
Rev. 0.1 2/06 Copyright © 2006 by Silicon Laboratories AN278

AN278

VOICE RECORDER REFERENCE DESIGN

1. Introduction
The C8051F411 offers a versatile, small (5 x 5 mm), highly integrated, low-power solution for voice applications.
The 12-bit ADC and DAC allow for reasonable quality sound at a 8 kHz sampling rate, and the hardware
Accumulation and Burst Mode features of the ADC provide for further improvements with small processing trade-
offs. The Suspend mode operating feature allows the voice recorder to "sleep" while idle, saving power in a similar
fashion to the traditional 8051 Stop mode, but still allows the recorder to wake and respond to the user without a
hardware reset. This document describes the solution for a telephone-quality voice recorder using the C8051F411.

This document includes the following:

A description of the system hardware and software
Usage notes and customization considerations
A schematic, bill of materials, and detailed layout diagrams
The implementation of the software showing how to sample, compress, store, and play back a voice signal

1.1. Key Points
Because of its small size, versatile peripherals, and low-power features, the 'F411 readily lends itself to battery-
operated voice applications.
The system uses a DPCM (Differential Pulse Code Modulation) compression algorithm for data storage to
extend the total recording time.
The recorder takes steps to minimize power usage while active and uses the "Suspend" feature of the 'F411 to
reduce power consumption when idle.

Relevant Devices
This application note applies to the following devices:
C8051F410, C8051F411, C8051F412, C8051F413

AN278

2 Rev. 0.1

2. Overview
The system, depicted in Figure 1, consists of a microphone and speaker, input and output filtering, the
microcontroller, the external Flash memory storage, and push-buttons and LEDs for user interaction. This section
describes each aspect of this system.

Figure 1. Voice Recorder Physical System Overview

2.1. Anti-Aliasing and Output Filtering
Both the input to the ADC and the output from the IDAC are filtered through low-pass, op-amp filters. The filters
before the ADC help prevent aliasing, where sound waveforms with frequencies above half of the sampling
frequency (the Nyquist frequency) "sound" much lower because the sampling is not adequately fast enough to
properly reconstruct the original waveform. The filtering on the output eliminates the high-frequency content of the
IDAC output and smoothes out the waveform before it is passed through the speaker driver.

2.2. Microcontroller (C8051F411)
The 'F411 samples the voice signal using the ADC, compresses the sample using DPCM (Differential Pulse Code
Modulation), and sends the sample to the external Flash using the SPI. The microcontroller later retrieves the
samples from the external Flash, decompresses them, and sends them to the speaker through the DAC. Figure 2
shows this dataflow path.

Figure 2. Voice Recorder Dataflow Path

Microphone

Push-buttons
and LEDs

C8051F411-GM

SST 512 k
Flash

Memory

ADC

DAC

Anti-aliasing
filter and
amplifier

Filter and
speaker
driver

Speaker

ADC DPCM
algorithm

External
Flash

DPCM
algorithm DAC

AN278

Rev. 0.1 3

To achieve telephone-quality sound, the microcontroller uses a sampling frequency of 8 kHz. This sampling rate
can adequately reconstruct voice frequencies below 4 kHz, and still allots plenty of time between samples for the
microcontroller to compress each sample and send it to external Flash memory. The microcontroller uses the
hardware Burst Mode and Repeat Count features to automatically oversample and average the ADC samples,
providing greater ADC accuracy. When the voice recorder is idle, the microcontroller shuts the system down using
the Suspend mode feature, which minimizes the power consumption and allows the microcontroller to wake when
the user presses either the Record/Play or Erase button without a hardware reset.

2.3. SPI Flash storage
With DPCM, the 'F411 compresses each 12-bit ADC sample into 6 bits, so four samples can be stored in every 3
bytes. With an 8 kHz sampling rate and 32 kB of internal Flash, the 'F411 can store approximately 5-6 seconds'
worth of recordings by itself. An additional 512 kB serial (SPI) Flash memory is included on the board to extend the
total storage to 1 minute 27 seconds.

2.4. Push-buttons and LEDs
The voice recorder uses simple LEDs and push-buttons to interact with the user. These LEDs indicate which
function the recorder is using and whether the recorder is active or idle. In order to have the basic functionality of a
voice recorder, the user needs to be able to record, play, erase, increase volume, and decrease volume. The two
switches and potentiometer on the board provide these functions.

3. Hardware Description
This section includes the detailed descriptions of the hardware components for the voice recorder.

3.1. Audio Paths
The voice recorder includes an on-board microphone for mobility and ease of design, since different microphones
require different biasing circuits. The microphone signal is sent through a rough low-pass filter and gain op-amp
circuit to utilize the full range of the ADC, and then through a 3-pole Butterworth filter with a corner frequency of
4 kHz. The op-amps operate using 3.3 V rail-to-rail, but the ADC uses the programmed internal VREF of 2.2 V, so
a voltage divider and DC-blocking capacitor provide the voltage translation from the filters to the ADC. A 5-pole
Butterworth filter smoothes the output of the IDAC, which is then used by the speaker driver to output the waveform
to the speaker jack.

3.2. Low-power Suspend
The 'F411 has a low power Suspend mode, during which the internal oscillator is completely dormant. An external
transistor, controlled by one of the Port I/O, allows the 'F411 to disconnect the power to all of the external circuitry
(op-amps, SST Flash, and speaker driver). Only the external voltage regulator and the 'F411 consume power while
the system is idle.

3.3. MCU Peripherals
The voice recorder uses four of the 'F411 peripherals: Analog-Digital Converter (ADC), Serial Peripheral Interface
(SPI), Current Digital-Analog Converter (IDAC), and Programmable Counter Array (PCA). The 12-bit ADC samples
the voice input and provides hardware accumulation and oversampling. The SPI communicates with the external
Flash memory in 4-wire master-mode to store compressed samples. The 12-bit DAC outputs the decompressed
sample from memory to the speaker driver. Finally, the PCA in 8-bit PWM mode controls the brightness of the
LEDs for user interaction.

3.4. Layout Considerations
This project does not include any extremely sensitive analog devices, so the main concerns during layout are size
and cost. However, some care needs to be taken when routing peripherals and signals to the microcontroller Port
I/O. For example, coupling can occur between the high-frequency SPI and the sensitive analog ADC and DAC
peripherals, so these signals should be separated. Additionally, the DAC and VREF are only available on specific

AN278

4 Rev. 0.1

Port I/O pins. Furthermore, the SPI has higher precedence in the crossbar priority than the PCA when both are
enabled, so the crossbar will route the SPI first. Careful planning of all I/O will ensure that all pins are routed
correctly.

4. Software Description
The voice recorder microcontroller is responsible for checking the switches for user interaction, sampling the voice
input, compressing and decompressing the samples, storing the samples in external Flash, outputting the samples
to the output filters, and controlling the PWM of the LEDs. This section describes each of these functions and their
implementation in detail.

4.1. Push-buttons
The 'F411 has two external interrupt pins that may be routed to any Port 0 pin. The voice recorder could
successfully use these interrupts for the push-buttons, but this would limit the voice recorder design to only having
two buttons. If the voice recorder is integrated into another design or if more features are added, more than two
buttons would be needed.

Instead, the voice recorder uses a polling scheme, where a Timer checks the switches periodically, but the rate at
which they are pressed is relatively slow compared to the other functions the voice recorder performs. The
switches need to be checked quickly enough that they're adequately responsive to the user, but not so quickly that
they constantly toggle before the switch is released. To account for both needs, the switches are checked every 15
ms and a 150 ms delay is added every time a switch is pressed.

4.2. Sampling Considerations
The sampling frequency for both the ADC and the DAC must be controlled as precisely as possible so that the
output doesn't shift frequencies from the original input. The 'F411 uses the two 16-bit timers (Timer 2 and Timer 3)
with auto reload to accomplish this. The ISR associated with each timer must be short enough that it doesn't
interfere with the sampling frequency of 8 kHz, so each ISR execution must be less than 125 µs. Thus, all
extraneous activities, such as the switch polling and LED control, must be executed in another, lower priority ISR
that can be interrupted as necessary to meet the timing requirements of the sampling. Since these routines must
communicate with one another, the 'F411 demo software uses global flags to indicate whether the sampling ISR
should start, stop, or complete some other action.

4.3. DPCM Compression
The voice recorder uses a DPCM, or Differential Pulse Code Modulation, compression scheme, which is lossy
because of the error incurred due to the nature of the algorithm. This scheme reduces each 12-bit sample down to
a 6-bit code representing the difference between the actual sample and the predicted value of the sample. This
predicted value can be calculated from sample averaging or some other complex algorithm, but, because voice
samples tend to be highly correlated and the ISR needs to be short, the voice recorder simply uses the previous
iteration's result as the predictor. The DPCM compression algorithm is shown in Figure 3.

Figure 3. DPCM Compression Algorithm

Quantize Encode

Decode
Store

predictor for
one cycle

Pn

Sn

Sn+1

Pn+1

to storage
(External Flash)

AN278

Rev. 0.1 5

The difference between the predictor and the sample is quantized, or separated into different "ranges" or "bins,"
and the 6-bit code represents the 64 possible ranges of values. This coded and quantized difference is then stored
in memory. To calculate the new predicted value, the compression algorithm then decodes the difference and adds
it to the current predicted value.

The decompression algorithm, shown in Figure 4, simply consists of matching the code in memory with the
quantized difference and adding that difference to the predictor.

Figure 4. DPCM Decompression Algorithm

The initial predicted values from both the compression and decompression schemes should match so that the
DPCM input and output are as similar as possible.

The following example uses a 4-bit (with 16 values) DPCM algorithm for an 8-bit ADC. If the first ADC sample is
0x89 (137 in unsigned decimal) and the initial predicted value is 0x80 (128 in unsigned decimal), the difference
between the sample and the predicted value (sample - predicted value) is 9. When quantized, this difference of 9
falls in the "between 8 and 16" range, so the resulting DPCM code is 12. This code of 12 is then sent to storage.

Figure 5. Example DPCM Code Quantization

To calculate the new predicted value for the second ADC sample, the DPCM code is reverted back to a difference
value, which, for a DPCM code of 12, is a difference of 8. This difference is added back to the predicted value of
0x80 (128), which yields a new predicted value of 0x88 (136) for the next ADC sample. This is the same process
that occurs during DPCM decompression, so that the same error is introduced on both sides. By using the
decompression output (0x88) rather than the real sample (0x89), the compression and decompression schemes
can include the same "DPCM" error and lessen the relative error. The predicted values in the compression scheme
should match the predicted values and output of the decompression scheme exactly.

Figure 6. Example DPCM Decoding Scheme

Decode

Store
predictor for
one cycle

Sn / Pn

Sn+1

Pn+1

to storage
(External Flash)

0, 8

Difference -64 -32 -16 -8 -4 -2 -1 0 6432168421

DPCM code 1 2 3 4 5 6

7 9

10 11 12 13 14 15

Difference -64 -32 -16 -8 -4 -2 -1 0 6432168421

DPCM code 1 2 3 4 5 6 7 0, 8 9 10 11 12 13 14 15

AN278

6 Rev. 0.1

If the second ADC value is 0x87 (135), this is compared to the predicted value of 0x88 (136), which yields a
difference of –1 and a DPCM code of 7, which is sent to memory. The new predicted value is the current predicted
value 0x88 (136) added to the decoded DPCM value (–1), or 0x87 (135). The predicted value of 0x87 (135) will
then be compared to the next ADC sample, and so on.

With the compression quantization, any difference between 4 and 8 will yield a DPCM code of 11, a difference less
than –64 will result in a DPCM code of 1, and a difference of 0 will result in a DPCM code of either 0 or 8. In the
case of this DPCM algorithm implementation, the DPCM values are "snapped down" to the smaller difference value
in the range bin for positive numbers and "snapped up" to the larger difference value in the range bin for negative
numbers. For example, a difference of 15 uses the same code as a difference of 8. This is done to eliminate the
chance of a DAC rollover upon play back.

The following table and graph continue the DPCM algorithm on a set of example ADC samples. Notice how the
DPCM algorithm follows the real ADC samples and is oftentimes close to the ADC sample. The more bits the
DPCM algorithm uses relative to the number of ADC bits, the more accurate the results will be, as it allows for more
differences to be represented by a DPCM code.

Table 1. Example DPCM Algorithm Results

Algorithm
Iteration

Example
Real

Samples

Difference (Sample
- Predicted_Value)

DPCM
Code

DPCM
Decoded

Difference

Compression Predicted
Values (Predicted_Value
+ Decoded_Difference)

Decompression
Output

0 — — — — 128 128

1 137 9 12 8 136 136

2 135 –1 7 –1 135 135

3 138 3 10 2 137 137

4 140 3 10 2 139 139

5 132 –7 5 –4 135 135

6 120 –15 4 –8 127 127

7 100 –27 3 –16 111 111

8 107 –4 5 –4 107 107

9 111 4 11 4 111 111

10 114 3 10 2 113 113

11 113 0 0 0 113 113

12 110 –3 6 –2 111 111

13 112 1 9 1 112 112

AN278

Rev. 0.1 7

Figure 7. Example Input Waveform and DPCM Output

During the DPCM decompression process, the first DPCM code of 12 is retrieved from memory, decoded to a
difference of 8, and added to the initial predicted value of 0x80 to yield the output sample of 0x88 (136). The
second DPCM code of 7 is then retrieved from memory, decoded to a difference of –1, and added to the predicted
value of 0x88 (136) to yield the second output sample of 0x87, and so on.

The Voice Recorder DPCM algorithm behaves the same as the above example, except the DPCM codes are 6 bits
for a 12-bit ADC.

AN278

8 Rev. 0.1

4.4. SPI Interface
The SST Flash memory used in the voice recorder has various commands that consist of a specified op-code and
operands. The datasheet for the Flash memory describes each command and the timing involved in great detail.
The pertinent commands for this application are the byte-program writes, status register read and enable, read,
and chip erase. Upon power-up, the Flash must have the block protection bits in the status register cleared in order
to write to the memory. Additionally, every write and erase operation must be preceded by a write enable
command. Furthermore, the timing for the /NSS line is critical, as the Flash will abort any command it has not fully
received before /NSS is disabled. The software controlling the SPI uses both the TXBMT and SPIF flags to verify
that all necessary transactions between the Flash and the 'F411 occur before disabling /NSS.

4.5. Suspend Mode
The low power 'F411 includes a special Suspend mode feature that turns off the internal oscillator until a waking
event occurs. The 'F411 controls a transistor that can shut off the power output from the external voltage regulator
to conserve power in all other devices, as well. The lone red LED (PWR_LED) indicates whether the 'F411 has
shut off power to all other devices. For the voice recorder, a port match event terminates the Suspend mode. This
event can occur when the user presses one of the switches and the Port I/O, after a check with the port mask
registers, mismatch the value in the port match registers. Once the 'F411 awakens, the peripherals and external
SST Flash must be reinitialized after the memory's initial hold time of 10 µs. Normal voice recorder operation can
then resume.

4.6. Detailed Descriptions
Figure 8 depicts the main software routine. The voice recorder completes all system initializations and begins
polling on the buttons. If a specified time period passes without any interaction, the system automatically switches
to Suspend mode. When the user presses a switch, the recorder acknowledges the interaction by brightening an
LED and the associated action takes place. When the action completes, the LED dims.

AN278

Rev. 0.1 9

Figure 8. Initialization and Switch Polling Routine

If the user presses the Record/Play push-button, the 'F411 first determines if the recorder should start recording
(button held down) or playing (button pressed and released).

Once recording, the 'F411 checks if the memory was erased and resets the beginning address of the new
recording appropriately. The recorder then checks if the recording must end because the memory is full or because
the user released the Record/Play push-button. If neither of these two conditions occur, then the recorder reads the
sample from the ADC, executes the DPCM algorithm, and packs the 6-bit code into the byte to be sent to storage.
If that byte now contains 8 bits of data, it's sent to memory; otherwise, the routine stores the byte until the next
sampling time. This ISR is executed every 125 µs, or at a frequency of 8 kHz.

System
Initializations

Update
recording

ending address

Yes

Check
switches

Brighten
LED

Switch
pressed?

5 seconds
passed?

Enter
SUSPEND

mode

Turn off
switch timer

Execute
switch-

specific action

Dim LED

Memory already
contains data?

No

No Yes

Yes

No

AN278

10 Rev. 0.1

Figure 9. Record Function and Sampling Interrupt Service Routine

When the user plays the recording, as shown in Figure 10, the ISR first checks whether or not the playback should
end because the user pressed the push-button again or the ISR reached the last memory address of the recording.
If these checks prove to be false, the recorder unpacks a 6-bit code from the byte from memory, decodes it using
the DPCM algorithm, updates the DAC output, and checks if a new byte should be fetched from memory. This ISR
is also run every 125 µs.

Restart at
beginning of

memory

Encode ADC
sample

Pack code into a
databyte

Was memory
erased?

Send to memory

Increment
address

Decode sample

Update predictor

END

Byte full?

Switch released?

Memory full?

No

No

No

Yes

Yes

Yes

Yes

No

AN278

Rev. 0.1 11

Figure 10. Playback Interrupt Service Routine

The other functions available to the recorder include recording erase and volume control. The erase uses the chip-
erase command available to the SST and is controlled in the switch-polling function, as it is a lower priority than
record and playback. The volume control is accomplished through a potentiometer that changes the voltage divider
at the IDAC output.

Suspend mode, the final feature of the recorder, occurs after a set period of idle time. As shown in Figure 11, the
recorder first turns off the timer controlling the push-button polling, for the functions associated with the switches
should not be active until the 'F411 completes all re-initializations after exiting Suspend mode. The recorder also
turns off all the peripherals and the power to the op-amps, external Flash memory, and speaker driver to conserve
power. The C8051F411's internal oscillator halts while in Suspend mode until a waking event occurs. In this
application, the relevant waking event is the port match, where the device will return to normal operation if one of
the switches is pressed. After the port match event, the recorder reinitializes all peripherals, waits the power-up
hold time specified for the SST Flash, initializes the SST Flash, and begins to poll the switches.

Read packed code
from memory

Increment Address

Unpack DPCM
code from data

byte

Decode
sample

Update output

END

Switch pressed
again?

End of recording
reached?

Data byte
empty?

No

No

Yes

Yes

Yes

No

AN278

12 Rev. 0.1

Figure 11. Suspend Mode

Turn off
switch timer

Turn off
peripherals and
external devices

Wait for switch to be
pressed (port match

event)

Turn on
peripherals and
external devices

Wait until
external Flash

is ready

Initialize
external Flash

Turn on switch
timer

Check
switches

AN278

Rev. 0.1 13

5. Usage Notes
The voice recorder may be powered from either a 9 V battery or a 9 V DC Power Adapter. Protection diodes will
stop any mishaps from occurring if both are in place at the same time. Each button activates and deactivates the
corresponding function, and the LED will indicate whether the function is active. Certain functions can only be used
during certain times; for example, the erase operation can only occur if no other action is taking place. Recording
multiple times without erasing appends the new recording to the end of the first. The play function always begins at
the very first recording.

6. Design Customization
All of the polling, sampling periods, and DPCM quantization values are constants declared at the beginning of the
software files. Any of the chosen values in this project may be changed, but take caution to observe that all
requirements are met by each change. For example, changing the system clock divider may result in a sampling
ISR that doesn't meet the 125 µs timing requirement, or changing the low-pass filter corner frequency may cause
unwanted aliasing.

7. References
Chipcon. "AN026: Wireless Audio using CC1010." Rev 1.0, 9/8/2004.
Silicon Laboratories. "AN147: Wireless Digital Full-Duplex Voice Transceiver." Rev 1.1.
SST. SST25VF040 Data Sheet. 6/04.

AN278

14 Rev. 0.1

APPENDIX A—SCHEMATIC

Fi
gu

re
12

.V
oi

ce
 R

ec
or

de
r R

ef
er

en
ce

 D
es

ig
n

Sc
he

m
at

ic
 (P

ag
e

1
of

 2
)

AN278

Rev. 0.1 15

Fi
gu

re
13

.V
oi

ce
 R

ec
or

de
r R

ef
er

en
ce

 D
es

ig
n

Sc
he

m
at

ic
 (P

ag
e

2
of

 2
)

AN278

16 Rev. 0.1

APPENDIX B—BILL OF MATERIALS

Table 2. Bill of Materials

Qty Board Reference Value/Part Number Description Manufacturer

13 C2, C3, C5, C7, C11, C13,
C16, C17, C20, C23, C25,

C32, C33

0.1 µF 0805 any

3 C8, C14, C19 1.0 µF 0805 any

1 C29 1200 pF 0805 any

1 C24 1500 pF 0805 any

3 C27, C28, C30 2700 pF 0805 any

1 C31 4700 pF 0805 any

2 C9, C26 68000 pF 0805 any

1 C18 7 pF 0805 any

1 C34 8200 pF 0805 any

1 C10 ECA-1EHG331 330 µF Elect. Panasonic - ECG

3 C1, C4, C6 ECS-T0JY475R 4.7 µF Tant. Panasonic - ECG

1 C12 T491C156K010AS 15 µF Tant. Kemet

3 C15, C21, C22 T491B106K016AS 10 µF Tant. Kemet

1 R2 100 Ω 0805 any

2 R29, R30 100 kΩ 0805 any

1 R19 12 kΩ 0805 any

1 R15 133 kΩ 0805 any

4 R16, R17, R26, R27 154 kΩ 0805 any

1 R24 16.2 kΩ 0805 any

4 R1, R4, R9, R10 1 kΩ 0805 any

1 R7 2 Ω 0805 any

1 R21 2.7 kΩ 0805 any

3 R5, R6, R8 200 Ω 0805 any

1 R18 24.3 kΩ 0805 any

2 R3, R12 2 kΩ 0805 any

1 R28 4.22 kΩ 0805 any

2 R13, R23 4.99 kΩ 0805 any

1 R14 5.1 MΩ 0805 any

AN278

Rev. 0.1 17

1 R20 6.34 kΩ 0805 any

1 R25 7.68 kΩ 0805 any

1 R22 9.76 kΩ 0805 any

1 R11 3352T-1-501 500 Ω potentiometer Bourns Inc.

1 BH1 1295 9 V battery holder Keystone Electronics

1 J1 103308-1 2 x 5 shrouded AMP/Tyco Electronics

1 J2 SJ-3543N audio jack CUI Inc.

1 J5 RAPC722 power jack Switchcraft Inc.

2 Z1, Z2 SD103CW-13 Schottky diode Diodes Inc.

1 D1 SML-LXT0805GW-TR green LED 0805 Lumex Opto/Components Inc.

2 D2, D4 SML-LXT0805IW-TR red LED 0805 Lumex Opto/Components Inc.

4 MH1, MH2, MH3, MH4 1902E stand-offs Keystone Electronics

1 MK1 EM6050P-443 Microphone Horn Industrial Co LTD

3 SW1, SW2, SW3 EVQ-PAD04M switches Panasonic - ECG

1 U1 C8051F411-GM QFN-28 Silicon Laboratories

1 U2 ZXMP3A13FTA transistor SOT23 Zetex Inc.

1 U3 SST25VF040-20-4C-
QAE

512 kB Flash SST

1 U4 LM2936IMP-3.3 Vol. reg SOT223 National Semiconductor

1 U5 MC33204DR2 op-amp SOIC14 ON Semiconductor

1 U6 TPA4861D speaker driver SOIC8 Texas Instruments

Table 2. Bill of Materials (Continued)

Qty Board Reference Value/Part Number Description Manufacturer

AN278

18 Rev. 0.1

APPENDIX C—LAYOUT

Figure 14. Top Layout and Silkscreen

Figure 15. Bottom Layout and Silkscreen

AN278

Rev. 0.1 19

APPENDIX D—SOFTWARE SOURCE CODE

Startup Code (Modified STARTUP.A51)
$NOMOD51
;--
; This file is part of the C51 Compiler package
; Copyright (c) 1988-2001 Keil Elektronik GmbH and Keil Software, Inc.
;--
; STARTUP.A51: This code is executed after processor reset.
;
; To translate this file use A51 with the following invocation:
;
; A51 STARTUP.A51
;
; To link the modified STARTUP.OBJ file to your application use the following
; BL51 invocation:
;
; BL51 <your object file list>, STARTUP.OBJ <controls>
;
;--
;
; User-defined Power-On Initialization of Memory
;
; With the following EQU statements the initialization of memory
; at processor reset can be defined:
;
; ; the absolute start-address of IDATA memory is always 0
IDATALEN EQU 80H ; the length of IDATA memory in bytes.
;
XDATASTART EQU 0H ; the absolute start-address of XDATA memory
XDATALEN EQU 0H ; the length of XDATA memory in bytes.
;
PDATASTART EQU 0H ; the absolute start-address of PDATA memory
PDATALEN EQU 0H ; the length of PDATA memory in bytes.
;
; Notes: The IDATA space overlaps physically the DATA and BIT areas of the
; 8051 CPU. At minimum the memory space occupied from the C51
; run-time routines must be set to zero.
;--
;
; Reentrant Stack Initialization
;
; The following EQU statements define the stack pointer for reentrant
; functions and initialized it:
;
; Stack Space for reentrant functions in the SMALL model.
IBPSTACK EQU 0 ; set to 1 if small reentrant is used.
IBPSTACKTOP EQU 0FFH+1 ; set top of stack to highest location+1.
;
; Stack Space for reentrant functions in the LARGE model.
XBPSTACK EQU 0 ; set to 1 if large reentrant is used.
XBPSTACKTOP EQU 0FFFFH+1 ; set top of stack to highest location+1.
;
; Stack Space for reentrant functions in the COMPACT model.
PBPSTACK EQU 0 ; set to 1 if compact reentrant is used.
PBPSTACKTOP EQU 0FFFFH+1 ; set top of stack to highest location+1.
;
;--
;
; Page Definition for Using the Compact Model with 64 KByte xdata RAM
;

AN278

20 Rev. 0.1

; The following EQU statements define the xdata page used for pdata
; variables. The EQU PPAGE must conform with the PPAGE control used
; in the linker invocation.
;
PPAGEENABLE EQU 0 ; set to 1 if pdata object are used.
PPAGE EQU 0 ; define PPAGE number.
;
;--

; Standard SFR Symbols required in XBANKING.A51
ACC DATA 0E0H
B DATA 0F0H
SP DATA 81H
DPL DATA 82H
DPH DATA 83H
PCA0MD DATA 0D9H

NAME ?C_STARTUP

?C_C51STARTUP SEGMENT CODE
?STACK SEGMENT IDATA

RSEG ?STACK
DS 1

EXTRN CODE (?C_START)
PUBLIC ?C_STARTUP

CSEG AT 0
?C_STARTUP: LJMP STARTUP1

RSEG ?C_C51STARTUP

STARTUP1:

 ANL PCA0MD, #0BFH

IF IDATALEN <> 0
MOV R0,#IDATALEN - 1
CLR A

IDATALOOP: MOV @R0,A
DJNZ R0,IDATALOOP

ENDIF

IF XDATALEN <> 0
MOV DPTR,#XDATASTART
MOV R7,#LOW (XDATALEN)

 IF (LOW (XDATALEN)) <> 0
MOV R6,#(HIGH (XDATALEN)) +1

 ELSE
MOV R6,#HIGH (XDATALEN)

 ENDIF
CLR A

XDATALOOP: MOVX @DPTR,A
INC DPTR
DJNZ R7,XDATALOOP
DJNZ R6,XDATALOOP

ENDIF

IF PPAGEENABLE <> 0
MOV P2,#PPAGE

ENDIF

AN278

Rev. 0.1 21

IF PDATALEN <> 0
MOV R0,#PDATASTART
MOV R7,#LOW (PDATALEN)
CLR A

PDATALOOP: MOVX @R0,A
INC R0
DJNZ R7,PDATALOOP

ENDIF

IF IBPSTACK <> 0
EXTRN DATA (?C_IBP)

MOV ?C_IBP,#LOW IBPSTACKTOP
ENDIF

IF XBPSTACK <> 0
EXTRN DATA (?C_XBP)

MOV ?C_XBP,#HIGH XBPSTACKTOP
MOV ?C_XBP+1,#LOW XBPSTACKTOP

ENDIF

IF PBPSTACK <> 0
EXTRN DATA (?C_PBP)

MOV ?C_PBP,#LOW PBPSTACKTOP
ENDIF

MOV SP,#?STACK-1
; This code is required if you use L51_BANK.A51 with Banking Mode 4
; EXTRN CODE (?B_SWITCH0)
; CALL ?B_SWITCH0 ; init bank mechanism to code bank 0

LJMP ?C_START

END

AN278

22 Rev. 0.1

Main Voice Recorder Program
//---
// F411_VR.c
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program uses the DPCM functions to encode voice samples and saves them
// to flash memory. This program also interfaces with a speaker or headphones
// to play back the recorded voice.
//
// How To Use: See Readme.txt
//
// FID: 41X000005
// Target: C8051F411
// Tool chain: Keil C51 7.50 / Keil EVAL C51
// Silicon Laboratories IDE version 2.6
// Project Name: F411_VR
//
// Release 1.3
// -All changes by TP
// -02 Feb 2006
// -minor changes in comments
//
// Release 1.2
// -All changes by TP
// -21 Nov 2005
// -Revised for a 2-button version of the board with
// volume wheel.
//
// Release 1.1
// -All changes by TP
// -16 Aug 2004
// -project version updated, no changes to this file
//
// Release 1.0
// -Initial Revision (TP)
// -15 AUG 2004
//

//---
// Includes
//---
#include <c8051f410.h> // SFR declarations
#include "F411_VR_DPCM.h" // contains DPCM functions
#include "F411_VR_SSTFlash.h" // contains functions to write to the
 // serial SST external 512 kb Flash
#include "F411_VR_LED.h" // contains functions to control the
 // intensity of the LEDs

//---
// 16-bit SFR Definitions for 'F411
//---

// SFR16 Defintions (Timers, ADC, and DAC)
sfr16 TMR2RL = 0xCA; // Timer 2 Reload address
sfr16 TMR2 = 0xCC; // Timer 2 Counter address
sfr16 TMR3RL = 0x92; // Timer 3 Reload address
sfr16 TMR3 = 0x94; // Timer 3 Counter address
sfr16 ADC0DAT = 0xBD; // ADC 16-bit address

AN278

Rev. 0.1 23

sfr16 IDA0DAT = 0x96; // IDAC 16-bit address

//---
// Global CONSTANTS
//---

// General Constants
#define SYSCLK 6125000 // system clock in Hz (24.5 MHz / 4)

// T1 runs at SYSCLK / 48
#define POLLING 1992 // poll the switches at 64 Hz
#define PRCHANGE 20000 // wait approx. 150ms after a button is
 // pressed to "debounce" the switches

#define SAMP_FREQ 764 // use 8kHz sampling for both the ADC
 // and DAC

#define MAX_MEM_ADDR 0x0007FFFF // 512K = 2^19 address bits
#define NEAR_END_ADDR 0x00065F55 // for every 4 samples, 3 bytes are
 // written to memory, so 10.67 kHz
 // ((8 kHz * 4)/3) writing time = 106666
 // addresses every 10 seconds, so give
 // about 10 seconds of warning

#define mid_range 2048 // middle value of 12-bit ADC and DAC

// System States
#define IDLE 0x00 // indicates no current action
#define RECORDING 0x01 // indicates the device is recording
#define PLAYING 0x02 // indicates the device is playing
#define END_MEM 0x04 // flag used if the end of memory is
 // reached
#define ERASED 0x08 // flag used if memory is erased

// Port Pin Definitions
sbit REC_PLAY = P1^7;
sbit ERASE = P1^6;
sbit TRANS = P1^3;
sbit LED0 = P2^1;
sbit LED1 = P2^0;

sbit SCK = P0^4;
sbit MISO = P0^5;
sbit MOSI = P0^6;
sbit NSS = P0^7;

//---
// Global VARIABLES
//---

unsigned char system_state = IDLE; // start in idle mode
 // bit 3 of the system_state indicates
 // if the end of memory has been
 // reached
 // bit 4 of the system_state indicates
 // if the memory has been erased since
 // the last action (1 = erased)

// Ending address of the recording in memory
unsigned long rec_end_addr = 0x00000000;

// flags to communicate between the T1 ISR and the ADC/DAC ISRs for various
// termination events

AN278

24 Rev. 0.1

bit ADC_STOP_FLAG = 0;
bit MEM_END_NEAR_FLAG = 0;
bit MEM_END_FLAG = 0;
bit REC_END_FLAG = 0;
bit DAC_STOP_FLAG = 0;
bit ENTER_SUSPEND = 0;

//---
// Function PROTOTYPES
//---
// System and peripheral initialization functions
void System_Init (void);
void VDDMon_Init (void);
void Port_Init (void);
void ADC0_Init (void);
void DAC0_Init (void);
void PCA_Init (void);
void SPI0_Init (void);
void RTC_Init (void);
void Timer0_Init (int period);
void Timer1_Init (int period);
void Timer2_Init (int period);
void Timer3_Init (int period);
void Recording_Search (void);

// Interrupt service routines
void Timer0_ISR (void); // LED updates
void Timer1_ISR (void); // Switch polling
void ADC0_ISR (void); // Recording
void Timer3_ISR (void); // Playback

//---
// MAIN Routine
//---
void main (void)
{
 unsigned char i;

 // Watchdog timer disabled in VR_STARTUP.A51

 System_Init (); // Initialize system clock
 Port_Init (); // Initialize crossbar and GPIO
 ADC0_Init (); // Initialize ADC0 (microphone)
 DAC0_Init (); // Initialize DAC0 (speaker)
 PCA_Init (); // Initialize the PCA for 8-bit PWM
 // in modules 0, 1, and 2
 SPI0_Init(); // Initialize the interface to the flash

 RTC_Init (); // Stop the RTC from causing a wake-up
 // from suspend

 Timer0_Init (LED_PWM); // Initialize timer 0 to provide a
 // 76 Hz interrupt rate for the LEDs

 Timer1_Init (POLLING); // Initialize timer 1 to provide a
 // 64 Hz interrupt rate for the switches

 Timer2_Init (SAMP_FREQ); // Initialize the timer to provide an
 // 8KHz interrupt rate for sampling

 Timer3_Init (SAMP_FREQ); // Initialize the timer to provide an
 // 8KHz interrupt rate for sampling

 EA = 1; // enable global interrupts

AN278

Rev. 0.1 25

 SSTFlash_Init (); // disable the write protection in the
 // external SST flash memory
 Recording_Search (); // search for a recording already
 // present in memory

 TR1 = 1; // start polling the switches

 // loop forever
 while (1)
 {
 if (ENTER_SUSPEND == 1) // check if no interaction has occurred
 { // for some time
 // disable everything to save the most power and set everything to a
 // dormant state
 ENTER_SUSPEND = 0;

 TR1 = 0; // stop polling the switches

 EA = 0; // disable all interrupts

 XBR1 = 0x40; // disable the PCA
 XBR0 = 0x00; // disable the SPI

 SCK = 0; // drive the SPI pins low so the
 MISO = 0; // external Flash won't attempt to draw
 MOSI = 0; // current while unpowered

 IDA0CN &= ~0x80; // disable DAC0
 REF0CN &= ~0x01; // disable VREF

 LED0 = 1; // turn the LEDs off
 LED1 = 1;

 TRANS = 1; // turn off the external circuitry

 RSTSRC = 0x00; // disable missing clock detector
 VDM0CN &= ~0x80; // disable the VDD Monitor

 OSCICN |= 0x20; // enter suspend mode and wait
 // until a port match event occurs

 // re-enable and reinitialize the system
 VDDMon_Init ();

 TRANS = 0; // turn on the external circuitry

 REF0CN |= 0x01; // re-enable VREF
 IDA0CN |= 0x80; // re-enable DAC0

 XBR0 = 0x02; // re-enable SPI
 XBR1 = 0x42; // re-enable PCA0_0 and PCA0_1

 // wait 10us until the Flash is ready to receive writes and reads
 for (i = 0; i < 64; i++);

 SSTFlash_Init (); // re-initialize the SST flash

 EA = 1; // enable global interrupts

 // wait until the button that woke the system is released
 while ((REC_PLAY == 0) || (ERASE == 0));

 TR1 = 1; // begin polling the buttons again

AN278

26 Rev. 0.1

 }
 }
}

/////////////////////////// INITIALIZATION ROUTINES ///////////////////////////

//---
// System_Init
//---
//
// Return Value : None
// Parameters : None
//
// This routine initializes the system clock to use the internal 24.5MHz / 4
// oscillator as its clock source and enables the missing clock detector reset.
// Additionally, this routine sets up VREF, the internal regulator, and the
// VDD monitor.
//
void System_Init (void)
{
 OSCICN = 0x85; // configure internal oscillator
 RSTSRC = 0x04; // enable missing clock detector

 REF0CN = 0x01; // set up and enable VREF pin

 REG0CN = 0x10; // set up and enable 2.5V VDD from the
 // internal regulator

 VDDMon_Init (); // initialize the VDD Monitor
}

//---
// VDDMon_Init
//---
//
// Return Value : None
// Parameters : None
//
// This routine initializes the VDD Monitor and enables it as a reset source.
//
void VDDMon_Init (void)
{
 char i;

 VDM0CN = 0x80; // enable the VDD monitor
 for (i = 0; i < 80; i++); // wait for the monitor to stabilize
 RSTSRC = 0x06; // enable missing clock detector and
 // VDD monitor as reset sources
}

//---
// PORT_Init
//---
//
// Return Value : None
// Parameters : None
//
// P0.0 = DAC0 (analog, skip)
// P0.1-3 = unused (skip)
// P0.4-7 = SPI interface (digital, do not skip)
// P1.0-1 = unused (skip)
// P1.2 = VREF (analog, skip)
// P1.3 = analog power-on transistor (digital, skip)
// P1.4 = unused (skip)

AN278

Rev. 0.1 27

// P1.5 = ADC0 (analog, skip)
// P1.6-7 = REC_PLAY and ERASE switches (digital, skip)
// P2.0-1 = LED PCA outputs (digital, do not skip)
//
void Port_Init (void)
{
 P0MDIN = 0xFE; // make switch and SPI pins digital
 P0MDOUT = 0xD0; // make SPI pins push-pull
 P1MDIN = 0xC8; // make trans and switches digital
 P1MDOUT = 0x08; // make trans pin push-pull
 P2MDIN = 0x03; // make PCA pins digital
 P2MDOUT = 0x03; // make PCA pins push-pull
 P0SKIP = 0x0F; // skip pins not belonging to SPI
 P1SKIP = 0xFF; // skip all P1 pins
 P2SKIP = 0xFC; // skip pins not belonging to LED PCA

 XBR0 = 0x02; // enable SPI
 XBR1 = 0x42; // enable PCA0_0 and PCA0_1

 TRANS = 0; // turn on the power to all analog
 // components

 P0MAT = 0x00; // the buttons will go low when pressed,
 P1MAT = 0xC0; // causing the port match event
 P0MASK = 0x00; // mask off all P0 and P1 pins except
 P1MASK = 0xC0; // the switches
 EIE2 = 0x00; // disable the port match interrupt
 // (not required to wake up the core)
}

//---
// ADC0_Init
//---
//
// Return Value : None
// Parameters : None
//
// Configure ADC0 to update with a Timer 2 overflow using P1.5 as its positive
// input in post-tracking mode, enable burst mode, and use a repeat factor of
// 16.
//
void ADC0_Init (void)
{
 ADC0CN = 0x43; // ADC in low-power burst mode, use T2
 // overflow, right justify
 ADC0MX = 0x0D; // use P1.5 as the positive reference
 // set the ADC conversion about 5 MHz and use a repeat factor
 // of 16
 ADC0CF = (4 << 3) | (3 << 1);
 ADC0TK = 0xF4; // use post-tracking mode
 EIE1 |= 0x08; // enable the ADC conversion complete
 // interrupt
 EIP1 |= 0x08; // set the ADC conversion complete
 // interrupt to high priority
}

//---
// DAC0_Init
//---
//
// Return Value : None
// Parameters : None
//
// Configure DAC0 to be right justified, update with a Timer 3 overflow, and

AN278

28 Rev. 0.1

// use a full-scale 2 mA output current.
//
void DAC0_Init (void)
{
 IDA0CN = 0x70; // set the IDAC to update on a write
 // to IDA0DAT (initially only)
 IDA0CN |= 0x00; // set the IDAC to use a 0.25 mA current.
 IDA0CN |= 0x04; // set the IDAC to be right-justified
 IDA0CN |= 0x80; // enable the IDAC

 IDA0L = 0x00; // initialize the IDAC to be mid-scale
 IDA0H = 0x08;

 IDA0CN &= ~0x70; // set the IDAC to update on T3 overflow,
 IDA0CN |= 0x33; // and use a 2 mA full-scale current
}

//---
// PCA_Init
//---
//
// Return Value : None
// Parameters : None
//
// Configure PCA0 modules 0 and 1 to 8-bit PWM mode using the system clock.
//
void PCA_Init (void)
{
 PCA0MD = 0x88; // set PCA to use system clock, disable
 // idle mode

 // PCA0 (for LED1)
 PCA0CPM0 = 0x42; // set PCA0 for 8-bit PWM mode
 PCA0CPH0 = 0x00; // set LED to off originally

 // PCA1 (for LED0)
 PCA0CPM1 = 0x42; // set PCA1 for 8-bit PWM mode
 PCA0CPH1 = 0x00; // set LED to off originally

 // add another PCA module for another LED here, if desired

 PCA0CN = 0x40; // turn on the PCA timer/counter
}

//---
// SPI0_Init
//---
//
// Return Value : None
// Parameters : None
//
// Configure the SPI to run in 4-wire master mode at SYSCLK / 4 (1.53 MHz)
// using clock phase 0 and clock polarity 0 to interface with the SST Flash
// memory.
//
void SPI0_Init (void)
{
 SPI0CFG = 0x40; // set the master mode, polarity and
 // phase
 // set the SPI frequency to SYSCLK / 2*(1+1) = SYSCLK / 4
 SPI0CKR = 0x01;
 SPI0CN = 0x0C; // clear flags, turn off NSS
 // set the 4-wire mode
 SPIEN = 1; // enable the SPI

AN278

Rev. 0.1 29

}

//---
// Timer0_Init
//---
//
// Return Value : None
// Parameters :
// 1) int period - number of timer counts to generate the desired period
// range is positive range of integer: 0 to 32767
//
// Configure Timer0 to 16-bit mode. Timer0 is used to control the load
// time of the PCA PCA0CPHn registers, which changes the PWM intensity of the
// LEDs.
//
// The input parameter can be calculated as follows:
// (Oscillator (Hz) / 4) / Desired_Freq (Hz) = Timer Ticks
//
void Timer0_Init (int period)
{
 TMOD |= 0x01; // set Timer 0 to mode 1 (16 bit)
 CKCON |= 0x04; // use the system clock
 ET0 = 1; // enable Timer 0 interrupts
 PT0 = 1; // set Timer 0 interrupts to high
 // priority (has to interrupt T1)

 TL0 = (-period) & 0x00FF; // set the desired period
 TH0 = ((-period) & 0xFF00) >> 8;

 TR0 = 0; // keep Timer 0 off (LED
 // functions will turn it on)
}

//---
// Timer1_Init
//---
//
// Return Value : None
// Parameters :
// 1) int period - number of timer counts to generate the desired period
// range is positive range of integer: 0 to 32767
//
// Configure Timer1 to 16-bit mode. Timer1 controls the switch polling.
//
// To calculate:
// (Oscillator (Hz) / 4) / 48 / Desired_Freq (Hz) = Timer Ticks
//
// NOTE - the extra 48 in this equation is present because of the settings
// in CKCON.
//
void Timer1_Init (int period)
{
 TMOD |= 0x10; // set Timer 1 to mode 1 (16 bit)
 CKCON |= 0x02; // use the system clock / 48
 ET1 = 1; // enable Timer 1 interrupts

 TL1 = (-period) & 0x00FF; // set the desired period
 TH1 = ((-period) & 0xFF00) >> 8;

 TR1 = 0; // keep Timer 1 off until needed
}

//---
// Timer2_Init

AN278

30 Rev. 0.1

//---
//
// Return Value : None
// Parameters :
// 1) int period - number of timer counts to generate the desired period
// range is positive range of integer: 0 to 32767
//
// Configure Timer2 to 16-bit auto reload mode. Timer2 controls the ADC0
// start-of-conversion rate.
//
// To calculate:
// (Oscillator (Hz) / 4) / Desired_Freq (Hz) = Timer Ticks
//
void Timer2_Init (int period)
{
 CKCON |= 0x10; // use the system clock
 TMR2CN = 0x00; // 16-bit auto-reload mode
 ET2 = 0; // disable T2 interrupts (use ADC
 // conversion complete interrupt)

 TMR2RL = -period; // set the desired period

 TMR2 = -period; // initialize the timer

 TR2 = 0; // keep Timer 2 off until the RECORD
 // function is used
}

//---
// Timer3_Init
//---
//
// Return Value : None
// Parameters :
// 1) int period - number of timer counts to generate the desired period
// range is positive range of integer: 0 to 32767
//
// Configure Timer3 to 16-bit auto reload mode. Timer3 controls the DAC output
// rate.
//
// To calculate:
// (Oscillator (Hz) / 4) / Desired_Freq (Hz) = Timer Ticks
//
void Timer3_Init (int period)
{
 CKCON |= 0x40; // use the system clock
 TMR3CN = 0x00; // 16-bit auto-reload mode
 EIE1 |= 0x80; // enable Timer 3 interrupts
 EIP1 |= 0x80; // set Timer 3 interrupts to high
 // priority

 TMR3RL = -period; // set the desired period

 TMR3 = -period; // initialize the timer

 TMR3CN = 0x00; // keep Timer 3 off until the PLAY
 // function is used
}

//---
// RTC_Init
//---
//
// Return Value : None

AN278

Rev. 0.1 31

// Parameters : None
//
// Enable the RTC so it doesn't cause a wake-up from suspend mode.
//
void RTC_Init (void)
{
 RTC0KEY = 0xA5; // unlock the RTC interface
 RTC0KEY = 0xF1;
 RTC0ADR = 0x06; // point to RTC0CN
 RTC0DAT = 0x80; // enable the RTC
}

//---
// Recording_Search
//---
//
// Return Value : None
// Parameters : None
//
// Search for a recording already residing in memory on power-up and set the
// rec_end_addr accordingly.
//
void Recording_Search(void)
{
 unsigned long address = 0x00000000;
 bit end_flag = 0;

 // indicate to the user that the microcontroller is not ready to record
 // or playback
 LED_DCH = &LED0_DC;
 Brighten_LED ();
 LED_DCH = &LED1_DC;
 Brighten_LED ();

 // search through the SST flash until a series of 0xFF is found, indicating
 // cleared memory
 while (end_flag != 1)
 {
 if (Read_MEM_Init (address) == 0xFF)
 {
 // double-check that the 0xFF found is not just a data byte of 0xFF
 if (Read_MEM_Init (address+10) == 0xFF)
 {
 if (Read_MEM_Init (address+40) == 0xFF)
 {
 end_flag = 1;
 }
 }
 }

 address++;

 if (address == MAX_MEM_ADDR)
 {
 end_flag = 1;
 }
 }

 rec_end_addr = address-1; // set the recording ending address

 // turn off the LEDs so the user knows the recording search has ended
 LED_DCH = &LED0_DC;
 Dim_LED ();
 LED_DCH = &LED1_DC;

AN278

32 Rev. 0.1

 Dim_LED ();
}

////////////////////////// INTERRUPT SERVICE ROUTINES /////////////////////////

//---
// Timer0_ISR
//---
//
// Handle the 76Hz (13ms) Timer 0 interrupt.
//
// Timer 0 controls the rate at which the microcontroller changes the duty
// cycle of the PCA controlling the LEDs
//
// The LEDs are updated periodically, even if the LED PWM hasn't changed.
// By using the pointer (which is set before calling the LED functions) and
// updating all LEDs in the ISR every time, the same functions can be used for
// any number of LEDs. To add an LED, simply set-up another PCA channel,
// point to that LED before calling the LED functions, and update the LED in
// the ISR.
//
void Timer0_ISR (void) interrupt 1 using 1
{
 *LED_DCH += ADJ; // calculate the new duty cycle based
 // on the values set by the LED
 // functions

 PCA0CPH1 = LED0_DC; // load all LEDs with the possibly
 PCA0CPH0 = LED1_DC; // updated value
 // add another LED update here, if desired

 TL0 = (-LED_PWM) & 0x00FF; // wait the time specified by the
 TH0 = ((-LED_PWM) & 0xFF00) >> 8; // calling LED function

 LED_PWM += LED_PWM_CHANGE; // change the interrupt rate, if
 // necessary
}

//---
// Timer1_ISR
//---
//
// Handle the 64 Hz (15.63 ms) Timer 1 interrupt.
//
// Timer 1 controls the rate at which the microcontroller checks the switches
// for activity while in full power mode.
//
// for RECORD - press and hold REC_PLAY button, release stops recording
// for PLAYBACK - press and release REC_PLAY button, press and release again
// to stop
//
void Timer1_ISR (void) interrupt 3 using 0
{
 // interrupt again in 15.63 ms, unless a switch is pressed
 unsigned short reload_value = POLLING;

 static unsigned char record_counter = 0;
 static unsigned short suspend_counter = 0;

 bit switch_pressed_flag = 0;

 // REC_PLAY button pressed
 if (REC_PLAY == 0)
 {

AN278

Rev. 0.1 33

 switch_pressed_flag = 1; // record the user interaction

 // check if the recording time ran out, and stop any interaction
 // from the switch until the switch is released and pressed again
 if ((system_state & END_MEM) != END_MEM)
 {
 // the REC_PLAY button must be pressed and held for a period of time
 // in order to start the RECORD function
 record_counter++;

 // check if the REC_PLAY button was held down long enough to begin
 // recording (7 x 150 ms = 1.5 seconds)
 // ignore the ERASED and END_MEM state bits, check if the system is
 // idle and can start recording
 if ((record_counter > 7) && ((system_state & 0x03) == IDLE))
 {
 TR2 = 1; // turn on the RECORD timer
 system_state |= RECORDING; // start recording

 LED_DCH = &LED0_DC; // point to the record LED's duty cycle
 // address
 Brighten_LED(); // ramp on the record LED

 record_counter = 0; // reset the counter

 reload_value = PRCHANGE*2; // give a longer time period to check
 // the button (effectively debouncing)
 }

 // check if the recording time is running out (button must be held
 // to continue recording)
 if (TR2 == 1)
 {
 if (MEM_END_NEAR_FLAG == 1)
 {
 LED_DCH = &LED0_DC;
 Flutter_LED (); // indicate to the user that time is
 // almost out
 }
 }
 else
 {
 // check if end of the memory has been reached
 if (MEM_END_FLAG == 1)
 {
 // stop recording
 system_state = IDLE | END_MEM; // indicate that the end of
 // memory was reached
 MEM_END_FLAG = 0;

 LED_DCH = &LED0_DC; // point to the record LED's duty cycle
 // address
 Dim_LED (); // dim off the record LED
 }
 }
 }
 }
 else
 {
 // check if the switch was pressed, but not long enough to start
 // recording
 if (record_counter > 0)
 {
 switch_pressed_flag = 1; // record the user interaction

AN278

34 Rev. 0.1

 // the system is currently playing - stop playing
 // ignore the ERASED and END_MEM state bits
 if ((system_state & 0x03) == PLAYING)
 {
 system_state &= ~PLAYING; // clear the PLAYING state bit
 DAC_STOP_FLAG = 1;
 IDA0DAT = 0x0800;

 LED_DCH = &LED1_DC; // point to the play LED's duty cycle
 // address
 Dim_LED (); // dim off the play LED
 }
 else
 {
 // the system is idle - start playing
 // ignore the ERASED and END_MEM state bits
 if ((system_state & 0x03) == IDLE)
 {
 system_state |= PLAYING;
 TMR3CN = 0x04; // start the timer controlling the DAC
 REC_END_FLAG = 0; // reset the "end of recording" flag
 DAC_STOP_FLAG = 0;

 LED_DCH = &LED1_DC; // point to the play LED's duty cycle
 // address
 Brighten_LED (); // ramp on the play LED
 }
 }

 record_counter = 0; // switch-press registered, reset

 }
 // the REC_PLAY switch was not pressed
 else
 {
 // clear the END_MEM recording flag after the ADC ISR has turned off
 // the ADC
 if ((system_state & END_MEM) == END_MEM)
 {
 system_state &= ~RECORDING;
 }

 // the system is currently recording - stop recording
 if (system_state == RECORDING)
 {
 system_state &= ~RECORDING;
 ADC_STOP_FLAG = 1; // notify the ADC to stop recording

 MEM_END_NEAR_FLAG = 0; // clear all flags
 MEM_END_FLAG = 0;

 LED_DCH = &LED0_DC; // point to the record LED's duty cycle
 // address
 Dim_LED (); // dim off the record LED
 }

 // check if the playback has reached the end of the recording
 if (REC_END_FLAG == 1)
 {
 // stop playing
 system_state &= ~PLAYING;
 REC_END_FLAG = 0;

AN278

Rev. 0.1 35

 LED_DCH = &LED1_DC; // point to the play LED's duty cycle
 // address
 Dim_LED (); // dim off the play LED
 }
 }
 }

 // ERASE button pressed
 if (ERASE == 0)
 {
 // do nothing if the device is currently recording or playing
 // ignore the ERASED and END_MEM bits
 if ((system_state & 0x03) == IDLE)
 {
 // Indicate to the user that the microcontroller is busy
 LED_DCH = &LED1_DC;
 Brighten_LED ();
 LED_DCH = &LED0_DC;
 Brighten_LED ();

 rec_end_addr = 0x00000000; // reset the counter
 system_state |= ERASED; // set the erase bit
 Erase_MEM (); // erase the external SST Flash

 LED_DCH = &LED1_DC;
 Dim_LED ();
 LED_DCH = &LED0_DC;
 Dim_LED ();
 }

 switch_pressed_flag = 1; // record the user interaction
 }

 if (switch_pressed_flag == 0)
 {
 // check if the recorder is sitting and idle
 // ignore the ERASED and END_MEM bits
 if ((system_state & 0x03) == IDLE)
 {
 suspend_counter++;

 // if no interaction occurs in 5 seconds, enter suspend mode
 if (suspend_counter == 320)
 {
 suspend_counter = 0;
 ENTER_SUSPEND = 1;
 }
 }
 }
 else
 {
 suspend_counter = 0; // reset the SUSPEND mode counter
 // if the user is interacting with the
 // recorder

 reload_value = PRCHANGE; // interrupt again in 150 ms
 }

 // reload the timer for the next interrupt
 TL1 = (-reload_value) & 0x00FF;
 TH1 = ((-reload_value) & 0xFF00) >> 8;
}

//---

AN278

36 Rev. 0.1

// ADC0_ISR
//---
//
// Handle the 8kHz Timer 2 interrupt.
//
// Timer 2 controls the rate at which the ADC samples the input (RECORD).
//
void ADC0_ISR (void) interrupt 10 using 2
{
 // RECORD

 // DPCM variables
 static data unsigned short predicted_value = mid_range;
 static data unsigned char packed_code = 0x00;
 data unsigned char dpcm_code = 0x00;

 // indicates how the current dpcm_code should be packed to be sent to memory
 // sample 1 dpcm_code = A, sample 2 dpcm_code = B, sample 3 dpcm_code = C
 // sample 4 dpcm_code = D, sample 5 is the same as sample 1, etc
 // [A|A|A|A|A|A|B|B] = byte 1
 // [B|B|B|B|C|C|C|C] = byte 2
 // [C|C|D|D|D|D|D|D] = byte 3
 static unsigned char state = 0;

 static short sample = 0x0000;

 AD0INT = 0; // clear the interrupt flag

 // check if the memory was erased
 if ((system_state & ERASED) == ERASED)
 {
 system_state &= ~ERASED; // clear the erased bit
 predicted_value = mid_range; // reset the dpcm predictor
 state = 0; // reset the packing state machine
 }

 // check for the end of memory
 if (rec_end_addr == MAX_MEM_ADDR)
 {
 TR2 = 0; // turn off T2
 MEM_END_NEAR_FLAG = 0;
 MEM_END_FLAG = 1; // tell the T1 ISR to turn off the LED
 predicted_value = mid_range; // reset the dpcm predictor
 state = 0; // reset the state machine
 }
 else
 {
 // check if the REC_PLAY switch was released and the recording should
 // stop
 if (ADC_STOP_FLAG == 1)
 {
 TR2 = 0; // turn off T2
 ADC_STOP_FLAG = 0; // reset the flag

 // do not reset the state or the predicted_value variables here
 // the playback ISR doesn't know when a recording starts or ends,
 // so it will also not reset the state and predicted_value
 }
 // take the sample, average it, compress it, and send it to memory
 else
 {
 // since 16 samples are automatically accumulated by the ADC,
 // average them by dividing by 16 (right shifting by 4)
 sample = (ADC0DAT >> 4) & 0x0FFF;

AN278

Rev. 0.1 37

 // calculate the difference between the sample and the predictor
 // and compress the sample to a 6-bit DPCM code
 dpcm_code = DPCM_Encode ((sample - predicted_value));

 // pack the DPCM code into the bytes sent to the Flash memory
 switch (state)
 {
 // state machine: 0 -> 1 -> 2 -> 3
 // ^______________|
 case 0:

 // move the DPCM code into the 6 high bits
 // [A|A|A|A|A|A| |] = byte 1
 packed_code = (dpcm_code << 2) & 0xFC;

 state = 1;
 break;

 case 1:

 // move the DPCM code into the 2 low bits
 // of the previously packed byte
 // [-|-|-|-|-|-|B|B] = byte 1

 packed_code |= (dpcm_code >> 4) & 0x03;

 Write_MEM (rec_end_addr, packed_code);
 rec_end_addr++;

 // move the rest of the DPCM code into the
 // 4 high bits of the next packed byte
 // [B|B|B|B| | | |] = byte 2

 packed_code = (dpcm_code << 4) & 0xF0;

 state = 2;
 break;

 case 2:

 // move the next DPCM code into the
 // 4 low bits of the previously packed byte
 // [-|-|-|-|C|C|C|C] = byte 2

 packed_code |= (dpcm_code >> 2) & 0x0F;

 Write_MEM (rec_end_addr, packed_code);
 rec_end_addr++;

 // move the rest of the DPCM code into the
 // 2 high bits of the next packed byte
 // [C|C| | | | | |] = byte 3

 packed_code = (dpcm_code << 6) & 0xC0;

 state = 3;
 break;

 case 3:

 // move the next DPCM code into the

AN278

38 Rev. 0.1

 // 6 low bits of the previously packed byte
 // [-|-|D|D|D|D|D|D] = byte 3

 packed_code |= dpcm_code & 0x3F;

 Write_MEM (rec_end_addr, packed_code);
 rec_end_addr++;

 state = 0;
 break;

 default:
 state = 0;
 break;
 }

 // indicate that the T1 ISR should flutter the LED, since the end of
 // memory is close
 if (rec_end_addr == NEAR_END_ADDR)
 {
 MEM_END_NEAR_FLAG = 1;
 }

 // update the predictor for the next sample
 predicted_value += DPCM_Decode (dpcm_code);
 }
 }
}

//---
// Timer3_ISR
//---
//
// Handle the 8kHz Timer 3 interrupt.
//
// Timer 3 controls the rate at which the DAC outputs decompressed samples
// (PLAY).
//
void Timer3_ISR(void) interrupt 14 using 2
{
 // PLAY

 // next unwritten address
 static unsigned long current_play_addr = 0x00000000;

 // DPCM variables
 static unsigned short predicted_value = mid_range;
 static unsigned char packed_code = 0x00;
 unsigned char dpcm_code = 0x00;

 // indicates how the current dpcm_code should be unpacked when retrieved
 // from memory
 // sample 1 dpcm_code = A, sample 2 dpcm_code = B, sample 3 dpcm_code = C
 // sample 4 dpcm_code = D, sample 5 is the same as sample 1, etc
 // [A|A|A|A|A|A|B|B] = byte 1
 // [B|B|B|B|C|C|C|C] = byte 2
 // [C|C|D|D|D|D|D|D] = byte 3
 static unsigned char state = 0;

 TMR3CN &= 0x7F; // clear the T3 interrupt flag

 // check if the PLAY switch was pressed and playing should stop
 if (DAC_STOP_FLAG == 1)
 {

AN278

Rev. 0.1 39

 TMR3CN = 0x00; // turn off T3
 DAC_STOP_FLAG = 0; // reset the flag
 current_play_addr = 0x00000000; // start at the beginning address
 predicted_value = mid_range; // reset the predictor
 state = 0; // reset the playback state machine
 }
 else
 {
 // check for the end of the recording
 if (current_play_addr >= rec_end_addr)
 {
 TMR3CN = 0x00; // turn off the timer
 REC_END_FLAG = 1; // tell the T1 ISR to turn off the LED
 current_play_addr = 0x00000000;
 predicted_value = mid_range; // reset the predictor
 state = 0; // reset the playback state machine
 }
 else
 {
 // unpack the DPCM code bytes retrieved from memory
 switch (state)
 {
 // state machine: 0 -> 1 -> 2 -> 3
 // ^______________|
 case 0:

 packed_code = Read_MEM (current_play_addr);
 current_play_addr++;

 // take the DPCM code from the 6 high bits
 // [A|A|A|A|A|A| |] = byte 1
 dpcm_code = (packed_code >> 2) & 0x3F;

 state = 1;
 break;

 case 1:

 // take the next DPCM code from the 2 low bits
 // of the previously retrieved byte
 // [-|-|-|-|-|-|B|B] = byte 1
 dpcm_code = (packed_code << 4) & 0x30;

 packed_code = Read_MEM (current_play_addr);
 current_play_addr++;

 // take the rest of the DPCM code from the
 // 4 high bits of the next retrieved byte
 // [B|B|B|B| | | |] = byte 2

 dpcm_code |= (packed_code >> 4) & 0x0F;

 state = 2;
 break;

 case 2:

 // take the next DPCM code from the
 // 4 low bits of the previously retrieved byte
 // [-|-|-|-|C|C|C|C] = byte 2
 dpcm_code = (packed_code << 2) & 0x3C;

 packed_code = Read_MEM (current_play_addr);
 current_play_addr++;

AN278

40 Rev. 0.1

 // take the rest of the DPCM code from the
 // 2 high bits of the next retrieved byte
 // [C|C| | | | | |] = byte 3
 dpcm_code |= (packed_code >> 6) & 0x03;

 state = 3;
 break;

 case 3:

 // take the next DPCM code from the
 // 6 low bits of the previously retrieved byte
 // [-|-|D|D|D|D|D|D] = byte 3
 dpcm_code = packed_code & 0x3F;

 state = 0;
 break;

 default:
 state = 0;
 break;
 }

 // calculate the new predicted value
 predicted_value += DPCM_Decode (dpcm_code);

 // output the new sample to the speaker
 IDA0DAT = predicted_value;

 // overwrite the very last sample so the output is at the mid-range
 // when stopped
 // the discontinuity causes a small "clicking" sound when playback
 // starts and stops
 if (current_play_addr >= rec_end_addr)
 {
 IDA0DAT = mid_range;
 }
 }
 }
}

//---
// End Of File
//---

AN278

Rev. 0.1 41

External Flash Access Functions
//---
// F411_VR_SSTFlash.c
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This file contains the interfacing functions to the SST Flash, allowing the
// user to Read memory, Write memory, and Erase memory.
//
// How To Use: See Readme.txt
//
// FID: 41X000010
// Target: C8051F411
// Tool chain: Keil C51 7.50 / Keil EVAL C51
// Silicon Laboratories IDE version 2.6
// Project Name: F411_VR
//
// Release 1.3
// -All changes by TP
// -02 Feb 2006
// -added Read_MEM_Init (duplicate of Read_MEM) to avoid
// the compiler warning (multiple calls to segment)
//
// Release 1.2
// -All changes by TP
// -21 Nov 2005
// -project version updated, no changes to this file.
//
// Release 1.1
// -All changes by TP
// -16 Aug 2004
// -added SPIF polling while sending the WREN command
//
// Release 1.0
// -Initial Revision (TP)
// -15 AUG 2004
//

//---
// Includes
//---
#include <c8051f410.h> // SFR declarations

//---
// Global CONSTANTS
//---
// SST Instruction Opcodes (as shown in the datasheet)
#define EWSR 0x50 // enable write status register
#define WRSR 0x01 // write status register
#define RDSR 0x05 // read status register
#define WREN 0x06 // write enable
#define BPROG 0x02 // byte program
#define READ 0x03 // read
#define CERASE 0x60 // chip erase
#define READID 0x90 // chip ID

// Address definition
typedef union ADDRESS { // access an address as a
 unsigned long ULong; // unsigned long variable or
 unsigned char UByte[4]; // 4 unsigned byte variables

AN278

42 Rev. 0.1

 // [0] = A31-24, [1] = A23-16, [2] = A15-8, [3] = A7-0
} ADDRESS;

//---
// Function PROTOTYPES
//---
void SSTFlash_Init (void);

void Write_MEM (unsigned long address, unsigned char data_byte);
unsigned char Read_MEM (unsigned long address);
void Erase_MEM (void);
char ReadID_MEM (void);

//---
// SSTFlash_Init
//---
//
// Return Value : None
// Parameters : None
//
// Unprotect the memory so that all of memory may be written and read.
// NOTE: The SPI must be initialized before this function is called.
//
void SSTFlash_Init (void)
{
 NSSMD0 = 0; // enable the flash

 // send the enable write status register command
 SPI0DAT = EWSR; // load the XMIT register
 while (TXBMT != 1) // wait until EWSR command is moved into
 { // the XMIT buffer
 }
 SPIF = 0;
 while (SPIF != 1) // wait until the SPI finishes sending
 { // the EWSR command to the flash
 }
 SPIF = 0;

 NSSMD0 = 1; // allow the command to execute

 NSSMD0 = 0; // enable the flash

 // send the write status register command and clear the BP bits
 SPI0DAT = WRSR; // load the XMIT register
 while (TXBMT != 1) // wait until the XMIT register can
 { // accept more data
 }
 SPI0DAT = 0x00; // set the block protection bits to 0
 while (TXBMT != 1) // wait until the data is moved into
 { // the XMIT buffer
 }
 SPIF = 0;
 while (SPIF != 1) // wait until the SPI finishes sending
 { // the data to the flash
 }
 SPIF = 0;

 NSSMD0 = 1; // allow the command to execute
}

//---
// Write_MEM
//---
//

AN278

Rev. 0.1 43

// Return Value : None
// Parameters :
// 1) long address - address in the 512 kB external SST Flash
// range is positive values up to 2^19: 0 to 524287,
// or, 0 to 0x7FFFF
// 2) char data_byte - the data to be written to memory
// range is positive range of character: 0 to 255
//
// Write one byte of data to a 24-bit address in the SST Flash Memory using
// the SPI.
//
void Write_MEM (unsigned long address, unsigned char data_byte)
{
 ADDRESS temp_addr;
 temp_addr.ULong = address;

 NSSMD0 = 0; // enable the flash

 // send the write enable command
 SPI0DAT = WREN; // load the XMIT register
 while (TXBMT != 1) // wait until the command is moved into
 { // the XMIT buffer
 }
 SPIF = 0;
 while (SPIF != 1) // wait until the command reaches the
 { // flash
 }
 SPIF = 0;

 NSSMD0 = 1; // allow the WREN to execute

 NSSMD0 = 0; // enable the flash

 // send the byte-program command
 SPI0DAT = BPROG; // load the XMIT register
 while (TXBMT != 1) // wait until the command is moved into
 { // the XMIT buffer
 }
 SPI0DAT = temp_addr.UByte[1]; // load the high byte of the address
 while (TXBMT != 1) // wait until the addr is moved into
 { // the XMIT buffer
 }
 SPI0DAT = temp_addr.UByte[2]; // load the middle byte of the address
 while (TXBMT != 1) // wait until the addr is moved into
 { // the XMIT buffer
 }
 SPI0DAT = temp_addr.UByte[3]; // load the low byte of the address
 while (TXBMT != 1) // wait until the addr is moved into
 { // the XMIT buffer
 }
 SPI0DAT = data_byte; // load the byte of data
 while (TXBMT != 1) // wait until the data is moved into
 { // the XMIT buffer
 }
 SPIF = 0;
 while (SPIF != 1) // wait until the last byte of the
 { // write instruction reaches the flash
 }
 SPIF = 0;

 NSSMD0 = 1; // allow the WR instruction to execute
}

//---

AN278

44 Rev. 0.1

// Read_MEM
//---
//
// Return Value :
// 1) char data_byte - the data byte read from memory
// range is positive range of character: 0 to 255
// Parameters :
// 1) long address - address in the 512 kB external SST Flash
// range is positive values up to 2^19: 0 to 524287,
// or, 0 to 0x7FFFF
//
// Read one byte of data from a 24-bit address in the SST Flash Memory using
// the SPI.
//
unsigned char Read_MEM (unsigned long address)
{
 ADDRESS temp_addr;
 temp_addr.ULong = address;

 NSSMD0 = 0; // enable the flash

 // send the read instruction
 SPI0DAT = READ; // load the XMIT register
 while (TXBMT != 1) // wait until the command is moved into
 { // the XMIT buffer
 }
 SPI0DAT = temp_addr.UByte[1]; // load the high byte of the address
 while (TXBMT != 1) // wait until the data is moved into
 { // the XMIT buffer
 }
 SPI0DAT = temp_addr.UByte[2]; // load the middle byte of the address
 while (TXBMT != 1) // wait until the data is moved into
 { // the XMIT buffer
 }
 SPI0DAT = temp_addr.UByte[3]; // load the low byte of the address
 while (TXBMT != 1) // wait until the data is moved into
 { // the XMIT buffer
 }
 SPI0DAT = 0xFF; // load junk data in order to receive
 // data from the flash
 while (TXBMT != 1) // wait until the junk data is moved
 { // into the XMIT buffer
 }
 SPIF = 0;
 while (SPIF != 1) // wait until the read data is received
 {
 }
 SPIF = 0;

 NSSMD0 = 1; // disable the flash

 return SPI0DAT;
}

//---
// Erase_MEM
//---
//
// Return Value : None
// Parameters : None
//
// Erase all data from the SST flash memory.
//
void Erase_MEM (void)

AN278

Rev. 0.1 45

{
 unsigned char mem_status = 0x01;

 NSSMD0 = 0; // enable the flash

 // send the write enable command
 SPI0DAT = WREN; // load the XMIT register
 while (TXBMT != 1) // wait until the command is moved into
 { // the XMIT buffer
 }
 SPIF = 0;
 while (SPIF != 1) // wait until the command reaches the
 { // flash
 }
 SPIF = 0;

 NSSMD0 = 1; // allow the WREN to execute

 NSSMD0 = 0; // enable the flash

 // send the chip erase instruction
 SPI0DAT = CERASE; // load the XMIT register
 while (TXBMT != 1) // wait until the command is moved into
 { // the XMIT buffer
 }
 SPIF = 0;
 while (SPIF != 1) // wait until the command reaches the
 { // flash
 }
 SPIF = 0;

 NSSMD0 = 1; // allow the erase to execute

 // poll on the busy bit in the flash until the erase operation is complete
 NSSMD0 = 0; // enable the flash
 SPI0DAT = RDSR; // send the read status register command
 while (TXBMT != 1) // wait until the SPI can accept more
 { // data
 }
 while (mem_status == 0x01)
 {
 SPI0DAT = 0xFF; // send junk in order to receive data
 while (TXBMT != 1) // wait until the junk data is moved
 { // into the XMIT buffer
 }
 SPIF = 0;
 while (SPIF != 1) // wait until the read data is received
 {
 }
 SPIF = 0;
 mem_status = SPI0DAT & 0x01; // check the BUSY bit
 }

 NSSMD0 = 1; // disable the flash
}

//---
// Read_MEM_Init
//---
//
// Return Value :
// 1) char data_byte - the data byte read from memory
// range is positive range of character: 0 to 255
// Parameters :

AN278

46 Rev. 0.1

// 1) long address - address in the 512 kB external SST Flash
// range is positive values up to 2^19: 0 to 524287,
// or, 0 to 0x7FFFF
//
// Read one byte of data from a 24-bit address in the SST Flash Memory using
// the SPI. This function is called by Recording_Search in F411_VR.c
// and is a duplicate of Read_MEM to avoid a warning by the compiler.
//
unsigned char Read_MEM_Init (unsigned long address)
{
 ADDRESS temp_addr;
 temp_addr.ULong = address;

 NSSMD0 = 0; // enable the flash

 // send the read instruction
 SPI0DAT = READ; // load the XMIT register
 while (TXBMT != 1) // wait until the command is moved into
 { // the XMIT buffer
 }
 SPI0DAT = temp_addr.UByte[1]; // load the high byte of the address
 while (TXBMT != 1) // wait until the data is moved into
 { // the XMIT buffer
 }
 SPI0DAT = temp_addr.UByte[2]; // load the middle byte of the address
 while (TXBMT != 1) // wait until the data is moved into
 { // the XMIT buffer
 }
 SPI0DAT = temp_addr.UByte[3]; // load the low byte of the address
 while (TXBMT != 1) // wait until the data is moved into
 { // the XMIT buffer
 }
 SPI0DAT = 0xFF; // load junk data in order to receive
 // data from the flash
 while (TXBMT != 1) // wait until the junk data is moved
 { // into the XMIT buffer
 }
 SPIF = 0;
 while (SPIF != 1) // wait until the read data is received
 {
 }
 SPIF = 0;

 NSSMD0 = 1; // disable the flash

 return SPI0DAT;
}

//---
// ReadID_MEM
//---
//
// Return Value :
// 1) char data_byte - the device ID read from memory at address 0x000001
// (this address is specified in the SST Flash datasheet)
// range is positive range of character: 0 to 255
// Parameters : None
//
// Read the part ID from the flash memory (used for debugging).
//
char ReadID_MEM (void)
{
 NSSMD0 = 0; // enable the flash

AN278

Rev. 0.1 47

 SPI0DAT = READID; // send the read ID instruction
 while (TXBMT != 1) // wait until the SPI can accept more
 { // data
 }
 SPI0DAT = 0x00; // send the device ID address
 while (TXBMT != 1) // wait until the SPI can accept more
 { // data
 }
 SPI0DAT = 0x00; // send the device ID address
 while (TXBMT != 1) // wait until the SPI can accept more
 { // data
 }
 SPI0DAT = 0x01; // send the device ID address
 while (TXBMT != 1) // wait until the SPI can accept more
 { // data
 }
 SPI0DAT = 0xA5; // send dummy data for shift register
 while (TXBMT != 1) // wait until the SPI can accept more
 { // data
 }
 SPIF = 0;
 while (SPIF != 1) // wait until the read data is received
 {
 }
 SPIF = 0;

 NSSMD0 = 1; // disable the flash

 return SPI0DAT;
}

//---
// End Of File
//---

AN278

48 Rev. 0.1

DPCM (Differential Pulse Code Modulation) Functions
//---
// F411_VR_DPCM.c
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This file contains the DPCM encoding and decoding functions.
//
// NOTE: For another reference for DPCM, please see Chipcon's app note an026.
//
// NOTE: The calling function must have the same register context as the DCPM
// functions, so it must either have the keyword "using 2" or all "using 2"
// keywords for the DPCM functions need to be removed
//
// How To Use: See Readme.txt
//
// FID: 41X000006
// Target: C8051F411
// Tool chain: Keil C51 7.50 / Keil EVAL C51
// Silicon Laboratories IDE version 2.6
// Project Name: F411_VR
//
// Release 1.3
// -All changes by TP
// -02 Feb 2006
// -project version updated, no changes to this file
//
// Release 1.2
// -All changes by TP
// -21 Nov 2005
// -expanded the 4-bit codes to 6 bits for the 12-bit ADC
//
// Release 1.1
// -All changes by TP
// -16 Aug 2004
// -project version updated, no changes to this file
//
// Release 1.0
// -Initial Revision (TP)
// -15 AUG 2004
//

//---
// Includes
//---
#include <c8051f410.h> // SFR declarations

//---
// Global CONSTANTS
//---

// 12-bit quantization codes (6 bits, so 64 codes total = 31 positive, 31
// negative, and 2 zeroes)
#define quant1 1
#define quant2 2
#define quant3 4
#define quant4 7
#define quant5 11
#define quant6 16
#define quant7 22

AN278

Rev. 0.1 49

#define quant8 29
#define quant9 37
#define quant10 46
#define quant11 56
#define quant12 67
#define quant13 79
#define quant14 92
#define quant15 106
#define quant16 130
#define quant17 146
#define quant18 163
#define quant19 181
#define quant20 200
#define quant21 220
#define quant22 241
#define quant23 263
#define quant24 286
#define quant25 310
#define quant26 335
#define quant27 361
#define quant28 388
#define quant29 416
#define quant30 512
#define quant31 1024

// the mapping from quantization values to dpcm codes (array index)
xdata short Q_VALUES[64] = {0, // 0
 -quant31, // 1
 -quant30, // 2
 -quant29, // 3
 -quant28, // 4
 -quant27, // 5
 -quant26, // 6
 -quant25, // 7
 -quant24, // 8
 -quant23, // 9
 -quant22, // 10
 -quant21, // 11
 -quant20, // 12
 -quant19, // 13
 -quant18, // 14
 -quant17, // 15
 -quant16, // 16 negative middle
 -quant15, // 17
 -quant14, // 18
 -quant13, // 19
 -quant12, // 20
 -quant11, // 21
 -quant10, // 22
 -quant9, // 23
 -quant8, // 24
 -quant7, // 25
 -quant6, // 26
 -quant5, // 27
 -quant4, // 28
 -quant3, // 29
 -quant2, // 30
 -quant1, // 31
 0, // 32
 quant1, // 33
 quant2, // 34
 quant3, // 35
 quant4, // 36
 quant5, // 37

AN278

50 Rev. 0.1

 quant6, // 38
 quant7, // 39
 quant8, // 40
 quant9, // 41
 quant10, // 42
 quant11, // 43
 quant12, // 44
 quant13, // 45
 quant14, // 46
 quant15, // 47
 quant16, // 48 positive middle
 quant17, // 49
 quant18, // 50
 quant19, // 51
 quant20, // 52
 quant21, // 53
 quant22, // 54
 quant23, // 55
 quant24, // 56
 quant25, // 57
 quant26, // 58
 quant27, // 59
 quant28, // 60
 quant29, // 61
 quant30, // 62
 quant31}; // 63

//---
// Function PROTOTYPES
//---
unsigned char DPCM_Encode (short sample_diff);
short DPCM_Decode (unsigned char dpcm_code);

//---
// DPCM_Encode
//---
//
// Return Value :
// 1) char dpcm_code - the 6-bit quantized DPCM code
// range is positive range of 6-bit value: 0 to 63
// Parameters :
// 1) short sample_diff - the difference between the predicted value and
// the sample from the ADC
// range is: -4096 to 4095 (difference of 12-bit values)
//
// Encode the sample using DPCM compression.
//
// The coding uses the following scheme (0 is unused) for an 8-bit sample:
//
// code: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// q value: -64 -32 -16 -8 -4 -2 -1 0 1 2 4 8 16 32 64
//
// The difference will be rounded down if positive and rounded up if
// negative (i.e. 41 => 32, and -41 => -32).
//
// NOTE: the calling function must have the same register context, so it must
// either have the keyword "using 2" or all "using 2" keywords need to be
// removed
//
unsigned char DPCM_Encode (short sample_diff) using 2
{
 short sample_diff_us;
 unsigned char dpcm_code;

AN278

Rev. 0.1 51

 // determine if the difference is positive or negative
 if (sample_diff < 0)
 {
 sample_diff_us = -sample_diff; // use the absolute value
 }
 else
 {
 sample_diff_us = sample_diff;
 }

 // narrow down which bits need to be set to use the proper quantization code
 // using a binary search algorithm (divide in halves)
 // the sign of the difference no longer matters

 // first tier
 if (sample_diff_us >= quant16)
 {
 // second tier
 if (sample_diff_us >= quant24)
 {
 // third tier
 if (sample_diff_us >= quant28)
 {
 // fourth tier
 if (sample_diff_us >= quant30)
 {
 // fifth tier
 if (sample_diff_us >= quant31)
 {
 dpcm_code = 63;
 }
 // fifth tier
 else
 {
 dpcm_code = 62;
 }
 }
 // fourth tier
 else
 {
 // fifth tier
 if (sample_diff_us >= quant29)
 {
 dpcm_code = 61;
 }
 // fifth tier
 else
 {
 dpcm_code = 60;
 }
 }
 }
 // third tier
 else
 {
 // fourth tier
 if (sample_diff_us >= quant26)
 {
 // fifth tier
 if (sample_diff_us >= quant27)
 {
 dpcm_code = 59;
 }
 // fifth tier

AN278

52 Rev. 0.1

 else
 {
 dpcm_code = 58;
 }
 }
 // fourth tier
 else
 {
 // fifth tier
 if (sample_diff_us >= quant25)
 {
 dpcm_code = 57;
 }
 // fifth tier
 else
 {
 dpcm_code = 56;
 }
 }
 }
 }
 // second tier
 else
 {
 // third tier
 if (sample_diff_us >= quant20)
 {
 // fourth tier
 if (sample_diff_us >= quant22)
 {
 // fifth tier
 if (sample_diff_us >= quant23)
 {
 dpcm_code = 55;
 }
 // fifth tier
 else
 {
 dpcm_code = 54;
 }
 }
 // fourth tier
 else
 {
 // fifth tier
 if (sample_diff_us >= quant21)
 {
 dpcm_code = 53;
 }
 // fifth tier
 else
 {
 dpcm_code = 52;
 }
 }
 }
 // third tier
 else
 {
 // fourth tier
 if (sample_diff_us >= quant18)
 {
 // fifth tier
 if (sample_diff_us >= quant19)

AN278

Rev. 0.1 53

 {
 dpcm_code = 51;
 }
 // fifth tier
 else
 {
 dpcm_code = 50;
 }
 }
 // fourth tier
 else
 {
 // fifth tier
 if (sample_diff_us >= quant17)
 {
 dpcm_code = 49;
 }
 // fifth tier
 else
 {
 dpcm_code = 48;
 }
 }
 }
 }
 }
 // first tier
 else
 {
 // second tier
 if (sample_diff_us >= quant8)
 {
 // third tier
 if (sample_diff_us >= quant12)
 {
 // fourth tier
 if (sample_diff_us >= quant14)
 {
 // fifth tier
 if (sample_diff_us >= quant15)
 {
 dpcm_code = 47;
 }
 // fifth tier
 else
 {
 dpcm_code = 46;
 }
 }
 // fourth tier
 else
 {
 // fifth tier
 if (sample_diff_us >= quant13)
 {
 dpcm_code = 45;
 }
 // fifth tier
 else
 {
 dpcm_code = 44;
 }
 }
 }

AN278

54 Rev. 0.1

 // third tier
 else
 {
 // fourth tier
 if (sample_diff_us >= quant10)
 {
 // fifth tier
 if (sample_diff_us >= quant11)
 {
 dpcm_code = 43;
 }
 // fifth tier
 else
 {
 dpcm_code = 42;
 }
 }
 // fourth tier
 else
 {
 // fifth tier
 if (sample_diff_us >= quant9)
 {
 dpcm_code = 41;
 }
 // fifth tier
 else
 {
 dpcm_code = 40;
 }
 }
 }
 }
 // second tier
 else
 {
 // third tier
 if (sample_diff_us >= quant4)
 {
 // fourth tier
 if (sample_diff_us >= quant6)
 {
 // fifth tier
 if (sample_diff_us >= quant7)
 {
 dpcm_code = 39;
 }
 // fifth tier
 else
 {
 dpcm_code = 38;
 }
 }
 // fourth tier
 else
 {
 // fifth tier
 if (sample_diff_us >= quant5)
 {
 dpcm_code = 37;
 }
 // fifth tier
 else
 {

AN278

Rev. 0.1 55

 dpcm_code = 36;
 }
 }
 }
 // third tier
 else
 {
 // fourth tier
 if (sample_diff_us >= quant2)
 {
 // fifth tier
 if (sample_diff_us >= quant3)
 {
 dpcm_code = 35;
 }
 // fifth tier
 else
 {
 dpcm_code = 34;
 }
 }
 // fourth tier
 else
 {
 // fifth tier
 if (sample_diff_us >= quant1)
 {
 dpcm_code = 33;
 }
 // fifth tier
 else
 {
 dpcm_code = 32;
 }
 }
 }
 }
 }

 // convert the DPCM code to its 2's compliment if the original sample
 // difference was negative
 // For example, 41 (101001), which represents a difference of 60, 2's
 // complimented becomes 23 (010111), which represents a difference of -60
 if (sample_diff < 0)
 {
 dpcm_code = ~dpcm_code + 1; // use the 2's compliment of the dpcm
 // code
 dpcm_code &= 0x3F; // use only the 6 LSBs for the dpcm code
 }

 return dpcm_code;
}

//---
// DPCM_Decode
//---
//
// Return Value :
// 1) short predicted_value - the signed and quantized difference between
// the predicted_value and the ADC sample, which is used
// create the predicted_value for the next DPCM cycle
// range is: -4096 to 4095 (difference of 12-bit values)
// Parameters :
// 1) char dpcm_code - the 6-bit code indicating the quantized difference

AN278

56 Rev. 0.1

// between the old_prediction and the current sample value
// range is positive range of 6-bit value: 0 to 63
//
// Decode the DPCM code to a signed difference between the current predicted
// value and the next.
//
// NOTE: the calling function must have the same register context, so it must
// either have the keyword "using 2" or all "using 2" keywords need to be
// removed
short DPCM_Decode (unsigned char dpcm_code) using 2
{
 return Q_VALUES[dpcm_code];
}

//---
// End Of File
//---

AN278

Rev. 0.1 57

LED Functions
//---
// F411_VR_LED.c
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This file contains the functions that use the PWM to brighten, dim, and
// flutter the LEDs.
//
// These functions work by using a pointer (LED_DCH) to an "LED byte," which
// is just a byte in memory associated with each LED. In F411_VR.c,
// one of the Timer ISRs updates the PCA PWM registers with all the LED bytes
// every interrupt period, so the LEDs that don't change are still updated,
// but visually nothing changes.
//
// When the timer interrupts, PCA0CPH1 is reloaded with the current value
// LED0_DC, which is changed by the functions (Dim, Brighten, and Flutter)
// based on the desired LED behavior. By decrementing the time the LED is
// on in steps (based on the ADJ variable), the LED appears to "dim" off,
// and by incrementing the time the LED is on in steps, the LED appears to
// "brighten" slowly.
//
// The LED_DCH pointer must be pointed to the correct LEDx_DC byte BEFORE
// each of these functions is called.
//
// LED_DCH -> LED0_DC -> PCA0CPH1, where CEX1 (output from the PCA) is tied
// to LED0
//
// For example, the resulting dim LED waveform might look something like
// this, since the LEDs are ON when CEX1 = 0:
//
// _ __ ___
// CEX1 _____________________________| |____________| |___________| |
//
// | 1st step | 2nd step | 3rd step | 4th step |
//
// (continued)
// ____ _____ ______ _______
// CEX1 __________| |_________| |________| |_______| |
//
// | 5th step | 6th step | 7th step | 8th step |
//
// (continued)
// ________ _________ __________ ___________
// CEX1 ______| |_____| |____| |___| |
//
// | 9th period | 10th period | 11th period | 12th period |
//
// (continued)
// ____________ ___
// CEX1 __| |_|
//
// | 13th period | 14th period | 15th period | 16th period |
//
// The LED has appeared to "dim" slowly off.
//
//
//
// NOTE: The calling function must have the same register context as the LED
// functions, so it must either have the keyword "using 0" or all "using 0"

AN278

58 Rev. 0.1

// keywords for the LED functions need to be removed.
//
// How To Use: See Readme.txt
//
// FID: 41X000008
// Target: C8051F411
// Tool chain: Keil C51 7.50 / Keil EVAL C51
// Silicon Laboratories IDE version 2.6
// Project Name: F411_VR
//
// Release 1.3
// -All changes by TP
// -02 Feb 2006
// -project version updated, no changes to this file
//
// Release 1.2
// -All changes by TP
// -21 Nov 2005
// -project version updated, no changes to this file
//
// Release 1.1
// -All changes by TP
// -16 Aug 2004
// -project version updated, no changes to this file
//
// Release 1.0
// -Initial Revision (TP)
// -15 AUG 2004
//

//---
// Includes
//---
#include <c8051f410.h> // SFR declarations

//---
// Global Variables
//---
unsigned char ADJ = 15;
unsigned int LED_PWM = 65535;
int LED_PWM_CHANGE = 0x0000;
unsigned char *LED_DCH;
unsigned char LED0_DC = 0x00;
unsigned char LED1_DC = 0x00;
// add another LEDx_DC variable here, if desired, and point to it with *LED_DCH
// before calling the LED functions

//---
// Function PROTOTYPES
//---
void Dim_LED (void);
void Brighten_LED (void);
void Flutter_LED (void);

//---
// Dim_LED
//---
//
// Return Value : None
// Parameters : None
//
// Dim the LED using the PCA in 8-bit PWM mode. The Timer0 ISR in
// F411_VR.c updates the value LED_DCH is pointing to.

AN278

Rev. 0.1 59

//
// NOTE: This function requires that the LED_DCH pointer be "pointing" to the
// appropriate LED byte, as explained above.
//
void Dim_LED (void) using 0
{
 // retrieve the previous value of the duty cycle
 unsigned char duty_cycle = *LED_DCH;

 ADJ = 0xF1; // set the ADJ such that the LED will
 // get dimmer
 LED_PWM = 65535; // reset the Timer 0 interval
 LED_PWM_CHANGE = 0; // do not change the Timer 0 interval
 TCON |= 0x10; // start Timer 0

 // wait until the LED is fully off
 while (duty_cycle != 0x00)
 {
 duty_cycle = *LED_DCH;
 }

 TCON &= ~0x10; // stop Timer 0 (no more updates to the
 // PCA duty cycle)
}

//---
// Brighten_LED
//---
//
// Return Value : None
// Parameters : None
//
// Brighten the LED using the PCA in 8-bit PWM mode. The Timer0 ISR in
// F411_VR.c updates the value LED_DCH is pointing to.
//
// NOTE: This function requires that the LED_DCH pointer be "pointing" to the
// appropriate LED byte, as explained above.
//
void Brighten_LED (void) using 0
{
 // retrieve the previous value of the duty cycle
 unsigned char duty_cycle = *LED_DCH;

 ADJ = 0x0F; // set the ADJ such that the LED will
 // brighten
 LED_PWM = 65535; // reset the Timer 0 interval
 LED_PWM_CHANGE = 0; // do not change the Timer 0 interval
 TCON |= 0x10; // start Timer 0

 // wait until the LED is fully on
 while (duty_cycle != 0xFF)
 {
 duty_cycle = *LED_DCH;
 }

 TCON &= ~0x10; // stop Timer 0 (no more updates to the
 // PCA duty cycle)
}

//---
// Flutter_LED
//---
//
// Return Value : None

AN278

60 Rev. 0.1

// Parameters : None
//
// Cause the LED to dim on and off. The Timer0 ISR in F411_VR.c updates
// the value LED_DCH is pointing to.
//
// NOTE: This function requires that the LED_DCH pointer be "pointing" to the
// appropriate LED byte, as explained above.
//
void Flutter_LED (void) using 0
{
 // retrieve the previous value of the duty cycle
 unsigned char duty_cycle = *LED_DCH;

 // check if the LED is currently on or off
 if (duty_cycle == 0xFF)
 {
 ADJ = 0xF1;
 }
 else
 {
 ADJ = 0x0F;
 }
 LED_PWM = 65535; // reset the Timer 0 interval
 LED_PWM_CHANGE = -200; // change the Timer 0 interval each
 // interrupt cycle so the LED has a
 // "fluttering" effect
 TCON |= 0x10; // start Timer 0

 // Wait for a flutter cycle to finish
 while (LED_PWM > 17000)
 {
 }

 TCON &= ~0x10; // stop Timer 0 (no more updates to the
 // PCA duty cycle)
}

//---
// End Of File
//---

AN278

Rev. 0.1 61

NOTES:

AN278

62 Rev. 0.1

CONTACT INFORMATION
Silicon Laboratories Inc.
4635 Boston Lane
Austin, TX 78735
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: MCUinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

	1. Introduction
	2. Overview
	Figure 1. Voice Recorder Physical System Overview
	Figure 2. Voice Recorder Dataflow Path

	3. Hardware Description
	4. Software Description
	Figure 3. DPCM Compression Algorithm
	Figure 4. DPCM Decompression Algorithm
	Figure 5. Example DPCM Code Quantization
	Figure 6. Example DPCM Decoding Scheme
	Table 1. Example DPCM Algorithm Results
	Figure 7. Example Input Waveform and DPCM Output
	4.4. SPI Interface
	Figure 8. Initialization and Switch Polling Routine
	Figure 9. Record Function and Sampling Interrupt Service Routine
	Figure 10. Playback Interrupt Service Routine
	Figure 11. Suspend Mode

	5. Usage Notes
	6. Design Customization
	7. References
	Appendix A-Schematic
	Figure 12. Voice Recorder Reference Design Schematic (Page 1 of 2)
	Figure 13. Voice Recorder Reference Design Schematic (Page 2 of 2)

	Appendix B-Bill Of Materials
	Table 2. Bill of Materials

	Appendix C-Layout
	Figure 14. Top Layout and Silkscreen
	Figure 15. Bottom Layout and Silkscreen

	Appendix D-Software Source Code
	Startup Code (Modified STARTUP.A51)
	Main Voice Recorder Program
	External Flash Access Functions
	DPCM (Differential Pulse Code Modulation) Functions
	LED Functions

	Contact Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

