 A%
NEVSE-rS 10A &

r

APGL
L2y

ArSH
Ty

MSITAA

3dooze
¥£2

Qv <
%001
62
EELTY
ano
- _| 4dooz
Tezo
340042
820 H9L'6
24
2¥0¥0Z£50N
AB6'¥
g2y
1d1
ano
aNg
Aot —
ASA
613 1nd1no aNg
& T z
INIDIA
ang ASEL A6l SY¥-d0S09INI-DIN
- suy (Y
= N
anro 4no QND
uLX =
29
Z¥0Y0ZELIN
40 N0k
H86'¥ ALX INVL
Lu e 919 T610
ASAIUA
14
20y
MSIIUA

®

15

Rev. 0.1

SILICON LABORATORIES

AN278

APPENDIX B—BILL OF MATERIALS

Table 2. Bill of Materials

Qty Board Reference Value/Part Number Description Manufacturer
13 | C2,C3, C5,C7,C11,C13, 0.1 yF 0805 any
C16, C17, C20, C23, C25,
C32,C33

3 C8, C14,C19 1.0 yF 0805 any

1 C29 1200 pF 0805 any

1 C24 1500 pF 0805 any

3 C27,C28, C30 2700 pF 0805 any

1 C31 4700 pF 0805 any

2 C9, C26 68000 pF 0805 any

1 C18 7 pF 0805 any

1 C34 8200 pF 0805 any

1 C10 ECA-1EHG331 330 uF Elect. Panasonic - ECG
3 C1,C4,C6 ECS-TOJY475R 4.7 uF Tant. Panasonic - ECG
1 C12 T491C156K010AS 15 uF Tant. Kemet

3 C15, C21, C22 T491B106K016AS 10 pF Tant. Kemet

1 R2 100 Q 0805 any

2 R29, R30 100 kQ 0805 any

1 R19 12 kQ 0805 any

1 R15 133 kQ 0805 any

4 R16, R17, R26, R27 154 kQ 0805 any

1 R24 16.2 kQ 0805 any

4 R1, R4, R9, R10 1 kQ 0805 any

1 R7 20 0805 any

1 R21 2.7 kO 0805 any

3 R5, R6, R8 200 Q 0805 any

1 R18 24.3 kQ 0805 any

2 R3, R12 2kQ 0805 any

1 R28 4.22 kQ 0805 any

2 R13, R23 4.99 kQ 0805 any

1 R14 5.1 MQ 0805 any

®
16 Rev. 0.1 @

SILICON LABORATORIES

AN278

Table 2. Bill of Materials (Continued)

Qty Board Reference Value/Part Number Description Manufacturer
1 R20 6.34 kQ 0805 any
1 R25 7.68 kQ 0805 any
1 R22 9.76 kQ 0805 any
1 R11 3352T-1-501 500 Q potentiometer Bourns Inc.
1 BH1 1295 9V battery holder Keystone Electronics
1 J1 103308-1 2 x 5 shrouded AMP/Tyco Electronics
1 J2 SJ-3543N audio jack CUl Inc.
1 J5 RAPC722 power jack Switchcraft Inc.
2 21,72 SD103CW-13 Schottky diode Diodes Inc.
1 D1 SML-LXTO805GW-TR | green LED 0805 Lumex Opto/Components Inc.
2 D2, D4 SML-LXT0805IW-TR red LED 0805 Lumex Opto/Components Inc.
4 MH1, MH2, MH3, MH4 1902E stand-offs Keystone Electronics
1 MKA1 EM6050P-443 Microphone Horn Industrial Co LTD
3 SW1, SW2, SW3 EVQ-PAD0O4M switches Panasonic - ECG
1 U1 C8051F411-GM QFN-28 Silicon Laboratories
1 u2 ZXMP3A13FTA transistor SOT23 Zetex Inc.
1 U3 SST25VF040-20-4C- 512 kB Flash SST
QAE
1 U4 LM2936IMP-3.3 Vol. reg SOT223 National Semiconductor
1 us MC33204DR2 op-amp SOIC14 ON Semiconductor
1 ue6 TPA4861D speaker driver SOIC8 Texas Instruments

SILICON LABORATORIES

Rev. 0.1

17

AN278

APPENDIX C—LAYOUT

Figure 15. Bottom Layout and Silkscreen

®
18 Rev. 0.1 @

SILICON LABORATORIES

AN278

APPENDIX D—SOFTWARE SOURCE CODE

Startup Code (Modified STARTUP.A51)

$SNOMOD51

This file is part of the C51 Compiler package
Copyright (c) 1988-2001 Keil Elektronik GmbH and Keil Software, Inc.

STARTUP.A51: This code is executed after processor reset.
To translate this file use A51 with the following invocation:

A51 STARTUP.AS51

To link the modified STARTUP.OBJ file to your application use the following
BL51 invocation:

BL51 <your object file list>, STARTUP.OBJ <controls>
User-defined Power-On Initialization of Memory

With the following EQU statements the initialization of memory
at processor reset can be defined:

; the absolute start-address of IDATA memory is always 0

IDATALEN EQU 80H ; the length of IDATA memory in bytes.
XDATASTART EQU 0H ; the absolute start-address of XDATA memory
XDATALEN EQU 0H ; the length of XDATA memory in bytes.
PDATASTART EQU 0H ; the absolute start-address of PDATA memory

PDATALEN EQU 0H ; the length of PDATA memory in bytes.

’

’

IBP
IBP
XBP
XBP
PBP
PBP

Notes: The IDATA space overlaps physically the DATA and BIT areas of the
8051 CPU. At minimum the memory space occupied from the C51
run-time routines must be set to zero.

Reentrant Stack Initialization

The following EQU statements define the stack pointer for reentrant
functions and initialized it:

Stack Space for reentrant functions in the SMALL model.
STACK EQU 0 ; set to 1 if small reentrant is used.
STACKTOP EQU OFFH+1 ; set top of stack to highest location+1.

Stack Space for reentrant functions in the LARGE model.
STACK EQU 0 ; set to 1 if large reentrant is used.
STACKTOP EQU OFFFFH+1 ; set top of stack to highest location+1l.

Stack Space for reentrant functions in the COMPACT model.

STACK EQU 0 ; set to 1 if compact reentrant is used.
STACKTOP EQU OFFFFH+1 ; set top of stack to highest location+l.

Page Definition for Using the Compact Model with 64 KByte xdata RAM

Rev. 0.1 19

SILICON LABORATORIES

AN278

; The following EQU statements define the xdata page used for pdata
; variables. The EQU PPAGE must conform with the PPAGE control used

; 1n the linker invocation.

PPAGEENABLE EQU
PPAGE EQU

0 ; set to 1 if pdata object are used.
0 ; define PPAGE number.

; Standard SFR Symbols required in XBANKING.AS51

ACC DATA OEOH
B DATA OFOH
SP DATA 81H
DPL DATA 82H
DPH DATA 83H
PCAOMD DATA 0D9H
NAME

?C C51STARTUP SEGMENT
?STACK SEGMENT

RSEG
DS

2C_STARTUP
CODE
IDATA

?STACK
1

EXTRN CODE (?C_START)
PUBLIC

CSEG
?C_STARTUP: LJIMP

RSEG

STARTUPL1:

ANL PCAOMD, #O0BFH

IF IDATALEN <> 0

MOV
CLR
IDATALOOP: MOV
DJINZ
ENDIF
IF XDATALEN <> 0
MOV
MOV
IF (LOW (XDATALEN))
MOV
ELSE
MOV
ENDIF
CLR
XDATALOOP: MOVX
INC
DJINZ
DJINZ
ENDIF

IF PPAGEENABLE <> 0
MOV
ENDIF

<>

?C_STARTUP

AT 0
STARTUP1

2C_C51STARTUP

RO, #IDATALEN - 1
A

@RO, A

RO, IDATALOOP

DPTR, #XDATASTART

R7, #LOW (XDATALEN)

0

R6, # (HIGH (XDATALEN)) +1

R6, #HIGH (XDATALEN)

A
@DPTR, A

DPTR

R7, XDATALOOP
R6, XDATALOOP

P2, #PPAGE

20

Rev. 0.1

SILICON LABORATORIES

AN278

IF PDATALEN <> 0

PDATALOOP:

ENDIF
IF IBPSTACK <> 0
EXTRN DATA (2C I
ENDIF

IF XBPSTACK <> 0

MOV
MOV
CLR
MOVX
INC
DJINZ

BP)

MOV

EXTRN DATA (?C XBP)

ENDIF

IF PBPSTACK <> 0
EXTRN DATA (?C P

ENDIF

MOV
MOV

BP)
MOV

MOV

RO, #PDATASTART
R7,#LOW (PDATALEN)
A

@RO, A

RO

R7, PDATALOOP

?C_IBP, #LOW IBPSTACKTOP

?C_XBP, #HIGH XBPSTACKTOP
?C_XBP+1, #LOW XBPSTACKTOP

?C_PBP, #LOW PBPSTACKTOP

SP, #?STACK-1

; This code is required if you use L51 BANK.A51 with Banking Mode 4
; EXTRN CODE (?B SWITCHO)

; CALL ?B_SWITCHO ; init bank mechanism to code bank 0
LJIMP ?C_START
END
®
Rev. 0.1 21

SILICON LABORATORIES

AN278

Main Voice Recorder Program

// Copyright 2006 Silicon Laboratories, Inc.

// http://www.silabs.com

// Program Description:

// This program uses the DPCM functions to encode voice samples and saves them
// to flash memory. This program also interfaces with a speaker or headphones

// to play back the recorded voice.

// How To Use: See Readme.txt

//

// FID: 41X000005

// Target: C8051F411

// Tool chain: Keil C51 7.50 / Keil EVAL C51

// Silicon Laboratories IDE version 2.6

// Project Name: F411 VR

//

// Release 1.3

// -All changes by TP

// -02 Feb 2006

// -minor changes in comments

//

// Release 1.2

// -All changes by TP

// -21 Nov 2005

// -Revised for a 2-button version of the board with

// volume wheel.

//

// Release 1.1

// -All changes by TP

// -16 Aug 2004

// -project version updated, no changes to this file

//

// Release 1.0

// -Initial Revision (TP)

// -15 AUG 2004

//

e

// Includes

[e e

#include <c8051f410.h> // SFR declarations

#include "F411 VR DPCM.h" // contains DPCM functions

#include "F411 VR SSTFlash.h" // contains functions to write to the
// serial SST external 512 kb Flash

#include "F411 VR LED.h" // contains functions to control the
// intensity of the LEDs

[e

// 16-bit SFR Definitions for 'F411

/e

// SFR16 Defintions (Timers, ADC, and DAC)

sfrl6 TMR2RL = 0xCA; // Timer 2 Reload address

sfrl6 TMR2 = 0xCC; // Timer 2 Counter address

sfrl6é TMR3RL = 0x92; // Timer 3 Reload address

sfrle TMR3 = 0x94; // Timer 3 Counter address

sfrl6 ADCODAT = 0xBD; // ADC 16-bit address

22

Rev. 0.1

SILICON LABORATORIES

AN278

sfrl6 IDAODAT = 0x96;

// General Constants
#define SYSCLK 6125000

// Tl runs at SYSCLK / 48
#define POLLING 1992
#define PRCHANGE 20000

#define SAMP FREQ 764

#define MAX MEM ADDR 0x0007FFFF
#define NEAR END ADDR 0x00065F55

#define mid range 2048

// System States
#define IDLE 0x00
#define RECORDING 0x01
#define PLAYING 0x02
#define END MEM 0x04

#define ERASED 0x08

// Port Pin Definitions
sbit REC_PLAY = P1"7;
sbit ERASE = P176;

sbit TRANS = P1"3;

sbit LEDO = P2"1;

sbit LED1 = P2"0;

sbit SCK = P0"4;
sbit MISO = PO"5;
sbit MOSI = P0"6;
sbit NSS = P0"7;

// Global VARIABLES
unsigned char system state = IDLE;

IDAC 1l6-bit address

system clock in Hz (24.5 MHz / 4)

poll the switches at 64 Hz
wait approx. 150ms after a button is
pressed to "debounce" the switches

use 8kHz sampling for both the ADC
and DAC

512K = 2719 address bits

for every 4 samples, 3 bytes are
written to memory, so 10.67 kHz

((8 kHz * 4)/3) writing time = 106666
addresses every 10 seconds, so give
about 10 seconds of warning

middle value of 12-bit ADC and DAC

indicates no current action
indicates the device is recording
indicates the device is playing
flag used if the end of memory is
reached

flag used if memory is erased

start in idle mode

bit 3 of the system state indicates
if the end of memory has been
reached

bit 4 of the system state indicates
if the memory has been erased since
the last action (1 = erased)

// Ending address of the recording in memory
unsigned long rec _end addr = 0x00000000;

// flags to communicate between the Tl ISR and the ADC/DAC ISRs for various

// termination events

SILICON LABORATORIES

Rev. 0.1

23

A

N278

bit
bit
bit
bit
bit
bit

ADC_STOP_FLAG = 0;

MEM END NEAR FLAG = 0;
MEM END FLAG = 0;
REC_END FLAG = 0;
DAC_STOP FLAG = 0;
ENTER SUSPEND = 0

’

// System and peripheral initialization functions

voi
voi
voi
voi
voi
voi
voi
voi
voi
voi
voi
voi
voi

// Interrupt service routines

voi

d System Init (void);
d VDDMon Init (void);
d Port Init (void);

d ADCO Init (void);

d DACO Init (void);

d PCA Init (void);

d SPIO Init (void);

d RTC Init (void);

d TimerO Init (int period);
d Timerl Init (int period);
d Timer2 Init (int period);
d Timer3 Init (int period);
d Recording Search (void);

d TimerO ISR (void);

LED updates

void TimerliISR (void) ; // Switch polling
void ADCO_ ISR (void); // Recording
void Timer3 ISR (void); // Playback
A et
// MAIN Routine
[m e -
void main (void)
{
unsigned char i;
// Watchdog timer disabled in VR STARTUP.A51
System Init (); // Initialize system clock
Port Init (); // Initialize crossbar and GPIO
ADCO Init (); // Initialize ADCO (microphone)
DACO_Init (); // Initialize DACO (speaker)
PCA Init (); // Initialize the PCA for 8-bit PWM
// in modules 0, 1, and 2
SPIO Init(); // Initialize the interface to the flash
RTC Init (); // Stop the RTC from causing a wake-up
// from suspend
TimerO Init (LED PWM) ; // Initialize timer 0 to provide a
// 76 Hz interrupt rate for the LEDs
Timerl Init (POLLING); // Initialize timer 1 to provide a
// 64 Hz interrupt rate for the switches
Timer2 Init (SAMP_FREQ); // Initialize the timer to provide an
// 8KHz interrupt rate for sampling
Timer3 Init (SAMP_FREQ); // Initialize the timer to provide an
// 8KHz interrupt rate for sampling
EA = 1; // enable global interrupts
®
24 Rev. 0.1

SILICON LABORATORIES

AN278

SSTFlash Init (); // disable the write protection in the
// external SST flash memory
Recording Search (); // search for a recording already

// present in memory
TR1 = 1; // start polling the switches

// loop forever

while (1)

{
if (ENTER SUSPEND == 1) // check if no interaction has occurred
{ // for some time

// disable everything to save the most power and set everything to a
// dormant state
ENTER SUSPEND = 0;

TR1 = 0; // stop polling the switches

EA = 0; // disable all interrupts

XBR1 = 0x40; // disable the PCA

XBRO = 0x00; // disable the SPI

SCK = 0; // drive the SPI pins low so the
MISO = 0; // external Flash won't attempt to draw
MOSI = 0; // current while unpowered

IDAOCN &= ~0x80; // disable DACO

REFOCN &= ~0x01; // disable VREF

LEDO = 1; // turn the LEDs off

LED1 = 1;

TRANS = 1; // turn off the external circuitry
RSTSRC = 0x00; // disable missing clock detector
VDMOCN &= ~0x80; // disable the VDD Monitor

OSCICN |= 0x20; // enter suspend mode and wait

// until a port match event occurs

// re-enable and reinitialize the system
VDDMon Init ();

TRANS = 0O; // turn on the external circuitry
REFOCN |= 0x01; // re—-enable VREF

IDAOCN |= 0x80; // re—enable DACO

XBRO = 0x02; // re—-enable SPI

XBR1 = 0x42; // re-enable PCAO 0 and PCAO 1

// wait 10us until the Flash is ready to receive writes and reads
for (i = 0; i < 64; i++);

SSTFlash Init (); // re-—-initialize the SST flash
EA = 1; // enable global interrupts

// wait until the button that woke the system is released
while ((REC_PLAY == 0) || (ERASE == 0));

TR1 = 1; // begin polling the buttons again

Rev. 0.1 25

SILICON LABORATORIES

AN278

}
/1177700077777 777/7/777// INITIALIZATION ROUTINES ///////////////////1////////

// Return Value : None
// Parameters : None

// This routine initializes the system clock to use the internal 24.5MHz / 4

// oscillator as its clock source and enables the missing clock detector reset.
// Additionally, this routine sets up VREF, the internal regulator, and the

// VDD monitor.

void System Init (void)

{

OSCICN = 0x85; // configure internal oscillator
RSTSRC = 0x04; // enable missing clock detector
REFOCN = 0x01; // set up and enable VREF pin
REGOCN = 0x10; // set up and enable 2.5V VDD from the
// internal regulator
VDDMon_Init (); // initialize the VDD Monitor
}
A s
// VDDMon Init
e
//
// Return Value : None
// Parameters : None
//
// This routine initializes the VDD Monitor and enables it as a reset source.
//
void VDDMon Init (void)
{
char 1i;
VDMOCN = 0x80; // enable the VDD monitor
for (i = 0; 1 < 80; i++); // wait for the monitor to stabilize
RSTSRC = 0x06; // enable missing clock detector and
// VDD monitor as reset sources
}
[
// PORT Init
e
//
// Return Value : None
// Parameters : None
//
// P0.0 = DACO (analog, skip)
// P0.1-3 = unused (skip)
// P0.4-7 = SPI interface (digital, do not skip)
// P1.0-1 = unused (skip)
// P1.2 = VREF (analog, skip)
// P1.3 = analog power-on transistor (digital, skip)

// Pl.4 = unused (skip)

26 Rev. 0.1

SILICON LABORATORIES

AN278

// P1.5 = ADCO (analog, skip)

// Pl.6-7 = REC PLAY and ERASE switches (digital, skip)

// P2.0-1 = LED PCA outputs (digital, do not skip)

//

void Port Init (void)

{
POMDIN = OxFE; // make switch and SPI pins digital
POMDOUT = 0xDO; // make SPI pins push-pull
PIMDIN = 0xC8; // make trans and switches digital
P1IMDOUT = 0x08; // make trans pin push-pull
P2MDIN = 0x03; // make PCA pins digital
P2MDOUT = 0x03; // make PCA pins push-pull
POSKIP = OxOF; // skip pins not belonging to SPI
P1SKIP = OxFF; // skip all Pl pins
P2SKIP = 0xFC; // skip pins not belonging to LED PCA
XBRO = 0x02; // enable SPI
XBR1 = 0x42; // enable PCAO 0 and PCAO 1
TRANS = 0; // turn on the power to all analog

// components

POMAT = 0x00; // the buttons will go low when pressed,
PIMAT = 0xCO; // causing the port match event

POMASK = 0x00; // mask off all PO and Pl pins except
PIMASK = 0xCO; // the switches

EIE2 = 0x00; // disable the port match interrupt

// (not required to wake up the core)

// Return Value : None
// Parameters : None

// Configure ADCO to update with a Timer 2 overflow using P1.5 as its positive
// input in post-tracking mode, enable burst mode, and use a repeat factor of

// 16.

void ADCO Init (void)
{

ADCOCN = 0x43; // ADC in low-power burst mode, use T2
// overflow, right justify
ADCOMX = 0x0D; // use P1.5 as the positive reference

// set the ADC conversion about 5 MHz and use a repeat factor
// of 16

ADCOCF = (4 << 3) | (3 << 1);
ADCOTK = O0xF4; // use post-tracking mode
EIE1l |= 0x08; // enable the ADC conversion complete
// interrupt
EIP1 |= 0x08; // set the ADC conversion complete
// interrupt to high priority
}
ettt
// DACO Init
/e
//
// Return Value : None
// Parameters : None
//

// Configure DACO to be right justified, update with a Timer 3 overflow, and

Rev. 0.1

SILICON LABORATORIES

27

AN278

// use a full-scale 2 mA output current.

//
void DACO Init (void)

{

IDAOCN = 0x70; // set the IDAC to update on a write
// to IDAODAT (initially only)
IDAOCN |= 0x00; // set the IDAC to use a 0.25 mA current.
IDAOCN |= 0x04; // set the IDAC to be right-justified
IDAOCN |= 0x80; // enable the IDAC
IDAOL = 0x00; // initialize the IDAC to be mid-scale
IDAOH = 0x08;
IDAOCN &= ~0x70; // set the IDAC to update on T3 overflow,
IDAOCN |= 0x33; // and use a 2 mA full-scale current
}
[
// PCA Init
/e e
//
// Return Value : None
// Parameters : None
//

// Configure PCAO modules 0 and 1 to 8-bit PWM mode using the system clock.

void PCA Init (void)
{
PCAOMD = 0x88; // set PCA to use system clock, disable
// idle mode

// PCAO (for LED1)
PCAOCPMO = 0x42; // set PCAO for 8-bit PWM mode
PCAOCPHO = 0x00; // set LED to off originally

// PCAl (for LEDO)
PCAOCPM1 = 0x42; // set PCAl for 8-bit PWM mode
PCAOCPH1 = 0x00; // set LED to off originally

// add another PCA module for another LED here, if desired

PCAOCN = 0x40; // turn on the PCA timer/counter

// Return Value : None
// Parameters : None

// Configure the SPI to run in 4-wire master mode at SYSCLK / 4 (1.53 MHz)
// using clock phase 0 and clock polarity 0 to interface with the SST Flash
// memory.

void SPIO Init (void)
{

SPIOCFG = 0x40; // set the master mode, polarity and
// phase

// set the SPI frequency to SYSCLK / 2*(1+1) = SYSCLK / 4

SPIOCKR = 0x01;

SPIOCN = 0x0C; // clear flags, turn off NSS
// set the 4-wire mode

SPIEN = 1; // enable the SPI

28 Rev. 0.1

SILICON LABORATORIES

AN278

// Return Value : None
// Parameters

// 1) int period - number of timer counts to generate the desired period
// range is positive range of integer: 0 to 32767

//

// Configure Timer0O to 16-bit mode. Timer0 is used to control the load

// time of the PCA PCAOCPHn registers, which changes the PWM intensity of the
// LEDs.

//
// The input parameter can be calculated as follows:
// (Oscillator (Hz) / 4) / Desired Freg (Hz) = Timer Ticks
//
void Timer(0 Init (int period)
{
TMOD |= 0x01; // set Timer 0 to mode 1 (16 bit)
CKCON |= 0x04; // use the system clock
ETO = 1; // enable Timer 0 interrupts
PTO = 1; // set Timer 0 interrupts to high

// priority (has to interrupt T1)

TLO = (-period) & OxO00FF; // set the desired period

THO = ((-period) & OxFF00) >> 8;

TRO = 0; // keep Timer 0 off (LED

// functions will turn it on)

}
ettt Bt D
// Timerl Init
[
//

// Return Value : None
// Parameters

// 1) int period - number of timer counts to generate the desired period
// range 1s positive range of integer: 0 to 32767
//

// Configure Timerl to 16-bit mode. Timerl controls the switch polling.

// To calculate:

// (Oscillator (Hz) / 4) / 48 / Desired Freq (Hz) = Timer Ticks
//
// NOTE - the extra 48 in this equation is present because of the settings
// in CKCON.
//
void Timerl Init (int period)
{
TMOD |= 0x10; // set Timer 1 to mode 1 (16 bit)
CKCON |= 0x02; // use the system clock / 48
ET1 = 1; // enable Timer 1 interrupts
TL1l = (-period) & OxO00FF; // set the desired period
TH1 = ((-period) & OxFF00) >> 8;
TR1 = 0; // keep Timer 1 off until needed

// Timer2 Init

Rev. 0.1 29

SILICON LABORATORIES

// Return Value : None
// Parameters

// 1) int period - number of timer counts to generate the desired period
// range is positive range of integer: 0 to 32767
//

// Configure Timer2 to 16-bit auto reload mode. Timer2 controls the ADCO
// start-of-conversion rate.

//
// To calculate:
// (Oscillator (Hz) / 4) / Desired Freg (Hz) = Timer Ticks
//
void Timer2 Init (int period)
{
CKCON |= 0x10; // use the system clock
TMR2CN = 0x00; // 16-bit auto-reload mode
ET2 = 0; // disable T2 interrupts (use ADC

// conversion complete interrupt)

TMR2RL = -period; // set the desired period
TMR2 = -period; // initialize the timer
TR2 = 0; // keep Timer 2 off until the RECORD

// function is used

// Return Value : None
// Parameters

// 1) int period - number of timer counts to generate the desired period
// range is positive range of integer: 0 to 32767
//

// Configure Timer3 to 16-bit auto reload mode. Timer3 controls the DAC output
// rate.

//
// To calculate:
// (Oscillator (Hz) / 4) / Desired Freg (Hz) = Timer Ticks
//
void Timer3 Init (int period)
{
CKCON |= 0x40; // use the system clock
TMR3CN = 0x00; // 16-bit auto-reload mode
EIE1l |= 0x80; // enable Timer 3 interrupts
EIP1 |= 0x80; // set Timer 3 interrupts to high

// priority

TMR3RL = -period; // set the desired period
TMR3 = -period; // initialize the timer
TMR3CN = 0x00; // keep Timer 3 off until the PLAY

// function is used

// Return Value : None

30 Rev. 0.1

SILICON LABORATORIES

AN278

1/
//
!/
1/

Parameters : None

Enable the RTC so it doesn't cause a wake-up from suspend mode.

void RTC Init (void)

{

RTCOKEY = 0xA5; // unlock the RTC interface
RTCOKEY = 0OxF1;

RTCOADR = 0x06; // point to RTCOCN

RTCODAT = 0x80; // enable the RTC

Return Value : None
Parameters : None

Search for a recording already residing in memory on power-up and set the
rec_end addr accordingly.

void Recording Search (void)

{

unsigned long address = 0x00000000;
bit end flag = 0;

// indicate to the user that the microcontroller is not ready to record
// or playback

LED_DCH = &LEDO_DC;

Brighten LED ();

LED DCH = &LED1 DC;

Brighten LED ();

// search through the SST flash until a series of OxFF is found, indicating
// cleared memory
while (end flag != 1)
{
if (Read MEM Init (address) == OxFF)
{
// double-check that the O0xFF found is not just a data byte of O0xFF
if (Read MEM Init (address+10) == 0xFF)
{
if (Read MEM Init (address+40) == OxFF)
{
end flag = 1;
}

}

address++;
if (address == MAX MEM ADDR)
{
end flag = 1;
}
}
rec_end addr = address-1; // set the recording ending address

// turn off the LEDs so the user knows the recording search has ended

LED DCH = &LEDO DC;
Dim LED ();
LED DCH = &LED1 DC;

Rev. 0.1 31

SILICON LABORATORIES

AN278

Dim LED ();
}

///177777777/7/7/7/7/7/7/7/7/7///// INTERRUPT SERVICE ROUTINES /////////////////////////

// Handle the 76Hz (13ms) Timer 0 interrupt.

// Timer 0 controls the rate at which the microcontroller changes the duty
// cycle of the PCA controlling the LEDs

// The LEDs are updated periodically, even if the LED PWM hasn't changed.

// By using the pointer (which is set before calling the LED functions) and

// updating all LEDs in the ISR every time, the same functions can be used for
// any number of LEDs. To add an LED, simply set-up another PCA channel,

// point to that LED before calling the LED functions, and update the LED in
// the ISR.

void Timer(0 ISR (void) interrupt 1 using 1
{
*LED DCH += ADJ; // calculate the new duty cycle based
// on the values set by the LED
// functions

PCAOCPH1 LEDO_DC; // load all LEDs with the possibly
PCAOCPHO = LED1 DC; // updated value
// add another LED update here, if desired

TLO = (-LED_PWM) & OxOOFF; // wait the time specified by the
THO = ((-LED _PWM) & OxFF00) >> 8; // calling LED function
LED PWM += LED PWM CHANGE; // change the interrupt rate, if

// necessary

// Handle the 64 Hz (15.63 ms) Timer 1 interrupt.

// Timer 1 controls the rate at which the microcontroller checks the switches
// for activity while in full power mode.

// for RECORD - press and hold REC_ PLAY button, release stops recording
// for PLAYBACK - press and release REC PLAY button, press and release again
// to stop

void Timerl ISR (void) interrupt 3 using 0

{
// interrupt again in 15.63 ms, unless a switch is pressed
unsigned short reload value = POLLING;

static unsigned char record counter = 0;
static unsigned short suspend counter = 0;
bit switch pressed flag = 0;

// REC_PLAY button pressed
if (REC_PLAY == 0)
{

32 Rev. 0.1

SILICON LABORATORIES

AN278

switch pressed flag = 1; // record the user interaction

// check if the recording time ran out, and stop any interaction

// from the switch until the switch is released and pressed again

if ((system state & END MEM) != END MEM)

{
// the REC_PLAY button must be pressed and held for a period of time
// in order to start the RECORD function
record counter++;

// check if the REC_PLAY button was held down long enough to begin
// recording (7 x 150 ms = 1.5 seconds)

// ignore the ERASED and END MEM state bits, check if the system is
// idle and can start recording

if ((record counter > 7) && ((system state & 0x03) == IDLE))
{
TR2 = 1; // turn on the RECORD timer
system state |= RECORDING; // start recording
LED DCH = &LEDO_DC; // point to the record LED's duty cycle
// address
Brighten LED(); // ramp on the record LED
record counter = 0; // reset the counter

reload value = PRCHANGE*2; // give a longer time period to check
// the button (effectively debouncing)

// check if the recording time is running out (button must be held
// to continue recording)
if (TR2 == 1)

if (MEM END NEAR FLAG == 1)
{
LED_DCH = &LEDO_DC;
Flutter LED (); // indicate to the user that time is
// almost out

else

// check if end of the memory has been reached
if (MEM END FLAG == 1)

// stop recording

system state = IDLE | END MEM; // indicate that the end of
// memory was reached

MEM END FLAG = 0;

LED DCH = &LEDO DC; // point to the record LED's duty cycle
// address
Dim LED (); // dim off the record LED

// check if the switch was pressed, but not long enough to start
// recording
if (record counter > 0)

switch pressed flag = 1; // record the user interaction

Rev. 0.1

SILICON LABORATORIES

33

AN278

// the system is currently playing - stop playing

// ignore the ERASED and END MEM state bits

if ((system state & 0x03) == PLAYING)

{
system state &= ~PLAYING; // clear the PLAYING state bit
DAC_STOP FLAG = 1;
IDAODAT = 0x0800;

LED DCH = &LED1 DC; // point to the play LED's duty cycle
// address
Dim LED (); // dim off the play LED
}
else

{
// the system is idle - start playing
// ignore the ERASED and END MEM state bits

if ((system state & 0x03) == IDLE)
{
system state |= PLAYING;
TMR3CN = 0x04; // start the timer controlling the DAC

REC_END FLAG = 0

; // reset the "end of recording" flag
DAC_STOP FLAG = 0;

LED DCH = &LED1 DC; // point to the play LED's duty cycle
// address
Brighten LED (); // ramp on the play LED
}
}
record counter = 0; // switch-press registered, reset

}
// the REC PLAY switch was not pressed
else
{
// clear the END MEM recording flag after the ADC ISR has turned off
// the ADC
if ((system state & END MEM) == END MEM)
{
system state &= ~RECORDING;
}

// the system is currently recording - stop recording
if (system state == RECORDING)

system state &= ~RECORDING;

ADC STOP_FLAG = 1; // notify the ADC to stop recording

MEM END NEAR FLAG = 0; // clear all flags

MEM END FLAG = 0;

LED DCH = &LEDO_DC; // point to the record LED's duty cycle
// address

Dim LED (); // dim off the record LED

// check if the playback has reached the end of the recording
if (REC_END FLAG == 1)

// stop playing
system state &= ~PLAYING;
REC _END FLAG = 0;

34 Rev. 0.1

SILICON LABORATORIES

AN278

LED DCH = &LED1 DC; // point to the play LED's duty cycle
// address
Dim LED (); // dim off the play LED

}

// ERASE button pressed
if (ERASE == 0)
{
// do nothing if the device is currently recording or playing
// ignore the ERASED and END MEM bits
if ((system state & 0x03) == IDLE)
{
// Indicate to the user that the microcontroller is busy
LED DCH = &LED1 DC;
Brighten LED ();
LED DCH = &LEDO_DC;
Brighten LED ();

rec _end addr = 0x00000000; // reset the counter
system state |= ERASED; // set the erase bit
Erase MEM (); // erase the external SST Flash
LED DCH = &LED1 DC;
Dim LED () ;
LED DCH = &LEDO DC;
Dim LED ();
}
switch pressed flag = 1; // record the user interaction
}
if (switch pressed flag == 0)

// check if the recorder is sitting and idle
// ignore the ERASED and END MEM bits

if ((system state & 0x03) == IDLE)

{

suspend counter++;

// 1if no interaction occurs in 5 seconds, enter suspend mode

if (suspend counter == 320)
{
suspend counter = 0;
ENTER SUSPEND = 1;
}
}
}
else
{
suspend counter = 0; // reset the SUSPEND mode counter
// if the user is interacting with the
// recorder
reload value = PRCHANGE; // interrupt again in 150 ms

}

// reload the timer for the next interrupt
TL1 = (-reload value) & O0x00FF;
TH1 = ((-reload value) & OxFFO00) >> 8;

Rev. 0.1 35

SILICON LABORATORIES

AN278

// ADCO_ISR

// Handle the 8kHz Timer 2 interrupt.

;; Timer 2 controls the rate at which the ADC samples the input (RECORD) .
égid ADCO ISR (void) interrupt 10 using 2

{ // RECORD

// DPCM variables

static data unsigned short predicted value = mid range;
static data unsigned char packed code = 0x00;

data unsigned char dpcm code = 0x00;

// indicates how the current dpcm code should be packed to be sent to memory
// sample 1 dpcm code = A, sample 2 dpcm code = B, sample 3 dpcm code = C

// sample 4 dpcm code = D, sample 5 is the same as sample 1, etc

// [A|A|A|A|A|A|B|B] byte 1

// [BIBIB|B|C|C|C|C] byte 2

// [CICID|ID|D|D|D|D] = byte 3

static unsigned char state = 0;

static short sample = 0x0000;
ADOINT = 0; // clear the interrupt flag

// check if the memory was erased

if ((system state & ERASED) == ERASED)
{
system state &= ~ERASED; // clear the erased bit
predicted value = mid range; // reset the dpcm predictor
state = 0; // reset the packing state machine

// check for the end of memory

if (rec_end addr == MAX MEM ADDR)
{
TR2 = 0; // turn off T2
MEM END NEAR FLAG = 0;
MEM END FLAG = 1; // tell the Tl ISR to turn off the LED
predicted value = mid range; // reset the dpcm predictor
state = 0; // reset the state machine
}
else

// check if the REC PLAY switch was released and the recording should

// stop

if (ADC_STOP FLAG == 1)

{
TR2 = 0; // turn off T2
ADC_STOP_FLAG = 0; // reset the flag

// do not reset the state or the predicted value variables here
// the playback ISR doesn't know when a recording starts or ends,
// so it will also not reset the state and predicted value
}
// take the sample, average it, compress it, and send it to memory
else
{
// since 16 samples are automatically accumulated by the ADC,
// average them by dividing by 16 (right shifting by 4)
sample = (ADCODAT >> 4) & OxOFFF;

36 Rev. 0.1

SILICON LABORATORIES

AN278

// calculate the difference between the sample and the predictor

// and compress the sample to a 6-bit DPCM code

dpcm code = DPCM Encode ((sample - predicted value));

// pack the DPCM code into the bytes sent to the Flash memory

switch (state)

{
// state machine: 0 -> 1 -> 2 -> 3

!/ » \

case 0:

// move the DPCM code into the 6 high bits

// [A|A|A|A|AIA] |] = byte 1
packed code = (dpcm code << 2) & OxFC;
state = 1;
break;
case 1:

// move the DPCM code into the 2 low bits
// of the previously packed byte
// [-1-1-1-1-1-1BIB] = byte 1

packed code |= (dpcm code >> 4) & 0x03;

Write MEM (rec end addr, packed code);
rec_end addr++;

// move the rest of the DPCM code into the
// 4 high bits of the next packed byte

// [BIBIBIBI | | |] = byte 2
packed code = (dpcm code << 4) & OxFO;
state = 2;
break;
case 2:

// move the next DPCM code into the
// 4 low bits of the previously packed byte
// [-1-1-1-1CIC|CIC] = byte 2

packed code |= (dpcm code >> 2) & 0x0F;

Write MEM (rec end addr, packed code);
rec end addr++;

// move the rest of the DPCM code into the
// 2 high bits of the next packed byte

//ciclt bl 11 = byte 3
packed code = (dpcm code << 6) & 0xCO;
state = 3;
break;
case 3:

// move the next DPCM code into the

Rev. 0.1

SILICON LABORATORIES

37

AN278

VO

{

// 6 low bits of the previously packed byte
// [-1-1DIDID|ID|DID] = byte 3

packed code |= dpcm code & 0x3F;

Write MEM (rec end addr, packed code);
rec_end addr++;

state = 0;
break;
default:
state = 0;
break;

}

// indicate that the Tl ISR should flutter the LED, since the end of
// memory is close
if (rec_end addr == NEAR END_ ADDR)
{
MEM END NEAR FLAG = 1;
}

// update the predictor for the next sample
predicted value += DPCM Decode (dpcm code) ;

Handle the 8kHz Timer 3 interrupt.

Timer 3 controls the rate at which the DAC outputs decompressed samples
(PLAY) .

id Timer3 ISR(void) interrupt 14 using 2
// PLAY

// next unwritten address
static unsigned long current play addr = 0x00000000;

// DPCM variables

static unsigned short predicted value = mid range;
static unsigned char packed code = 0x00;

unsigned char dpcm code = 0x00;

// indicates how the current dpcm code should be unpacked when retrieved
// from memory
// sample 1 dpcm _code = A, sample 2 dpcm code = B, sample 3 dpcm code = C

// sample 4 dpcm code = D, sample 5 is the same as sample 1, etc
// [AIA|A|AIA|A|BIB] = byte 1

// [BIBIBIB|C|C|CIC] = byte 2

// [CIC|ID|ID|D|D|D|D] = byte 3

static unsigned char state = 0;

TMR3CN &= O0x7F; // clear the T3 interrupt flag

// check if the PLAY switch was pressed and playing should stop
if (DAC_STOP FLAG == 1)
{

38

Rev. 0.1

SILICON LABORATORIES

AN278

TMR3CN = 0x00; // turn off T3
DAC_STOP_FLAG = 0; // reset the flag
current play addr = 0x00000000; // start at the beginning address
predicted value = mid range; // reset the predictor
state = 0; // reset the playback state machine
}
else

{
// check for the end of the recording
if (current play addr >= rec_end addr)

{

TMR3CN = 0x00; // turn off the timer
REC_END FLAG = 1; // tell the T1 ISR to turn off the LED
current play addr = 0x00000000;
predicted value = mid range; // reset the predictor
state = 0; // reset the playback state machine
}
else

{
// unpack the DPCM code bytes retrieved from memory
switch (state)
{
// state machine: 0 -> 1 -> 2 -> 3
// » \

case 0:

packed code = Read MEM (current play addr);
current play addr++;

// take the DPCM code from the 6 high bits

// [A|A|A|A|AIA] |] = byte 1
dpcm code = (packed code >> 2) & 0x3F;
state = 1;
break;
case 1:

// take the next DPCM code from the 2 low bits
// of the previously retrieved byte

// [=1=-1-1-1-1-1BIB] = byte 1

dpcm code = (packed code << 4) & 0x30;

packed code = Read MEM (current play addr);
current play addr++;

// take the rest of the DPCM code from the
// 4 high bits of the next retrieved byte

// [BIBIBIBl | | | 1 = byte 2
dpcm code |= (packed code >> 4) & 0xOF;
state = 2;
break;
case 2:

// take the next DPCM code from the

// 4 low bits of the previously retrieved byte
// [-1-1-1-ICIC|C|C] = byte 2

dpcm code = (packed code << 2) & 0x3C;

packed code = Read MEM (current play addr);
current play addr++;

Rev. 0.1 39

SILICON LABORATORIES

AN278

// take the rest of the DPCM code from the
// 2 high bits of the next retrieved byte

// ICIclh 1111 11 =byte 3
dpcm code |= (packed code >> 6) & 0x03;
state = 3;
break;
case 3:

// take the next DPCM code from the

// 6 low bits of the previously retrieved byte
// [-1-1DIDID|D|D|D] = byte 3

dpcm code = packed code & Ox3F;

state = 0;
break;
default:
state = 0;
break;

}

// calculate the new predicted value
predicted value += DPCM Decode (dpcm code) ;

// output the new sample to the speaker
IDAODAT = predicted value;

// overwrite the very last sample so the output is at the
// when stopped

// the discontinuity causes a small "clicking" sound when
// starts and stops

if (current play addr >= rec end addr)

IDAODAT = mid range;

mid-range

playback

40

Rev. 0.1

SILICON LABORATORIES

AN278

External Flash Access Functions

// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com

// Program Description:

// This file contains the interfacing functions to the SST Flash, allowing the
// user to Read memory, Write memory, and Erase memory.

// How To Use: See Readme.txt

// FID: 41X000010

// Target: C8051F411

// Tool chain: Keil C51 7.50 / Keil EVAL C51

// Silicon Laboratories IDE version 2.6
// Project Name: F411 VR

// Release 1.3

// -All changes by TP

// -02 Feb 2006

// -added Read MEM Init (duplicate of Read MEM) to avoid
// the compiler warning (multiple calls to segment)

// Release 1.2

// -All changes by TP

// -21 Nov 2005

// -project version updated, no changes to this file.

// Release 1.1

// -All changes by TP

// -16 Aug 2004

// -added SPIF polling while sending the WREN command

// Release 1.0
// -Initial Revision (TP)
// -15 AUG 2004

/e
// Includes

// SST Instruction Opcodes (as shown in the datasheet)

#define EWSR 0x50 // enable write status register
#define WRSR 0x01 // write status register
#define RDSR 0x05 // read status register

#define WREN 0x06 // write enable

#define BPROG 0x02 // byte program

#define READ 0x03 // read

#define CERASE 0x60 // chip erase

#fdefine READID 0x90 // chip ID

// Address definition

typedef union ADDRESS ({ // access an address as a
unsigned long ULong; // unsigned long variable or
unsigned char UBytel[4]; // 4 unsigned byte variables

Rev. 0.1 41

SILICON LABORATORIES

AN278

// [0] = A31-24, [1] = A23-16, [2] = Al5-8, [3] = A7-0
} ADDRESS;

void SSTFlash Init (void);

void Write MEM (unsigned long address, unsigned char data byte);
unsigned char Read MEM (unsigned long address);

void Erase MEM (void);

char ReadID MEM (void);

// Return Value : None
// Parameters : None
//
// Unprotect the memory so that all of memory may be written and read.
// NOTE: The SPI must be initialized before this function is called.
//
void SSTFlash Init (void)
{
NSSMDO = 0; // enable the flash

// send the enable write status register command

SPIODAT = EWSR; // load the XMIT register

while (TXBMT != 1) // wait until EWSR command is moved into
{ // the XMIT buffer

}

SPIF = 0;

while (SPIF != 1) // wait until the SPI finishes sending

{ // the EWSR command to the flash

}

SPIF = 0;

NSSMDO = 1; // allow the command to execute

NSSMDO = 0; // enable the flash

// send the write status register command and clear the BP bits

SPIODAT = WRSR; // load the XMIT register

while (TXBMT != 1) // wait until the XMIT register can

{ // accept more data

}

SPIODAT = 0x00; // set the block protection bits to 0

while (TXBMT != 1) // wait until the data is moved into

{ // the XMIT buffer

}

SPIF = 0;

while (SPIF != 1) // wait until the SPI finishes sending

{ // the data to the flash

}

SPIF = 0;

NSSMDO = 1; // allow the command to execute
}
ettt Bt D
// Write MEM
[
//

42 Rev. 0.1

SILICON LABORATORIES

AN278

// Return Value
// Parameters

None

// 1) long address - address in the 512 kB external SST Flash

// range is positive values up to 2719: 0 to 524287,
// or, 0 to OxX7FFFF

// 2) char data byte - the data to be written to memory

// range is positive range of character: 0 to 255

//

// Write one byte of data to a 24-bit address in the SST Flash Memory using
// the SPI.

//

void Write MEM (unsigned long address, unsigned char data byte)

{
ADDRESS temp addr;
temp addr.ULong = address;

NSSMDO = O0;

// send the write enable command
SPIODAT = WREN;

while (TXBMT != 1)
{

}

SPIF = 0;

while (SPIF != 1)
{

}

SPIF = 0;

NSSMDO = 1;

NSSMDO = O0;

// send the byte-program command
SPIODAT = BPROG;

while (TXBMT != 1)

{

}

SPIODAT = temp addr.UByte[l];
while (TXBMT != 1)

{

}

SPIODAT = temp addr.UByte[2];
while (TXBMT != 1)

{

}

SPIODAT = temp_ addr.UByte[3];
while (TXBMT != 1)

{

}
SPIODAT = data byte;

while (TXBMT != 1)
{

}

SPIF = 0;

while (SPIF != 1)
{

}

SPIF = 0;

NSSMDO = 1;

//
//

//
//

enable the flash

load the XMIT register
wait until the command is moved into
the XMIT buffer

wait until the command reaches the
flash

allow the WREN to execute

enable the flash

load the XMIT register
wait until the command is moved into
the XMIT buffer

load the high byte of the address
wait until the addr is moved into
the XMIT buffer

load the middle byte of the address
wait until the addr is moved into
the XMIT buffer

load the low byte of the address
wait until the addr is moved into
the XMIT buffer

load the byte of data

wait until the data is moved into
the XMIT buffer

wait until the last byte of the
write instruction reaches the flash

allow the WR instruction to execute

SILICON LABORATORIES

Rev. 0.1

43

AN278

un

{

VvO

Read MEM

Return Value :
1) char data byte - the data byte read from memory
range is positive range of character: 0 to 255
Parameters
1) long address - address in the 512 kB external SST Flash
range is positive values up to 2719: 0 to 524287,
or, 0 to OxX7FFFF

Read one byte of data from a 24-bit address in the SST Flash Memory using

the SPI.
signed char Read MEM (unsigned long address)

ADDRESS temp addr;
temp addr.ULong = address;

NSSMDO = 0; // enable the flash

// send the read instruction

SPIODAT = READ; // load the XMIT register

while (TXBMT != 1) // wait until the command is moved into

{ // the XMIT buffer

}

SPIODAT = temp addr.UByte[l]; // load the high byte of the address

while (TXBMT != 1) // wait until the data is moved into

{ // the XMIT buffer

}

SPIODAT = temp addr.UByte[2]; // load the middle byte of the address

while (TXBMT != 1) // wait until the data is moved into

{ // the XMIT buffer

}

SPIODAT = temp addr.UByte[3]; // load the low byte of the address

while (TXBMT != 1) // wait until the data is moved into

{ // the XMIT buffer

}

SPIODAT = OxFF; // load junk data in order to receive
// data from the flash

while (TXBMT != 1) // wait until the junk data is moved

{ // into the XMIT buffer

}

SPIF = 0;

while (SPIF != 1) // wait until the read data is received

{

}

SPIF = 0;

NSSMDO = 1; // disable the flash

return SPIODAT;

Return Value : None
Parameters : None

Erase all data from the SST flash memory.

id Erase MEM (void)

44

Rev. 0.1

SILICON LABORATORIES

AN278

unsigned char mem status = 0x01;
NSSMDO = 0;

// send the write enable command

SPIODAT = WREN;
while (TXBMT != 1)
{

}

SPIF = 0;

while (SPIF != 1)
{

}

SPIF = 0;

NSSMDO = 1;
NSSMDO = 0;

// send the chip erase instruction

SPIODAT = CERASE;

while (TXBMT != 1)
{

}

SPIF = 0;

while (SPIF != 1)

{

}

SPIF = 0;

NSSMDO = 1;

!/

//
!/

//

//
//

!/
!/

//

enable the flash

load the XMIT register
wait until the command is moved into
the XMIT buffer

wait until the command reaches the
flash

allow the WREN to execute

enable the flash

load the XMIT register
wait until the command is moved into
the XMIT buffer

wait until the command reaches the
flash

allow the erase to execute

// poll on the busy bit in the flash until the erase operation is complete

NSSMDO = 0;
SPIODAT = RDSR;
while (TXBMT != 1)
{

}
while

{

(mem_status == 0x01)

SPIODAT = OxFF;
while (TXBMT != 1)
{

}

SPIF = 0;
while (SPIF
{

}

SPIF = 0;
mem status =

'=1)

SPIODAT & 0x01;
}

NSSMDO = 1;

//
//
//
//

//
//

//

enable the flash
send the read status register command

wait until the SPI can accept more
data

send junk in order to receive data
wait until the junk data is moved
into the XMIT buffer

wait until the read data is received
check the BUSY bit

disable the flash

Return Value

1) char data byte - the data byte read from memory

range is positive range of character:

Parameters

0 to 255

SILICON LABORATORIES

Rev. 0.1

45

AN278

// 1) long address - address in the 512 kB external SST Flash

// range is positive values up to 2719: 0 to 524287,
// or, 0 to Ox7FFFF
//

// Read one byte of data from a 24-bit address in the SST Flash Memory using
// the SPI. This function is called by Recording Search in F411 VR.c
// and is a duplicate of Read MEM to avoid a warning by the compiler.

unsigned char Read MEM Init (unsigned long address)
{
ADDRESS temp addr;
temp addr.ULong = address;
NSSMDO = 0; // enable the flash

// send the read instruction

SPIODAT = READ; // load the XMIT register

while (TXBMT != 1) // wait until the command is moved into

{ // the XMIT buffer

}

SPIODAT = temp addr.UByte[l]; // load the high byte of the address

while (TXBMT != 1) // wait until the data is moved into

{ // the XMIT buffer

}

SPIODAT = temp addr.UByte[2]; // load the middle byte of the address

while (TXBMT != 1) // wait until the data is moved into

{ // the XMIT buffer

}

SPIODAT = temp addr.UByte[3]; // load the low byte of the address

while (TXBMT != 1) // wait until the data is moved into

{ // the XMIT buffer

}

SPIODAT = OxFF; // load junk data in order to receive
// data from the flash

while (TXBMT != 1) // wait until the junk data is moved

{ // into the XMIT buffer

}

SPIF = 0;

while (SPIF != 1) // wait until the read data is received

{

}

SPIF = 0;

NSSMDO = 1; // disable the flash

return SPIODAT;

// Return Value
// 1) char data byte - the device ID read from memory at address 0x000001

// (this address is specified in the SST Flash datasheet)
// range 1s positive range of character: 0 to 255

// Parameters : None

//

// Read the part ID from the flash memory (used for debugging) .

//

char ReadID MEM (void)
{
NSSMDO = 0; // enable the flash

46 Rev. 0.1

SILICON LABORATORIES

AN278

SPIODAT = READID;
while (TXBMT != 1)
{

}

SPIODAT = 0x00;
while (TXBMT != 1)
{

}

SPIODAT = 0x00;
while (TXBMT != 1)
{

}

SPIODAT = 0x01;
while (TXBMT != 1)
{

}
SPIODAT = O0xA5;

while (TXBMT != 1)
{

}

SPIF = 0;

while (SPIF != 1)
{

}

SPIF = 0;

NSSMDO = 1;

return SPIODAT;

!/

send the read ID instruction

wait until the SPI
data

send the device ID
wait until the SPI
data

send the device ID
wait until the SPI
data

send the device ID
wait until the SPI
data

can accept

address
can accept

address
can accept

address
can accept

more

more

more

more

send dummy data for shift register
wait until the SPI can accept more

data

wait until the read data is received

disable the flash

Sl

LICON LABORATORIES

Rev. 0.1

47

AN278

DPCM (Differential Pulse Code Modulation) Functions

// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com

// Program Description:

// This file contains the DPCM encoding and decoding functions.

// NOTE: For another reference for DPCM, please see Chipcon's app note an026.
// NOTE: The calling function must have the same register context as the DCPM

// functions, so it must either have the keyword "using 2" or all "using 2"
// keywords for the DPCM functions need to be removed

//

// How To Use: See Readme.txt

//

// FID: 41X000006

// Target: C8051F411

// Tool chain: Keil C51 7.50 / Keil EVAL C51

// Silicon Laboratories IDE version 2.6

// Project Name: F411 VR

//

// Release 1.3

// -All changes by TP

// -02 Feb 2006

// -project version updated, no changes to this file

//

// Release 1.2

// -All changes by TP

// -21 Nov 2005

// -expanded the 4-bit codes to 6 bits for the 12-bit ADC

//

// Release 1.1

// -All changes by TP

// -16 Aug 2004

// -project version updated, no changes to this file

//

// Release 1.0

// -Initial Revision (TP)

// -15 AUG 2004

//

[e e
// Includes
e
#include <c8051f410.h> // SFR declarations

[mm e
// Global CONSTANTS
e

// 12-bit quantization codes (6 bits, so 64 codes total = 31 positive, 31
// negative, and 2 zeroes)

#define quantl 1
#define quant2 2
#define quant3 4
#define quant4 7
#define quantb 11
#define quanté6 16
#define quant7? 22

48 Rev. 0.1

SILICON LABORATORIES

AN278

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

// the mapping from quantization values to dpcm

quant8

quant9

quantl10
quantll
quantl2
quantl3
quantl4
quantl5
quantlé
quantl7
quantl8
quantl9
quant20
quant21l
quant22
quant23
quant24
quant25
quant26
quant27
quant28
quant29
quant30
quant31l

29
37
46
56
67
79
92
106
130
146
163
181
200
220
241
263
286
310
335
361
388
416
512
1024

xdata short Q VALUES[64]

{0,
-quant31,
-quant30,
-quant29,
-quant28,
-quant27,
-quant26,
-quant25,
-quant24,
-quant23,
-quant22,
-quant21,
-quant20,
-quantl9,
-quantl8g,
-quantl7,
-quantlo,
-quantl5,
-quantl4,
-quantl3,
-quantl2,
-quantll,
-quantl10,
-quant9,
-quant8,
-quant7,
-quant6,
-quant5,
-quant4,
-quant3,
-quant2,
-quantl,
0,
quantl,
quant2,
quant3,
quant4,
quant5,

~
~
O Joy Ul b WNEO

NN N N NN N
AN NN N
FE PP P PO
(G NEVE S -

// 16
// 17
// 18
// 19
// 20
// 21
// 22
// 23
// 24
// 25
// 26
// 27
// 28
// 29
// 30
// 31
// 32
// 33
// 34
// 35
// 36
// 37

codes

negative middle

(array index)

SILICON LABORATORIES

Rev. 0.1

49

AN278

quantée, // 38
quant7, // 39
quants, // 40
quant9, // 41
quantl10, // 42
quantll, // 43
quantl2, // 44
quantl3, // 45
quantl4, // 46
quantls, Yy
quantlé6, // 48 positive middle
quantl7, // 49
quantls§, // 50
quantl9, // 51
quant20, // 52
quant21, // 53
quant22, // 54
quant23, // 55
quant24, // 56
quant25, // 57
quant26, // 58
quant27, // 59
quant28, // 60
quant29, // 61
quant30, // 62
quant31}; // 63

unsigned char DPCM Encode (short sample diff);
short DPCM Decode (unsigned char dpcm code) ;

Return Value

1) char dpcm code - the 6-bit quantized DPCM code
range is positive range of 6-bit value: 0 to 63
Parameters
1) short sample diff - the difference between the predicted value and
the sample from the ADC
range is: -4096 to 4095 (difference of 12-bit wvalues)
Encode the sample using DPCM compression.

The coding uses the following scheme (0 is unused) for an 8-bit sample:

code: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
g value: -64 -32 -16 -8 -4 -2 -1 0 1 2 4 8 16 32 o4
The difference will be rounded down if positive and rounded up if

negative (i.e. 41 => 32, and -41 => -32).

NOTE: the calling function must have the same register context, so it must
either have the keyword "using 2" or all "using 2" keywords need to be
removed

unsigned char DPCM Encode (short sample diff) using 2

{

short sample diff us;
unsigned char dpcm code;

50

Rev. 0.1

SILICON LABORATORIES

AN278

// determine if the difference is positive or negative
if (sample diff < 0)
{
sample diff us = -sample diff; // use the absolute value
}
else

{
sample diff us = sample diff;

// narrow down which bits need to be set to use the proper quantization code
// using a binary search algorithm (divide in halves)
// the sign of the difference no longer matters

// first tier
if (sample diff us >= quantlé6)

// second tier
if (sample diff us >= quant24)
{
// third tier
if (sample diff us >= quant28)
{
// fourth tier
if (sample diff us >= quant30)
{
// fifth tier
if (sample diff us
{

Vv
I

quant31)

dpcm code = 63;
}
// fifth tier
else
{
dpcm_code = 62;
}
}
// fourth tier
else
{
// fifth tier
if (sample diff us >= quant29)
{
dpcm _code = 61;
}
// fifth tier
else
{
dpcm _code = 60;
}
}
}
// third tier
else
{
// fourth tier
if (sample diff us >= quant26)
{
// fifth tier
if (sample diff us >= quant27)
{
dpcm _code = 59;
}
// fifth tier

Rev. 0.1

SILICON LABORATORIES

51

AN278

}
}

else
{
dpcm code = 58;
}
}
// fourth tier
else
{
// fifth tier
if (sample diff us
{
dpcm code = 57;
}
// fifth tier
else
{
dpcm_code = 56;
}

// second tier

else

{

// third tier
(sample diff us >= quant20)

if

{

}

// fourth tier
if (sample diff us >=
{
// fifth tier
if (sample diff us
{
dpcm code = 55;
}
// fifth tier
else
{
dpcm code = 54;
}
}
// fourth tier
else
{
// fifth tier
if (sample diff us
{
dpcm code = 53;
}
// fifth tier
else
{
dpcm_code = 52;
}
}

// third tier
else

{

// fourth tier
if (sample diff us >=
{

// fifth tier

if (sample diff us

>= quant25)

quant22)

>= quant23)

>= quant21l)

quantl18)

>= quantl9)

52

Rev. 0.1

SILICON LABORATORIES

AN278

{
dpcm _code = 51;
}
// fifth tier
else
{
dpcm _code = 50;
}
}
// fourth tier
else
{
// fifth tier
if (sample diff us >= quantl7)
{
dpcm _code = 49;
}
// fifth tier
else
{
dpcm code = 48;
}

}
}
// first tier
else
{
// second tier
if (sample diff us >= quant8)
{
// third tier
if (sample diff us >= quantl2)
{
// fourth tier
if (sample diff us >= quantl4)
{
// fifth tier
if (sample diff us >= quantl))
{
dpcm code = 47;
}
// fifth tier
else
{
dpcm_code = 46;
}
}
// fourth tier
else
{
// fifth tier
if (sample diff us >= quantl3)
{
dpcm code = 45;
}
// fifth tier
else
{
dpcm code = 44;
}

Rev. 0.1 53

SILICON LABORATORIES

AN278

// third tier
else

{

}
}

// fourth tier
if (sample diff us >=
{
// fifth tier
if (sample diff us
{
dpcm _code = 43;
}
// fifth tier
else
{
dpcm code = 42;
}
}
// fourth tier
else
{
// fifth tier
if (sample diff us
{
dpcm code = 41;
}
// fifth tier
else
{
dpcm _code = 40;
}

// second tier

else

{

// third tier
(sample diff us >= quant4)

if

{

// fourth tier
if (sample diff us >=
{
// fifth tier
if (sample diff us
{
dpcm _code = 39;
}
// fifth tier
else
{
dpcm code = 38;
}
}
// fourth tier
else
{
// fifth tier
if (sample diff us
{
dpcm _code = 37;
}
// fifth tier
else

{

quantl0)
>= quantll)
>= quant9)

quanto)
>= guant7)
>= gquanth)

54

Rev. 0.1

SILICON LABORATORIES

AN278

dpcm _code = 36;

}
}
// third tier
else
{
// fourth tier
if (sample diff us >= quant2)
{
// fifth tier
if (sample diff us >= quant3)
{
dpcm_code = 35;
}
// fifth tier
else
{
dpcm _code = 34;
}
}
// fourth tier
else
{
// fifth tier
if (sample diff us >= quantl)
{
dpcm _code = 33;
}
// fifth tier
else
{
dpcm code = 32;
}

// convert the DPCM code to its 2's compliment if the original sample

// difference was negative

// For example, 41 (101001), which represents a difference of 60, 2's

// complimented becomes 23 (010111), which represents a difference of -60
if (sample diff < 0)

dpcm _code = ~dpcm code + 1; // use the 2's compliment of the dpcm
// code
dpcm code &= 0x3F; // use only the 6 LSBs for the dpcm code

}

return dpcm code;

// Return Value

// 1) short predicted value - the signed and quantized difference between

// the predicted value and the ADC sample, which is used
// create the predicted value for the next DPCM cycle

// range is: -4096 to 4095 (difference of 12-bit values)
// Parameters

// 1) char dpcm code - the 6-bit code indicating the quantized difference

Rev. 0.1 55

SILICON LABORATORIES

1/ between the old prediction and the current sample value
// range is positive range of 6-bit value: 0 to 63
//

// Decode the DPCM code to a signed difference between the current predicted
// value and the next.

// NOTE: the calling function must have the same register context, so it must
// either have the keyword "using 2" or all "using 2" keywords need to be
// removed
short DPCM Decode (unsigned char dpcm code) using 2
{
return Q VALUES[dpcm code];

56 Rev. 0.1

SILICON LABORATORIES

AN278

LED Functions

// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com

// Program Description:

// This file contains the functions that use the PWM to brighten, dim, and
// flutter the LEDs.

// These functions work by using a pointer (LED DCH) to an "LED byte," which
// 1is just a byte in memory associated with each LED. In F411 VR.c,

// one of the Timer ISRs updates the PCA PWM registers with all the LED bytes
// every interrupt period, so the LEDs that don't change are still updated,
// but visually nothing changes.

// When the timer interrupts, PCAOCPHl is reloaded with the current value

// LEDO_DC, which is changed by the functions (Dim, Brighten, and Flutter)
// based on the desired LED behavior. By decrementing the time the LED is
// on in steps (based on the ADJ variable), the LED appears to "dim" off,

// and by incrementing the time the LED is on in steps, the LED appears to
// "brighten" slowly.

// The LED DCH pointer must be pointed to the correct LEDx DC byte BEFORE
// each of these functions is called.

// LED DCH -> LEDO DC -> PCAOCPHl, where CEX1l (output from the PCA) is tied
// to LEDO

// For example, the resulting dim LED waveform might look something like
// this, since the LEDs are ON when CEX1 = O:

// CEX1 | [| I

// | 1st step 2nd step | 3rd step | 4th step |
// (continued)

// CEX1 I I | | I | | I

// | 5th step I 6th step | 7th step | 8th step |

// (continued)

// CEX1 I I I I I | I I
// | 9th period | 10th period | 11th period | 12th period |

// (continued)

// CEX1 | [

// | 13th period | 14th period | 15th period | 16th period |

// The LED has appeared to "dim" slowly off.

// NOTE: The calling function must have the same register context as the LED
// functions, so it must either have the keyword "using 0" or all "using 0"

Rev. 0.1 57

SILICON LABORATORIES

AN278

// keywords for the LED functions need to be removed.

//

// How To Use: See Readme.txt

//

// FID: 41X000008

// Target: C8051F411

// Tool chain: Keil C51 7.50 / Keil EVAL C51

// Silicon Laboratories IDE version 2.6

// Project Name: F411 VR

//

// Release 1.3

// -All changes by TP

// -02 Feb 2006

// -project version updated, no changes to this file

//

// Release 1.2

// -All changes by TP

// -21 Nov 2005

// -project version updated, no changes to this file

//

// Release 1.1

// -All changes by TP

// -16 Aug 2004

// -project version updated, no changes to this file

//

// Release 1.0

// -Initial Revision (TP)

// -15 AUG 2004

//

/e
// Includes

[
#include <c8051f410.h> // SFR declarations

[
// Global Variables

[m e

unsigned char ADJ = 15;

unsigned int LED PWM = 65535;

int LED PWM CHANGE = 0x0000;

unsigned char *LED DCH;

unsigned char LEDO DC = 0x00;

unsigned char LED1 DC = 0x00;

// add another LEDx DC variable here, if desired, and point to it with *LED DCH
// before calling the LED functions

void Dim LED (void);
void Brighten LED (void);
void Flutter LED (void);

// Return Value : None
// Parameters : None

// Dim the LED using the PCA in 8-bit PWM mode. The TimerO ISR in
// F41l VR.c updates the value LED DCH is pointing to.

58 Rev. 0.1

SILICON LABORATORIES

AN278

//
// NOTE: This function requires that the LED DCH pointer be "pointing” to the
// appropriate LED byte, as explained above.
//
void Dim LED (void) using 0
{
// retrieve the previous value of the duty cycle
unsigned char duty cycle = *LED DCH;

ADJ = OxF1; // set the ADJ such that the LED will
// get dimmer

LED PWM = 65535; // reset the Timer 0 interval

LED PWM CHANGE = 0; // do not change the Timer 0 interval

TCON |= 0x10; // start Timer O

// wait until the LED is fully off
while (duty cycle != 0x00)
{
duty cycle = *LED DCH;
}

TCON &= ~0x10; // stop Timer 0 (no more updates to the
// PCA duty cycle)

// Return Value : None
// Parameters : None

// Brighten the LED using the PCA in 8-bit PWM mode. The Timer0 ISR in
// F41l VR.c updates the value LED DCH is pointing to.

// NOTE: This function requires that the LED DCH pointer be "pointing” to the
// appropriate LED byte, as explained above.

void Brighten LED (void) using 0

{
// retrieve the previous value of the duty cycle
unsigned char duty cycle = *LED DCH;

ADJ = 0xO0F; // set the ADJ such that the LED will
// brighten

LED PWM = 65535; // reset the Timer 0 interval

LED_PWM CHANGE = 0; // do not change the Timer 0 interval

TCON |= 0x10; // start Timer O

// wait until the LED is fully on
while (duty cycle != O0xFF)
{
duty cycle = *LED DCH;
}

TCON &= ~0x10; // stop Timer 0 (no more updates to the
// PCA duty cycle)

// Return Value : None

Rev. 0.1 59

SILICON LABORATORIES

AN278

// Parameters : None

// Cause the LED to dim on and off. The Timer0O ISR in F411 VR.c updates
// the value LED DCH is pointing to.

// NOTE: This function requires that the LED DCH pointer be "pointing” to the

// appropriate LED byte, as explained above.

void Flutter LED (void) using 0

{
// retrieve the previous value of the duty cycle
unsigned char duty cycle = *LED DCH;

// check if the LED is currently on or off
if (duty cycle == 0xFF)
{
ADJ = OxF1;
}
else
{
ADJ = 0xO0F;
}
LED PWM = 65535; // reset the Timer 0 interval

LED_PWM CHANGE = -200; // change the Timer 0 interval each
// interrupt cycle so the LED has a

// "fluttering" effect
TCON |= 0x10; // start Timer 0

// Wait for a flutter cycle to finish
while (LED _PWM > 17000)

{

}

TCON &= ~0x10; // stop Timer 0 (no more updates to the

// PCA duty cycle)

60 Rev. 0.1

SILICON LABORATORIES

AN278

NOTES:

SILICON LABORATORIES

Rev. 0.1

61

AN278

CONTACT INFORMATION

Silicon Laboratories Inc.

4635 Boston Lane

Austin, TX 78735

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: MCUinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

62 Rev. 0.1

SILICON LABORATORIES

	1. Introduction
	2. Overview
	Figure 1. Voice Recorder Physical System Overview
	Figure 2. Voice Recorder Dataflow Path

	3. Hardware Description
	4. Software Description
	Figure 3. DPCM Compression Algorithm
	Figure 4. DPCM Decompression Algorithm
	Figure 5. Example DPCM Code Quantization
	Figure 6. Example DPCM Decoding Scheme
	Table 1. Example DPCM Algorithm Results
	Figure 7. Example Input Waveform and DPCM Output
	4.4. SPI Interface
	Figure 8. Initialization and Switch Polling Routine
	Figure 9. Record Function and Sampling Interrupt Service Routine
	Figure 10. Playback Interrupt Service Routine
	Figure 11. Suspend Mode

	5. Usage Notes
	6. Design Customization
	7. References
	Appendix A-Schematic
	Figure 12. Voice Recorder Reference Design Schematic (Page 1 of 2)
	Figure 13. Voice Recorder Reference Design Schematic (Page 2 of 2)

	Appendix B-Bill Of Materials
	Table 2. Bill of Materials

	Appendix C-Layout
	Figure 14. Top Layout and Silkscreen
	Figure 15. Bottom Layout and Silkscreen

	Appendix D-Software Source Code
	Startup Code (Modified STARTUP.A51)
	Main Voice Recorder Program
	External Flash Access Functions
	DPCM (Differential Pulse Code Modulation) Functions
	LED Functions

	Contact Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

