AN169

SILICON LABODORATORIES

USBXPRESS™ PROGRAMMER’'S GUIDE

Relevant Devices

This application note applies to the following devices:
C8051F320, C8051F321, CP2101, CP2102, CP2103

1. Introduction

The Silicon Laboratories USBXpress™ Development Kit provides a complete host and device software solution for
interfacing Silicon Laboratories C8051F32x and CP210x devices to the Universal Serial Bus (USB). No USB proto-
col or host device driver expertise is required. Instead, a simple, high-level Application Program Interface (API) for
both the host software and device firmware is used to provide complete USB connectivity.

The USBXpress Development Kit includes Windows device drivers, Windows device driver installer and uninstall-
ers, host interface function library (host API) provided in the form of a Windows Dynamic Link Library (DLL) and
device firmware interface function library (C8051F32x devices only). The included device drivers and installation
files support MS Windows 98SE/2000/XP.

User Application
(eg. VC++ custom app)

v

USBXpress DLL / API

v

USBXpress Driver

User Application
(eg. VC++ custom app)

v

USBXpress DLL / API

v

USBXpress Driver

A A

USB Root Hub

USB Root Hub

v

USBXpress Firmware
Library

v

User Firmware

CP210x
USB-UART Bridge

30

External RS-232
Transceiver or
UART Circuitry

‘F32x MCU

Figure 1. USBXpress Data Flow

Rev. 1.6 08/05 Copyright © 2005 by Silicon Laboratories AN169

AN169

2. Host API Functions

The host API is provided in the form of a Windows Dynamic Link Library (DLL). The host interface DLL communi-
cates with the USB device via the provided device driver and the operating system's USB stack. The following is a
list of the host API functions available:

S1_GetNumDevices() - Returns the number of devices connected
S1_GetProductString() - Returns a descriptor for a device

S1_Open() - Opens a device and returns a handle
SI_Close() - Cancels pending 10 and closes a device
S1_Read() - Reads a block of data from a device
SI_Write(Q) - Writes a block of data to a device
S1_FlushBuffers() - Flushes the TX and RX buffers for a device
SI_SetTimeouts() - Sets read and write block timeouts
SI_GetTimeouts () - Gets read and write block timeouts
S1_CheckRXQueue() - Returns the number of bytes in a device's RX queue
S1_SetBaudRate() - Sets the specified CP210x Baud Rate
S1_SetBaudDivisor() - Sets the specified CP210x Baud Divisor Value
S1_SetLineControl () - Sets the CP210x device Line Control
SI1_SetFlowControl () - Sets the CP210x device Flow Control
S1_GetModemStatus() - Gets the CP210x device Modem Status
SI_ReadLatch() - Gets the port latch value from a CP2103 device
SI_WriteLatch(Q) - Sets the port latch value to a CP2103 device
S1_GetPartNumber() - Gets the CP210x device part number
S1_DevicelOControl () - Gets the CP210x device Modem Status

In general, the user initiates communication with the target USB device(s) by making a call to SI_GetNumDevices.
This call will return the number of target devices. This number is then used as a range when calling
SI_GetProductString to build a list of device serial numbers or product description strings.

To access a device, it must first be opened by a call to SI_Open using an index determined from the call to
SI_GetNumbDevices. The SI_Open function will return a handle to the device that is used in all subsequent
accesses. Data I/O is performed using the SI_Write and SI_Read functions. When I/O operations are complete, the
device is closed by a call to SI_Close.

Additional functions are provided to flush the transmit and receive buffers (SI_FlushBuffers), set receive and trans-
mit timeouts (SI_SetTimeouts), check the receive buffer's status (SI_CheckRXQueue) and miscellaneous device
control (SI_DevicelOControl).

For CP210x devices, functions are available to set the baud rate (SI_SetBaudRate); set the baud divisor
(SI_SetBaudDivisior); adjust the line control settings such as word length, stop bits and parity (SI_SetLineControl);
set hardware handshaking, software handshaking and modem control signals (SI_SetFlowControl); and get modem
status (SI_GetModemStatus). Additonal functions are available for CP2103 devices to get (SI_ReadLatch) and set
(SI_WriteLatch) the values of the additional GPIO pins available on the device. In order to differentiate between
CP210x devices a function (SI_GetPartNumber) has been provided to return the part number.

Each of these functions are described in detail in the following sections. Type definitions and constants are defined
in Appendix D.

®
2 Rev. 1.6 @

SILICON LABORATORIES

AN169

2.1. Sl_GetNumDevices

Description: This function returns the number of devices connected to the host.
Supported Devices: C8051F320/1, CP2101/2/3
Prototype: SI1_STATUS SI_GetNumDevices (LPDWORD NumDevices)

Parameters: 1. NumDevices—Address of a DWORD variable that will contain the number of devices
connected on return.

Return Value: S| _STATUS = Sl _SUCCESS or
S|I_DEVICE_NOT_FOUND or
SI_INVALID_PARAMETER

2.2. Sl _GetProductString

Description: This function returns a null terminated serial number (S/N) string or product description string for
the device specified by an index passed in DeviceNum. The index for the first device is 0 and the
last device is the value returned by SI_GetNumDevices - 1.

Supported Devices: C8051F320/1, CP2101/2/3

Prototype: S1_STATUS SI_GetProductString (DWORD DeviceNum, LPVOID DeviceString,
DWORD Options)

Parameters: 1. DeviceNum—Index of the ‘device for which the product description string or serial number
string is desired.

2. DeviceString—Variable of type SI_DEVICE_STRING which will contain a NULL terminated
device descriptor or serial number string on return.

3. Options—DWORD containing flags to determine if DeviceString contains a serial number,
product description, Vendor ID, or Product ID string. See Appendix D for flags.

Return Value: SI_STATUS = S|_SUCCESS or
SI_DEVICE_NOT_FOUND or
SI_INVALID_PARAMETER

2.3. Sl_Open

Description: Opens a device (using device humber as returned by SI_GetNumDevices) and returns a handle
which will be used for subsequent accesses.

Supported Devices: C8051F320/1, CP2101/2/3
Prototype: SI1_STATUS SI_Open (DWORD DeviceNum, HANDLE *Handle)

Parameters: 1. DeviceNum—Device index. O for first device, 1 for 2nd, etc.

2. Handle—Pointer to a variable where the handle to the device will be stored. This handle will be
used by all subsequent accesses to the device.

Return Value: SI_STATUS = SI|_SUCCESS or
SI_DEVICE_NOT_FOUND or
SI_INVALID_PARAMETER

®
@ Rev. 1.6 3

SILICON LABORATORIES

AN169

2.4. Sl _Close

Description: Closes an open device using the handle provided by Sl Open and sets the handle to
INVALID_HANDLE_VALUE.

Supported Devices: C8051F320/1, CP2101/2/3
Prototype: SI1_STATUS SI_Close (HANDLE& Handle)
Parameters: 1. Handle—Handle to the device to close as returned by SI_Open (passed by reference).

Return Value: S| _STATUS = S| _SUCCESS or
SI_INVALID_HANDLE

2.5. Sl Read

Description: Reads the specified number of bytes into the specified buffer and retrieves the number of bytes
read. Given valid input parameters, this function is blocking until the specified number of bytes
become available or a timeout occurs (see section 2.8. (SI_SetTimeouts)).

Note: If timeouts are set to zero this function is not blocking and will immediately return the current
number of bytes available in the device driver buffer. This may be less than the requested number
of bytes (zero bytes if there is no data available) so make sure to check the read size return values
in this scenario.

Supported Devices: C8051F320/1, CP2101/2/3

Prototype: S1_STATUS SI_Read (HANDLE Handle, LPVOID Buffer, DWORD NumBytesToRead,
DWORD *NumBytesReturned)

Parameters: . Handle—Handle to the device to read as returned by SI_Open.

1
2. Buffer—Address of a character buffer to be filled with read data.

3. NumBytesToRead—Number of bytes to read from the device into the buffer (0 - 64KBytes).
4

. NumBytesReturned—Address of a DWORD which will contain the number of bytes actually
read into the buffer on return.

Return Value: SI_STATUS = SI_SUCCESS or
SI_INVALID_REQUEST_LENGTH or
SI_INVALID_PARAMETER or
SI_RX_QUEUE_NOT_READY or
SI_INVALID_HANDLE or
SI_READ_TIMED_OUT

2.6. SI_Write

Description: Writes the specified number of bytes from the specified buffer to the device. Given valid parame-
ters, this function is blocking until the write is successful, fails, or a timeout occurs. The write is
successful when the device has accepted all of the data. If the write fails or a timeout occurs,
SI_WRITE_ERROR is returned.

Supported Devices: C8051F320/1, CP2101/2/3

Prototype: S1_STATUS S1_Write (HANDLE Handle, LPVOID Buffer, DWORD NumBytesToWrite,
DWORD *NumBytesWritten)

®
4 Rev. 1.6 @

SILICON LABORATORIES

AN169

Parameters:

1. Handle—Handle to the device to write as returned by SI_Open.

2. Buffer—Address of a character buffer of data to be sent to the device.

3. NumBytesToWrite—Number of bytes to write to the device (0 - 4096 bytes).
4

. NumBytesWritten—Address of a DWORD which will contain the number of bytes actually
written to the device.

Return Value: SI_STATUS = SI_SUCCESS or

SI_WRITE_ERROR or
SI_INVALID_REQUEST_LENGTH or
SI_INVALID_PARAMETER or
SI_INVALID_HANDLE

2.7. Sl_FlushBuffers

Description:

On F32x devices, this function flushes both the receive buffer in the USBXpress device driver and
the transmit buffer in the device. Note: Parameter 2 and 3 have no effect and any value can be
passed when used with F32x devices.

On CP210x devices, this function operates in accordance with parameters 2 and 3. If parameter 2
(FlushTransmit) is non-zero, the CP210x device’'s UART transmit buffer is flushed. If parameter 3
(FlushReceive) is non-zero, the CP210x device’'s UART receive buffer is flushed. If parameters 2
and 3 are both non-zero, then both the CP210x device UART transmit buffer and UART receive
buffer are flushed.

Supported Devices: C8051F320/1, CP2101/2/3

Prototype:

Parameters:

SI1_STATUS SI_FlushBuffers (HANDLE Handle, BYTE FlushTransmit,
BYTE FlushReceive)

1. Handle—Handle to the device as returned by SI_Open.
2. FlushTransmit—Set to a non-zero value to flush the CP210x UART transmit buffer.
3. FlushReceive—Set to a non-zero value to flush the receive buffer.

Return Value: SI_STATUS = SI_SUCCESS or

SI_INVALID_HANDLE

2.8. Sl_SetTimeouts

Description:

Sets the read and write timeouts.

Supported Devices: C8051F320/1, CP2101/2/3

Prototype:

Parameters:

S1_STATUS S1_SetTimeouts (DWORD ReadTimeout, DWORD WriteTimeout)

1. ReadTimeout—SI_Read operation timeout (in milliseconds).
2. WriteTimeout—SI_Write operation timeout (in milliseconds).

Return Value: SI_STATUS = SI_SUCCESS

2.9. SI_GetTimeouts

Description:

Returns the current read and write timeouts.

Supported Devices: C8051F320/1, CP2101/2/3

®
@ Rev. 1.6 5

SILICON LABORATORIES

AN169

Prototype: S1_STATUS S1_GetTimeouts (LPDWORD ReadTimeout, LPDWORD WriteTimeout)

Parameters: 1. ReadTimeout—SI_Read operation timeout (in milliseconds).
2. WriteTimeout—SI_Write operation timeout (in milliseconds).

Return Value: SI_STATUS = SI_SUCCESS or
SI_INVALID_PARAMETER

2.10. SI_CheckRXQueue

Description: Returns the number of bytes in the receive queue and a status value that indicates if an overrun
(SI_QUEUE_OVERRUN) has occurred and if the RX queue is ready (SI_QUEUE_READY) for
reading. Upon indication of an Overrun condition it is recommended that data transfer be stopped
and all buffers be flushed using SI_FlushBuffers command.

Supported Devices: C8051F320/1, CP2101/2/3

Prototype: S1_STATUS S1_CheckRXQueue (HANDLE Handle, LPDWORD NumByteslInQueue,
LPDWORD QueueStatus)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

2. NumBytesInQueue—Address of a DWORD variable that contains the number of bytes
currently in the receive queue on return.

3. QueueStatus—Address of a DWORD variable that contains the SI_RX _EMPTY (also
SI_RX_NO_OVERRUN), SI_RX_OVERRUN, or SI_RX_READY flag.

Return Value: S| _STATUS = S| _SUCCESS or
SI_DEVICE_IO_FAILED or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER

2.11. Sl _SetBaudRate

Description: Sets the Baud Rate. Refer to the device data sheet for a list of Baud Rates supported by the
device.

Supported Devices: CP2101/2/3
Prototype: S1_STATUS SI_SetBaudRate (HANDLE Handle, DWORD dwBaudRate)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.
2. dwBaudRate—A DWORD value specifying the Baud Rate to set.

Return Value: SI_STATUS = SI_SUCCESS or

SI_INVALID_BAUDRATE or
SI_INVALID_HANDLE

2.12. Sl _SetBaudDivisor

Description: Sets the Baud Rate directly by using a specific divisor value. This function is obsolete; use
S|_SetBaudRate instead.

Supported Devices: CP2101/2/3

®
6 Rev. 1.6 @

SILICON LABORATORIES

AN169

Prototype: S1_STATUS S1_SetBaudDivisor (HANDLE Handle, WORD wBaudDivisor)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.
2. wBaudDivisor—A WORD value specifying the Baud Divisor to set.

Return Value: SI_STATUS = SI_SUCCESS or
SI_INVALID_HANDLE

2.13. SI_SetLineControl

Description: Adjusts the line control settings: word length, stop bits and parity. Refer to the device data sheet for
valid line control settings.

Supported Devices: CP2101/2/3
Prototype: S1_STATUS S1_SetLineControl (HANDLE Handle, WORD wLineControl)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

2. wLineControl—A WORD variable that contains the desired line control settings. Possible input
settings are:
bits 0-3 Number of Stop bits

0: 1 stop bit;
1: 1.5 stop bits;
2: 2 stop bits
bits 4-7 Parity

0: None

1: Odd

2: Even

3: Mark

4: Space

bits 8-15 Number of bits per word
56,7,0r8

Return Value: SI_STATUS = S| SUCCESS or
SI_DEVICE_IO_FAILED or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER

2.14. Sl_SetFlowControl

Description: Adjusts the following flow control settings: set hardware handshaking, software handshaking and
modem control signals. See Appendix D for pin characteristic definitions.

Supported Devices: CP2101/2/3

Prototype: S1_STATUS S1_SetFlowControl (HANDLE Handle, BYTE bCTS_MaskCode,
BYTE bRTS MaskCode, BYTE bDTR_MaskCode, BYTE bDSRMaskCode,
BYTE bDCD_MaskCode, BYTE bFlowXonXoff)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

®
@ Rev. 1.6 7

SILICON LABORATORIES

AN169

2. bCTS_MaskCode—The CTS pin characteristic must be:
SI_STATUS_INPUT or
SI_HANDSHAKE_LINE.

3. bRTS_MaskCod—The RTS pin characteristic must be:
SI_HELD_ACTIVE,
SI_HELD_INACTIVE,
SI_FIRMWARE_CONTROLLED or
SI_TRANSMIT_ACTIVE_SIGNAL.

4. bDTR_MaskCode—The DTR pin characteristic must be:
SI_HELD_INACTIVE,
SI_HELD_ACTIVE or
SI_FIRMWARE_CONTROLLED.

5. bDSR_MaskCode—The DSR pin characteristic must be:
SI_STATUS_INPUT or
SI_HANDSHAKE_LINE.

6. bDCD_MaskCode—The DCD pin charactericstic must be:
SI_STATUS_INPUT or
SI_HANDSHAKE_LINE.

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_IO_FAILED or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER

2.15. SI_GetModem Status

Description: Gets the Modem Status from the device. This includes the modem pin states.
Supported Devices: CP2101/2/3
Prototype: S1_STATUS S1_GetModemStatus (HANDLE Handle, PBYTE ModemStatus)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.

2. IpbModemStatus—Address of a BYTE variable that contains the current states of the RS-232
modem control lines. The byte is defined as follows:

bit 0 DTR State
bit 1 RTS State
bit 4 CTS State
bit 5 DSR State
bit 6 RI State

bit 7 DCD State

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_IO_FAILED or

SI_INVALID_HANDLE or
SI_INVALID_PARAMETER

2.16. Sl_ReadLatch

Description: Gets the current port latch value from the device.

Supported Devices: CP2103

®
8 Rev. 1.6 @

SILICON LABORATORIES

AN169

Prototype: S1_STATUS S1_ReadLatch (HANDLE Handle, LPBYTE Latch)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.
2. Latch—Pointer for a return port latch value (Logic High =1, Logic Low = 0).

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_NOT_FOUND or
SI_FUNCTION _NOT_SUPPORTEDor
SI_GLOBAL_DATA_ERROR or
SI_INVALID_HANDLE or
SI_INVALID_PARAMETER

2.17. Sl_WriteLatch

Description: Sets the current port latch value from the device.
Supported Devices: CP2103
Prototype: S1_STATUS SI_WriteLatch (HANDLE Handle, BYTE Mask, BYTE Latch)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.
2. Mask—Determines which pins to change (Change = 1, Leave = 0).
3. Latch—Value to write to the port latch (Logic High =1, Logic Low = 0).

Return Value: SI_STATUS = SI_SUCCESS or
SI_DEVICE_NOT_FOUND or
SI_FUNCTION _NOT_SUPPORTED or
SI_GLOBAL_DATA_ERROR or
SI_INVALID_HANDLE

2.18. Sl _GetPartNumber

Description: Retrieves the part number of the CP210x device for a given handle.
Supported Devices: CP2101/2/3
Prototype: S1_STATUS SI_GetPartNumber (HANDLE Handle, LPBYTE PartNum)

Parameters: 1. Handle—Handle to the device as returned by SI_Open.
2. Latch—Pointer for a return part number.

Return Value: SI_STATUS = SI_SUCCESS or
SI_INVALID_PARAMETER or
SI_INVALID_HANDLE

2.19. Sl _DevicelOControl

Description: Interface for any miscellaneous device control functions. A separate call to SI_DevicelOControl is
required for each input or output operation. A single call cannot be used to perform both an input
and output operation simultaneously.

Supported Devices: C8051F320/1

®
@ Rev. 1.6 9

SILICON LABORATORIES

AN169

Prototype: S1_STATUS SI1_DevicelOControl (HANDLE Handle, DWORD 10ControlCode,
LPVOID InBuffer, DWORD BytesToRead, LPVOID OutBuffer,
DWORD BytesToWrite, LPDWORD BytesSucceded)

Parameters: . Handle—Handle to the device as returned by SI_Open.
. 10ControlCode—Code to select control function.

. InBuffer—Pointer to input data buffer.

. OutBuffer—Pointer to output data buffer.

1
2
3
4. BytesToRead—Number of bytes to be read into InBuffer.
5
6. BytesToWrite—Number of bytes to write from OutBuffer.
7

. BytesSucceded—Address of a DWORD variable that will contain the number of bytes read by a
input operation or the number of bytes written by a output operation on return.

Return Value: SI_STATUS = SI|_SUCCESS or
SI_DEVICE_IO_FAILED or
SI_INVALID_HANDLE

®
10 Rev. 1.6 @

SILICON LABORATORIES

AN169

3. Device Interface Functions

The USBXpress firmware library operates the C8051F32x USB controller at USB Full Speed, and uses the Bulk
Transfer type with a data payload of 64 bytes per packet. See Appendix C for more technical details about the firm-
ware library.

The following set of device interface functions implement an application program interface (API) on the C8051F32x
microcontrollers. These functions provide a general 1/O interface via the C8051F32x's USB controller without the
need to manage low-level USB hardware details or protocol. The API is provided in the form of a library file pre-com-
piled under the Keil C51 tool chain. Device firmware must be developed using the Keil Software C51 tool chain. The
device interface functions available are:

USB_Clock_Start() - Initializes the USB clock

USB_Init() - Enables the USB interface

Block Write() - Writes a buffer of data to the host via the USB
Block_Read() - Reads a buffer of data from the host via the USB
Get_Interrupt_Source() - Indicates the reason for an API interrupt
USB_Int _Enable() - Enables the API interrupts

USB_Int Disable() - Disables API interrupts

USB_Disable() - Disables the USB interface

USB_Suspend() - Suspend the USB interrupts

The API is used in an interrupt-driven mode. The user must provide an interrupt handler located at interrupt
vector 0x10. This handler will be called upon at any USB API interrupt. Once inside this routine, a call to
Get_Interrupt_Source is used to determine the source of the interrupt (this call also clears the pending interrupt
flags).

Example ISR for Firmware API:
void USB_API_TEST_ISR(void) interrupt 16
{

BYTE INTVAL = Get_Interrupt_Source();
iT (INTVAL & TX_COMPLETE)
Block Write(In_Packet, 8);

}
if (INTVAL & RX_COMPLETE)
{
Block Read(Out_Packet, 8);
}
iT (INTVAL & DEV_CONFIGURED)
{
// Initialize all analog peripherals here. This interrupt
// tells the device that it can now use as much current as
// specified by the MaxPower descriptor.
InitQ; // Note: example command, not part of the API
}
iT (INTVAL & DEV_SUSPEND)
{

// Turn off all analog peripherals
Turn_OFF_AILIQ); // Note: example command, not part of the API

USB_Suspend(); // This function returns once resume
// signalling is present.

®
@ Rev. 1.6 11

SILICON LABORATORIES

AN169

// Turn all anlalog peripherals back on
InitQ; // Note: example command, not part of the API

}

3.1. USB_Clock_Start

Description:

Enables the internal oscillator, initializes the clock multiplier and sets the USB clock to 48 MHz for
USB full speed operation. If the clock multiplier is already initialized, the initialization procedure is
skipped. This function should be called before calling USB_Init or accessing any variables located
in the upper 1024 bytes of XRAM (USB clock domain). CLKSEL[1:0] is not affected by this func-
tion. See Appendix A for a list of SFRs that should not be modified by user software after calling
USB_Clock_Start. See Appendix C for instructions to use external oscillator as USB clock.

Supported Devices: C8051F320/1

Prototype:

Parameters:

Return Value:

void USB_Clock_Start (void)
None

None

3.2. USB_lInit

Description:

Enables the USB interface, the USB clock recovery feature and the use of Device Interface Func-
tions. On return, the USB interface is configured, and C8051F32x interrupts are globally enabled.
User software should not globally disable interrupts (set EA = 0), but should enable or disable user
configured interrupts individually using the interrupt's source interrupt enable flag present in the IE,
EIE1, or EIE2 SFRs. Before calling USB_Init, a call to USB_Clock_Start should be made to config-
ure the USB clock. See Appendix A for a list of SFRs that should not be modified by user software
after calling USB_ Init.

This function allows the user to specify the Vendor and Product IDs as well as Manufacturer, Prod-
uct Description, and Serial Number strings that are sent to the host as part of the device's USB
descriptor during the USB enumeration (device connection).

Supported Devices: C8051F320/1

Prototype: void USB _Init (UINT VendorlID, UINT ProductlD, BYTE *ManufacturerStr,
BYTE *ProductStr, BYTE *SerialNumberStr, BYTE MaxPower,
BYTE PwAttributes, UINT bcdDevice)
Parameters: 1. VendorID—16-bit Vendor ID to be returned to the host's Operating System during USB
enumeration. Set to 0x10C4 to use the default Silicon Laboratories Vendor ID.
2. ProductID—16-bit Product ID to be returned to the host's Operating System during USB
enumeration. Set to OXEA61 to associate with the default USBXpress driver.
3. ManufacturerStr—~Pointer to a character string. See Appendix B for formatting. NULL pointer
will be treated as a valid address.
4. ProductStr—Pointer to a character string. See Appendix B for formatting. NULL pointer will be
treated as a valid address.
5. SerialNumberStr—Pointer to a character string. See Appendix B for formatting. NULL pointer
will be treated as a valid address.
12 Rev. 1.6 @

SILICON LABORATORIES

AN169

6. MaxPower—Specifies how much bus current a device requires. Set to one half the number of
milliamperes required. The maximum allowed current is 500 milliamperes, and hence any
value above 0xFA will be automatically set to OxFA. Example: Set to 0x32 to request 100 mA.

7. PwAttributes—Set bit 6 to 1 if the device is self-powered and to 0 if it is bus-powered. Set bit 5
to 1 if the device supports the remote wakeup feature. Bits 0 through 4 must be 0 and bit 7 must
be 1. Example: Set to 0x80 to specify a bus-powered device that does not support remote
wakeup.

8. bcdDevice—The device's release number in BCD (binary-coded decimal) format. In BCD, the
upper byte represents the integer, the next four bits are tenths, and the final four bits are
hundredths. Example: 2.13 is denoted by 0x0213.

Return Value: None

3.3. Block_Write

Description: Writes a buffer of data to the host via USB. Maximum block size is 4096 bytes. Returns the num-
ber of bytes actually written. This matches the parameter NumBytes unless an error condition
occurs. A zero is returned if Block_Write is called with NumBytes greater than 4096. If NumBytes
is greater than 64 bytes, the Bulk Transaction is split into multiple packets, each with a 64-byte
data payload (except last packet). Block Write returns after copying the last packet to the device
USB transmit buffer. The completion of the transaction is then indicated by the TX _COMPLETE
USB API interrupt.

Supported Devices: C8051F320/1
Prototype: UINT Block Write (BYTE *Buffer, UINT NumBytes)

Parameters: 1. Buffer—Pointer to a memory location where data to be written is stored.
2. NumBytes—Number of bytes to write (1 - 4096).

Return Value: Returns an unsigned 16-bit value indicating the number of bytes actually written.

3.4. Block_Read

Description: Reads a buffer of data sent from the host via USB. Maximum block size is 64 bytes. The block of
data is copied from the USB interface to the memory location pointed to by Buffer. The device USB
receive buffer will be emptied on return regardless of whether or not the entire buffer was read by
Block_Read. The maximum number of bytes to read from the device USB receive buffer is speci-
fied in NumBytes. The number of bytes actually read (copied to Buffer) is returned by the function.
A zero is returned if there are no bytes to read. Typically, Block_Read should be called after
receiving a data packet, indicated by an RX_COMPLETE USB API interrupt.

Multiple calls to Block Read might be needed to read all data sent via one SI_Write call if the
buffer sent to SI_Write is more than 64 bytes.

Supported Devices: C8051F320/1
Prototype: BYTE Block_Read (BYTE *Buffer, BYTE NumBytes)

Parameters: 1. Buffer—Pointer to a memory location where data will be copied.
2. NumBytes—Number of bytes to read (1 - 64).

Return Value: Returns an unsigned 8-bit value indicating the number of bytes actually read.

®
@ Rev. 1.6 13

SILICON LABORATORIES

AN169

3.5. Get_Interrupt_Source

Description: Returns an 8-bit value indicating the reason(s) for the API interrupt, and clears the USB API inter-
rupt pending flag(s). This function should be called at the beginning of the user's interrupt service
routine to determine which event(s) has/have occurred.

Supported Devices:

C8051F320/1

Prototype: BYTE Get_Interrupt_Source (void)

Parameters: None

Return Value: Returns an unsigned 8-bit code indicating the reason(s) for the API interrupt. The code can indi-
cate more than one type of interrupt at the same time. The return values are coded as follows:

0x00
0x01
0x02
0x04
0x08

0x10
0x20
0x40
0x80

USB_RESET
TX_COMPLETE
RX_COMPLETE
FIFO_PURGE

DEVICE_OPEN
DEVICE_CLOSE
DEV_CONFIGURED
DEV_SUSPEND

3.6. USB_Int_Enable

Description: A call to this function enables the USB API to generate interrupts. If enabled, a USB API interrupt
is generated on the following API events:

o M wbd e

A USB Reset has occurred.

No USB API Interrupts have occurred

USB Reset Interrupt has occurred

Transmit Complete Interrupt has occurred

Receive Complete Interrupt has occurred

Command received (and serviced) from the host to purge
the USB buffers

Device Instance Opened on host side

Device Instance Closed on host side

Device has entered configured state

USB suspend signaling present on bus

A transmit scheduled by a call to Block_Write has completed.

The RX buffer is ready to be serviced by a call to Block Read.

A command from the host has caused the USB buffers to be flushed.
A Device Instance has been opened or closed by the host.

The cause of the interrupt can be determined by a call to Get_Interrupt_Source. If USB API inter-
rupts are enabled, the user must provide an interrupt service routine with the entry point located at
the interrupt 16 vector (Address = 0x0083). When this function is called, control will transfer to the
interrupt 16 handler within one ms, if any interrupts are currently pending.

Supported Devices: C8051F320/1

Prototype: void USB_Int_Enable (void)

Parameters: None

Return Value: None

14

®
Rev. 1.6 @

SILICON LABORATORIES

AN169

3.7. USB_Int_Disable

Description: This function disables the USB API interrupt generation.
Supported Devices: C8051F320/1

Prototype: void USB_Int_Disable (void)

Parameters: None

Return Value: None

3.8. USB_Disable

Description: This function disables the USB interface and the use of Device Interface Functions. On return, the
USB interface is no longer available and API interrupts are turned off. The clock multiplier is turned
off to reduce power consumption unless the system clock is set to the '4x Clock Multiplier / 2'
option (CLKSEL][1:0] = 10b).

Supported Devices: C8051F320/1
Prototype: void USB Disable (void)
Parameters: None

Return Value: None

3.9. USB_Suspend

Description: This function allows devices to meet the USB suspend current specification. To be USB compliant,
a USB device must support the Suspend feature by reducing its total power consumption to be
under 500 pA. This function should only be called when the DEV_SUSPEND USB API interrupt is
received. All unnecessary user peripherals should be turned off before making this function call,
and can be turned back on after the call returns. This routine powers down the USB transceiver
and the clock multiplier and then suspends the internal oscillator until USB resume signaling
occurs. Once USB traffic is detected, internal oscillator is restarted, USB_Clock_Start is called,
and then the function call returns to user code. Note: USB_Suspend will set the system clock to
internal oscillator by default. If system clock is set to clock multiplier when USB_Suspend is called,
that setting will be restored before this function returns. If it is necessary to use any other setting
for system clock, user code should modify CLKSEL on return from USB_Suspend.

Supported Devices: C8051F320/1
Prototype: void USB_Suspend (void)
Parameters: None

Return Value: None

®
@ Rev. 1.6 15

SILICON LABORATORIES

AN169

APPENDIXA—SFRs THAT SHouLD NOT BE MODIFIED
AFTER CALLING USB_CLOCK_START AND USB INIT

Supported Devices: C8051F320/1

The following is a list of SFRs configured by the API. These should not be altered at any time after the first call to
USB_Clock_Start or USB_ Init. Most of these SFRs are dedicated to the USB peripheral on the chip and should be of
no concern to the programmer under most circumstances.

Off-Limits USB SFRs—USBOXCN, USBOADR, and USBODAT

Off-Limits Other SFRs—CLKMUL, OSCICN (Only bits 5-7 are off-limits), CLKSEL (Only bits 4-6 are off-limits).
These three SFRs are used to enable the internal oscillator, engage the 4x clock multiplier to 48 MHz, and to use
that as the clock for the USB core. For the API to function properly, these should not be modified.

APl—User Shared SFRs:

The CLKSEL SFR is used for choosing both the system clock source and USB clock source. Care should be used to
OR in the system clock desired into Bits 1-0, so as not to disturb Bits 6-4, which are the USB clock selection bits.

The OSCICN SFR is used control the internal oscillator. The IFCN[1:0] bits can be modified as required by the user
to modify the system clock frequency. Note that the IFCN bits do not affect the 12 MHz clock multiplier input or the
USB clock. Care should be taken to preserve bits 5-7 while modifying the IFCN bits.

®
16 Rev. 1.6 @

SILICON LABORATORIES

AN169

APPENDIXB—FORMAT OF USER-DEFINED PRODUCT
DESCRIPTION AND SERIAL NUMBER STRINGS

Supported Devices: C8051F320/1

It is possible for the API to use strings defined and allocated in user firmware instead of the API default strings. The
syntax for defining and using custom strings is:

unsigned char CustomString[]={number of string elements,0x03,"A",0,"B",0,"C",0..."Z",0};

The number of string elements = number of letters * 2 + 2, since every letter needs to be separated from the next by
zeros, and USB requires that the first element be the length, and the second element is 0x03, meaning string
descriptor type. This sounds harder than it is, for example:

//ABC Inc
unsigned char CustomStringl[]={16,0x03,"A",0,"B",0,"C"*,0," *,0,"17,0,"n",0,"c",0};

//Widget
unsigned char CustomString2[]={14,0x03,"w*,0,"i",0,"d",0,"g",0,"e",0,"t",0};

/712345
unsigned char CustomString3[]={12,0x03,"1",0,"27,0,%3",0,"4"7,0,"5",0};

Then, if the Vendor ID and Product ID were OXABCD and 0x1123, the call to USB_Init would be
USB_Init (OxABCD, 0x1123, CustomStringl, CustomString2, CustomString3);

Note: Itis useful to use the code keyword preceding the CustomString definitions, so that the strings are located in code space.

®
@ Rev. 1.6 17

SILICON LABORATORIES

AN169
APPENDIXC—FIRMWARE LIBRARY NOTES

Supported Devices: C8051F320/1

Tool Chain:

The USBXpress Firmware Library has been developed with the Keil C51 Tool Chain, and is distributed as a pre-
compiled library. Hence the user project should be built using the Keil C51 tool chain, with the USB_API.LIB
included as an external library. A header file USB_API.h with macro definitions and function prototypes is also pro-
vided.

Memory-Model Concerns:

The firmware API library was created using the small memory model. Using this library in a project with a default
memory model of large or compact can cause warnings to occur, depending on warning level settings. To avoid this,
set the default memory model to small, and override this setting wherever necessary by defining each function with
the large compiler keyword.

The “using” Keyword:

The “using” keyword should not be used with the USB API ISR. This compile-time optimization is not supported by
the USBXpress library code that is used to create the virtual USB API interrupt (interrupt # 16).

Internal Functions and Variables:

All internal function names and global variable names in the USBXpress firmware library begin with the prefix
“USBXcore”. To avoid conflict with these PUBLIC symbols that will, if duplicated, result in “MULTIPLE PUBLIC DEF-
INITIONS” errors, global variables and function names in user firmware should not begin with this prefix.

Using External Oscillator or Clock:

By default, USBXpress uses the internal 12 MHz oscillator along with the 4x Clock Multiplier as the USB Clock. To
override this, the user firmware can provide its own USB_Clock_Start function. The Keil linker will then override the
library function with the user-supplied function. If a high precision external crystal or clock is used, you may want to
turn off the USB clock recovery feature. To do this, user firmware code should include a dummy function definition
as shown below. This will override the corresponding internal function in the library.

void USBXcore_ ClkRec(void) large { }

Saving XDATA Space:

The USB_Init function parameters are passed in direct memory locations in user XDATA space determined by the
linker. If user firmware needs this contiguous space, these 17 bytes can be relocated to unused XDATA space within
the USBXpress reserved area. To do this, the following should be added to the command line while invoking the
linker (the value for “address” is shown in Table 1):

XDATA(?XD?_USB_INIT?USB_API (<address>))

Example: BL51.exe filel.obj,file2.obj,fileN.obj,USB API_.LIB TO prjl RS(256) PL(68)
PW(78)XDATA(?XD?_USB_INIT?USB_API1(0x03EF))

®
18 Rev. 1.6 @

SILICON LABORATORIES

AN169

Table 1. Firmware Library Technical Details

C8051F320/1

Internal Oscillator?

Enabled (OSCICN.7 = 1)

4x Clock Multiplier?

Enabled (Source: Internal Oscillator)

USB Clock Recovery?

Enabled (CLKREC = 0x89)

USB Clock Source?

Clock multiplier (48 MHz)

USB Speed

Full Speed

USB Transfer Type

Bulk Transfer

Max data payload size
(Control Endpoint, EPQ)

64 bytes per data packet

Number of bulk data endpoints used

2 (EP2 in Split Mode)

Max data payload size (Bulk data endpoints)

64 bytes per data packet

Double buffering

Enabled for both IN and OUT end-
points (FIFO can hold two packets
each at any time)

XDATA space reserved by the Iibraryb

448 bytes (0x0640 to Ox07FF)
[includes USB FIFO space]

(see “Saving XDATA Space”)

Starting address to relocate USB_ Init function parameters

O0x07AF

USBXpress Firmware Library Name

USBX_F320_1.LIB

a. The clock settings listed in this table are valid only if the default USBXpress clock functions
(USB_Clock_Start and USBXcore_ClkRec) are not overridden by user firmware.
b. This reserved space includes the relocated USB_ Init parameters using linker commands. See

“Saving XDATA Space” section for more details.

Type Definitions:

// UINT type definition
#ifndef _UINT_DEF_
#define _UINT_DEF_
typedef unsigned int UINT;
#endif /* _UINT_DEF_ */

// BYTE type definition
#ifndef _BYTE_DEF_

#define _BYTE_DEF_

typedef unsigned char BYTE;
#endif /* _BYTE_DEF_ */

®
@ Rev. 1.6

SILICON LABORATORIES

19

AN169

APPENDIXD—TYPE DEFINITIONS (FROM C++ HEADER
FILE SIUSB.H)

Supported Devices: C8051F320/1, CP2101/2/3

// GetProductString function flags

#define SI1_RETURN_SERIAL_NUMBER 0x00
#define SI1_RETURN_DESCRIPTION 0x01
#define SI1_RETURN_VID 0x02
#define SI1_RETURN_PID 0x03

// Return codes

#define SI_SUCCESS 0x00
#define SI_DEVICE_NOT_FOUND OXFF
#define SI_INVALID_HANDLE 0x01
#define SI_READ_ERROR 0x02
#define SI_RX_QUEUE_NOT_READY 0x03
#define SI_WRITE_ERROR 0x04
#define SI_INVALID_PARAMETER 0x06
#define SI_INVALID_REQUEST LENGTH 0x07
#define SI_DEVICE_10_FAILED 0x08
#define SI_INVALID_BAUDRATE 0x09
#define SI_FUNCTION_NOT_SUPPORTED 0x0a
#define SI_GLOBAL_DATA_ERROR 0x0b

// RX Queue status flags

#define SI_RX_NO_OVERRUN 0x00
#define SI_RX_EMPTY 0x00
#define SI_RX_OVERRUN 0x01
#define SI_RX_READY 0x02

// Buffer size limits

#define SI_MAX_DEVICE_STRLEN 256
#define SI1_MAX_READ_SIZE 4096*16
#define SI_MAX_WRITE_SIZE 4096

// Type definitions
typedef int S1_STATUS;
typedef char SI_DEVICE_STRING[SI_MAX_DEVICE_STRLEN];

// Input and Output pin Characteristics

#define SI_HELD_INACTIVE 0x00
#define SI_HELD_ACTIVE 0x01
#define SI_FIRMWARE_CONTROLLED 0x02
#define SI_RECEIVE_FLOW_CONTROL 0x02
#define SI_TRANSMIT_ACTIVE_SIGNAL 0x03
#define SI_STATUS_INPUT 0x00
#define SI_HANDSHAKE_LINE 0x01

//Common variable type definitions used
typedef unsigned long DWORD;

®
20 Rev. 1.6 @

SILICON LABORATORIES

AN169

typedef
typedef
typedef
typedef
typedef
typedef
typedef

int

unsigned char
unsigned short
BYTE near
DWORD near
DWORD far

void far

BOOL ;
BYTE;
WORD;
*PBYTE;
*PDWORD;
*LPDWORD ;
*LPVOID;

SILICON LABORATORIES

Rev. 1.6

21

AN169

APPENDIXE—ERROR CODE EXPLANATIONS AND
DEBUGGING

Supported Devices: C8051F320/1, CP2101/2/3

SI_SUCCESS
The function succeeded.

S|_DEVICE_NOT_FOUND

The device cannot be found on the system. Make sure the device is plugged in and powered. If the device is
plugged in, make sure that all previous application handles to the device have been closed (SI_Close). If a
previous instance of the application was not able to close its handle to the device before exiting, disconnect and
reconnect the device. To avoid having to temporarily remove the device in this case, you may have your application
store the current handle value (returned by SI_Open) in the Windows registry so that if the application crashes, the
handle is still accessible and can be closed (SI_Close).

SI_INVALID_HANDLE

The value of the Handle passed to the function is not valid. A valid handle is obtained by declaring a HANDLE
variable in your program and passing the address of that HANDLE to the SI_Open function. A Handle may become
invalid if the device is removed from the system, so first verify that the device is connected.

SI_RX_QUEUE_NOT_READY
There is no data available. The receive queue is empty.

SI_WRITE_ERROR
The write operation failed. The device may have been removed.

SI_INVALID_PARAMETER

An invalid parmater was passed to the DLL function called. See the function definition for valid parameter types
and/or ranges.

SI_INVALID_REQUEST LENGTH
See SI_Read and SI_Write function descriptions for valid request lengths.

SI_DEVICE_IO_FAILED
Device IO operation failed. The device may have been removed.

SI_INVALID_BAUDRATE
See the CP210x device-specific data sheet for supported baudrates.

SI_FUNCTION_NOT_SUPPORTED

The function called is not supported by the device. For example, attempting to use the SI_ReadLatch and
SI_WriteLatch functions on a device other than the CP2103 will cause the functions to return this value.

SI_GLOBAL_DATA_ERROR
An error has occurred such that the thread global data cannot be retrieved. Unload and reload the DLL if this return

®
22 Rev. 1.6 @

SILICON LABORATORIES

AN169

code is received.

SI_SYSTEM_ERROR_CODE
Call GetLastError (Win32 Base) to retrieve Windows System Error Code are defined on MSDN

®
@ Rev. 1.6

SILICON LABORATORIES

23

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/system_error_codes.asp

AN169

DOCUMENT CHANGE LIST

Revision 1.5 to Revision 1.6

Added function definitions for CP2103 support including SI_ReadLatch, SI_WriteLatch, and
S|_GetPartNumber.

Fixed SI_FlushBuffers description to specify CP210x versus C8051F32x functionality differences.
Added Appendix E: Error Code Explanations and Debugging.

Updated Appendix D to include new error codes for CP2103 support, and VID/PID string retrieval definitions for
the SI_GetProductStrings function.

Updated SI_GetProductString function description to include VID/PID string retrieval.
Added function USB_Clock_Start to firmware library.
Updated USB_Init function description to show that USB_Clock_Start should be called prior to this call.

Updated USB_ Init parameters description to show that all the default values have been removed, and that
NULL pointers will be treated as valid addresses.

Updated Block_Write, Block Read, Get_Interrupt_Source, and USB_Suspend descriptions to improve clarity.
Updated USB_Disable description to show status on return.

Updated Appendix A and Appendix C with more detailed descriptions.

Updated SI_GetPartNumber to work with the CP2101.

Updated invalid handle and invalid parameter checks throughout the API function calls.

Updated SI_Close to set a handle passed by reference to INVALID_HANDLE_VALUE.

Updated Return Values for SI_Open, SI_Read, SI_FlushBuffers, and SI_GetPartNumber.

24

®
Rev. 1.6 @

SILICON LABORATORIES

AN169

CONTACT INFORMATION

Silicon Laboratories Inc.
4635 Boston Lane

Austin, TX 78735

Tel: 1+(512) 416-8500

Fax: 1+(512) 416-9669

Toll Free: 1+(877) 444-3032

Email: MCUinfo@silabs.com
Internet: www.silabs.com

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

Silicon Laboratories, Silicon Labs, and USBXpress are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

Rev. 1.6 25

SILICON LABORATORIES

	1. Introduction
	Figure 1. USBXpress Data Flow

	2. Host API Functions
	2.1. SI_GetNumDevices
	2.2. SI_GetProductString
	2.3. SI_Open
	2.4. SI_Close
	2.5. SI_Read
	2.6. SI_Write
	2.7. SI_FlushBuffers
	2.8. SI_SetTimeouts
	2.9. SI_GetTimeouts
	2.10. SI_CheckRXQueue
	2.11. SI_SetBaudRate
	2.12. SI_SetBaudDivisor
	2.13. SI_SetLineControl
	2.14. SI_SetFlowControl
	2.15. SI_GetModem Status
	2.16. SI_ReadLatch
	2.17. SI_WriteLatch
	2.18. SI_GetPartNumber
	2.19. SI_DeviceIOControl

	3. Device Interface Functions
	3.1. USB_Clock_Start
	3.2. USB_Init
	3.3. Block_Write
	3.4. Block_Read
	3.5. Get_Interrupt_Source
	3.6. USB_Int_Enable
	3.7. USB_Int_Disable
	3.8. USB_Disable
	3.9. USB_Suspend
	Table 1. Firmware Library Technical Details

	Document Change List
	Contact Information

