
AN201
WRITING TO FLASH FROM FIRMWARE
Table of Contents
1. Introduction .4
2. Key Points .4
3. Flash Essentials .5

3.1. Flash Organization .5
3.2. Device Specific Notes .6

3.2.1. C8051F12x Code Banking . 6
3.2.2. C8051F3xx, C8051F4xx, and C8051F5xx Flash Unlock Bytes 6
3.2.3. C8051F0xx, C8051F12x, C8051F2xx, C8051F34x,

C8051F35x, and C8051F41x Flash Timing . 6
3.2.4. C8051F4xx and C8051F5xx VDD Monitor Level . 6

3.3. Flash Read, Write, and Erase Operations .6
4. Basic Flash operations .7

4.1. Reading A Byte .7
4.2. Writing A Byte .7
4.3. Erasing a Page .7
4.4. Example Code Implementation Notes .8

5. Advanced Flash Operations .9
6. Flash Write and Erase Guidelines .10

6.1. VDD Maintenance and the VDD Monitor .10
6.2. PSWE Maintenance .11
6.3. System Clock .12

7. Example Code .13
7.1. ‘F000 .13

7.1.1. F000_FlashPrimitives.c . 13
7.1.2. F000_FlashPrimitives.h . 15
7.1.3. F000_FlashUtils.c . 17
7.1.4. F000_FlashUtils.h . 21

7.2. ‘F020 .22
7.2.1. F020_FlashPrimitives.c . 22
7.2.2. F020_FlashPrimitives.h . 25
7.2.3. F020_FlashUtils.c . 26
7.2.4. F020_FlashUtils.h . 30

7.3. ‘F040 .31

Relevant Devices
This application note applies to the following device families:
C8051F00x, C8051F01x, C8051F02x, C8051F04x, C8051F06x, C8051F12x-13x, C8051F2xx, C8051F30x,
C8051F31x, C8051F32x, C8051F326/7, C8051F33x, C8051F34x, C8051F35x, C8051F41x, and C8051F52x-53x
Rev. 0.3 10/06 Copyright © 2006 by Silicon Laboratories AN201

AN201
7.3.1. F040_FlashPrimitives.c . 31
7.3.2. F040_FlashPrimitives.h . 34
7.3.3. F040_FlashUtils.c . 35
7.3.4. F040_FlashUtils.h . 39

7.4. ‘F060 .40
7.4.1. F060_FlashPrimitives.c . 40
7.4.2. F060_FlashPrimitives.h . 43
7.4.3. F060_FlashUtils.c . 44
7.4.4. F060_FlashUtils.h . 49

7.5. ‘F120 .50
7.5.1. F120_FlashPrimitives.c . 50
7.5.2. F120_FlashPrimitives.h . 54
7.5.3. F120_FlashUtils.c . 55
7.5.4. F120_FlashUtils.h . 59

7.6. ‘F200 .60
7.6.1. F200_FlashPrimitives.c . 60
7.6.2. F200_FlashPrimitives.h . 62
7.6.3. F200_FlashUtils.c . 64
7.6.4. F200_FlashUtils.h . 68

7.7. ‘F300 .69
7.7.1. F300_FlashPrimitives.c . 69
7.7.2. F300_FlashPrimitives.h . 71
7.7.3. F300_FlashUtils.c . 72
7.7.4. F300_FlashUtils.h . 76

7.8. ‘F310 .77
7.8.1. F310_FlashPrimitives.c . 77
7.8.2. F310_FlashPrimitives.h . 80
7.8.3. F310_FlashUtils.c . 81
7.8.4. F310_FlashUtils.h . 85

7.9. ‘F320 .86
7.9.1. F320_FlashPrimitives.c . 86
7.9.2. F320_FlashPrimitives.h . 89
7.9.3. F320_FlashUtils.c . 90
7.9.4. F320_FlashUtils.h . 94

7.10. ‘F326/7 .95
7.10.1. F326_FlashPrimitives.c . 95
7.10.2. F326_FlashPrimitives.h . 98
7.10.3. F326_FlashUtils.c . 99
7.10.4. F326_FlashUtils.h . 104

7.11. ‘F330 .105
7.11.1. F330_FlashPrimitives.c . 105
7.11.2. F330_FlashPrimitives.h . 108
7.11.3. F330_FlashUtils.c . 109
7.11.4. F330_FlashUtils.h . 113

7.12. ‘F340 .114
2 Rev. 0.3

AN201
7.12.1. F340_FlashPrimitives.c . 114
7.12.2. F340_FlashPrimitives.h . 117
7.12.3. F340_FlashUtils.c . 118
7.12.4. F340_FlashUtils.h . 123

7.13. ‘F350 .124
7.13.1. F350_FlashPrimitives.c . 124
7.13.2. F350_FlashPrimitives.h . 127
7.13.3. F350_FlashUtils.c . 128
7.13.4. F330_FlashUtils.h . 132

7.14. ‘F410 .133
7.14.1. F410_FlashPrimitives.c . 133
7.14.2. F410_FlashPrimitives.h . 136
7.14.3. F410_FlashUtils.c . 138
7.14.4. F410_FlashUtils.h . 143

7.15. ‘F520 .144
7.15.1. F520_FlashPrimitives.c . 144
7.15.2. F520_FlashPrimitives.h . 147
7.15.3. F520_FlashUtils.c . 149
7.15.4. F520_FlashUtils.h . 155

Document Change List .156
Contact Information .158
Rev. 0.3 3

AN201
1. Introduction
The Flash memory on all Silicon Labs MCU devices is readable and writable from application code. This capability
allows user software to store values to the Flash such as calibration constants or system parameters, and to
implement a boot loading feature in which user firmware can be updated in-system from a remote site.
The Flash that is not used by application code can be treated like an EEPROM, thus negating the need to connect
an external EEPROM to the device.
This document starts with the basics of accessing Flash from application code on any device, including device
specific details. Then, it discusses advanced routines that can be developed using the basic routines. Finally, it
describes precautions to take when writing to Flash.
Example code for the basic and advanced Flash access routines for all devices is included at the end of this
application note.

2. Key Points
It is strongly recommended that the VDD monitor be enabled during Flash write and erase operations to prevent
data corruption resulting from power irregularities or power-down conditions.
Disable interrupts before setting PSWE to '1' to prevent interrupt service routines, which may access variables
in xdata space, from generating MOVX writes which could corrupt Flash memory.
Be cautious when using the 'Large' and 'Compact' memory models, which target xdata and pdata spaces for
user variables, both of which generate MOVX write opcodes.
In the C8051F3xx, C8051F4xx, and C8051F5xx series devices, a Lock and Key sequence must be executed
before each Flash write or erase operation.
In the C8051F3xx, C8051F4xx, and C8051F5xx series devices, attempts to read, write, or erase code memory
locations located in RESERVED space will generate a device reset.
Attempts to read, write, or erase code memory locations in RESERVED space will be ignored by the hardware
on F0xx, F1xx, and F2xx devices.
The CPU is stalled during Flash write and erase operations, although peripherals (UART, ADC, timers, etc.)
remain active.
Interrupts which are posted during a Flash write or erase operation will be held pending until the completion of
the Flash operation, after which time they will be serviced in priority order.
The Flash page containing the lock byte or bytes cannot be erased from application code.
4 Rev. 0.3

AN201
3. Flash Essentials
The Flash in different device series has many similarities including page sizes, lock bits, and the instructions used
to read and write to Flash. The main differences are the amount of Flash available, how the VDD monitor is
enabled, and how SFR registers are modified to allow Flash writes and erases.
Although the CPU is stalled during Flash write and erase operations, peripherals (UART, ADC, timers, etc.) remain
active. Interrupts posted during a Flash write or erase operation are held until the Flash operation has completed,
after which they are serviced in priority order.

3.1. Flash Organization
The Flash memory on most devices is organized into a set of 512-byte pages. See the Flash chapter of the device
data sheet for specific information. As an example, Figure 1 shows the Flash organization for the C8051F30x
series.

Figure 1. Flash Memory Organization and Security for the C8051F30x Series
Some devices also have a separate scratchpad area of Flash. This scratchpad area is ideal for storing constants
and system parameters because of its smaller size.

Lock Byte Decoding

0x1FFF

0x0200

0x1DFFLock Byte

Reserved

Bit Description
7
6
5
4

if any of these are
'0', Flash is Write/

Erase locked
across the C2

interface
3
2
1
0

if any of these are
'0', Flash is Read
locked across the

C2 interface

0x1DFE

Flash memory
organized in 512-byte

pages

0x1E00

PROGRAM
MEMORY

0x0000

0x1C00
Rev. 0.3 5

AN201
3.2. Device Specific Notes
Various MCUs have features that require consideration when accessing Flash. These considerations are described
below.
3.2.1. C8051F12x Code Banking
The C8051F12x family of devices have 128KB of Flash which is divided into 4 banks. Addresses in the range
0x00000 to 0x07FFF are mapped to first bank of Flash. Addresses in the range of 0x08000 to 0x0FFFF are
mapped to one of the other three banks based on the settings of the PSBANK register. Whenever accessing Flash
from the address range 0x08000 to 0x07FFF, precaution must be taken to select the correct bank using the
PSBANK register.
3.2.2. C8051F3xx, C8051F4xx, and C8051F5xx Flash Unlock Bytes
All C8051F3xx, C8051F4xx, and C8051F5xx devices' writes and erases to Flash are protected with a lock and key
function. The Flash Lock and Key Register (FLKEY) must be written with the correct key codes, in sequence,
before Flash operations may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the
codes must be written in order. If the key codes are written out of order, or the wrong codes are written, Flash
writes and erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a
Flash write or erase is attempted before the key codes have been written properly. The Flash lock resets after each
write or erase; the key codes must be written again before a following Flash operation can be performed.
3.2.3. C8051F0xx, C8051F12x, C8051F2xx, C8051F34x, C8051F35x, and C8051F41x Flash Timing
Some of the device families require a Flash timing register, FLSCL, to be set to correctly access Flash. The register
value is based upon the SYSCLK speed. This register only needs to be set once. See the relevant data sheet for
device specific information regarding the FLSCL register.
3.2.4. C8051F4xx and C8051F5xx VDD Monitor Level
The 'F41x and 'F52x-53x devices have two settings for the VDD monitor threshold - low and high. When writing or
erasing Flash, the VDD monitor threshold should be set to the high setting. See the Reset Sources chapter in the
device's data sheet for detailed information on enabling the high threshold.

3.3. Flash Read, Write, and Erase Operations
There are three basic operations that can be performed on the Flash: read, write, and erase. The basic read and
write operations read or write one byte from Flash. The erase operation applies to a full page of Flash.
Flash read operations are accomplished by using the standard 8051 MOVC instruction (in the C language, MOVC
instructions are generated by using pointers of memory type 'code'). Flash write and erase operations on Silicon
Labs MCU devices are accomplished by using the MOVX instruction. The default target for MOVX write operations
is external memory (XRAM); however, devices can be configured such that MOVX write operations target Flash
memory instead. MOVX instructions are generated in C by using pointers of memory type xdata or pdata.
Flash erase operations occur on page boundaries. The erase operation sets all the bits in the Flash page to logic 1.
Flash write operations, which set bits to logic 0, occur on single byte boundaries. To successfully complete a write
to Flash, the target bytes must be erased to 0xFF because the write instruction can only clear bits in a byte.
MOVX write operations on all Silicon Labs MCU devices can target Flash by setting bits in the
PSCTL register. When the PSWE bit (PSCTL.0) is set to a logic 1, MOVX write opcodes target Flash memory
instead of External Memory (XRAM). When both PSWE and PSEE (PSCTL.0 and PSCTL.1) are set to logic 1,
MOVX write opcodes erase the Flash page containing the target address. The target address can be any address
in the target page.
6 Rev. 0.3

AN201
4. Basic Flash operations
The basic procedure to do the three basic Flash operations is the same on all devices. Some devices will require
setting additional registers to enable Flash operations. The pseudocode for the different operations is detailed
below for all devices. Also included below the pseudocode are the exceptions for the various device families. The
code that implements these routines for each device family is provided at the end of this application note in the files
named Fxxx_Primitives.h and Fxxx_Primitives.c.

4.1. Reading A Byte
1. Disable interrupts. This is optional for most devices, but recommended for the 'F12x and 'F13x devices.
2. Read the byte.
3. Restore interrupts if originally enabled.
Exceptions:
1. Set the SFLE bit before reading if the target address is in the scratchpad area.
2. If the device is the 'F12x or 'F13x, check the address and set the correct bank in the PSBANK register.

4.2. Writing A Byte
1. Disable interrupts. This is optional for most devices, but recommended for the 'F12x and 'F13x devices.
2. Set PSWE to '1' by writing PSCTL = 0x01 (PSEE must be '0').
3. Confirm VDD monitor is enabled.
4. Write the data to an erased byte.
5. Set PSWE and PSEE to '0' if no further erases are necessary.
6. Restore interrupts if originally enabled.
Exceptions:
1. Set the SFLE bit before writing if the target address is in the scratchpad are
2. If the device is a 'F3xx, 'F4xx, or 'F5xx device, write FLKEY = 0xA5 then FLKEY = 0xF1 before writing the byte.
3. If the device is the 'F12x or 'F13x, check the address and set the correct bank in the PSBANK register before writing the

byte.
4. For all ‘F0xx, ‘F1xx, and 'F2xx devices, enable Flash writes in the FLSCL Register (FLSCL = 0x01) before writing the byte.

Disable the bit after the byte has been written to Flash.

4.3. Erasing a Page
1. Disable interrupts. This is optional for most devices, but recommended for the 'F12x and 'F13x devices.
2. Set PSWE and PSEE to '1's by writing PSCTL = 0x03.
3. Confirm VDD monitor is enabled.
4. Write a data byte to any location within the 512-byte page to be erased.
5. Set PSWE and PSEE to '0' if no further erases are necessary.
6. Restore interrupts if originally enabled.
Exceptions:
1. Set the SFLE bit before writing if the target address is in the scratchpad area.
2. If the device is a ‘F3xx, 'F4xx, or 'F5xx device, write FLKEY = 0xA5 then FLKEY = 0xF1 before writing the byte.
3. If the device is the 'F12x or 'F13x, check the address and set the correct bank in the PSBANK register before writing the

byte.
4. For all ‘F0xx, ‘F1xx, and 'F2xx devices, enable Flash writes in the FLSCL Register (FLSCL = 0x01) before writing the byte.

Disable the bit after the byte has been written to Flash.
Rev. 0.3 7

AN201
4.4. Example Code Implementation Notes
The example code that comes with this application note is written for the largest Flash device in the device family.
The file name Fxxx_FlashPrimitives.h contains two #defines (FLASH_LAST and FLASH_TEMP) that must be

changed to reflect the target's actual Flash size.
Also, the example code explicitly enables the VDD monitor as a reset source through the RSTSRC register. The

code that writes to the RSTSRC register uses a direct assignment:

RSTSRC = 0x02;
This code will only enable the VDD monitor as a reset source, and will disable any other reset sources. If your
project requires other reset sources, change the example code to enable all of the required reset sources using a
single assignment to the RSTSRC register. This code is in the devices's Fxxx_FlashPrimitives.c file.
8 Rev. 0.3

AN201
5. Advanced Flash Operations
The basic routines described in Section 4 can be incorporated into more advanced routines that provide greater
flexibility. The following functions are commonly used Flash routines that expand upon the basic routines. The code
that implements these routines for each device family is provided at the end of this application note in the files
named Fxxx_Utils.h and Fxxx_Utils.c.
Flash_Read—This routine reads multiple bytes from Flash and returns a character string.
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);

Flash_Write—This routine writes multiple bytes to Flash. This function assumes that the target bytes have been
cleared to 0xFF. If the bytes are not cleared to 0xFF, incorrect values might be stored in flash.
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);

Flash_Clear—This routines clears a string of bytes to 0xFF. The implementation of this function first copies the
data to temporary space, erases the page or pages, then copies the non-cleared bytes back to the original page or
pages. This routine requires a spare page of Flash to run, and it will clear up to one page size worth of data.
The FLASH_Clear routine can be used to clear bytes before they are written.
void FLASH_Clear (FLADDR addr, unsigned numbytes);

Flash_Update—This first clears the locations that are going to be written, and then writes the bytes. This routine
requires a spare page of Flash to run, and it will update up to one page size worth of data.
The FLASH_Update routine combines FLASH_Clear and FLASH_Write into one routine.
FLASH_Update (FLADDR dest, char *src, unsigned numbytes);

Flash_Copy—This routine copies bytes from one location in Flash to another location in Flash. It assumes that the
bytes are cleared to 0xFF. FLASH_Clear can be used to clear the bytes.
FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes);

Flash_Fill—This routine fills bytes of Flash with a certain values. It assumes that bytes have been previously
cleared to 0xFF.
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);
Rev. 0.3 9

AN201
6. Flash Write and Erase Guidelines
Any system which contains routines which write or erase Flash memory from software involves some risk that the
write or erase routines will execute unintentionally if the CPU is operating outside its specified operating range of
VDD, system clock frequency, or temperature. This accidental execution of Flash modifying code can result in alter-
ation of Flash memory contents causing a system failure that is only recoverable by re-Flashing the code in the
device.

The following guidelines are recommended for any system which contains routines which write or erase Flash from
code.

6.1. VDD Maintenance and the VDD Monitor
1. If the system power supply is subject to voltage or current "spikes," add sufficient transient protection

devices to the power supply to ensure that the supply voltages listed in the Absolute Maximum Ratings
table are not exceeded.

2. Ensure that the minimum VDD rise time specification of 1 ms is met. If the device has a minimum VDD
rise time specification, ensure that it is met. If the system cannot meet the rise time specification, then
add an external VDD brownout circuit to the RST pin of the device that holds the device in reset until
VDD reaches 2.7 V and re-asserts RST if VDD drops below 2.7 V.

3. Enable the on-chip VDD monitor and enable the VDD monitor as a reset source as early in code as pos-
sible. This should be the first set of instructions executed after the Reset Vector. For C-based systems,
this will involve modifying the startup code added by the C compiler. See your compiler documentation
for more details. Ensure that there are no delays in software between enabling the VDD monitor and
enabling the VDD monitor as a reset source.

4. As an added precaution, explicitly enable the VDD monitor and enable the VDD monitor as a reset
source inside the functions that write and erase Flash memory. The VDD monitor enable instructions
should be placed just after the instruction to set PSWE to a '1', but before the Flash write or erase
operation instruction.

5. Ensure that all writes to the RSTSRC (Reset Sources) register use direct assignment operators and
explicitly DO NOT use the bit-wise operators (such as AND or OR). For example, "RSTSRC = 0x02" is
correct. "RSTSRC |= 0x02" is incorrect.

6. Ensure that all writes to the RSTSRC register explicitly set the PORSF bit to a '1'. Areas to check are
initialization code which enables other reset sources, such as the Missing Clock Detector or Compara-
tor, for example, and instructions which force a Software Reset. A global search on "RSTSRC" can
quickly verify this.

7. If the device has a high and low threshold setting for the VDD monitor, enable the high setting.
10 Rev. 0.3

AN201
6.2. PSWE Maintenance
8. Reduce the number of places in code where the PSWE bit (b0 in PSCTL) is set to a '1'. There should

be exactly one routine in code that sets PSWE to a '1' to write Flash bytes and one routine in code that
sets PSWE and PSEE both to a '1' to erase Flash pages.

9. Minimize the number of variable accesses while PSWE is set to a '1'. Handle pointer address updates
and loop variable maintenance outside the "PSWE = 1; ... PSWE = 0;" area.

10. Disable interrupts prior to setting PSWE to a '1' and leave them disabled until after PSWE has been
reset to '0'. Any interrupts posted during the Flash write or erase operation will be serviced in priority
order after the Flash operation has been completed and interrupts have been re-enabled by software.

11. Ensure that the Flash write and erase pointer variables are not located in XRAM. See your compiler
documentation for instructions regarding how to explicitly locate variables in different memory areas.

12. Add address bounds checking to the routines that write or erase Flash memory to ensure that a routine
called with an illegal address does not result in modification of the Flash.

Table 1. VDD Monitor Enabling

Family How to enable the VDD monitor How to enable as a reset source

‘F00x (always enabled) (always enabled)

‘F01x (always enabled) (always enabled)

‘F02x Connect MONEN pin to VDD Enabled if MONEN pulled high

‘F04x Connect MONEN pin to VDD RSTSRC = 0x02;

‘F06x Connect MONEN pin to VDD RSTSRC = 0x02;

‘F12x, ‘F13x Connect MONEN pin to VDD RSTSRC = 0x02;

‘F2xx (always enabled on 48 pin package)
Connect MONEN pin to VDD on 32 pin package

Enabled if MONEN pulled high

‘F30x (always enabled) RSTSRC = 0x02;1

‘F31x VDMEN = ‘1’; RSTSRC = 0x02;2

‘F32x VDMEN = ‘1’; RSTSRC = 0x02;2

‘F326 VDMEN = ‘1’; RSTSRC = 0x02;2

‘F33x VDMEN = ‘1’; RSTSRC = 0x02;2

‘F34x VDMEN = ‘1’; RSTSRC = 0x02;2

‘F35x VDMEN = ‘1’; RSTSRC = 0x02;2

‘F41x VDMEN = '1'; VDMLVL = '1'; RSTSRC = 0x02;2

‘F52x, ‘F53x VDDMON = '1'; VDMLVL = '1'; RSTSRC = 0x02;2

Notes:
1. On the ‘F30x devices, enabling the VDD monitor by setting the PORSF bit when the VDD monitor is disabled may

cause a system reset.
2. In software which writes or erases Flash memory, the VDD monitor should be enabled as a reset source immediately

following setting VDMEN to a '1'.
Rev. 0.3 11

AN201
6.3. System Clock
13. If operating from an external crystal, be advised that crystal performance is susceptible to electrical

interference and is sensitive to layout and to changes in temperature. If the system is operating in an
electrically noisy environment, use the internal oscillator or use an external CMOS clock.

14. If operating from the external oscillator, switch to the internal oscillator during Flash write or erase
operations. The external oscillator can continue to run, and the CPU can switch back to the external
oscillator after the Flash operation has completed.
12 Rev. 0.3

AN201
7. Example Code
The following code examples are organized by device family because devices in the same family are code
compatible. These code examples target the device that has the largest Flash size in each family. The code
changes that need to be made for devices with a different Flash size are the locations of the temporary page and
last page of Flash. These addresses are located in FlashPrimitives.h. See the Flash section of the device's data
sheet for more information.

7.1. ‘F000
7.1.1. F000_FlashPrimitives.c
//---
// F000_FlashPrimitives.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F0xx
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F000_FlashPrimitives.h"
#include <c8051F000.h>

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_ByteWrite (FLADDR addr, char byte);
unsigned char FLASH_ByteRead (FLADDR addr);
void FLASH_PageErase (FLADDR addr);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_ByteWrite
//---
//
// This routine writes <byte> to the linear FLASH address <addr>.
// Linear map is decoded as follows:
// Linear Address Device Address
// --
// 0x00000 - 0x0FFFF 0x0000 - 0xFFFF
Rev. 0.3 13

AN201

//
//
void FLASH_ByteWrite (FLADDR addr, char byte)
{
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts

 pwrite = (char xdata *) addr; // initialize write pointer

 FLSCL = FLASHSCALE; // enable FLASH writes/erases
 PSCTL |= 0x01; // PSWE = 1

 *pwrite = byte; // write the byte

 PSCTL &= ~0x01; // PSWE = 0
 FLSCL |= 0x0F; // disable FLASH writes/erases

 EA = EA_SAVE; // restore interrupts
}

//---
// FLASH_ByteRead
//---
//
// This routine reads a <byte> from the linear FLASH address <addr>.
//
unsigned char FLASH_ByteRead (FLADDR addr)
{
 bit EA_SAVE = EA; // preserve EA
 char code * data pread; // FLASH read pointer
 unsigned char byte;

 pread = (char code *) addr; // initialize read pointer

 EA = 0; // disable interrupts

 byte = *pread; // read the byte

 EA = EA_SAVE; // restore interrupts

 return byte;
}

//---
// FLASH_PageErase
//---
//
// This routine erases the FLASH page containing the linear FLASH address
// <addr>.
//
void FLASH_PageErase (FLADDR addr)
{
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts

 pwrite = (char xdata *) addr; // initialize erase pointer

 FLSCL = FLASHSCALE; // enable FLASH writes/erases
 PSCTL |= 0x03; // PSWE = 1; PSEE = 1

 *pwrite = 0; // initiate page erase

 PSCTL &= ~0x03; // PSWE = 0; PSEE = 0
 FLSCL |= 0x0F; // disable FLASH writes/erases

 EA = EA_SAVE; // restore interrupts
}

14 Rev. 0.3

AN201

7.1.2. F000_FlashPrimitives.h
//---
// F000_FlashPrimitives.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F0xx
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F000_FLASHPRIMITIVES_H
#define F000_FLASHPRIMITIVES_H

//---
// Includes
//---

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

typedef unsigned long ULONG;
typedef unsigned int UINT;
typedef unsigned char UCHAR;

//---
// Global Constants
//---

#ifndef SYSCLK
#define SYSCLK 16000000L
#endif

#ifndef FLASHSCALE

#if (SYSCLK < 50000L)
#define FLASHSCALE 0x80
#elif (SYSCLK < 100000L)
#define FLASHSCALE 0x81
#elif (SYSCLK < 200000L)
#define FLASHSCALE 0x82
#elif (SYSCLK < 400000L)
#define FLASHSCALE 0x83
#elif (SYSCLK < 800000L)
#define FLASHSCALE 0x84
#elif (SYSCLK < 1600000L)
#define FLASHSCALE 0x85
#elif (SYSCLK < 3200000L)
#define FLASHSCALE 0x86
#elif (SYSCLK < 6400000L)
#define FLASHSCALE 0x87
#elif (SYSCLK < 12800000L)
#define FLASHSCALE 0x88
#elif (SYSCLK < 25600000L)
#define FLASHSCALE 0x89
#endif // SYSCLK test
Rev. 0.3 15

AN201
#endif // FLASHSCALE

#ifndef FLASH_PAGESIZE
#define FLASH_PAGESIZE 512
#endif

#ifndef FLASH_SCRATCHSIZE
#define FLASH_SCRATCHSIZE 128
#endif

#ifndef FLASH_TEMP
#define FLASH_TEMP 0x07800L
#endif

#ifndef FLASH_LAST
#define FLASH_LAST 0x07A00L // last page of FLASH
#endif

typedef UINT FLADDR;

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_ByteWrite (FLADDR addr, char byte);
extern unsigned char FLASH_ByteRead (FLADDR addr);
extern void FLASH_PageErase (FLADDR addr);

#endif // F000_FLASHPRIMITIVES_H
16 Rev. 0.3

AN201

7.1.3. F000_FlashUtils.c
//---
// F000_FlashUtils.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F0xx
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F000_FlashPrimitives.h"
#include "F000_FlashUtils.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes);
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_Clear
//---
//
// This routine erases <numbytes> starting from the FLASH addressed by
// <dest> by performing a read-modify-write operation using <FLASH_TEMP> as
// a temporary holding area. This function accepts <numbytes> up to
Rev. 0.3 17

AN201

// <FLASH_PAGESIZE>.
//
void FLASH_Clear (FLADDR dest, unsigned numbytes)
{
 FLADDR dest_1_page_start; // first address in 1st page
 // containing <dest>
 FLADDR dest_1_page_end; // last address in 1st page
 // containing <dest>
 FLADDR dest_2_page_start; // first address in 2nd page
 // containing <dest>
 FLADDR dest_2_page_end; // last address in 2nd page
 // containing <dest>
 unsigned numbytes_remainder; // when crossing page boundary,
 // number of <src> bytes on 2nd page
 unsigned FLASH_pagesize; // size of FLASH page to update

 FLADDR wptr; // write address
 FLADDR rptr; // read address

 unsigned length;

 FLASH_pagesize = FLASH_PAGESIZE;

 dest_1_page_start = dest & ~(FLASH_pagesize - 1);
 dest_1_page_end = dest_1_page_start + FLASH_pagesize - 1;
 dest_2_page_start = (dest + numbytes) & ~(FLASH_pagesize - 1);
 dest_2_page_end = dest_2_page_start + FLASH_pagesize - 1;

 if (dest_1_page_end == dest_2_page_end) {

 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Copy from (dest+numbytes) to dest_page_end to Scratch page

 wptr = FLASH_TEMP + dest - dest_1_page_start + numbytes;
 rptr = dest + numbytes;
 length = dest_1_page_end - dest - numbytes + 1;
 FLASH_Copy (wptr, rptr, length);

 // 4. Erase destination page
 FLASH_PageErase (dest_1_page_start);

 // 5. Copy Scratch page to destination page
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 } else { // value crosses page boundary
 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
18 Rev. 0.3

AN201

 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Erase destination page 1
 FLASH_PageErase (dest_1_page_start);

 // 4. Copy Scratch page to destination page 1
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 // now handle 2nd page

 // 5. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 6. Copy bytes from numbytes remaining to dest-2_page_end to Scratch page

 numbytes_remainder = numbytes - (dest_1_page_end - dest + 1);
 wptr = FLASH_TEMP + numbytes_remainder;
 rptr = dest_2_page_start + numbytes_remainder;
 length = FLASH_pagesize - numbytes_remainder;
 FLASH_Copy (wptr, rptr, length);

 // 7. Erase destination page 2
 FLASH_PageErase (dest_2_page_start);

 // 8. Copy Scratch page to destination page 2
 wptr = dest_2_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);
 }
}

//---
// FLASH_Update
//---
//
// This routine replaces <numbytes> from <src> to the FLASH addressed by
// <dest>. This function calls FLASH_Clear() to handle the dirty work of
// initializing all <dest> bytes to 0xff's prior to copying the bytes from
// <src> to <dest>. This function accepts <numbytes> up to <FLASH_PAGESIZE>.
//
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes)
{
 // 1. Erase <numbytes> starting from <dest>
 FLASH_Clear (dest, numbytes);

 // 2. Write <numbytes> from <src> to <dest>
 FLASH_Write (dest, src, numbytes);
}

//---
// FLASH_Write
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes)
{

Rev. 0.3 19

AN201

 FLADDR i;

 for (i = dest; i < dest+numbytes; i++) {
 FLASH_ByteWrite (i, *src++);
 }
}

//---
// FLASH_Read
//---
//
// This routine copies <numbytes> from the linear FLASH address <src> to
// <dest>.
//
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {
 *dest++ = FLASH_ByteRead (src+i);
 }
 return dest;
}

//---
// FLASH_Copy
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {

 FLASH_ByteWrite ((FLADDR) dest+i, FLASH_ByteRead((FLADDR) src+i));
 }
}

//---
// FLASH_Fill
//---
//
// This routine fills the FLASH beginning at <addr> with <lenght> bytes.
//
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill)
{
 FLADDR i;

 for (i = 0; i < length; i++) {
 FLASH_ByteWrite (addr+i, fill);
 }
}

20 Rev. 0.3

AN201

7.1.4. F000_FlashUtils.h
//---
// F000_FlashUtils.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F0xx
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F000_FLASHUTILS_H
#define F000_FLASHUTILS_H

//---
// Includes
//---

#include "F000_FlashPrimitives.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
extern char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
extern void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines
extern void FLASH_Update (FLADDR dest, char *src, unsigned numbytes); // copy with destina-
tion preservation
extern void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes); // low-level FLASH/
FLASH byte copy

// FLASH test routines
extern void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

#endif // F000_FLASHUTILS_H
Rev. 0.3 21

AN201
7.2. ‘F020
7.2.1. F020_FlashPrimitives.c
//---
// F020_FlashPrimitives.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F2xx
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F020_FlashPrimitives.h"
#include <c8051F020.h>

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_ByteWrite (FLADDR addr, char byte, bit SFLE);
unsigned char FLASH_ByteRead (FLADDR addr, bit SFLE);
void FLASH_PageErase (FLADDR addr, bit SFLE);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_ByteWrite
//---
//
// This routine writes <byte> to the linear FLASH address <addr>.
// Linear map is decoded as follows:
// Linear Address Device Address
// --
// 0x00000 - 0x0FFFF 0x0000 - 0xFFFF
//
void FLASH_ByteWrite (FLADDR addr, char byte, bit SFLE)
{

22 Rev. 0.3

AN201

 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts

 pwrite = (char xdata *) addr;

 FLSCL |= 0x01; // enable FLASH writes/erases
 PSCTL |= 0x01; // PSWE = 1

 if (SFLE) {
 PSCTL |= 0x04; // set SFLE
 }

 *pwrite = byte; // write the byte

 if (SFLE) {
 PSCTL &= ~0x04; // clear SFLE
 }

 PSCTL &= ~0x01; // PSWE = 0
 FLSCL &= ~0x01; // disable FLASH writes/erases

 EA = EA_SAVE; // restore interrupts
}

//---
// FLASH_ByteRead
//---
//
// This routine reads a <byte> from the linear FLASH address <addr>.
//
unsigned char FLASH_ByteRead (FLADDR addr, bit SFLE)
{
 bit EA_SAVE = EA; // preserve EA
 char code * data pread; // FLASH read pointer
 unsigned char byte;

 EA = 0; // disable interrupts

 pread = (char code *) addr;

 if (SFLE) {
 PSCTL |= 0x04; // set SFLE
 }

 byte = *pread; // read the byte

 if (SFLE) {
 PSCTL &= ~0x04; // clear SFLE
 }

 EA = EA_SAVE; // restore interrupts

 return byte;
}

//---
// FLASH_PageErase
//---
//
// This routine erases the FLASH page containing the linear FLASH address
// <addr>.
//
Rev. 0.3 23

AN201

void FLASH_PageErase (FLADDR addr, bit SFLE)
{
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts

 pwrite = (char xdata *) addr;

 FLSCL |= 0x01; // enable FLASH writes/erases
 PSCTL |= 0x03; // PSWE = 1; PSEE = 1

 if (SFLE) {
 PSCTL |= 0x04; // set SFLE
 }

 *pwrite = 0; // initiate page erase

 if (SFLE) {
 PSCTL &= ~0x04; // clear SFLE
 }

 PSCTL &= ~0x03; // PSWE = 0; PSEE = 0
 FLSCL &= ~0x01; // disable FLASH writes/erases

 EA = EA_SAVE; // restore interrupts
}

24 Rev. 0.3

AN201

7.2.2. F020_FlashPrimitives.h
//---
// F020_FlashPrimitives.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F2xx
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F020_FLASHPRIMITIVES_H
#define F020_FLASHPRIMITIVES_H

//---
// Includes
//---

//---
// Structures, Unions, Enumerations, and Type Definitions
//---
typedef unsigned long ULONG;
typedef unsigned int UINT;
typedef unsigned char UCHAR;

//---
// Global Constants
//---

#ifndef FLASH_PAGESIZE
#define FLASH_PAGESIZE 512
#endif

#ifndef FLASH_SCRATCHSIZE
#define FLASH_SCRATCHSIZE 128
#endif

#ifndef FLASH_TEMP
#define FLASH_TEMP 0x0F800L
#endif

#ifndef FLASH_LAST
#define FLASH_LAST 0x0FA00L // last page of FLASH
#endif

typedef UINT FLADDR;

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_ByteWrite (FLADDR addr, char byte, bit SFLE);
extern unsigned char FLASH_ByteRead (FLADDR addr, bit SFLE);
extern void FLASH_PageErase (FLADDR addr, bit SFLE);

#endif // F020_FLASHPRIMITIVES_H
Rev. 0.3 25

AN201

7.2.3. F020_FlashUtils.c
//---
// F020_FlashUtils.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F2xx
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F020_FlashPrimitives.h"
#include "F020_FlashUtils.h"

#include <stdio.h>

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes, bit SFLE);
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes, bit SFLE);
void FLASH_Clear (FLADDR addr, unsigned numbytes, bit SFLE);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes, bit SFLE);
void FLASH_Copy (FLADDR dest, bit destSFLE, FLADDR src, bit srcSFLE,
 unsigned numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill, bit SFLE);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_Clear
//---
//
// This routine erases <numbytes> starting from the FLASH addressed by
// <dest> by performing a read-modify-write operation using <FLASH_TEMP> as
26 Rev. 0.3

AN201

// a temporary holding area. This function accepts <numbytes> up to
// <FLASH_PAGESIZE>.
//
void FLASH_Clear (FLADDR dest, unsigned numbytes, bit SFLE)
{
 FLADDR dest_1_page_start; // first address in 1st page
 // containing <dest>
 FLADDR dest_1_page_end; // last address in 1st page
 // containing <dest>
 FLADDR dest_2_page_start; // first address in 2nd page
 // containing <dest>
 FLADDR dest_2_page_end; // last address in 2nd page
 // containing <dest>
 unsigned numbytes_remainder; // when crossing page boundary,
 // number of <src> bytes on 2nd page
 unsigned FLASH_pagesize; // size of FLASH page to update

 FLADDR wptr; // write address
 FLADDR rptr; // read address

 unsigned length;

 if (SFLE) { // update Scratchpad
 FLASH_pagesize = FLASH_SCRATCHSIZE;
 } else {
 FLASH_pagesize = FLASH_PAGESIZE;
 }

 dest_1_page_start = dest & ~(FLASH_pagesize - 1);
 dest_1_page_end = dest_1_page_start + FLASH_pagesize - 1;
 dest_2_page_start = (dest + numbytes) & ~(FLASH_pagesize - 1);
 dest_2_page_end = dest_2_page_start + FLASH_pagesize - 1;

 if (dest_1_page_end == dest_2_page_end) {

 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP, 0);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, 0, rptr, SFLE, length);

 // 3. Copy from (dest+numbytes) to dest_page_end to Scratch page

 wptr = FLASH_TEMP + dest - dest_1_page_start + numbytes;
 rptr = dest + numbytes;
 length = dest_1_page_end - dest - numbytes + 1;
 FLASH_Copy (wptr, 0, rptr, SFLE, length);

 // 4. Erase destination page
 FLASH_PageErase (dest_1_page_start, SFLE);

 // 5. Copy Scratch page to destination page
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, SFLE, rptr, 0, length);

 } else { // value crosses page boundary
 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP, 0);
Rev. 0.3 27

AN201
 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, 0, rptr, SFLE, length);

 // 3. Erase destination page 1
 FLASH_PageErase (dest_1_page_start, SFLE);

 // 4. Copy Scratch page to destination page 1
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, SFLE, rptr, 0, length);

 // now handle 2nd page

 // 5. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP, 0);

 // 6. Copy bytes from numbytes remaining to dest-2_page_end to Scratch page

 numbytes_remainder = numbytes - (dest_1_page_end - dest + 1);
 wptr = FLASH_TEMP + numbytes_remainder;
 rptr = dest_2_page_start + numbytes_remainder;
 length = FLASH_pagesize - numbytes_remainder;
 FLASH_Copy (wptr, 0, rptr, SFLE, length);

 // 7. Erase destination page 2
 FLASH_PageErase (dest_2_page_start, SFLE);

 // 8. Copy Scratch page to destination page 2
 wptr = dest_2_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, SFLE, rptr, 0, length);
 }
}

//---
// FLASH_Update
//---
//
// This routine replaces <numbytes> from <src> to the FLASH addressed by
// <dest>. This function calls FLASH_Clear() to handle the dirty work of
// initializing all <dest> bytes to 0xff's prior to copying the bytes from
// <src> to <dest>. This function accepts <numbytes> up to <FLASH_PAGESIZE>.
//
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes, bit SFLE)
{
 // 1. Erase <numbytes> starting from <dest>
 FLASH_Clear (dest, numbytes, SFLE);

 // 2. Write <numbytes> from <src> to <dest>
 FLASH_Write (dest, src, numbytes, SFLE);
}

//---
// FLASH_Write
//---
//
28 Rev. 0.3

AN201

// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes, bit SFLE)
{
 FLADDR i;

 for (i = dest; i < dest+numbytes; i++) {
 FLASH_ByteWrite (i, *src++, SFLE);
 }
}

//---
// FLASH_Read
//---
//
// This routine copies <numbytes> from the linear FLASH address <src> to
// <dest>.
//
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes, bit SFLE)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {
 *dest++ = FLASH_ByteRead (src+i, SFLE);
 }
 return dest;
}

//---
// FLASH_Copy
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Copy (FLADDR dest, bit destSFLE, FLADDR src, bit srcSFLE,
 unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {

 FLASH_ByteWrite ((FLADDR) dest+i,
 FLASH_ByteRead((FLADDR) src+i, srcSFLE),
 destSFLE);
 }
}

//---
// FLASH_Fill
//---
//
// This routine fills the FLASH beginning at <addr> with <lenght> bytes.
//
void FLASH_Fill (FLADDR addr, ULONG length, unsigned char fill, bit SFLE)
{
 FLADDR i;

 for (i = 0; i < length; i++) {
 FLASH_ByteWrite (addr+i, fill, SFLE);
 }
}

Rev. 0.3 29

AN201

7.2.4. F020_FlashUtils.h
//---
// F020_FlashUtils.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F2xx
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F020_FLASHUTILS_H
#define F020_FLASHUTILS_H

//---
// Includes
//---

#include "F020_FlashPrimitives.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_Write (FLADDR dest, char *src, unsigned numbytes, bit SFLE);
extern char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes, bit SFLE);
extern void FLASH_Clear (FLADDR addr, unsigned numbytes, bit SFLE);

// FLASH update/copy routines
extern void FLASH_Update (FLADDR dest, char *src, unsigned numbytes, bit SFLE);
extern void FLASH_Copy (FLADDR dest, bit destSFLE, FLADDR src, bit srcSFLE,
 unsigned numbytes);

// FLASH test routines
extern void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill, bit SFLE);

#endif // F020_FLASHUTILS_H
30 Rev. 0.3

AN201
7.3. ‘F040
7.3.1. F040_FlashPrimitives.c
//---
// F040_FlashPrimitives.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F04x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F040_FlashPrimitives.h"
#include <c8051F040.h>

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_ByteWrite (FLADDR addr, char byte, bit SFLE);
unsigned char FLASH_ByteRead (FLADDR addr, bit SFLE);
void FLASH_PageErase (FLADDR addr, bit SFLE);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_ByteWrite
//---
//
// This routine writes <byte> to the linear FLASH address <addr>.
// Linear map is decoded as follows:
// Linear Address Device Address
// --
// 0x00000 - 0x0FFFF 0x0000 - 0xFFFF
//
void FLASH_ByteWrite (FLADDR addr, char byte, bit SFLE)
{

Rev. 0.3 31

AN201

 char SFRPAGE_SAVE = SFRPAGE; // preserve SFRPAGE
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts

 pwrite = (char xdata *) addr; // initialize write pointer

 SFRPAGE = LEGACY_PAGE;

 FLSCL |= 0x01; // enable FLASH writes/erases
 PSCTL |= 0x01; // PSWE = 1

 if (SFLE) {
 PSCTL |= 0x04; // set SFLE
 }

 RSTSRC = 0x02; // enable VDDMON as reset source
 *pwrite = byte; // write the byte

 if (SFLE) {
 PSCTL &= ~0x04; // clear SFLE
 }
 PSCTL &= ~0x01; // PSWE = 0
 FLSCL &= ~0x01; // disable FLASH writes/erases

 SFRPAGE = SFRPAGE_SAVE; // restore SFRPAGE
 EA = EA_SAVE; // restore interrupts
}

//---
// FLASH_ByteRead
//---
//
// This routine reads a <byte> from the linear FLASH address <addr>.
//
unsigned char FLASH_ByteRead (FLADDR addr, bit SFLE)
{
 char SFRPAGE_SAVE = SFRPAGE; // preserve SFRPAGE
 bit EA_SAVE = EA; // preserve EA
 char code * data pread; // FLASH read pointer
 unsigned char byte;

 pread = (char code *) addr; // initialize read pointer

 EA = 0; // disable interrupts

 SFRPAGE = LEGACY_PAGE;

 if (SFLE) {
 PSCTL |= 0x04; // set SFLE
 }

 byte = *pread; // read the byte

 if (SFLE) {
 PSCTL &= ~0x04; // clear SFLE
 }

 SFRPAGE = SFRPAGE_SAVE; // restore SFRPAGE
 EA = EA_SAVE; // restore interrupts

 return byte;
}

32 Rev. 0.3

AN201
//---
// FLASH_PageErase
//---
//
// This routine erases the FLASH page containing the linear FLASH address
// <addr>.
//
void FLASH_PageErase (FLADDR addr, bit SFLE)
{
 char SFRPAGE_SAVE = SFRPAGE; // preserve SFRPAGE
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts

 pwrite = (char xdata *) addr; // initialize erase pointer

 SFRPAGE = LEGACY_PAGE;

 FLSCL |= 0x01; // enable FLASH writes/erases
 PSCTL |= 0x03; // PSWE = 1; PSEE = 1

 if (SFLE) {
 PSCTL |= 0x04; // set SFLE
 }

 RSTSRC = 0x02; // enable VDDMON as reset source
 *pwrite = 0; // initiate page erase

 if (SFLE) {
 PSCTL &= ~0x04; // clear SFLE
 }

 PSCTL &= ~0x03; // PSWE = 0; PSEE = 0
 FLSCL &= ~0x01; // disable FLASH writes/erases

 SFRPAGE = SFRPAGE_SAVE; // restore SFRPAGE
 EA = EA_SAVE; // restore interrupts
}

Rev. 0.3 33

AN201

7.3.2. F040_FlashPrimitives.h
//---
// F040_FlashPrimitives.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F04x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F040_FLASHPRIMITIVES_H
#define F040_FLASHPRIMITIVES_H

//---
// Includes
//---

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

typedef unsigned long ULONG;
typedef unsigned int UINT;
typedef unsigned char UCHAR;

//---
// Global Constants
//---

#ifndef FLASH_PAGESIZE
#define FLASH_PAGESIZE 512
#endif

#ifndef FLASH_SCRATCHSIZE
#define FLASH_SCRATCHSIZE 128
#endif

#ifndef FLASH_TEMP
#define FLASH_TEMP 0x0F800L
#endif

#ifndef FLASH_LAST
#define FLASH_LAST 0x0FA00L // last page of FLASH
#endif

typedef UINT FLADDR;

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_ByteWrite (FLADDR addr, char byte, bit SFLE);
extern unsigned char FLASH_ByteRead (FLADDR addr, bit SFLE);
extern void FLASH_PageErase (FLADDR addr, bit SFLE);

#endif // F040_FLASHPRIMITIVES_H
34 Rev. 0.3

AN201

7.3.3. F040_FlashUtils.c
//---
// F040_FlashUtils.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F04x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F040_FlashPrimitives.h"
#include "F040_FlashUtils.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes, bit SFLE);
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes, bit SFLE);
void FLASH_Clear (FLADDR addr, unsigned numbytes, bit SFLE);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes, bit SFLE);
void FLASH_Copy (FLADDR dest, bit destSFLE, FLADDR src, bit srcSFLE,
 unsigned numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill, bit SFLE);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_Clear
//---
//
// This routine erases <numbytes> starting from the FLASH addressed by
// <dest> by performing a read-modify-write operation using <FLASH_TEMP> as
// a temporary holding area. This function accepts <numbytes> up to
// <FLASH_PAGESIZE>.
Rev. 0.3 35

AN201

//
void FLASH_Clear (FLADDR dest, unsigned numbytes, bit SFLE)
{
 FLADDR dest_1_page_start; // first address in 1st page
 // containing <dest>
 FLADDR dest_1_page_end; // last address in 1st page
 // containing <dest>
 FLADDR dest_2_page_start; // first address in 2nd page
 // containing <dest>
 FLADDR dest_2_page_end; // last address in 2nd page
 // containing <dest>
 unsigned numbytes_remainder; // when crossing page boundary,
 // number of <src> bytes on 2nd page
 unsigned FLASH_pagesize; // size of FLASH page to update

 FLADDR wptr; // write address
 FLADDR rptr; // read address

 unsigned length;

 if (SFLE) { // update Scratchpad
 FLASH_pagesize = FLASH_SCRATCHSIZE;
 } else {
 FLASH_pagesize = FLASH_PAGESIZE;
 }

 dest_1_page_start = dest & ~(FLASH_pagesize - 1);
 dest_1_page_end = dest_1_page_start + FLASH_pagesize - 1;
 dest_2_page_start = (dest + numbytes) & ~(FLASH_pagesize - 1);
 dest_2_page_end = dest_2_page_start + FLASH_pagesize - 1;

 if (dest_1_page_end == dest_2_page_end) {

 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP, 0);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, 0, rptr, SFLE, length);

 // 3. Copy from (dest+numbytes) to dest_page_end to Scratch page

 wptr = FLASH_TEMP + dest - dest_1_page_start + numbytes;
 rptr = dest + numbytes;
 length = dest_1_page_end - dest - numbytes + 1;
 FLASH_Copy (wptr, 0, rptr, SFLE, length);

 // 4. Erase destination page
 FLASH_PageErase (dest_1_page_start, SFLE);

 // 5. Copy Scratch page to destination page
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, SFLE, rptr, 0, length);

 } else { // value crosses page boundary
 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP, 0);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page
36 Rev. 0.3

AN201
 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, 0, rptr, SFLE, length);

 // 3. Erase destination page 1
 FLASH_PageErase (dest_1_page_start, SFLE);

 // 4. Copy Scratch page to destination page 1
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, SFLE, rptr, 0, length);

 // now handle 2nd page

 // 5. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP, 0);

 // 6. Copy bytes from numbytes remaining to dest-2_page_end to Scratch page

 numbytes_remainder = numbytes - (dest_1_page_end - dest + 1);
 wptr = FLASH_TEMP + numbytes_remainder;
 rptr = dest_2_page_start + numbytes_remainder;
 length = FLASH_pagesize - numbytes_remainder;
 FLASH_Copy (wptr, 0, rptr, SFLE, length);

 // 7. Erase destination page 2
 FLASH_PageErase (dest_2_page_start, SFLE);

 // 8. Copy Scratch page to destination page 2
 wptr = dest_2_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, SFLE, rptr, 0, length);
 }
}

//---
// FLASH_Update
//---
//
// This routine replaces <numbytes> from <src> to the FLASH addressed by
// <dest>. This function calls FLASH_Clear() to handle the dirty work of
// initializing all <dest> bytes to 0xff's prior to copying the bytes from
// <src> to <dest>. This function accepts <numbytes> up to <FLASH_PAGESIZE>.
//
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes, bit SFLE)
{
 // 1. Erase <numbytes> starting from <dest>
 FLASH_Clear (dest, numbytes, SFLE);

 // 2. Write <numbytes> from <src> to <dest>
 FLASH_Write (dest, src, numbytes, SFLE);
}

//---
// FLASH_Write
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
Rev. 0.3 37

AN201

// <dest>.
//
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes, bit SFLE)
{
 FLADDR i;

 for (i = dest; i < dest+numbytes; i++) {
 FLASH_ByteWrite (i, *src++, SFLE);
 }
}

//---
// FLASH_Read
//---
//
// This routine copies <numbytes> from the linear FLASH address <src> to
// <dest>.
//
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes, bit SFLE)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {
 *dest++ = FLASH_ByteRead (src+i, SFLE);
 }
 return dest;
}

//---
// FLASH_Copy
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Copy (FLADDR dest, bit destSFLE, FLADDR src, bit srcSFLE,
 unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {

 FLASH_ByteWrite ((FLADDR) dest+i,
 FLASH_ByteRead((FLADDR) src+i, srcSFLE),
 destSFLE);
 }
}

//---
// FLASH_Fill
//---
//
// This routine fills the FLASH beginning at <addr> with <lenght> bytes.
//
void FLASH_Fill (FLADDR addr, ULONG length, unsigned char fill, bit SFLE)
{
 FLADDR i;

 for (i = 0; i < length; i++) {
 FLASH_ByteWrite (addr+i, fill, SFLE);
 }
}

38 Rev. 0.3

AN201

7.3.4. F040_FlashUtils.h
//---
// F040_FlashUtils.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F04x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F040_FLASHUTILS_H
#define F040_FLASHUTILS_H

//---
// Includes
//---

#include "F040_FlashPrimitives.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_Write (FLADDR dest, char *src, unsigned numbytes, bit SFLE);
extern char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes, bit SFLE);
extern void FLASH_Clear (FLADDR addr, unsigned numbytes, bit SFLE);

// FLASH update/copy routines
extern void FLASH_Update (FLADDR dest, char *src, unsigned numbytes, bit SFLE);
extern void FLASH_Copy (FLADDR dest, bit destSFLE, FLADDR src, bit srcSFLE,
 unsigned numbytes);

// FLASH test routines
extern void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill, bit SFLE);

#endif // F040_FLASHUTILS_H
Rev. 0.3 39

AN201
7.4. ‘F060
7.4.1. F060_FlashPrimitives.c
//---
// F060_FlashPrimitives.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F06x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F060_FlashPrimitives.h"
#include <c8051F060.h>

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_ByteWrite (FLADDR addr, char byte, bit SFLE);
unsigned char FLASH_ByteRead (FLADDR addr, bit SFLE);
void FLASH_PageErase (FLADDR addr, bit SFLE);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_ByteWrite
//---
//
// This routine writes <byte> to the linear FLASH address <addr>.
// Linear map is decoded as follows:
// Linear Address Device Address
// --
// 0x00000 - 0x0FFFF 0x0000 - 0xFFFF
//
void FLASH_ByteWrite (FLADDR addr, char byte, bit SFLE)
{

40 Rev. 0.3

AN201

 char SFRPAGE_SAVE = SFRPAGE; // preserve SFRPAGE
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts

 pwrite = (char xdata *) addr; // initialize write pointer

 SFRPAGE = LEGACY_PAGE;

 FLSCL |= 0x01; // enable FLASH writes/erases
 PSCTL |= 0x01; // PSWE = 1

 if (SFLE) {
 PSCTL |= 0x04; // set SFLE
 }

 RSTSRC = 0x02; // enable VDDMON as reset source
 *pwrite = byte; // write the byte

 if (SFLE) {
 PSCTL &= ~0x04; // clear SFLE
 }
 PSCTL &= ~0x01; // PSWE = 0
 FLSCL &= ~0x01; // disable FLASH writes/erases

 SFRPAGE = SFRPAGE_SAVE; // restore SFRPAGE
 EA = EA_SAVE; // restore interrupts
}

//---
// FLASH_ByteRead
//---
//
// This routine reads a <byte> from the linear FLASH address <addr>.
//
unsigned char FLASH_ByteRead (FLADDR addr, bit SFLE)
{
 char SFRPAGE_SAVE = SFRPAGE; // preserve SFRPAGE
 bit EA_SAVE = EA; // preserve EA
 char code * data pread; // FLASH read pointer
 unsigned char byte;

 pread = (char code *) addr; // initialize read pointer

 EA = 0; // disable interrupts

 SFRPAGE = LEGACY_PAGE;

 if (SFLE) {
 PSCTL |= 0x04; // set SFLE
 }

 byte = *pread; // read the byte

 if (SFLE) {
 PSCTL &= ~0x04; // clear SFLE
 }

 SFRPAGE = SFRPAGE_SAVE; // restore SFRPAGE
 EA = EA_SAVE; // restore interrupts

 return byte;
}

Rev. 0.3 41

AN201
//---
// FLASH_PageErase
//---
//
// This routine erases the FLASH page containing the linear FLASH address
// <addr>.
//
void FLASH_PageErase (FLADDR addr, bit SFLE)
{
 char SFRPAGE_SAVE = SFRPAGE; // preserve SFRPAGE
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts

 pwrite = (char xdata *) addr; // initialize erase pointer

 SFRPAGE = LEGACY_PAGE;

 FLSCL |= 0x01; // enable FLASH writes/erases
 PSCTL |= 0x03; // PSWE = 1; PSEE = 1

 if (SFLE) {
 PSCTL |= 0x04; // set SFLE
 }

 RSTSRC = 0x02; // enable VDDMON as reset source
 *pwrite = 0; // initiate page erase

 if (SFLE) {
 PSCTL &= ~0x04; // clear SFLE
 }

 PSCTL &= ~0x03; // PSWE = 0; PSEE = 0
 FLSCL &= ~0x01; // disable FLASH writes/erases

 SFRPAGE = SFRPAGE_SAVE; // restore SFRPAGE
 EA = EA_SAVE; // restore interrupts
}

42 Rev. 0.3

AN201

7.4.2. F060_FlashPrimitives.h
//---
// F060_FlashPrimitives.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F06x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F060_FLASHPRIMITIVES_H
#define F060_FLASHPRIMITIVES_H

//---
// Includes
//---

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

typedef unsigned long ULONG;
typedef unsigned int UINT;
typedef unsigned char UCHAR;

//---
// Global Constants
//---

#ifndef FLASH_PAGESIZE
#define FLASH_PAGESIZE 512
#endif

#ifndef FLASH_SCRATCHSIZE
#define FLASH_SCRATCHSIZE 128
#endif

#ifndef FLASH_TEMP
#define FLASH_TEMP 0x0F800L
#endif

#ifndef FLASH_LAST
#define FLASH_LAST 0x0FA00L // last page of FLASH
#endif

typedef UINT FLADDR;

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_ByteWrite (FLADDR addr, char byte, bit SFLE);
extern unsigned char FLASH_ByteRead (FLADDR addr, bit SFLE);
extern void FLASH_PageErase (FLADDR addr, bit SFLE);

#endif // F060_FLASHPRIMITIVES_H
Rev. 0.3 43

AN201

7.4.3. F060_FlashUtils.c
//---
// F060_FlashUtils.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F06x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F060_FlashPrimitives.h"
#include "F060_FlashUtils.h"

#include <stdio.h>

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes, bit SFLE);
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes, bit SFLE);
void FLASH_Clear (FLADDR addr, unsigned numbytes, bit SFLE);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes, bit SFLE);
void FLASH_Copy (FLADDR dest, bit destSFLE, FLADDR src, bit srcSFLE,
 unsigned numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill, bit SFLE);
void FLASH_Print (FLADDR addr, ULONG length, bit SFLE);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_Clear
//---
44 Rev. 0.3

AN201

//
// This routine erases <numbytes> starting from the FLASH addressed by
// <dest> by performing a read-modify-write operation using <FLASH_TEMP> as
// a temporary holding area. This function accepts <numbytes> up to
// <FLASH_PAGESIZE>.
//
void FLASH_Clear (FLADDR dest, unsigned numbytes, bit SFLE)
{
 FLADDR dest_1_page_start; // first address in 1st page
 // containing <dest>
 FLADDR dest_1_page_end; // last address in 1st page
 // containing <dest>
 FLADDR dest_2_page_start; // first address in 2nd page
 // containing <dest>
 FLADDR dest_2_page_end; // last address in 2nd page
 // containing <dest>
 unsigned numbytes_remainder; // when crossing page boundary,
 // number of <src> bytes on 2nd page
 unsigned FLASH_pagesize; // size of FLASH page to update

 FLADDR wptr; // write address
 FLADDR rptr; // read address

 unsigned length;

 if (SFLE) { // update Scratchpad
 FLASH_pagesize = FLASH_SCRATCHSIZE;
 } else {
 FLASH_pagesize = FLASH_PAGESIZE;
 }

 dest_1_page_start = dest & ~(FLASH_pagesize - 1);
 dest_1_page_end = dest_1_page_start + FLASH_pagesize - 1;
 dest_2_page_start = (dest + numbytes) & ~(FLASH_pagesize - 1);
 dest_2_page_end = dest_2_page_start + FLASH_pagesize - 1;

 if (dest_1_page_end == dest_2_page_end) {

 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP, 0);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, 0, rptr, SFLE, length);

 // 3. Copy from (dest+numbytes) to dest_page_end to Scratch page

 wptr = FLASH_TEMP + dest - dest_1_page_start + numbytes;
 rptr = dest + numbytes;
 length = dest_1_page_end - dest - numbytes + 1;
 FLASH_Copy (wptr, 0, rptr, SFLE, length);

 // 4. Erase destination page
 FLASH_PageErase (dest_1_page_start, SFLE);

 // 5. Copy Scratch page to destination page
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, SFLE, rptr, 0, length);
Rev. 0.3 45

AN201

 } else { // value crosses page boundary
 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP, 0);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, 0, rptr, SFLE, length);

 // 3. Erase destination page 1
 FLASH_PageErase (dest_1_page_start, SFLE);

 // 4. Copy Scratch page to destination page 1
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, SFLE, rptr, 0, length);

 // now handle 2nd page

 // 5. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP, 0);

 // 6. Copy bytes from numbytes remaining to dest-2_page_end to Scratch page

 numbytes_remainder = numbytes - (dest_1_page_end - dest + 1);
 wptr = FLASH_TEMP + numbytes_remainder;
 rptr = dest_2_page_start + numbytes_remainder;
 length = FLASH_pagesize - numbytes_remainder;
 FLASH_Copy (wptr, 0, rptr, SFLE, length);

 // 7. Erase destination page 2
 FLASH_PageErase (dest_2_page_start, SFLE);

 // 8. Copy Scratch page to destination page 2
 wptr = dest_2_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, SFLE, rptr, 0, length);
 }
}

//---
// FLASH_Update
//---
//
// This routine replaces <numbytes> from <src> to the FLASH addressed by
// <dest>. This function calls FLASH_Clear() to handle the dirty work of
// initializing all <dest> bytes to 0xff's prior to copying the bytes from
// <src> to <dest>. This function accepts <numbytes> up to <FLASH_PAGESIZE>.
//
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes, bit SFLE)
{
 // 1. Erase <numbytes> starting from <dest>
 FLASH_Clear (dest, numbytes, SFLE);

 // 2. Write <numbytes> from <src> to <dest>
 FLASH_Write (dest, src, numbytes, SFLE);
}

//---
46 Rev. 0.3

AN201

// FLASH_Write
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes, bit SFLE)
{
 FLADDR i;

 for (i = dest; i < dest+numbytes; i++) {
 FLASH_ByteWrite (i, *src++, SFLE);
 }
}

//---
// FLASH_Read
//---
//
// This routine copies <numbytes> from the linear FLASH address <src> to
// <dest>.
//
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes, bit SFLE)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {
 *dest++ = FLASH_ByteRead (src+i, SFLE);
 }
 return dest;
}

//---
// FLASH_Copy
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Copy (FLADDR dest, bit destSFLE, FLADDR src, bit srcSFLE,
 unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {

 FLASH_ByteWrite ((FLADDR) dest+i,
 FLASH_ByteRead((FLADDR) src+i, srcSFLE),
 destSFLE);
 }
}

//---
// FLASH_Fill
//---
//
// This routine fills the FLASH beginning at <addr> with <lenght> bytes.
//
void FLASH_Fill (FLADDR addr, ULONG length, unsigned char fill, bit SFLE)
{
 FLADDR i;

 for (i = 0; i < length; i++) {
Rev. 0.3 47

AN201

 FLASH_ByteWrite (addr+i, fill, SFLE);
 }
}

//---
// FLASH_Print
//---
//
// This routine prints <length> bytes from the FLASH beginning at <addr>.
//
void FLASH_Print (FLADDR addr, ULONG length, bit SFLE)
{
 FLADDR i;
 unsigned char me;

 for (i = 0; i < length; i++) {
 me = FLASH_ByteRead (addr+i, SFLE);
 if ((addr+i) % 16 == 0) {
 if (sizeof (FLADDR) == 4)
 printf ("\n%05lx: %02x ", (addr+i), (unsigned) me);
 else
 printf ("\n%05x: %02x ", (addr+i), (unsigned) me);
 } else {
 printf ("%02x ", (unsigned) me);
 }
 }
}

48 Rev. 0.3

AN201

7.4.4. F060_FlashUtils.h
//---
// F060_FlashUtils.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F06x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F060_FLASHUTILS_H
#define F060_FLASHUTILS_H

//---
// Includes
//---

#include "F060_FlashPrimitives.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_Write (FLADDR dest, char *src, unsigned numbytes, bit SFLE);
extern char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes, bit SFLE);
extern void FLASH_Clear (FLADDR addr, unsigned numbytes, bit SFLE);

// FLASH update/copy routines
extern void FLASH_Update (FLADDR dest, char *src, unsigned numbytes, bit SFLE);
extern void FLASH_Copy (FLADDR dest, bit destSFLE, FLADDR src, bit srcSFLE,
 unsigned numbytes);

// FLASH test routines
extern void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill, bit SFLE);
extern void FLASH_Print (FLADDR addr, ULONG length, bit SFLE);

#endif // F060_FLASHUTILS_H
Rev. 0.3 49

AN201
7.5. ‘F120
7.5.1. F120_FlashPrimitives.c
//---
// F120_FlashPrimitives.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F12x
// Tool chain: KEIL C51 7.06
//
// Release 1.1
// -Upgrading release version due to change in FlashPrimitives.h
// -07 FEB 2006 (GP)
//
// Release 1.0
//

//---
// Includes
//---

#include "F120_FlashPrimitives.h"
#include <c8051F120.h>

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_ByteWrite (FLADDR addr, char byte, bit SFLE);
unsigned char FLASH_ByteRead (FLADDR addr, bit SFLE);
void FLASH_PageErase (FLADDR addr, bit SFLE);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_ByteWrite
//---
//
// This routine writes <byte> to the linear FLASH address <addr>.
// Linear map is decoded as follows:
// Linear Address Bank Bank Address
// --
50 Rev. 0.3

AN201

// 0x00000 - 0x07FFF 0 0x0000 - 0x7FFF
// 0x08000 - 0x0FFFF 1 0x8000 - 0xFFFF
// 0x10000 - 0x17FFF 2 0x8000 - 0xFFFF
// 0x18000 - 0x1FFFF 3 0x8000 - 0xFFFF
//
void FLASH_ByteWrite (FLADDR addr, char byte, bit SFLE)
{
 char SFRPAGE_SAVE = SFRPAGE; // preserve SFRPAGE
 bit EA_SAVE = EA; // preserve EA
 char PSBANK_SAVE = PSBANK; // preserve PSBANK
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts

 SFRPAGE = LEGACY_PAGE;

 if (addr < 0x10000) { // 64K linear address
 pwrite = (char xdata *) addr;
 } else if (addr < 0x18000) { // BANK 2
 addr |= 0x8000;
 pwrite = (char xdata *) addr;
 PSBANK &= ~0x30; // COBANK = 0x2
 PSBANK |= 0x20;
 } else { // BANK 3
 pwrite = (char xdata *) addr;
 PSBANK &= ~0x30; // COBANK = 0x3
 PSBANK |= 0x30;
 }

 FLSCL |= 0x01; // enable FLASH writes/erases
 PSCTL |= 0x01; // PSWE = 1

 if (SFLE) {
 PSCTL |= 0x04; // set SFLE
 }

 RSTSRC = 0x02; // enable VDDMON as reset source
 *pwrite = byte; // write the byte

 if (SFLE) {
 PSCTL &= ~0x04; // clear SFLE
 }
 PSCTL &= ~0x01; // PSWE = 0
 FLSCL &= ~0x01; // disable FLASH writes/erases

 PSBANK = PSBANK_SAVE; // restore PSBANK
 SFRPAGE = SFRPAGE_SAVE; // restore SFRPAGE
 EA = EA_SAVE; // restore interrupts
}

//---
// FLASH_ByteRead
//---
//
// This routine reads a <byte> from the linear FLASH address <addr>.
//
unsigned char FLASH_ByteRead (FLADDR addr, bit SFLE)
{
 char SFRPAGE_SAVE = SFRPAGE; // preserve SFRPAGE
 bit EA_SAVE = EA; // preserve EA
 char PSBANK_SAVE = PSBANK; // preserve PSBANK
 char code * data pread; // FLASH read pointer
 unsigned char byte;
Rev. 0.3 51

AN201

 EA = 0; // disable interrupts

 SFRPAGE = LEGACY_PAGE;

 if (addr < 0x10000) { // 64K linear address
 pread = (char code *) addr;
 } else if (addr < 0x18000) { // BANK 2
 addr |= 0x8000;
 pread = (char code *) addr;
 PSBANK &= ~0x30; // COBANK = 0x2
 PSBANK |= 0x20;
 } else { // BANK 3
 pread = (char code *) addr;
 PSBANK &= ~0x30; // COBANK = 0x3
 PSBANK |= 0x30;
 }

 if (SFLE) {
 PSCTL |= 0x04; // set SFLE
 }

 byte = *pread; // read the byte

 if (SFLE) {
 PSCTL &= ~0x04; // clear SFLE
 }

 PSBANK = PSBANK_SAVE; // restore PSBANK
 SFRPAGE = SFRPAGE_SAVE; // restore SFRPAGE
 EA = EA_SAVE; // restore interrupts

 return byte;
}

//---
// FLASH_PageErase
//---
//
// This routine erases the FLASH page containing the linear FLASH address
// <addr>.
//
void FLASH_PageErase (FLADDR addr, bit SFLE)
{
 char SFRPAGE_SAVE = SFRPAGE; // preserve SFRPAGE
 bit EA_SAVE = EA; // preserve EA
 char PSBANK_SAVE = PSBANK; // preserve PSBANK
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts

 SFRPAGE = LEGACY_PAGE;

 if (addr < 0x10000) { // 64K linear address
 pwrite = (char xdata *) addr;
 } else if (addr < 0x18000) { // BANK 2
 addr |= 0x8000;
 pwrite = (char xdata *) addr;
 PSBANK &= ~0x30; // COBANK = 0x2
 PSBANK |= 0x20;
 } else { // BANK 3
 pwrite = (char xdata *) addr;
 PSBANK &= ~0x30; // COBANK = 0x3
 PSBANK |= 0x30;
 }
52 Rev. 0.3

AN201
 FLSCL |= 0x01; // enable FLASH writes/erases
 PSCTL |= 0x03; // PSWE = 1; PSEE = 1

 if (SFLE) {
 PSCTL |= 0x04; // set SFLE
 }

 RSTSRC = 0x02; // enable VDDMON as reset source
 *pwrite = 0; // initiate page erase

 if (SFLE) {
 PSCTL &= ~0x04; // clear SFLE
 }

 PSCTL &= ~0x03; // PSWE = 0; PSEE = 0
 FLSCL &= ~0x01; // disable FLASH writes/erases

 PSBANK = PSBANK_SAVE; // restore PSBANK
 SFRPAGE = SFRPAGE_SAVE; // restore SFRPAGE
 EA = EA_SAVE; // restore interrupts
}

Rev. 0.3 53

AN201

7.5.2. F120_FlashPrimitives.h
//---
// F120_FlashPrimitives.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F12x
// Tool chain: KEIL C51 7.06
//
//
// Release 1.1
// -Change typecast of FLASH_PAGESIZE to 1024L to fix bug in Flash_Clear()
// -07 FEB 2006 (GP)
//
// Release 1.0
//

#ifndef F120_FLASHPRIMITIVES_H
#define F120_FLASHPRIMITIVES_H

//---
// Includes
//---

//---
// Structures, Unions, Enumerations, and Type Definitions
//---
typedef unsigned long ULONG;
typedef unsigned int UINT;
typedef unsigned char UCHAR;

//---
// Global Constants
//---

#ifndef FLASH_PAGESIZE
#define FLASH_PAGESIZE 1024L
#endif

#ifndef FLASH_SCRATCHSIZE
#define FLASH_SCRATCHSIZE 256
#endif

#ifndef FLASH_TEMP
#define FLASH_TEMP 0x1F400L // address of temp page
#endif

#ifndef FLASH_LAST
#define FLASH_LAST 0x1F800L // last page of FLASH
#endif

typedef ULONG FLADDR;

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_ByteWrite (FLADDR addr, char byte, bit SFLE);
extern unsigned char FLASH_ByteRead (FLADDR addr, bit SFLE);
extern void FLASH_PageErase (FLADDR addr, bit SFLE);

#endif // F120_FLASHPRIMITIVES_H
54 Rev. 0.3

AN201

7.5.3. F120_FlashUtils.c
//---
// F120_FlashUtils.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F12x
// Tool chain: KEIL C51 7.06
//
// Release 1.1
// -Upgrading release version due to change in FlashPrimitives.h
// -07 FEB 2006 (GP)
//
// Release 1.0
//

//---
// Includes
//---

#include "F120_FlashPrimitives.h"
#include "F120_FlashUtils.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes, bit SFLE);
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes, bit SFLE);
void FLASH_Clear (FLADDR addr, unsigned numbytes, bit SFLE);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes, bit SFLE);
void FLASH_Copy (FLADDR dest, bit destSFLE, FLADDR src, bit srcSFLE,
 unsigned numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill, bit SFLE);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_Clear
//---
Rev. 0.3 55

AN201

//
// This routine erases <numbytes> starting from the FLASH addressed by
// <dest> by performing a read-modify-write operation using <FLASH_TEMP> as
// a temporary holding area. This function accepts <numbytes> up to
// <FLASH_PAGESIZE>.
//
void FLASH_Clear (FLADDR dest, unsigned numbytes, bit SFLE)
{
 FLADDR dest_1_page_start; // first address in 1st page
 // containing <dest>
 FLADDR dest_1_page_end; // last address in 1st page
 // containing <dest>
 FLADDR dest_2_page_start; // first address in 2nd page
 // containing <dest>
 FLADDR dest_2_page_end; // last address in 2nd page
 // containing <dest>
 unsigned numbytes_remainder; // when crossing page boundary,
 // number of <src> bytes on 2nd page
 unsigned FLASH_pagesize; // size of FLASH page to update

 FLADDR wptr; // write address
 FLADDR rptr; // read address

 unsigned length;

 if (SFLE) { // update Scratchpad
 FLASH_pagesize = FLASH_SCRATCHSIZE;
 } else {
 FLASH_pagesize = FLASH_PAGESIZE;
 }

 dest_1_page_start = dest & ~(FLASH_pagesize - 1);
 dest_1_page_end = dest_1_page_start + FLASH_pagesize - 1;
 dest_2_page_start = (dest + numbytes) & ~(FLASH_pagesize - 1);
 dest_2_page_end = dest_2_page_start + FLASH_pagesize - 1;

 if (dest_1_page_end == dest_2_page_end) {

 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP, 0);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, 0, rptr, SFLE, length);

 // 3. Copy from (dest+numbytes) to dest_page_end to Scratch page

 wptr = FLASH_TEMP + dest - dest_1_page_start + numbytes;
 rptr = dest + numbytes;
 length = dest_1_page_end - dest - numbytes + 1;
 FLASH_Copy (wptr, 0, rptr, SFLE, length);

 // 4. Erase destination page
 FLASH_PageErase (dest_1_page_start, SFLE);

 // 5. Copy Scratch page to destination page
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, SFLE, rptr, 0, length);

 } else { // value crosses page boundary
 // 1. Erase Scratch page
56 Rev. 0.3

AN201

 FLASH_PageErase (FLASH_TEMP, 0);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, 0, rptr, SFLE, length);

 // 3. Erase destination page 1
 FLASH_PageErase (dest_1_page_start, SFLE);

 // 4. Copy Scratch page to destination page 1
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, SFLE, rptr, 0, length);

 // now handle 2nd page

 // 5. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP, 0);

 // 6. Copy bytes from numbytes remaining to dest-2_page_end to Scratch page

 numbytes_remainder = numbytes - (dest_1_page_end - dest + 1);
 wptr = FLASH_TEMP + numbytes_remainder;
 rptr = dest_2_page_start + numbytes_remainder;
 length = FLASH_pagesize - numbytes_remainder;
 FLASH_Copy (wptr, 0, rptr, SFLE, length);

 // 7. Erase destination page 2
 FLASH_PageErase (dest_2_page_start, SFLE);

 // 8. Copy Scratch page to destination page 2
 wptr = dest_2_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, SFLE, rptr, 0, length);
 }
}

//---
// FLASH_Update
//---
//
// This routine replaces <numbytes> from <src> to the FLASH addressed by
// <dest>. This function calls FLASH_Clear() to handle the dirty work of
// initializing all <dest> bytes to 0xff's prior to copying the bytes from
// <src> to <dest>. This function accepts <numbytes> up to <FLASH_PAGESIZE>.
//
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes, bit SFLE)
{
 // 1. Erase <numbytes> starting from <dest>
 FLASH_Clear (dest, numbytes, SFLE);

 // 2. Write <numbytes> from <src> to <dest>
 FLASH_Write (dest, src, numbytes, SFLE);
}

//---
// FLASH_Write
Rev. 0.3 57

AN201

//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes, bit SFLE)
{
 FLADDR i;

 for (i = dest; i < dest+numbytes; i++) {
 FLASH_ByteWrite (i, *src++, SFLE);
 }
}

//---
// FLASH_Read
//---
//
// This routine copies <numbytes> from the linear FLASH address <src> to
// <dest>.
//
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes, bit SFLE)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {
 *dest++ = FLASH_ByteRead (src+i, SFLE);
 }
 return dest;
}

//---
// FLASH_Copy
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Copy (FLADDR dest, bit destSFLE, FLADDR src, bit srcSFLE,
 unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {

 FLASH_ByteWrite ((FLADDR) dest+i,
 FLASH_ByteRead((FLADDR) src+i, srcSFLE),
 destSFLE);
 }
}

//---
// FLASH_Fill
//---
//
// This routine fills the FLASH beginning at <addr> with <lenght> bytes.
//
void FLASH_Fill (FLADDR addr, ULONG length, unsigned char fill, bit SFLE)
{
 FLADDR i;

 for (i = 0; i < length; i++) {
 FLASH_ByteWrite (addr+i, fill, SFLE);
 }
}

58 Rev. 0.3

AN201

7.5.4. F120_FlashUtils.h
//---
// F120_FlashUtils.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F12x
// Tool chain: KEIL C51 7.06
//
// Release 1.1
// -Upgrading release version due to change in FlashPrimitives.h
// -07 FEB 2006 (GP)
//
// Release 1.0
//

#ifndef F120_FLASHUTILS_H
#define F120_FLASHUTILS_H

//---
// Includes
//---

#include "F120_FlashPrimitives.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_Write (FLADDR dest, char *src, unsigned numbytes, bit SFLE);
extern char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes, bit SFLE);
extern void FLASH_Clear (FLADDR addr, unsigned numbytes, bit SFLE);

// FLASH update/copy routines
extern void FLASH_Update (FLADDR dest, char *src, unsigned numbytes, bit SFLE);
extern void FLASH_Copy (FLADDR dest, bit destSFLE, FLADDR src, bit srcSFLE,
 unsigned numbytes);

// FLASH test routines
extern void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill, bit SFLE);

#endif // F120_FLASHUTILS_H
Rev. 0.3 59

AN201
7.6. ‘F200
7.6.1. F200_FlashPrimitives.c
//---
// F200_FlashPrimitives.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F2xx
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F200_FlashPrimitives.h"
#include <c8051F200.h>

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_ByteWrite (FLADDR addr, char byte);
unsigned char FLASH_ByteRead (FLADDR addr);
void FLASH_PageErase (FLADDR addr);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_ByteWrite
//---
//
// This routine writes <byte> to the linear FLASH address <addr>.
// Linear map is decoded as follows:
// Linear Address Device Address
// --
// 0x00000 - 0x0FFFF 0x0000 - 0xFFFF
//
void FLASH_ByteWrite (FLADDR addr, char byte)
{
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer
60 Rev. 0.3

AN201

 EA = 0; // disable interrupts

 pwrite = (char xdata *) addr; // initialize write pointer

 FLSCL = FLASHSCALE; // enable FLASH writes/erases
 PSCTL |= 0x01; // PSWE = 1

 *pwrite = byte; // write the byte

 PSCTL &= ~0x01; // PSWE = 0
 FLSCL |= 0x0F; // disable FLASH writes/erases

 EA = EA_SAVE; // restore interrupts
}

//---
// FLASH_ByteRead
//---
//
// This routine reads a <byte> from the linear FLASH address <addr>.
//
unsigned char FLASH_ByteRead (FLADDR addr)
{
 bit EA_SAVE = EA; // preserve EA
 char code * data pread; // FLASH read pointer
 unsigned char byte;

 pread = (char code *) addr; // initialize read pointer

 EA = 0; // disable interrupts

 byte = *pread; // read the byte

 EA = EA_SAVE; // restore interrupts

 return byte;
}

//---
// FLASH_PageErase
//---
//
// This routine erases the FLASH page containing the linear FLASH address
// <addr>.
//
void FLASH_PageErase (FLADDR addr)
{
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts

 pwrite = (char xdata *) addr; // initialize erase pointer

 FLSCL = FLASHSCALE; // enable FLASH writes/erases
 PSCTL |= 0x03; // PSWE = 1; PSEE = 1

 *pwrite = 0; // initiate page erase

 PSCTL &= ~0x03; // PSWE = 0; PSEE = 0
 FLSCL |= 0x0F; // disable FLASH writes/erases

 EA = EA_SAVE; // restore interrupts
}

Rev. 0.3 61

AN201

7.6.2. F200_FlashPrimitives.h
//---
// F200_FlashPrimitives.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F2xx
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F200_FLASHPRIMITIVES_H
#define F200_FLASHPRIMITIVES_H

//---
// Includes
//---

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

typedef unsigned long ULONG;
typedef unsigned int UINT;
typedef unsigned char UCHAR;

//---
// Global Constants
//---

#ifndef SYSCLK
#define SYSCLK 16000000L
#endif

#ifndef FLASHSCALE

#if (SYSCLK < 50000L)
#define FLASHSCALE 0x80
#elif (SYSCLK < 100000L)
#define FLASHSCALE 0x81
#elif (SYSCLK < 200000L)
#define FLASHSCALE 0x82
#elif (SYSCLK < 400000L)
#define FLASHSCALE 0x83
#elif (SYSCLK < 800000L)
#define FLASHSCALE 0x84
#elif (SYSCLK < 1600000L)
#define FLASHSCALE 0x85
#elif (SYSCLK < 3200000L)
#define FLASHSCALE 0x86
#elif (SYSCLK < 6400000L)
#define FLASHSCALE 0x87
#elif (SYSCLK < 12800000L)
#define FLASHSCALE 0x88
#elif (SYSCLK < 25600000L)
#define FLASHSCALE 0x89
#endif // SYSCLK test
62 Rev. 0.3

AN201
#endif // FLASHSCALE

#ifndef FLASH_PAGESIZE
#define FLASH_PAGESIZE 512
#endif

#ifndef FLASH_SCRATCHSIZE
#define FLASH_SCRATCHSIZE 128
#endif

#ifndef FLASH_TEMP
#define FLASH_TEMP 0x01800L
#endif

#ifndef FLASH_LAST
#define FLASH_LAST 0x01A00L // last page of FLASH
#endif

typedef UINT FLADDR;

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_ByteWrite (FLADDR addr, char byte);
extern unsigned char FLASH_ByteRead (FLADDR addr);
extern void FLASH_PageErase (FLADDR addr);

#endif // F200_FLASHPRIMITIVES_H
Rev. 0.3 63

AN201

7.6.3. F200_FlashUtils.c
//---
// F200_FlashUtils.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F2xx
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F200_FlashPrimitives.h"
#include "F200_FlashUtils.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes);
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_Clear
//---
//
// This routine erases <numbytes> starting from the FLASH addressed by
// <dest> by performing a read-modify-write operation using <FLASH_TEMP> as
// a temporary holding area. This function accepts <numbytes> up to
64 Rev. 0.3

AN201

// <FLASH_PAGESIZE>.
//
void FLASH_Clear (FLADDR dest, unsigned numbytes)
{
 FLADDR dest_1_page_start; // first address in 1st page
 // containing <dest>
 FLADDR dest_1_page_end; // last address in 1st page
 // containing <dest>
 FLADDR dest_2_page_start; // first address in 2nd page
 // containing <dest>
 FLADDR dest_2_page_end; // last address in 2nd page
 // containing <dest>
 unsigned numbytes_remainder; // when crossing page boundary,
 // number of <src> bytes on 2nd page
 unsigned FLASH_pagesize; // size of FLASH page to update

 FLADDR wptr; // write address
 FLADDR rptr; // read address

 unsigned length;

 FLASH_pagesize = FLASH_PAGESIZE;

 dest_1_page_start = dest & ~(FLASH_pagesize - 1);
 dest_1_page_end = dest_1_page_start + FLASH_pagesize - 1;
 dest_2_page_start = (dest + numbytes) & ~(FLASH_pagesize - 1);
 dest_2_page_end = dest_2_page_start + FLASH_pagesize - 1;

 if (dest_1_page_end == dest_2_page_end) {

 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Copy from (dest+numbytes) to dest_page_end to Scratch page

 wptr = FLASH_TEMP + dest - dest_1_page_start + numbytes;
 rptr = dest + numbytes;
 length = dest_1_page_end - dest - numbytes + 1;
 FLASH_Copy (wptr, rptr, length);

 // 4. Erase destination page
 FLASH_PageErase (dest_1_page_start);

 // 5. Copy Scratch page to destination page
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 } else { // value crosses page boundary
 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
Rev. 0.3 65

AN201

 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Erase destination page 1
 FLASH_PageErase (dest_1_page_start);

 // 4. Copy Scratch page to destination page 1
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 // now handle 2nd page

 // 5. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 6. Copy bytes from numbytes remaining to dest-2_page_end to Scratch page

 numbytes_remainder = numbytes - (dest_1_page_end - dest + 1);
 wptr = FLASH_TEMP + numbytes_remainder;
 rptr = dest_2_page_start + numbytes_remainder;
 length = FLASH_pagesize - numbytes_remainder;
 FLASH_Copy (wptr, rptr, length);

 // 7. Erase destination page 2
 FLASH_PageErase (dest_2_page_start);

 // 8. Copy Scratch page to destination page 2
 wptr = dest_2_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);
 }
}

//---
// FLASH_Update
//---
//
// This routine replaces <numbytes> from <src> to the FLASH addressed by
// <dest>. This function calls FLASH_Clear() to handle the dirty work of
// initializing all <dest> bytes to 0xff's prior to copying the bytes from
// <src> to <dest>. This function accepts <numbytes> up to <FLASH_PAGESIZE>.
//
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes)
{
 // 1. Erase <numbytes> starting from <dest>
 FLASH_Clear (dest, numbytes);

 // 2. Write <numbytes> from <src> to <dest>
 FLASH_Write (dest, src, numbytes);
}

//---
// FLASH_Write
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
66 Rev. 0.3

AN201

//
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes)
{
 FLADDR i;

 for (i = dest; i < dest+numbytes; i++) {
 FLASH_ByteWrite (i, *src++);
 }
}

//---
// FLASH_Read
//---
//
// This routine copies <numbytes> from the linear FLASH address <src> to
// <dest>.
//
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {
 *dest++ = FLASH_ByteRead (src+i);
 }
 return dest;
}

//---
// FLASH_Copy
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {

 FLASH_ByteWrite ((FLADDR) dest+i, FLASH_ByteRead((FLADDR) src+i));
 }
}

//---
// FLASH_Fill
//---
//
// This routine fills the FLASH beginning at <addr> with <lenght> bytes.
//
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill)
{
 FLADDR i;

 for (i = 0; i < length; i++) {
 FLASH_ByteWrite (addr+i, fill);
 }
}

Rev. 0.3 67

AN201

7.6.4. F200_FlashUtils.h
//---
// F200_FlashUtils.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F2xx
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F200_FLASHUTILS_H
#define F200_FLASHUTILS_H

//---
// Includes
//---

#include "F200_FlashPrimitives.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
extern char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
extern void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines
extern void FLASH_Update (FLADDR dest, char *src, unsigned numbytes); // copy with destina-
tion preservation
extern void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes); // low-level FLASH/
FLASH byte copy

// FLASH test routines
extern void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

#endif // F200_FLASHUTILS_H
68 Rev. 0.3

AN201
7.7. ‘F300
7.7.1. F300_FlashPrimitives.c
//---
// F300_FlashPrimitives.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F30x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F300_FlashPrimitives.h"
#include <c8051F300.h>

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_ByteWrite (FLADDR addr, char byte);
unsigned char FLASH_ByteRead (FLADDR addr);
void FLASH_PageErase (FLADDR addr);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_ByteWrite
//---
//
// This routine writes <byte> to the linear FLASH address <addr>.
//
void FLASH_ByteWrite (FLADDR addr, char byte)
{
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts

 RSTSRC = 0x06; // enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;
Rev. 0.3 69

AN201

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x01; // PSWE = 1

 RSTSRC = 0x06; // enable VDD monitor as a reset source

 *pwrite = byte; // write the byte

 PSCTL &= ~0x01; // PSWE = 0

 EA = EA_SAVE; // restore interrupts
}

//---
// FLASH_ByteRead
//---
//
// This routine reads a <byte> from the linear FLASH address <addr>.
//
unsigned char FLASH_ByteRead (FLADDR addr)
{
 bit EA_SAVE = EA; // preserve EA
 char code * data pread; // FLASH read pointer
 unsigned char byte;

 EA = 0; // disable interrupts

 pread = (char code *) addr;

 byte = *pread; // read the byte

 EA = EA_SAVE; // restore interrupts

 return byte;
}

//---
// FLASH_PageErase
//---
//
// This routine erases the FLASH page containing the linear FLASH address
// <addr>.
//
void FLASH_PageErase (FLADDR addr)
{
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts

 RSTSRC = 0x06; // enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x03; // PSWE = 1; PSEE = 1

 RSTSRC = 0x06; // enable VDD monitor as a reset source
 *pwrite = 0; // initiate page erase

 PSCTL &= ~0x03; // PSWE = 0; PSEE = 0

 EA = EA_SAVE; // restore interrupts
}

70 Rev. 0.3

AN201

7.7.2. F300_FlashPrimitives.h
//---
// F300_FlashPrimitives.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F30x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F300_FLASHPRIMITIVES_H
#define F300_FLASHPRIMITIVES_H

//---
// Includes
//---

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

typedef unsigned long ULONG;
typedef unsigned int UINT;
typedef unsigned char UCHAR;

//---
// Global Constants
//---

#ifndef FLASH_PAGESIZE
#define FLASH_PAGESIZE 512
#endif

#ifndef FLASH_TEMP
#define FLASH_TEMP 0x01a00L
#endif

#ifndef FLASH_LAST
#define FLASH_LAST 0x01c00L
#endif

typedef UINT FLADDR;

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_ByteWrite (FLADDR addr, char byte);
extern unsigned char FLASH_ByteRead (FLADDR addr);
extern void FLASH_PageErase (FLADDR addr);

#endif // F300_FLASHPRIMITIVES_H
Rev. 0.3 71

AN201

7.7.3. F300_FlashUtils.c
//---
// F300_FlashUtils.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F30x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F300_FlashPrimitives.h"
#include "F300_FlashUtils.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes);
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_Clear
//---
//
// This routine erases <numbytes> starting from the FLASH addressed by
// <dest> by performing a read-modify-write operation using <FLASH_TEMP> as
// a temporary holding area. This function accepts <numbytes> up to
72 Rev. 0.3

AN201

// <FLASH_PAGESIZE>.
//
void FLASH_Clear (FLADDR dest, unsigned numbytes)
{
 FLADDR dest_1_page_start; // first address in 1st page
 // containing <dest>
 FLADDR dest_1_page_end; // last address in 1st page
 // containing <dest>
 FLADDR dest_2_page_start; // first address in 2nd page
 // containing <dest>
 FLADDR dest_2_page_end; // last address in 2nd page
 // containing <dest>
 unsigned numbytes_remainder; // when crossing page boundary,
 // number of <src> bytes on 2nd page
 unsigned FLASH_pagesize; // size of FLASH page to update

 FLADDR wptr; // write address
 FLADDR rptr; // read address

 unsigned length;

 FLASH_pagesize = FLASH_PAGESIZE;

 dest_1_page_start = dest & ~(FLASH_pagesize - 1);
 dest_1_page_end = dest_1_page_start + FLASH_pagesize - 1;
 dest_2_page_start = (dest + numbytes) & ~(FLASH_pagesize - 1);
 dest_2_page_end = dest_2_page_start + FLASH_pagesize - 1;

 if (dest_1_page_end == dest_2_page_end) {

 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Copy from (dest+numbytes) to dest_page_end to Scratch page

 wptr = FLASH_TEMP + dest - dest_1_page_start + numbytes;
 rptr = dest + numbytes;
 length = dest_1_page_end - dest - numbytes + 1;
 FLASH_Copy (wptr, rptr, length);

 // 4. Erase destination page
 FLASH_PageErase (dest_1_page_start);

 // 5. Copy Scratch page to destination page
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 } else { // value crosses page boundary
 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
Rev. 0.3 73

AN201

 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Erase destination page 1
 FLASH_PageErase (dest_1_page_start);

 // 4. Copy Scratch page to destination page 1
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 // now handle 2nd page

 // 5. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 6. Copy bytes from numbytes remaining to dest-2_page_end to Scratch page

 numbytes_remainder = numbytes - (dest_1_page_end - dest + 1);
 wptr = FLASH_TEMP + numbytes_remainder;
 rptr = dest_2_page_start + numbytes_remainder;
 length = FLASH_pagesize - numbytes_remainder;
 FLASH_Copy (wptr, rptr, length);

 // 7. Erase destination page 2
 FLASH_PageErase (dest_2_page_start);

 // 8. Copy Scratch page to destination page 2
 wptr = dest_2_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);
 }
}

//---
// FLASH_Update
//---
//
// This routine replaces <numbytes> from <src> to the FLASH addressed by
// <dest>. This function calls FLASH_Clear() to handle the dirty work of
// initializing all <dest> bytes to 0xff's prior to copying the bytes from
// <src> to <dest>. This function accepts <numbytes> up to <FLASH_PAGESIZE>.
//
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes)
{
 // 1. Erase <numbytes> starting from <dest>
 FLASH_Clear (dest, numbytes);

 // 2. Write <numbytes> from <src> to <dest>
 FLASH_Write (dest, src, numbytes);
}

//---
// FLASH_Write
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes)
74 Rev. 0.3

AN201

{
 FLADDR i;

 for (i = dest; i < dest+numbytes; i++) {
 FLASH_ByteWrite (i, *src++);
 }
}

//---
// FLASH_Read
//---
//
// This routine copies <numbytes> from the linear FLASH address <src> to
// <dest>.
//
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {
 *dest++ = FLASH_ByteRead (src+i);
 }
 return dest;
}

//---
// FLASH_Copy
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {

 FLASH_ByteWrite ((FLADDR) dest+i, FLASH_ByteRead((FLADDR) src+i));
 }
}

//---
// FLASH_Fill
//---
//
// This routine fills the FLASH beginning at <addr> with <lenght> bytes.
//
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill)
{
 FLADDR i;

 for (i = 0; i < length; i++) {
 FLASH_ByteWrite (addr+i, fill);
 }
}

Rev. 0.3 75

AN201

7.7.4. F300_FlashUtils.h
//---
// F300_FlashUtils.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F30x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F300_FLASHUTILS_H
#define F300_FLASHUTILS_H

//---
// Includes
//---

#include "F300_FlashPrimitives.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
extern char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
extern void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines
extern void FLASH_Update (FLADDR dest, char *src, unsigned numbytes); // copy with destina-
tion preservation
extern void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes); // low-level FLASH/
FLASH byte copy

// FLASH test routines
extern void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

#endif // F300_FLASHUTILS_H
76 Rev. 0.3

AN201
7.8. ‘F310
7.8.1. F310_FlashPrimitives.c
//---
// F310_FlashPrimitives.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F31x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//
//---
// Includes
//---

#include "F310_FlashPrimitives.h"
#include <c8051F310.h>

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_ByteWrite (FLADDR addr, char byte);
unsigned char FLASH_ByteRead (FLADDR addr);
void FLASH_PageErase (FLADDR addr);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_ByteWrite
//---
//
// This routine writes <byte> to the linear FLASH address <addr>.
//
void FLASH_ByteWrite (FLADDR addr, char byte)
{
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts
Rev. 0.3 77

AN201

 // change clock speed to slow, then restore later
 VDM0CN = 0x80; // enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x01; // PSWE = 1

 VDM0CN = 0x80; // enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source

 *pwrite = byte; // write the byte

 PSCTL &= ~0x01; // PSWE = 0

 EA = EA_SAVE; // restore interrupts
}

//---
// FLASH_ByteRead
//---
//
// This routine reads a <byte> from the linear FLASH address <addr>.
//
unsigned char FLASH_ByteRead (FLADDR addr)
{
 bit EA_SAVE = EA; // preserve EA
 char code * data pread; // FLASH read pointer
 unsigned char byte;

 EA = 0; // disable interrupts

 pread = (char code *) addr;

 byte = *pread; // read the byte

 EA = EA_SAVE; // restore interrupts

 return byte;
}

//---
// FLASH_PageErase
//---
//
// This routine erases the FLASH page containing the linear FLASH address
// <addr>.
//
void FLASH_PageErase (FLADDR addr)
{
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts
 // change clock speed to slow, then restore later

 VDM0CN = 0x80; // enable VDD monitor
78 Rev. 0.3

AN201
 RSTSRC = 0x02; // enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x03; // PSWE = 1; PSEE = 1

 VDM0CN = 0x80; // enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source
 *pwrite = 0; // initiate page erase

 PSCTL &= ~0x03; // PSWE = 0; PSEE = 0

 EA = EA_SAVE; // restore interrupts
}

Rev. 0.3 79

AN201

7.8.2. F310_FlashPrimitives.h
//---
// F310_FlashPrimitives.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F31x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F310_FLASHPRIMITIVES_H
#define F310_FLASHPRIMITIVES_H

//---
// Includes
//---

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

typedef unsigned long ULONG;
typedef unsigned int UINT;
typedef unsigned char UCHAR;

//---
// Global Constants
//---

#ifndef FLASH_PAGESIZE
#define FLASH_PAGESIZE 512
#endif

#ifndef FLASH_TEMP
#define FLASH_TEMP 0x03a00L
#endif

#ifndef FLASH_LAST
#define FLASH_LAST 0x03c00L
#endif

typedef UINT FLADDR;

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_ByteWrite (FLADDR addr, char byte);
extern unsigned char FLASH_ByteRead (FLADDR addr);
extern void FLASH_PageErase (FLADDR addr);

#endif // F310_FLASHPRIMITIVES_H
80 Rev. 0.3

AN201

7.8.3. F310_FlashUtils.c
//---
// F310_FlashUtils.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F31x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F310_FlashPrimitives.h"
#include "F310_FlashUtils.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes);
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);
void FLASH_Print (FLADDR addr, ULONG length);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_Clear
//---
//
// This routine erases <numbytes> starting from the FLASH addressed by
// <dest> by performing a read-modify-write operation using <FLASH_TEMP> as
Rev. 0.3 81

AN201

// a temporary holding area. This function accepts <numbytes> up to
// <FLASH_PAGESIZE>.
//
void FLASH_Clear (FLADDR dest, unsigned numbytes)
{
 FLADDR dest_1_page_start; // first address in 1st page
 // containing <dest>
 FLADDR dest_1_page_end; // last address in 1st page
 // containing <dest>
 FLADDR dest_2_page_start; // first address in 2nd page
 // containing <dest>
 FLADDR dest_2_page_end; // last address in 2nd page
 // containing <dest>
 unsigned numbytes_remainder; // when crossing page boundary,
 // number of <src> bytes on 2nd page
 unsigned FLASH_pagesize; // size of FLASH page to update

 FLADDR wptr; // write address
 FLADDR rptr; // read address

 unsigned length;

 FLASH_pagesize = FLASH_PAGESIZE;

 dest_1_page_start = dest & ~(FLASH_pagesize - 1);
 dest_1_page_end = dest_1_page_start + FLASH_pagesize - 1;
 dest_2_page_start = (dest + numbytes) & ~(FLASH_pagesize - 1);
 dest_2_page_end = dest_2_page_start + FLASH_pagesize - 1;

 if (dest_1_page_end == dest_2_page_end) {

 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Copy from (dest+numbytes) to dest_page_end to Scratch page

 wptr = FLASH_TEMP + dest - dest_1_page_start + numbytes;
 rptr = dest + numbytes;
 length = dest_1_page_end - dest - numbytes + 1;
 FLASH_Copy (wptr, rptr, length);

 // 4. Erase destination page
 FLASH_PageErase (dest_1_page_start);

 // 5. Copy Scratch page to destination page
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 } else { // value crosses page boundary
 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
82 Rev. 0.3

AN201

 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Erase destination page 1
 FLASH_PageErase (dest_1_page_start);

 // 4. Copy Scratch page to destination page 1
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 // now handle 2nd page

 // 5. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 6. Copy bytes from numbytes remaining to dest-2_page_end to Scratch page

 numbytes_remainder = numbytes - (dest_1_page_end - dest + 1);
 wptr = FLASH_TEMP + numbytes_remainder;
 rptr = dest_2_page_start + numbytes_remainder;
 length = FLASH_pagesize - numbytes_remainder;
 FLASH_Copy (wptr, rptr, length);

 // 7. Erase destination page 2
 FLASH_PageErase (dest_2_page_start);

 // 8. Copy Scratch page to destination page 2
 wptr = dest_2_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);
 }
}

//---
// FLASH_Update
//---
//
// This routine replaces <numbytes> from <src> to the FLASH addressed by
// <dest>. This function calls FLASH_Clear() to handle the dirty work of
// initializing all <dest> bytes to 0xff's prior to copying the bytes from
// <src> to <dest>. This function accepts <numbytes> up to <FLASH_PAGESIZE>.
//
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes)
{
 // 1. Erase <numbytes> starting from <dest>
 FLASH_Clear (dest, numbytes);

 // 2. Write <numbytes> from <src> to <dest>
 FLASH_Write (dest, src, numbytes);
}

//---
// FLASH_Write
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes)
Rev. 0.3 83

AN201

{
 FLADDR i;

 for (i = dest; i < dest+numbytes; i++) {
 FLASH_ByteWrite (i, *src++);
 }
}

//---
// FLASH_Read
//---
//
// This routine copies <numbytes> from the linear FLASH address <src> to
// <dest>.
//
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {
 *dest++ = FLASH_ByteRead (src+i);
 }
 return dest;
}

//---
// FLASH_Copy
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {

 FLASH_ByteWrite ((FLADDR) dest+i, FLASH_ByteRead((FLADDR) src+i));
 }
}

//---
// FLASH_Fill
//---
//
// This routine fills the FLASH beginning at <addr> with <lenght> bytes.
//
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill)
{
 FLADDR i;

 for (i = 0; i < length; i++) {
 FLASH_ByteWrite (addr+i, fill);
 }
}

84 Rev. 0.3

AN201

7.8.4. F310_FlashUtils.h
//---
// F310_FlashUtils.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F31x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F310_FLASHUTILS_H
#define F310_FLASHUTILS_H

//---
// Includes
//---

#include "F310_FlashPrimitives.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
extern char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
extern void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines
extern void FLASH_Update (FLADDR dest, char *src, unsigned numbytes); // copy with destina-
tion preservation
extern void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes); // low-level FLASH/
FLASH byte copy

// FLASH test routines
extern void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

#endif // F310_FLASHUTILS_H
Rev. 0.3 85

AN201
7.9. ‘F320
7.9.1. F320_FlashPrimitives.c
//---
// F320_FlashPrimitives.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F32x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F320_FlashPrimitives.h"
#include <c8051F320.h>

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_ByteWrite (FLADDR addr, char byte);
unsigned char FLASH_ByteRead (FLADDR addr);
void FLASH_PageErase (FLADDR addr);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_ByteWrite
//---
//
// This routine writes <byte> to the linear FLASH address <addr>.
//
// To do:
// -- optimize to skip 0xFF bytes
//
void FLASH_ByteWrite (FLADDR addr, char byte)
{
 bit EA_SAVE = EA; // preserve EA
86 Rev. 0.3

AN201

 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts

 // change clock speed to slow, then restore later

 VDM0CN = 0x80; // enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x01; // PSWE = 1

 VDM0CN = 0x80; // enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source

 *pwrite = byte; // write the byte

 PSCTL &= ~0x01; // PSWE = 0

 EA = EA_SAVE; // restore interrupts
}

//---
// FLASH_ByteRead
//---
//
// This routine reads a <byte> from the linear FLASH address <addr>.
//
unsigned char FLASH_ByteRead (FLADDR addr)
{
 bit EA_SAVE = EA; // preserve EA
 char code * data pread; // FLASH read pointer
 unsigned char byte;

 EA = 0; // disable interrupts

 pread = (char code *) addr;

 byte = *pread; // read the byte

 EA = EA_SAVE; // restore interrupts

 return byte;
}

//---
// FLASH_PageErase
//---
//
// This routine erases the FLASH page containing the linear FLASH address
// <addr>.
//
void FLASH_PageErase (FLADDR addr)
{
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer
Rev. 0.3 87

AN201
 EA = 0; // disable interrupts
 // change clock speed to slow, then restore later

 VDM0CN = 0x80; // enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x03; // PSWE = 1; PSEE = 1

 VDM0CN = 0x80; // enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source
 *pwrite = 0; // initiate page erase

 PSCTL &= ~0x03; // PSWE = 0; PSEE = 0

 EA = EA_SAVE; // restore interrupts
}

88 Rev. 0.3

AN201

7.9.2. F320_FlashPrimitives.h
//---
// F320_FlashPrimitives.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F32x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//
#ifndef F320_FLASHPRIMITIVES_H
#define F320_FLASHPRIMITIVES_H

//---
// Includes
//---

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

typedef unsigned long ULONG;
typedef unsigned int UINT;
typedef unsigned char UCHAR;

//---
// Global Constants
//---

#ifndef FLASH_PAGESIZE
#define FLASH_PAGESIZE 512
#endif

#ifndef FLASH_TEMP
#define FLASH_TEMP 0x03a00L
#endif

#ifndef FLASH_LAST
#define FLASH_LAST 0x03c00L
#endif

typedef UINT FLADDR;

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_ByteWrite (FLADDR addr, char byte);
extern unsigned char FLASH_ByteRead (FLADDR addr);
extern void FLASH_PageErase (FLADDR addr);

#endif // F320_FLASHPRIMITIVES_H
Rev. 0.3 89

AN201

7.9.3. F320_FlashUtils.c
//---
// F320_FlashUtils.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F32x
// Tool chain: KEIL C51 7.06
//
// Release 1.1
// 1/30/2006
// Fixed function header for Flash_Write()
//
// Release 1.0
//

//---
// Includes
//---

#include "F320_FlashPrimitives.h"
#include "F320_FlashUtils.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes);
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_Clear
//---
90 Rev. 0.3

AN201

//
// This routine erases <numbytes> starting from the FLASH addressed by
// <dest> by performing a read-modify-write operation using <FLASH_TEMP> as
// a temporary holding area. This function accepts <numbytes> up to
// <FLASH_PAGESIZE>.
//
void FLASH_Clear (FLADDR dest, unsigned numbytes)
{
 FLADDR dest_1_page_start; // first address in 1st page
 // containing <dest>
 FLADDR dest_1_page_end; // last address in 1st page
 // containing <dest>
 FLADDR dest_2_page_start; // first address in 2nd page
 // containing <dest>
 FLADDR dest_2_page_end; // last address in 2nd page
 // containing <dest>
 unsigned numbytes_remainder; // when crossing page boundary,
 // number of <src> bytes on 2nd page
 unsigned FLASH_pagesize; // size of FLASH page to update

 FLADDR wptr; // write address
 FLADDR rptr; // read address

 unsigned length;

 FLASH_pagesize = FLASH_PAGESIZE;

 dest_1_page_start = dest & ~(FLASH_pagesize - 1);
 dest_1_page_end = dest_1_page_start + FLASH_pagesize - 1;
 dest_2_page_start = (dest + numbytes) & ~(FLASH_pagesize - 1);
 dest_2_page_end = dest_2_page_start + FLASH_pagesize - 1;

 if (dest_1_page_end == dest_2_page_end) {

 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Copy from (dest+numbytes) to dest_page_end to Scratch page

 wptr = FLASH_TEMP + dest - dest_1_page_start + numbytes;
 rptr = dest + numbytes;
 length = dest_1_page_end - dest - numbytes + 1;
 FLASH_Copy (wptr, rptr, length);

 // 4. Erase destination page
 FLASH_PageErase (dest_1_page_start);

 // 5. Copy Scratch page to destination page
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 } else { // value crosses page boundary
 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);
Rev. 0.3 91

AN201

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Erase destination page 1
 FLASH_PageErase (dest_1_page_start);

 // 4. Copy Scratch page to destination page 1
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 // now handle 2nd page

 // 5. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 6. Copy bytes from numbytes remaining to dest-2_page_end to Scratch page

 numbytes_remainder = numbytes - (dest_1_page_end - dest + 1);
 wptr = FLASH_TEMP + numbytes_remainder;
 rptr = dest_2_page_start + numbytes_remainder;
 length = FLASH_pagesize - numbytes_remainder;
 FLASH_Copy (wptr, rptr, length);

 // 7. Erase destination page 2
 FLASH_PageErase (dest_2_page_start);

 // 8. Copy Scratch page to destination page 2
 wptr = dest_2_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);
 }
}

//---
// FLASH_Update
//---
//
// This routine replaces <numbytes> from <src> to the FLASH addressed by
// <dest>. This function calls FLASH_Clear() to handle the dirty work of
// initializing all <dest> bytes to 0xff's prior to copying the bytes from
// <src> to <dest>. This function accepts <numbytes> up to <FLASH_PAGESIZE>.
//
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes)
{
 // 1. Erase <numbytes> starting from <dest>
 FLASH_Clear (dest, numbytes);

 // 2. Write <numbytes> from <src> to <dest>
 FLASH_Write (dest, src, numbytes);
}

//---
// FLASH_Write
//---
//
92 Rev. 0.3

AN201

// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes)
{
 FLADDR i;

 for (i = dest; i < dest+numbytes; i++) {
 FLASH_ByteWrite (i, *src++);
 }
}

//---
// FLASH_Read
//---
//
// This routine copies <numbytes> from the linear FLASH address <src> to
// <dest>.
//
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {
 *dest++ = FLASH_ByteRead (src+i);
 }
 return dest;
}

//---
// FLASH_Copy
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
// To do:
// -- optimize to skip 0xFF bytes
//
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {

 FLASH_ByteWrite ((FLADDR) dest+i, FLASH_ByteRead((FLADDR) src+i));
 }
}

//---
// FLASH_Fill
//---
//
// This routine fills the FLASH beginning at <addr> with <lenght> bytes.
//
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill)
{
 FLADDR i;

 for (i = 0; i < length; i++) {
 FLASH_ByteWrite (addr+i, fill);
 }
}

Rev. 0.3 93

AN201

7.9.4. F320_FlashUtils.h
//---
// F320_FlashUtils.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F32x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F320_FLASHUTILS_H
#define F320_FLASHUTILS_H

//---
// Includes
//---

#include "F320_FlashPrimitives.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
extern char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
extern void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines
extern void FLASH_Update (FLADDR dest, char *src, unsigned numbytes); // copy with destina-
tion preservation
extern void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes); // low-level FLASH/
FLASH byte copy

// FLASH test routines
extern void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

#endif // F320_FLASHUTILS_H
94 Rev. 0.3

AN201
7.10. ‘F326/7
7.10.1. F326_FlashPrimitives.c
//---
// F326_FlashPrimitives.c
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// FID: 326000024
// Target: C8051F326/7
// Tool chain: Keil C51 8.00 / Keil EVAL C51
// Command Line: None
//
// Release 1.0
// -Initial Revision (GP)
// -30 JAN 2006
//

//---
// Includes
//---

#include "F326_FlashPrimitives.h"
#include <c8051F326.h>

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_ByteWrite (FLADDR addr, char byte);
unsigned char FLASH_ByteRead (FLADDR addr);
void FLASH_PageErase (FLADDR addr);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_ByteWrite
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR addr - target address to write to
// range is 0 to (FLASH_TEMP-1)
Rev. 0.3 95

AN201

// 2) char byte - byte to write
//
// This routine writes <byte> to the linear FLASH address <addr>.
//
//---
void FLASH_ByteWrite (FLADDR addr, char byte)
{
 bit EA_SAVE = EA; // Preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // Disable interrupts

 // change clock speed to slow, then restore later

 VDM0CN = 0x80; // Enable VDD monitor

 RSTSRC = 0x02; // Enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x01; // PSWE = 1

 VDM0CN = 0x80; // Enable VDD monitor

 RSTSRC = 0x02; // Enable VDD monitor as a reset source

 *pwrite = byte; // Write the byte

 PSCTL &= ~0x01; // PSWE = 0

 EA = EA_SAVE; // Restore interrupts
}

//---
// FLASH_ByteRead
//---
//
// Return Value :
// 1) unsigned char - byte that was read from Flash
// Parameters :
// 1) FLADDR addr - target address to write to
// range is 0 to (FLASH_TEMP-1)
//
// This routine reads a <byte> from the linear FLASH address <addr>.
//
//---
unsigned char FLASH_ByteRead (FLADDR addr)
{
 bit EA_SAVE = EA; // Preserve EA
 char code * data pread; // FLASH read pointer
 unsigned char byte;

 EA = 0; // Disable interrupts

 pread = (char code *) addr;

 byte = *pread; // Read the byte

 EA = EA_SAVE; // Restore interrupts
96 Rev. 0.3

AN201
 return byte;
}

//---
// FLASH_PageErase
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR addr - target address to write to
// range is 0 to (FLASH_TEMP-1)
//
// This routine erases the FLASH page containing the linear FLASH address
// <addr>.
//
//---
void FLASH_PageErase (FLADDR addr)
{
 bit EA_SAVE = EA; // Preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // Disable interrupts
 // change clock speed to slow, then restore later

 VDM0CN = 0x80; // Enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x03; // PSWE = 1; PSEE = 1

 VDM0CN = 0x80; // Enable VDD monitor

 RSTSRC = 0x02; // Enable VDD monitor as a reset source
 *pwrite = 0; // Initiate page erase

 PSCTL &= ~0x03; // PSWE = 0; PSEE = 0

 EA = EA_SAVE; // Restore interrupts
}

//---
// End Of File
//---
Rev. 0.3 97

AN201

7.10.2. F326_FlashPrimitives.h
//---
// F326_FlashPrimitives.h
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// FID: 326000025
// Target: C8051F326/7
// Tool chain: Keil C51 8.00 / Keil EVAL C51
// Command Line: None
//
// Release 1.0
// -Initial Revision (GP)
// -30 JAN 2006
//

#ifndef F326_FLASHPRIMITIVES_H
#define F326_FLASHPRIMITIVES_H

//---
// Includes
//---

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

typedef unsigned long ULONG;
typedef unsigned int UINT;
typedef unsigned char UCHAR;

//---
// Global Constants
//---

#ifndef FLASH_PAGESIZE
#define FLASH_PAGESIZE 512
#endif

#ifndef FLASH_TEMP
#define FLASH_TEMP 0x03a00L
#endif

#ifndef FLASH_LAST
#define FLASH_LAST 0x03c00L
#endif

typedef UINT FLADDR;

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_ByteWrite (FLADDR addr, char byte);
extern unsigned char FLASH_ByteRead (FLADDR addr);
extern void FLASH_PageErase (FLADDR addr);

#endif // F326_FLASHPRIMITIVES_H

//---
// End Of File
//---
98 Rev. 0.3

AN201

7.10.3. F326_FlashUtils.c
//---
// F326_FlashUtils.c
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// FID: 326000026
// Target: C8051F326/7
// Tool chain: Keil C51 8.00 / Keil EVAL C51
// Command Line: None
//
// Release 1.0
// -Initial Revision (GP)
// -30 JAN 2006
//

//---
// Includes
//---

#include "F326_FlashPrimitives.h"
#include "F326_FlashUtils.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes);
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_Clear
//---
Rev. 0.3 99

AN201

//
// Return Value : None
// Parameters :
// 1) FLADDR dest - target address where to start clearing bytes
// range is 0 to <FLASH_TEMP>-1
// 2) unsigned numbytes - number of bytes to clear
// range is 1 to <FLASH_PAGESIZE>
//
// This routine erases <numbytes> starting from the FLASH addressed by
// <dest> by performing a read-modify-write operation using <FLASH_TEMP> as
// a temporary holding area.
//
//---

void FLASH_Clear (FLADDR dest, unsigned numbytes)
{
 FLADDR dest_1_page_start; // First address in 1st page
 // containing <dest>
 FLADDR dest_1_page_end; // Last address in 1st page
 // containing <dest>
 FLADDR dest_2_page_start; // First address in 2nd page
 // containing <dest>
 FLADDR dest_2_page_end; // Last address in 2nd page
 // containing <dest>
 unsigned numbytes_remainder; // When crossing page boundary,
 // number of <src> bytes on 2nd page
 unsigned FLASH_pagesize; // Size of FLASH page to update

 FLADDR wptr; // Write address
 FLADDR rptr; // Read address

 unsigned length;

 FLASH_pagesize = FLASH_PAGESIZE;

 dest_1_page_start = dest & ~(FLASH_pagesize - 1);
 dest_1_page_end = dest_1_page_start + FLASH_pagesize - 1;
 dest_2_page_start = (dest + numbytes) & ~(FLASH_pagesize - 1);
 dest_2_page_end = dest_2_page_start + FLASH_pagesize - 1;

 if (dest_1_page_end == dest_2_page_end) {

 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Copy from (dest+numbytes) to dest_page_end to Scratch page

 wptr = FLASH_TEMP + dest - dest_1_page_start + numbytes;
 rptr = dest + numbytes;
 length = dest_1_page_end - dest - numbytes + 1;
 FLASH_Copy (wptr, rptr, length);

 // 4. Erase destination page
 FLASH_PageErase (dest_1_page_start);

 // 5. Copy Scratch page to destination page
 wptr = dest_1_page_start;
100 Rev. 0.3

AN201

 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 } else { // Value crosses page boundary
 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1
 // to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Erase destination page 1
 FLASH_PageErase (dest_1_page_start);

 // 4. Copy Scratch page to destination page 1
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 // now handle 2nd page

 // 5. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 6. Copy bytes from numbytes remaining to dest-2_page_end
 // to Scratch page

 numbytes_remainder = numbytes - (dest_1_page_end - dest + 1);
 wptr = FLASH_TEMP + numbytes_remainder;
 rptr = dest_2_page_start + numbytes_remainder;
 length = FLASH_pagesize - numbytes_remainder;
 FLASH_Copy (wptr, rptr, length);

 // 7. Erase destination page 2
 FLASH_PageErase (dest_2_page_start);

 // 8. Copy Scratch page to destination page 2
 wptr = dest_2_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);
 }
}

//---
// FLASH_Update
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR dest - target address where to start updating bytes
// range is 0 to (FLASH_TEMP-1)
// 2) char *src - pointer to address where source bytes are located
// 3) unsigned numbytes - number of bytes to clear
// range is 1 to <FLASH_PAGESIZE>
//
// This routine replaces <numbytes> from <src> to the FLASH addressed by
// <dest>. This function calls FLASH_Clear() to handle the dirty work of
Rev. 0.3 101

AN201

// initializing all <dest> bytes to 0xff's prior to copying the bytes from
// <src> to <dest>.
//
//---

void FLASH_Update (FLADDR dest, char *src, unsigned numbytes)
{
 // 1. Erase <numbytes> starting from <dest>
 FLASH_Clear (dest, numbytes);

 // 2. Write <numbytes> from <src> to <dest>
 FLASH_Write (dest, src, numbytes);
}

//---
// FLASH_Write
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR dest - target address where to start writing bytes
// range is 0 to (FLASH_TEMP-1)
// 2) char *src - pointer to address where source bytes are located
// 3) unsigned numbytes - number of bytes to write
// range is limited by Flash size and starting location
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
//---
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes)
{
 FLADDR i;

 for (i = dest; i < dest+numbytes; i++) {
 FLASH_ByteWrite (i, *src++);
 }
}
//---
// FLASH_Read
//---
//
// Return Value :
// 1) char * - pointer to bytes read back
// Parameters :
// 1) char *dest - target address where to store bytes read from Flash
// 2) char *src - pointer to address where source bytes are located
// 3) unsigned numbytes - number of bytes to read
// range is limited by Flash size and starting location
//
// This routine copies <numbytes> from the linear FLASH address <src> to
// <dest>.
//
//---
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {
 *dest++ = FLASH_ByteRead (src+i);
 }
 return dest;
}

102 Rev. 0.3

AN201

//---
// FLASH_Copy
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR dest - target address where to copy the source bytes
// 2) FLADDR src - target address where source bytes are located
// 3) unsigned numbytes - number of bytes to read
// range is limited by Flash size and starting location
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
//---

void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {

 FLASH_ByteWrite ((FLADDR) dest+i, FLASH_ByteRead((FLADDR) src+i));
 }
}

//---
// FLASH_Fill
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR addr - target address where to start filling
// 2) ULONG length - number of bytes to fill
// range is limited by Flash size and starting point
// 3) UCHAR fill - char to fill
// range is 0x00 to 0xFF
//
// This routine fills the FLASH beginning at <addr> with <length> bytes.
//
//---
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill)
{
 FLADDR i;

 for (i = 0; i < length; i++) {
 FLASH_ByteWrite (addr+i, fill);
 }
}

//---
// End Of File
//---
Rev. 0.3 103

AN201

7.10.4. F326_FlashUtils.h
//---
// F326_FlashUtils.h
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// FID: 326000027
// Target: C8051F326/7
// Tool chain: Keil C51 8.00 / Keil EVAL C51
// Command Line: None
//
// Release 1.0
// -Initial Revision (GP)
// -30 JAN 2006
//

#ifndef F326_FLASHUTILS_H
#define F326_FLASHUTILS_H

//---
// Includes
//---

#include "F326_FlashPrimitives.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
extern char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
extern void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines

// copy with destination preservation
extern void FLASH_Update (FLADDR dest, char *src, unsigned numbytes);
// low-level FLASH/FLASH byte copy
extern void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes);

// FLASH test routines
extern void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

#endif // F326_FLASHUTILS_H

//---
// End Of File
//---
104 Rev. 0.3

AN201
7.11. ‘F330
7.11.1. F330_FlashPrimitives.c
//---
// F330_FlashPrimitives.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F33x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F330_FlashPrimitives.h"
#include <c8051F330.h>

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_ByteWrite (FLADDR addr, char byte);
unsigned char FLASH_ByteRead (FLADDR addr);
void FLASH_PageErase (FLADDR addr);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_ByteWrite
//---
//
// This routine writes <byte> to the linear FLASH address <addr>.
//
// To do:
// -- optimize to skip 0xFF bytes
//
void FLASH_ByteWrite (FLADDR addr, char byte)
{
 bit EA_SAVE = EA; // preserve EA
Rev. 0.3 105

AN201

 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts

 // change clock speed to slow, then restore later

 VDM0CN = 0x80; // enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x01; // PSWE = 1

 VDM0CN = 0x80; // enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source

 *pwrite = byte; // write the byte

 PSCTL &= ~0x01; // PSWE = 0

 EA = EA_SAVE; // restore interrupts
}

//---
// FLASH_ByteRead
//---
//
// This routine reads a <byte> from the linear FLASH address <addr>.
//
unsigned char FLASH_ByteRead (FLADDR addr)
{
 bit EA_SAVE = EA; // preserve EA
 char code * data pread; // FLASH read pointer
 unsigned char byte;

 EA = 0; // disable interrupts

 pread = (char code *) addr;

 byte = *pread; // read the byte

 EA = EA_SAVE; // restore interrupts

 return byte;
}

//---
// FLASH_PageErase
//---
//
// This routine erases the FLASH page containing the linear FLASH address
// <addr>.
//
void FLASH_PageErase (FLADDR addr)
{
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer
106 Rev. 0.3

AN201
 EA = 0; // disable interrupts
 // change clock speed to slow, then restore later

 VDM0CN = 0x80; // enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x03; // PSWE = 1; PSEE = 1

 VDM0CN = 0x80; // enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source
 *pwrite = 0; // initiate page erase

 PSCTL &= ~0x03; // PSWE = 0; PSEE = 0

 EA = EA_SAVE; // restore interrupts
}

Rev. 0.3 107

AN201

7.11.2. F330_FlashPrimitives.h
//---
// F330_FlashPrimitives.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F33x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//
#ifndef F330_FLASHPRIMITIVES_H
#define F330_FLASHPRIMITIVES_H

//---
// Includes
//---

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

typedef unsigned long ULONG;
typedef unsigned int UINT;
typedef unsigned char UCHAR;

//---
// Global Constants
//---

#ifndef FLASH_PAGESIZE
#define FLASH_PAGESIZE 512
#endif

#ifndef FLASH_TEMP
#define FLASH_TEMP 0x01a00L
#endif

#ifndef FLASH_LAST
#define FLASH_LAST 0x01c00L
#endif

typedef UINT FLADDR;

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_ByteWrite (FLADDR addr, char byte);
extern unsigned char FLASH_ByteRead (FLADDR addr);
extern void FLASH_PageErase (FLADDR addr);

#endif // F310_FLASHPRIMITIVES_H
108 Rev. 0.3

AN201

7.11.3. F330_FlashUtils.c
//---
// F330_FlashUtils.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F33x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F330_FlashPrimitives.h"
#include "F330_FlashUtils.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes);
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_Clear
//---
//
// This routine erases <numbytes> starting from the FLASH addressed by
// <dest> by performing a read-modify-write operation using <FLASH_TEMP> as
// a temporary holding area. This function accepts <numbytes> up to
Rev. 0.3 109

AN201

// <FLASH_PAGESIZE>.
//
void FLASH_Clear (FLADDR dest, unsigned numbytes)
{
 FLADDR dest_1_page_start; // first address in 1st page
 // containing <dest>
 FLADDR dest_1_page_end; // last address in 1st page
 // containing <dest>
 FLADDR dest_2_page_start; // first address in 2nd page
 // containing <dest>
 FLADDR dest_2_page_end; // last address in 2nd page
 // containing <dest>
 unsigned numbytes_remainder; // when crossing page boundary,
 // number of <src> bytes on 2nd page
 unsigned FLASH_pagesize; // size of FLASH page to update

 FLADDR wptr; // write address
 FLADDR rptr; // read address

 unsigned length;

 FLASH_pagesize = FLASH_PAGESIZE;

 dest_1_page_start = dest & ~(FLASH_pagesize - 1);
 dest_1_page_end = dest_1_page_start + FLASH_pagesize - 1;
 dest_2_page_start = (dest + numbytes) & ~(FLASH_pagesize - 1);
 dest_2_page_end = dest_2_page_start + FLASH_pagesize - 1;

 if (dest_1_page_end == dest_2_page_end) {

 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Copy from (dest+numbytes) to dest_page_end to Scratch page

 wptr = FLASH_TEMP + dest - dest_1_page_start + numbytes;
 rptr = dest + numbytes;
 length = dest_1_page_end - dest - numbytes + 1;
 FLASH_Copy (wptr, rptr, length);

 // 4. Erase destination page
 FLASH_PageErase (dest_1_page_start);

 // 5. Copy Scratch page to destination page
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 } else { // value crosses page boundary
 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
110 Rev. 0.3

AN201

 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Erase destination page 1
 FLASH_PageErase (dest_1_page_start);

 // 4. Copy Scratch page to destination page 1
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 // now handle 2nd page

 // 5. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 6. Copy bytes from numbytes remaining to dest-2_page_end to Scratch page

 numbytes_remainder = numbytes - (dest_1_page_end - dest + 1);
 wptr = FLASH_TEMP + numbytes_remainder;
 rptr = dest_2_page_start + numbytes_remainder;
 length = FLASH_pagesize - numbytes_remainder;
 FLASH_Copy (wptr, rptr, length);

 // 7. Erase destination page 2
 FLASH_PageErase (dest_2_page_start);

 // 8. Copy Scratch page to destination page 2
 wptr = dest_2_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);
 }
}

//---
// FLASH_Update
//---
//
// This routine replaces <numbytes> from <src> to the FLASH addressed by
// <dest>. This function calls FLASH_Clear() to handle the dirty work of
// initializing all <dest> bytes to 0xff's prior to copying the bytes from
// <src> to <dest>. This function accepts <numbytes> up to <FLASH_PAGESIZE>.
//
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes)
{
 // 1. Erase <numbytes> starting from <dest>
 FLASH_Clear (dest, numbytes);

 // 2. Write <numbytes> from <src> to <dest>
 FLASH_Write (dest, src, numbytes);
}

//---
// FLASH_Write
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes)
Rev. 0.3 111

AN201

{
 FLADDR i;

 for (i = dest; i < dest+numbytes; i++) {
 FLASH_ByteWrite (i, *src++);
 }
}

//---
// FLASH_Read
//---
//
// This routine copies <numbytes> from the linear FLASH address <src> to
// <dest>.
//
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {
 *dest++ = FLASH_ByteRead (src+i);
 }
 return dest;
}

//---
// FLASH_Copy
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {

 FLASH_ByteWrite ((FLADDR) dest+i, FLASH_ByteRead((FLADDR) src+i));
 }
}

//---
// FLASH_Fill
//---
//
// This routine fills the FLASH beginning at <addr> with <lenght> bytes.
//
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill)
{
 FLADDR i;

 for (i = 0; i < length; i++) {
 FLASH_ByteWrite (addr+i, fill);
 }
}

112 Rev. 0.3

AN201

7.11.4. F330_FlashUtils.h
//---
// F330_FlashUtils.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F33x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F330_FLASHUTILS_H
#define F330_FLASHUTILS_H

//---
// Includes
//---

#include "F330_FlashPrimitives.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
extern char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
extern void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines
extern void FLASH_Update (FLADDR dest, char *src, unsigned numbytes); // copy with destina-
tion preservation
extern void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes); // low-level FLASH/
FLASH byte copy

// FLASH test routines
extern void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

#endif // F330_FLASHUTILS_H
Rev. 0.3 113

AN201
7.12. ‘F340
7.12.1. F340_FlashPrimitives.c
//---
// F340_FlashPrimitives.c
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// FID: 34X000024
// Target: C8051F34x
// Tool chain: Keil C51 8.00 / Keil EVAL C51
// Command Line: None
//
// Release 1.0
// -Initial Revision (GP)
// -30 JAN 2006
//

//---
// Includes
//---

#include "F340_FlashPrimitives.h"
#include <c8051F340.h>

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_ByteWrite (FLADDR addr, char byte);
unsigned char FLASH_ByteRead (FLADDR addr);
void FLASH_PageErase (FLADDR addr);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_ByteWrite
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR addr - target address to write to
// range is 0 to (FLASH_TEMP-1)
114 Rev. 0.3

AN201

// 2) char byte - byte to write
//
// This routine writes <byte> to the linear FLASH address <addr>.
//
//---
void FLASH_ByteWrite (FLADDR addr, char byte)
{
 bit EA_SAVE = EA; // Preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // Disable interrupts

 // change clock speed to slow, then restore later

 VDM0CN = 0x80; // Enable VDD monitor

 RSTSRC = 0x02; // Enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x01; // PSWE = 1

 VDM0CN = 0x80; // Enable VDD monitor

 RSTSRC = 0x02; // Enable VDD monitor as a reset source

 *pwrite = byte; // Write the byte

 PSCTL &= ~0x01; // PSWE = 0

 EA = EA_SAVE; // Restore interrupts
}

//---
// FLASH_ByteRead
//---
//
// Return Value :
// 1) unsigned char - byte that was read from Flash
// Parameters :
// 1) FLADDR addr - target address to write to
// range is 0 to (FLASH_TEMP-1)
//
// This routine reads a <byte> from the linear FLASH address <addr>.
//
//---
unsigned char FLASH_ByteRead (FLADDR addr)
{
 bit EA_SAVE = EA; // Preserve EA
 char code * data pread; // FLASH read pointer
 unsigned char byte;

 EA = 0; // Disable interrupts

 pread = (char code *) addr;

 byte = *pread; // Read the byte

 EA = EA_SAVE; // Restore interrupts
Rev. 0.3 115

AN201
 return byte;
}

//---
// FLASH_PageErase
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR addr - target address to write to
// range is 0 to (FLASH_TEMP-1)
//
// This routine erases the FLASH page containing the linear FLASH address
// <addr>.
//
//---
void FLASH_PageErase (FLADDR addr)
{
 bit EA_SAVE = EA; // Preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // Disable interrupts
 // change clock speed to slow, then restore later

 VDM0CN = 0x80; // Enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x03; // PSWE = 1; PSEE = 1

 VDM0CN = 0x80; // Enable VDD monitor

 RSTSRC = 0x02; // Enable VDD monitor as a reset source
 *pwrite = 0; // Initiate page erase

 PSCTL &= ~0x03; // PSWE = 0; PSEE = 0

 EA = EA_SAVE; // Restore interrupts
}

//---
// End Of File
//---
116 Rev. 0.3

AN201

7.12.2. F340_FlashPrimitives.h
//---
// F340_FlashPrimitives.h
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// FID: 34X000025
// Target: C8051F34x
// Tool chain: Keil C51 8.00 / Keil EVAL C51
// Command Line: None
//
// Release 1.0
// -Initial Revision (GP)
// -30 JAN 2006
//

#ifndef F340_FLASHPRIMITIVES_H
#define F340_FLASHPRIMITIVES_H

//---
// Includes
//---

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

typedef unsigned long ULONG;
typedef unsigned int UINT;
typedef unsigned char UCHAR;

//---
// Global Constants
//---

#ifndef FLASH_PAGESIZE
#define FLASH_PAGESIZE 512
#endif

#ifndef FLASH_TEMP
#define FLASH_TEMP 0x0F800L
#endif

#ifndef FLASH_LAST
#define FLASH_LAST 0x0FA00L
#endif

typedef UINT FLADDR;

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_ByteWrite (FLADDR addr, char byte);
extern unsigned char FLASH_ByteRead (FLADDR addr);
extern void FLASH_PageErase (FLADDR addr);

#endif // F340_FLASHPRIMITIVES_H

//---
// End Of File
//---
Rev. 0.3 117

AN201

7.12.3. F340_FlashUtils.c
//---
// F340_FlashUtils.c
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// FID: 34X000026
// Target: C8051F34x
// Tool chain: Keil C51 8.00 / Keil EVAL C51
// Command Line: None
//
// Release 1.0
// -Initial Revision (GP)
// -30 JAN 2006
//

//---
// Includes
//---

#include "F340_FlashPrimitives.h"
#include "F340_FlashUtils.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes);
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_Clear
//---
118 Rev. 0.3

AN201

//
// Return Value : None
// Parameters :
// 1) FLADDR dest - target address where to start clearing bytes
// range is 0 to (FLASH_TEMP-1)
// 2) unsigned numbytes - number of bytes to clear
// range is 1 to <FLASH_PAGESIZE>
//
// This routine erases <numbytes> starting from the FLASH addressed by
// <dest> by performing a read-modify-write operation using <FLASH_TEMP> as
// a temporary holding area.
//
//---

void FLASH_Clear (FLADDR dest, unsigned numbytes)
{
 FLADDR dest_1_page_start; // First address in 1st page
 // containing <dest>
 FLADDR dest_1_page_end; // Last address in 1st page
 // containing <dest>
 FLADDR dest_2_page_start; // First address in 2nd page
 // containing <dest>
 FLADDR dest_2_page_end; // Last address in 2nd page
 // containing <dest>
 unsigned numbytes_remainder; // When crossing page boundary,
 // number of <src> bytes on 2nd page
 unsigned FLASH_pagesize; // Size of FLASH page to update

 FLADDR wptr; // Write address
 FLADDR rptr; // Read address

 unsigned length;

 FLASH_pagesize = FLASH_PAGESIZE;

 dest_1_page_start = dest & ~(FLASH_pagesize - 1);
 dest_1_page_end = dest_1_page_start + FLASH_pagesize - 1;
 dest_2_page_start = (dest + numbytes) & ~(FLASH_pagesize - 1);
 dest_2_page_end = dest_2_page_start + FLASH_pagesize - 1;

 if (dest_1_page_end == dest_2_page_end) {

 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Copy from (dest+numbytes) to dest_page_end to Scratch page

 wptr = FLASH_TEMP + dest - dest_1_page_start + numbytes;
 rptr = dest + numbytes;
 length = dest_1_page_end - dest - numbytes + 1;
 FLASH_Copy (wptr, rptr, length);

 // 4. Erase destination page
 FLASH_PageErase (dest_1_page_start);

 // 5. Copy Scratch page to destination page
 wptr = dest_1_page_start;
Rev. 0.3 119

AN201

 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 } else { // Value crosses page boundary
 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1
 // to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Erase destination page 1
 FLASH_PageErase (dest_1_page_start);

 // 4. Copy Scratch page to destination page 1
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 // now handle 2nd page

 // 5. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 6. Copy bytes from numbytes remaining to dest-2_page_end
 // to Scratch page

 numbytes_remainder = numbytes - (dest_1_page_end - dest + 1);
 wptr = FLASH_TEMP + numbytes_remainder;
 rptr = dest_2_page_start + numbytes_remainder;
 length = FLASH_pagesize - numbytes_remainder;
 FLASH_Copy (wptr, rptr, length);

 // 7. Erase destination page 2
 FLASH_PageErase (dest_2_page_start);

 // 8. Copy Scratch page to destination page 2
 wptr = dest_2_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);
 }
}

//---
// FLASH_Update
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR dest - target address where to start updating bytes
// range is 0 to (FLASH_TEMP-1)
// 2) char *src - pointer to address where source bytes are located
// 3) unsigned numbytes - number of bytes to update
// range is 1 to <FLASH_PAGESIZE>
//
// This routine replaces <numbytes> from <src> to the FLASH addressed by
// <dest>. This function calls FLASH_Clear() to handle the dirty work of
120 Rev. 0.3

AN201

// initializing all <dest> bytes to 0xff's prior to copying the bytes from
// <src> to <dest>.
//
//---

void FLASH_Update (FLADDR dest, char *src, unsigned numbytes)
{
 // 1. Erase <numbytes> starting from <dest>
 FLASH_Clear (dest, numbytes);

 // 2. Write <numbytes> from <src> to <dest>
 FLASH_Write (dest, src, numbytes);
}

//---
// FLASH_Write
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR dest - target address where to start writing bytes
// range is 0 to (FLASH_TEMP-1)
// 2) char *src - pointer to address where source bytes are located
// 3) unsigned numbytes - number of bytes to write
// range is limited by Flash size and starting location
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
//---
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes)
{
 FLADDR i;

 for (i = dest; i < dest+numbytes; i++) {
 FLASH_ByteWrite (i, *src++);
 }
}
//---
// FLASH_Read
//---
//
// Return Value :
// 1) char * - pointer to bytes read back
// Parameters :
// 1) char *dest - target address where to store bytes read from Flash
// 2) char *src - pointer to address where source bytes are located
// 3) unsigned numbytes - number of bytes to read
// range is limited by Flash size and starting location
//
// This routine copies <numbytes> from the linear FLASH address <src> to
// <dest>.
//
//---
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {
 *dest++ = FLASH_ByteRead (src+i);
 }
 return dest;
}

Rev. 0.3 121

AN201

//---
// FLASH_Copy
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR dest - target address where to copy the source bytes
// 2) FLADDR src - target address where source bytes are located
// 3) unsigned numbytes - number of bytes to read
// range is limited by Flash size and starting location
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
//---

void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {

 FLASH_ByteWrite ((FLADDR) dest+i, FLASH_ByteRead((FLADDR) src+i));
 }
}

//---
// FLASH_Fill
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR addr - target address where to start filling
// 2) ULONG length - number of bytes to fill
// range is limited by Flash size and starting point
// 3) UCHAR fill - char to fill
// range is 0x00 to 0xFF
//
// This routine fills the FLASH beginning at <addr> with <length> bytes.
//
//---
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill)
{
 FLADDR i;

 for (i = 0; i < length; i++) {
 FLASH_ByteWrite (addr+i, fill);
 }
}

//---
// End Of File
//---
122 Rev. 0.3

AN201

7.12.4. F340_FlashUtils.h
//---
// F340_FlashUtils.h
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// FID: 34X000027
// Target: C8051F34x
// Tool chain: Keil C51 8.00 / Keil EVAL C51
// Command Line: None
//
// Release 1.0
// -Initial Revision (GP)
// -30 JAN 2006
//

#ifndef F340_FLASHUTILS_H
#define F340_FLASHUTILS_H

//---
// Includes
//---

#include "F340_FlashPrimitives.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
extern char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
extern void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines

// copy with destination preservation
extern void FLASH_Update (FLADDR dest, char *src, unsigned numbytes);
// low-level FLASH/FLASH byte copy
extern void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes);

// FLASH test routines
extern void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

#endif // F340_FLASHUTILS_H

//---
// End Of File
//---
Rev. 0.3 123

AN201
7.13. ‘F350
7.13.1. F350_FlashPrimitives.c
//---
// F350_FlashPrimitives.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F35x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F350_FlashPrimitives.h"
#include <c8051F350.h>

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_ByteWrite (FLADDR addr, char byte);
unsigned char FLASH_ByteRead (FLADDR addr);
void FLASH_PageErase (FLADDR addr);

//---
// Global Variables
//---

//---
// FLASH Routines
//---

//---
// FLASH_ByteWrite
//---
//
// This routine writes <byte> to the linear FLASH address <addr>.
//
void FLASH_ByteWrite (FLADDR addr, char byte)
{
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts
124 Rev. 0.3

AN201
 // change clock speed to slow, then restore later

 VDM0CN = 0x80; // enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x01; // PSWE = 1

 VDM0CN = 0x80; // enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source

 *pwrite = byte; // write the byte

 PSCTL &= ~0x01; // PSWE = 0

 EA = EA_SAVE; // restore interrupts
}

//---
// FLASH_ByteRead
//---
//
// This routine reads a <byte> from the linear FLASH address <addr>.
//
unsigned char FLASH_ByteRead (FLADDR addr)
{
 bit EA_SAVE = EA; // preserve EA
 char code * data pread; // FLASH read pointer
 unsigned char byte;

 EA = 0; // disable interrupts

 pread = (char code *) addr;

 byte = *pread; // read the byte

 EA = EA_SAVE; // restore interrupts

 return byte;
}

//---
// FLASH_PageErase
//---
//
// This routine erases the FLASH page containing the linear FLASH address
// <addr>.
//
void FLASH_PageErase (FLADDR addr)
{
 bit EA_SAVE = EA; // preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // disable interrupts
 // change clock speed to slow, then restore later
Rev. 0.3 125

AN201
 VDM0CN = 0x80; // enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x03; // PSWE = 1; PSEE = 1

 VDM0CN = 0x80; // enable VDD monitor

 RSTSRC = 0x02; // enable VDD monitor as a reset source
 *pwrite = 0; // initiate page erase

 PSCTL &= ~0x03; // PSWE = 0; PSEE = 0

 EA = EA_SAVE; // restore interrupts
}

126 Rev. 0.3

AN201

7.13.2. F350_FlashPrimitives.h
//---
// F350_FlashPrimitives.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F35x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F350_FLASHPRIMITIVES_H
#define F350_FLASHPRIMITIVES_H

//---
// Includes
//---

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

typedef unsigned long ULONG;
typedef unsigned int UINT;
typedef unsigned char UCHAR;

//---
// Global Constants
//---

#ifndef FLASH_PAGESIZE
#define FLASH_PAGESIZE 512
#endif

#ifndef FLASH_TEMP
#define FLASH_TEMP 0x01a00L
#endif

#ifndef FLASH_LAST
#define FLASH_LAST 0x01c00L
#endif

typedef UINT FLADDR;

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_ByteWrite (FLADDR addr, char byte);
extern unsigned char FLASH_ByteRead (FLADDR addr);
extern void FLASH_PageErase (FLADDR addr);

#endif // F350_FLASHPRIMITIVES_H
Rev. 0.3 127

AN201

7.13.3. F350_FlashUtils.c
//---
// F350_FlashUtils.c
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F35x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

//---
// Includes
//---

#include "F350_FlashPrimitives.h"
#include "F350_FlashUtils.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes);
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

//---
// Global Variables
//---

//---
// FLASH Routines -- no SFLE
//---

//---
// FLASH_Clear
//---
//
// This routine erases <numbytes> starting from the FLASH addressed by
// <dest> by performing a read-modify-write operation using <FLASH_TEMP> as
// a temporary holding area. This function accepts <numbytes> up to
128 Rev. 0.3

AN201

// <FLASH_PAGESIZE>.
//
void FLASH_Clear (FLADDR dest, unsigned numbytes)
{
 FLADDR dest_1_page_start; // first address in 1st page
 // containing <dest>
 FLADDR dest_1_page_end; // last address in 1st page
 // containing <dest>
 FLADDR dest_2_page_start; // first address in 2nd page
 // containing <dest>
 FLADDR dest_2_page_end; // last address in 2nd page
 // containing <dest>
 unsigned numbytes_remainder; // when crossing page boundary,
 // number of <src> bytes on 2nd page
 unsigned FLASH_pagesize; // size of FLASH page to update

 FLADDR wptr; // write address
 FLADDR rptr; // read address

 unsigned length;

 FLASH_pagesize = FLASH_PAGESIZE;

 dest_1_page_start = dest & ~(FLASH_pagesize - 1);
 dest_1_page_end = dest_1_page_start + FLASH_pagesize - 1;
 dest_2_page_start = (dest + numbytes) & ~(FLASH_pagesize - 1);
 dest_2_page_end = dest_2_page_start + FLASH_pagesize - 1;

 if (dest_1_page_end == dest_2_page_end) {

 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Copy from (dest+numbytes) to dest_page_end to Scratch page

 wptr = FLASH_TEMP + dest - dest_1_page_start + numbytes;
 rptr = dest + numbytes;
 length = dest_1_page_end - dest - numbytes + 1;
 FLASH_Copy (wptr, rptr, length);

 // 4. Erase destination page
 FLASH_PageErase (dest_1_page_start);

 // 5. Copy Scratch page to destination page
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 } else { // value crosses page boundary
 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
Rev. 0.3 129

AN201

 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Erase destination page 1
 FLASH_PageErase (dest_1_page_start);

 // 4. Copy Scratch page to destination page 1
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 // now handle 2nd page

 // 5. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 6. Copy bytes from numbytes remaining to dest-2_page_end to Scratch page

 numbytes_remainder = numbytes - (dest_1_page_end - dest + 1);
 wptr = FLASH_TEMP + numbytes_remainder;
 rptr = dest_2_page_start + numbytes_remainder;
 length = FLASH_pagesize - numbytes_remainder;
 FLASH_Copy (wptr, rptr, length);

 // 7. Erase destination page 2
 FLASH_PageErase (dest_2_page_start);

 // 8. Copy Scratch page to destination page 2
 wptr = dest_2_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);
 }
}

//---
// FLASH_Update
//---
//
// This routine replaces <numbytes> from <src> to the FLASH addressed by
// <dest>. This function calls FLASH_Clear() to handle the dirty work of
// initializing all <dest> bytes to 0xff's prior to copying the bytes from
// <src> to <dest>. This function accepts <numbytes> up to <FLASH_PAGESIZE>.
//
void FLASH_Update (FLADDR dest, char *src, unsigned numbytes)
{
 // 1. Erase <numbytes> starting from <dest>
 FLASH_Clear (dest, numbytes);

 // 2. Write <numbytes> from <src> to <dest>
 FLASH_Write (dest, src, numbytes);
}

//---
// FLASH_Write
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
130 Rev. 0.3

AN201

//
void FLASH_Write (FLADDR dest, char *src, unsigned numbytes)
{
 FLADDR i;

 for (i = dest; i < dest+numbytes; i++) {
 FLASH_ByteWrite (i, *src++);
 }
}

//---
// FLASH_Read
//---
//
// This routine copies <numbytes> from the linear FLASH address <src> to
// <dest>.
//
char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {
 *dest++ = FLASH_ByteRead (src+i);
 }
 return dest;
}

//---
// FLASH_Copy
//---
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>.
//
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {

 FLASH_ByteWrite ((FLADDR) dest+i, FLASH_ByteRead((FLADDR) src+i));
 }
}

//---
// FLASH_Fill
//---
//
// This routine fills the FLASH beginning at <addr> with <lenght> bytes.
//
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill)
{
 FLADDR i;

 for (i = 0; i < length; i++) {
 FLASH_ByteWrite (addr+i, fill);
 }
}

Rev. 0.3 131

AN201

7.13.4. F330_FlashUtils.h
//---
// F330_FlashUtils.h
//---
// Copyright 2004 Silicon Laboratories, Inc.
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// AUTH: BW & GP
// DATE: 21 JUL 04
//
// Target: C8051F35x
// Tool chain: KEIL C51 7.06
//
// Release 1.0
//

#ifndef F350_FLASHUTILS_H
#define F350_FLASHUTILS_H

//---
// Includes
//---

#include "F350_FlashPrimitives.h"

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

//---
// Global Constants
//---

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
extern void FLASH_Write (FLADDR dest, char *src, unsigned numbytes);
extern char * FLASH_Read (char *dest, FLADDR src, unsigned numbytes);
extern void FLASH_Clear (FLADDR addr, unsigned numbytes);

// FLASH update/copy routines
extern void FLASH_Update (FLADDR dest, char *src, unsigned numbytes); // copy with destina-
tion preservation
extern void FLASH_Copy (FLADDR dest, FLADDR src, unsigned numbytes); // low-level FLASH/
FLASH byte copy

// FLASH test routines
extern void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

#endif // F350_FLASHUTILS_H
132 Rev. 0.3

AN201
7.14. ‘F410
7.14.1. F410_FlashPrimitives.c
//---
// F410_FlashPrimitives.c
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// FID: 41X000050
// Target: C8051F410/1/2/3
// Tool chain: Keil C51 8.00
// Command Line: None
//
//
// Release 1.0
// -Initial Revision (GP)
// -29 SEP 2006
//

//---
// Includes
//---

#include <c8051F410.h>
#include "F410_FlashPrimitives.h"

//---
// Function Prototypes
//---

void FLASH_ByteWrite (FLADDR addr, char byte);
unsigned char FLASH_ByteRead (FLADDR addr);
void FLASH_PageErase (FLADDR addr);

//---
// FLASH_ByteWrite
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR addr - address of the byte to write to
// valid range is from 0x0000 to 0x7DFE for 32K devices
// valid range is from 0x0000 to 0x3FFE for 16K devices
// 2) char byte - byte to write to Flash.
//
// This routine writes <byte> to the linear FLASH address <addr>.
//---

void FLASH_ByteWrite (FLADDR addr, char byte)
{
 bit EA_SAVE = EA; // Preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // Disable interrupts

 VDM0CN = 0xA0; // Enable VDD monitor and high threshold

 RSTSRC = 0x02; // Enable VDD monitor as a reset source
Rev. 0.3 133

AN201
 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x01; // PSWE = 1 which enables writes

 VDM0CN = 0xA0; // Enable VDD monitor and high threshold

 RSTSRC = 0x02; // Enable VDD monitor as a reset source

 *pwrite = byte; // Write the byte

 PSCTL &= ~0x01; // PSWE = 0 which disable writes

 EA = EA_SAVE; // Restore interrupts
}

//---
// FLASH_ByteRead
//---
//
// Return Value :
// unsigned char - byte read from Flash
// Parameters :
// 1) FLADDR addr - address of the byte to read to
// valid range is from 0x0000 to 0x7DFE for 32K devices
// valid range is from 0x0000 to 0x3FFE for 16K devices
//
// This routine reads a <byte> from the linear FLASH address <addr>.
//---

unsigned char FLASH_ByteRead (FLADDR addr)
{
 bit EA_SAVE = EA; // Preserve EA
 char code * data pread; // FLASH read pointer
 unsigned char byte;

 EA = 0; // Disable interrupts

 pread = (char code *) addr;

 byte = *pread; // Read the byte

 EA = EA_SAVE; // Restore interrupts

 return byte;
}

//---
// FLASH_PageErase
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR addr - address of any byte in the page to erase
// valid range is from 0x0000 to 0x7BFF for 32K devices
// valid range is from 0x0000 to 0x3DFF for 16K devices
//
// This routine erases the FLASH page containing the linear FLASH address
// <addr>. Note that the page of Flash containing the Lock Byte cannot be
// erased if the Lock Byte is set.
//
//---
134 Rev. 0.3

AN201
void FLASH_PageErase (FLADDR addr)
{
 bit EA_SAVE = EA; // Preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // Disable interrupts

 VDM0CN = 0xA0; // Enable VDD monitor and high threshold

 RSTSRC = 0x02; // Enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x03; // PSWE = 1; PSEE = 1

 VDM0CN = 0xA0; // Enable VDD monitor and high threshold

 RSTSRC = 0x02; // Enable VDD monitor as a reset source
 *pwrite = 0; // Initiate page erase

 PSCTL &= ~0x03; // PSWE = 0; PSEE = 0

 EA = EA_SAVE; // Restore interrupts
}

//---
// End Of File
//---
Rev. 0.3 135

AN201

7.14.2. F410_FlashPrimitives.h
//---
// F410_FlashPrimitives.h
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// FID: 41X000051
// Target: C8051F410/1/2/3
// Tool chain: Keil C51 8.00
// Command Line: None
//
//
// Release 1.0
// -Initial Revision (GP)
// -29 SEP 2006
//

//---
// Open Header #define
//---

#ifndef _F410_FLASHPRIMITIVES_H_
#define _F410_FLASHPRIMITIVES_H_

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

typedef unsigned long ULONG;
typedef unsigned int UINT;
typedef unsigned char UCHAR;
typedef UINT FLADDR;

//---
// Global Constants
//---

#ifndef FLASH_PAGESIZE
#define FLASH_PAGESIZE 512
#endif

#ifndef FLASH_TEMP
#define FLASH_TEMP 0x7a00L // For 32K Flash devices
//#define FLASH_TEMP 0x3C00L // For 16K Flash devices
#endif

#ifndef FLASH_LAST
#define FLASH_LAST 0x7c00L // For 32K Flash devices
//#define FLASH_LAST 0x3E00L // For 16K Flash devices
#endif

//---
// Exported Function Prototypes
//---

void FLASH_ByteWrite (FLADDR addr, char byte);
unsigned char FLASH_ByteRead (FLADDR addr);
void FLASH_PageErase (FLADDR addr);
136 Rev. 0.3

AN201
//---
// Close Header #define
//---

#endif // _F410_FLASHPRIMITIVES_H_

//---
// End Of File
//---
Rev. 0.3 137

AN201

7.14.3. F410_FlashUtils.c
//---
// F410_FlashUtils.c
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// FID: 41X000053
// Target: C8051F410/1/2/3
// Tool chain: Keil C51 8.00
// Command Line: None
//
//
// Release 1.0
// -Initial Revision (GP)
// -29 SEP 2006
//

//---
// Includes
//---

#include "F410_FlashPrimitives.h"
#include "F410_FlashUtils.h"

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned int numbytes);
char * FLASH_Read (char *dest, FLADDR src, unsigned int numbytes);
void FLASH_Clear (FLADDR addr, unsigned int numbytes);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned int numbytes);
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned int numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

//---
// FLASH_Clear
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR addr - address of the byte to write to
// valid range is 0x0000 to 0x79FF for 32K devices
// valid range is 0x0000 to 0x3BFF for 16K devices
// 2) unsigned int numbytes - the number of bytes to clear to 0xFF
// valid range is 0 to FLASH_PAGESIZE
//
// This routine erases <numbytes> starting from the FLASH addressed by
// <dest> by performing a read-modify-write operation using <FLASH_TEMP> as
// a temporary holding area.
// <addr> + <numbytes> must be less than 0x79FF/0x3BFF.
//
//---
138 Rev. 0.3

AN201
void FLASH_Clear (FLADDR dest, unsigned int numbytes)
{
 FLADDR dest_1_page_start; // First address in 1st page
 // containing <dest>
 FLADDR dest_1_page_end; // Last address in 1st page
 // containing <dest>
 FLADDR dest_2_page_start; // First address in 2nd page
 // containing <dest>
 FLADDR dest_2_page_end; // Last address in 2nd page
 // containing <dest>
 unsigned numbytes_remainder; // When crossing page boundary,
 // number of <src> bytes on 2nd page
 unsigned FLASH_pagesize; // Size of FLASH page to update

 FLADDR wptr; // Write address
 FLADDR rptr; // Read address

 unsigned length;

 FLASH_pagesize = FLASH_PAGESIZE;

 dest_1_page_start = dest & ~(FLASH_pagesize - 1);
 dest_1_page_end = dest_1_page_start + FLASH_pagesize - 1;
 dest_2_page_start = (dest + numbytes) & ~(FLASH_pagesize - 1);
 dest_2_page_end = dest_2_page_start + FLASH_pagesize - 1;

 if (dest_1_page_end == dest_2_page_end)
 {
 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Copy from (dest+numbytes) to dest_page_end to Scratch page

 wptr = FLASH_TEMP + dest - dest_1_page_start + numbytes;
 rptr = dest + numbytes;
 length = dest_1_page_end - dest - numbytes + 1;
 FLASH_Copy (wptr, rptr, length);

 // 4. Erase destination page
 FLASH_PageErase (dest_1_page_start);

 // 5. Copy Scratch page to destination page
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 }
 else
 { // value crosses page boundary
 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to temp page

 wptr = FLASH_TEMP;
Rev. 0.3 139

AN201

 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Erase destination page 1
 FLASH_PageErase (dest_1_page_start);

 // 4. Copy Scratch page to destination page 1
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 // Now handle 2nd page

 // 5. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 6. Copy bytes from numbytes remaining to dest-2_page_end to temp page

 numbytes_remainder = numbytes - (dest_1_page_end - dest + 1);
 wptr = FLASH_TEMP + numbytes_remainder;
 rptr = dest_2_page_start + numbytes_remainder;
 length = FLASH_pagesize - numbytes_remainder;
 FLASH_Copy (wptr, rptr, length);

 // 7. Erase destination page 2
 FLASH_PageErase (dest_2_page_start);

 // 8. Copy Scratch page to destination page 2
 wptr = dest_2_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);
 }
}

//---
// FLASH_Update
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR dest - starting address of the byte(s) to write to
// valid range is 0x0000 to 0x79FF for 32K devices
// valid range is 0x0000 to 0x3BFF for 16K devices
// 2) char *src - pointer to source bytes
// 3) unsigned int numbytes - the number of bytes to update
// valid range is 0 to FLASH_PAGESIZE
//
// This routine replaces <numbytes> from <src> to the FLASH addressed by
// <dest>. This function calls FLASH_Clear() to initialize all <dest> bytes
// to 0xff's prior to copying the bytes from <src> to <dest>.
// <dest> + <numbytes> must be less than 0x7DFF/0x3FFF.
//
//---

void FLASH_Update (FLADDR dest, char *src, unsigned int numbytes)
{
 // 1. Erase <numbytes> starting from <dest>
 FLASH_Clear (dest, numbytes);

 // 2. Write <numbytes> from <src> to <dest>
 FLASH_Write (dest, src, numbytes);
140 Rev. 0.3

AN201

}

//---
// FLASH_Write
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR dest - starting address of the byte(s) to write to
// valid range is 0x0000 to 0x7DFE for 32K Flash devices
// valid range is 0x0000 to 0x3FFE for 16K Flash devices
// 2) char *src - pointer to source bytes
// 3) unsigned int numbytes - the number of bytes to write
// valid range is is range of integer
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>. The bytes must be erased to 0xFF before writing.
// <dest> + <numbytes> must be less than 0x7DFF/0x3FFF.
//
//---

void FLASH_Write (FLADDR dest, char *src, unsigned int numbytes)
{
 FLADDR i;

 for (i = dest; i < dest+numbytes; i++) {
 FLASH_ByteWrite (i, *src++);
 }
}

//---
// FLASH_Read
//---
//
// Return Value : None
// 1) char *dest - pointer to destination bytes
// Parameters :
// 1) char *dest - pointer to destination bytes
// 2) FLADDR src - address of source bytes in Flash
// valid range is 0x0000 to 0x7DFF for 32K Flash devices
// valid range is 0x0000 to 0x3FFF for 16K Flash devices
// 3) unsigned int numbytes - the number of bytes to read
// valid range is range of integer
//
// This routine copies <numbytes> from the linear FLASH address <src> to
// <dest>.
// <src> + <numbytes> must be less than 0x7DFF/0x3FFF.
//
//---

char * FLASH_Read (char *dest, FLADDR src, unsigned int numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {
 *dest++ = FLASH_ByteRead (src+i);
 }
 return dest;
}

//---
// FLASH_Copy
//---
Rev. 0.3 141

AN201

//
// Return Value : None
// Parameters :
// 1) FLADDR dest - pointer to destination bytes in Flash
// valid range is 0x0000 to 0x7DFF for 32K Flash devices
// valid range is 0x0000 to 0x3FFF for 16K Flash devices
// 2) FLADDR src - address of source bytes in Flash
// valid range is 0x0000 to 0x7DFF for 32K Flash devices
// valid range is 0x0000 to 0x3FFF for 16K Flash devices
// 3) unsigned int numbytes - the number of bytes to copy
// valid range is range of integer
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>. The destination bytes must be erased to 0xFF before writing.
// <src>/<dest> + <numbytes> must be less than 0x7DFF.
//
//---

void FLASH_Copy (FLADDR dest, FLADDR src, unsigned int numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {
 FLASH_ByteWrite ((FLADDR) dest+i, FLASH_ByteRead((FLADDR) src+i));
 }
}

//---
// FLASH_Fill
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR addr - starting address of bytes to fill in Flash
// valid range is 0x0000 to 0x7DFF for 32K Flash devices
// valid range is 0x0000 to 0x3FFF for 16K Flash devices
// 2) ULONG length - number of bytes to fill
// range is total Flash size
// 3) UCHAR fill - the character used the Flash should be filled with
//
// This routine fills the FLASH beginning at <addr> with <length> bytes.
// The target bytes must be erased before writing to them.
// <addr> + <length> must be less than 0x7DFF.
//
//---

void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill)
{
 FLADDR i;

 for (i = 0; i < length; i++) {
 FLASH_ByteWrite (addr+i, fill);
 }
}

//---
// End Of File
//---
142 Rev. 0.3

AN201

7.14.4. F410_FlashUtils.h
//---
// F410_FlashUtils.h
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// FID: 41X000052
// Target: C8051F410/1/2/3
// Tool chain: Keil C51 8.00
// Command Line: None
//
//
// Release 1.0
// -Initial Revision (GP)
// -29 SEP 2006
//

//---
// Open Header #define
//---

#ifndef _F410_FLASHUTILS_H_
#define _F410_FLASHUTILS_H_

//---
// Includes
//---

#include "F410_FlashPrimitives.h"

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned int numbytes);
char * FLASH_Read (char *dest, FLADDR src, unsigned int numbytes);
void FLASH_Clear (FLADDR addr, unsigned int numbytes);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned int numbytes);
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned int numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

//---
// Close Header #define
//---

#endif // _F410_FLASHUTILS_H_

//---
// End Of File
//---
Rev. 0.3 143

AN201
7.15. ‘F520
7.15.1. F520_FlashPrimitives.c
//---
// F520_FlashPrimitives.c
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// FID: 52X000001
// Target: C8051F520/1/2/3/4/5/6/7; C8051F530/1/2/3/4/5/6/7
// Tool chain: Keil C51 8.00
// Command Line: None
//
//
// Release 1.0
// -Initial Revision (GP)
// -29 SEP 2006
//

//---
// Includes
//---

#include <c8051F520.h>
#include "F520_FlashPrimitives.h"

//---
// Function Prototypes
//---

void FLASH_ByteWrite (FLADDR addr, char byte);
unsigned char FLASH_ByteRead (FLADDR addr);
void FLASH_PageErase (FLADDR addr);

//---
// FLASH_ByteWrite
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR addr - address of the byte to write to
// valid range is 0x0000 to 0x1DFE for 8K Flash devices
// valid range is 0x0000 to 0x0FFE for 4K Flash devices
// valid range is 0x0000 to 0x07FE for 2K Flash devices
// 2) char byte - byte to write to Flash.
//
// This routine writes <byte> to the linear FLASH address <addr>.
//---

void FLASH_ByteWrite (FLADDR addr, char byte)
{
 bit EA_SAVE = EA; // Preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // Disable interrupts

 VDM0CN = 0xA0; // Enable VDD monitor and high threshold
144 Rev. 0.3

AN201

 RSTSRC = 0x02; // Enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x01; // PSWE = 1 which enables writes

 VDM0CN = 0xA0; // Enable VDD monitor and high threshold

 RSTSRC = 0x02; // Enable VDD monitor as a reset source

 *pwrite = byte; // Write the byte

 PSCTL &= ~0x01; // PSWE = 0 which disable writes

 EA = EA_SAVE; // Restore interrupts
}

//---
// FLASH_ByteRead
//---
//
// Return Value :
// unsigned char - byte read from Flash
// Parameters :
// 1) FLADDR addr - address of the byte to read to
// valid range is 0x0000 to 0x1DFE for 8K Flash devices
// valid range is 0x0000 to 0x0FFE for 4K Flash devices
// valid range is 0x0000 to 0x07FE for 2K Flash devices
//
// This routine reads a <byte> from the linear FLASH address <addr>.
//---

unsigned char FLASH_ByteRead (FLADDR addr)
{
 bit EA_SAVE = EA; // Preserve EA
 char code * data pread; // FLASH read pointer
 unsigned char byte;

 EA = 0; // Disable interrupts

 pread = (char code *) addr;

 byte = *pread; // Read the byte

 EA = EA_SAVE; // Restore interrupts

 return byte;
}

//---
// FLASH_PageErase
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR addr - address of any byte in the page to erase
// valid range is 0x0000 to 0x1BFF for 8K Flash devices
// valid range is 0x0000 to 0x0DFF for 4K Flash devices
// valid range is 0x0000 to 0x05FF for 2K Flash devices
//
// This routine erases the FLASH page containing the linear FLASH address
// <addr>. Note that the page of Flash containing the Lock Byte cannot be
Rev. 0.3 145

AN201

// erased from application code.
//---

void FLASH_PageErase (FLADDR addr)
{
 bit EA_SAVE = EA; // Preserve EA
 char xdata * data pwrite; // FLASH write pointer

 EA = 0; // Disable interrupts

 VDM0CN = 0xA0; // Enable VDD monitor and high threshold

 RSTSRC = 0x02; // Enable VDD monitor as a reset source

 pwrite = (char xdata *) addr;

 FLKEY = 0xA5; // Key Sequence 1
 FLKEY = 0xF1; // Key Sequence 2
 PSCTL |= 0x03; // PSWE = 1; PSEE = 1

 VDM0CN = 0xA0; // Enable VDD monitor and high threshold

 RSTSRC = 0x02; // Enable VDD monitor as a reset source
 *pwrite = 0; // Initiate page erase

 PSCTL &= ~0x03; // PSWE = 0; PSEE = 0

 EA = EA_SAVE; // Restore interrupts
}

//---
// End Of File
//---
146 Rev. 0.3

AN201

7.15.2. F520_FlashPrimitives.h
//---
// F520_FlashPrimitives.h
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// FID: 52X000002
// Target: C8051F520/1/2/3/4/5/6/7; C8051F530/1/2/3/4/5/6/7
// Tool chain: Keil C51 8.00
// Command Line: None
//
//
// Release 1.0
// -Initial Revision (GP)
// -29 SEP 2006
//

//---
// Open Header #define
//---

#ifndef _F520_FLASHPRIMITIVES_H_
#define _F520_FLASHPRIMITIVES_H_

//---
// Structures, Unions, Enumerations, and Type Definitions
//---

typedef unsigned long ULONG;
typedef unsigned int UINT;
typedef unsigned char UCHAR;
typedef UINT FLADDR;

//---
// Global Constants
//---

#ifndef FLASH_PAGESIZE
#define FLASH_PAGESIZE 512
#endif

#ifndef FLASH_TEMP
#define FLASH_TEMP 0x1A00L // For 8K Flash devices
//#define FLASH_TEMP 0x0C00L // For 4K Flash devices
//#define FLASH_TEMP 0x0400L // For 2K Flash devices
#endif

#ifndef FLASH_LAST
#define FLASH_LAST 0x1C00L // For 8K Flash devices
//#define FLASH_LAST 0x0E00L // For 4K Flash devices
//#define FLASH_LAST 0x0600L // For 2K Flash devices
#endif

//---
// Exported Function Prototypes
//---

void FLASH_ByteWrite (FLADDR addr, char byte);
Rev. 0.3 147

AN201

unsigned char FLASH_ByteRead (FLADDR addr);
void FLASH_PageErase (FLADDR addr);

//---
// Close Header #define
//---

#endif // _F520_FLASHPRIMITIVES_H_

//---
// End Of File
//---
148 Rev. 0.3

AN201

7.15.3. F520_FlashUtils.c
//---
// F520_FlashUtils.c
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// FID: 52X000003
// Target: C8051F520/1/2/3/4/5/6/7; C8051F530/1/2/3/4/5/6/7
// Tool chain: Keil C51 8.00
// Command Line: None
//
//
// Release 1.0
// -Initial Revision (GP)
// -29 SEP 2006
//

//---
// Includes
//---

#include "F520_FlashPrimitives.h"
#include "F520_FlashUtils.h"

//---
// Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned int numbytes);
char * FLASH_Read (char *dest, FLADDR src, unsigned int numbytes);
void FLASH_Clear (FLADDR addr, unsigned int numbytes);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned int numbytes);
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned int numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

//---
// FLASH_Clear
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR addr - address of the byte to write to
// valid range is 0x0000 to 0x19FF for 8K Flash devices
// valid range is 0x0000 to 0x0BFF for 4K Flash devices
// valid range is 0x0000 to 0x03FF for 2K Flash devices
// 2) unsigned int numbytes - the number of bytes to clear to 0xFF
// valid range is 0 to FLASH_PAGESIZE
//
// This routine erases <numbytes> starting from the FLASH addressed by
// <dest> by performing a read-modify-write operation using <FLASH_TEMP> as
// a temporary holding area.
// <addr> + <numbytes> must be less than 0x19FF/0x0BFF/0x03FF.
//
Rev. 0.3 149

AN201

//---

void FLASH_Clear (FLADDR dest, unsigned int numbytes)
{
 FLADDR dest_1_page_start; // First address in 1st page
 // containing <dest>
 FLADDR dest_1_page_end; // Last address in 1st page
 // containing <dest>
 FLADDR dest_2_page_start; // First address in 2nd page
 // containing <dest>
 FLADDR dest_2_page_end; // Last address in 2nd page
 // containing <dest>
 unsigned numbytes_remainder; // When crossing page boundary,
 // number of <src> bytes on 2nd page
 unsigned FLASH_pagesize; // Size of FLASH page to update

 FLADDR wptr; // Write address
 FLADDR rptr; // Read address

 unsigned length;

 FLASH_pagesize = FLASH_PAGESIZE;

 dest_1_page_start = dest & ~(FLASH_pagesize - 1);
 dest_1_page_end = dest_1_page_start + FLASH_pagesize - 1;
 dest_2_page_start = (dest + numbytes) & ~(FLASH_pagesize - 1);
 dest_2_page_end = dest_2_page_start + FLASH_pagesize - 1;

 if (dest_1_page_end == dest_2_page_end)
 {
 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to Scratch page

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Copy from (dest+numbytes) to dest_page_end to Scratch page

 wptr = FLASH_TEMP + dest - dest_1_page_start + numbytes;
 rptr = dest + numbytes;
 length = dest_1_page_end - dest - numbytes + 1;
 FLASH_Copy (wptr, rptr, length);

 // 4. Erase destination page
 FLASH_PageErase (dest_1_page_start);

 // 5. Copy Scratch page to destination page
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 }
 else // Value crosses page boundary
 {
 // 1. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 2. Copy bytes from first byte of dest page to dest-1 to temp page
150 Rev. 0.3

AN201

 wptr = FLASH_TEMP;
 rptr = dest_1_page_start;
 length = dest - dest_1_page_start;
 FLASH_Copy (wptr, rptr, length);

 // 3. Erase destination page 1
 FLASH_PageErase (dest_1_page_start);

 // 4. Copy Scratch page to destination page 1
 wptr = dest_1_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);

 // Now handle 2nd page

 // 5. Erase Scratch page
 FLASH_PageErase (FLASH_TEMP);

 // 6. Copy bytes from numbytes remaining to dest-2_page_end to temp page

 numbytes_remainder = numbytes - (dest_1_page_end - dest + 1);
 wptr = FLASH_TEMP + numbytes_remainder;
 rptr = dest_2_page_start + numbytes_remainder;
 length = FLASH_pagesize - numbytes_remainder;
 FLASH_Copy (wptr, rptr, length);

 // 7. Erase destination page 2
 FLASH_PageErase (dest_2_page_start);

 // 8. Copy Scratch page to destination page 2
 wptr = dest_2_page_start;
 rptr = FLASH_TEMP;
 length = FLASH_pagesize;
 FLASH_Copy (wptr, rptr, length);
 }
}

//---
// FLASH_Update
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR dest - starting address of the byte(s) to write to
// valid range is 0x0000 to 0x19FF for 8K Flash devices
// valid range is 0x0000 to 0x0BFF for 4K Flash devices
// valid range is 0x0000 to 0x03FF for 2K Flash devices
// 2) char *src - pointer to source bytes
// 3) unsigned int numbytes - the number of bytes to update
// valid range is 0 to FLASH_PAGESIZE
//
// This routine replaces <numbytes> from <src> to the FLASH addressed by
// <dest>. This function calls FLASH_Clear() to initialize all <dest> bytes
// to 0xff's prior to copying the bytes from <src> to <dest>.
// <dest> + <numbytes> must be less than 0x19FF/0x0BFF/0x03FF.
//
//---

void FLASH_Update (FLADDR dest, char *src, unsigned int numbytes)
{
 // 1. Erase <numbytes> starting from <dest>
 FLASH_Clear (dest, numbytes);
Rev. 0.3 151

AN201

 // 2. Write <numbytes> from <src> to <dest>
 FLASH_Write (dest, src, numbytes);
}

//---
// FLASH_Write
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR dest - starting address of the byte(s) to write to
// valid range is 0x0000 to 0x1DFE for 8K Flash devices
// valid range is 0x0000 to 0x0FFE for 4K Flash devices
// valid range is 0x0000 to 0x07FE for 2K Flash devices
// 2) char *src - pointer to source bytes
// 3) unsigned int numbytes - the number of bytes to write
// valid range is is range of integer
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>. The bytes must be erased to 0xFF before writing.
// <dest> + <numbytes> must be less than 0x1DFE/0x0FFE/0x07FE.
//
//---

void FLASH_Write (FLADDR dest, char *src, unsigned int numbytes)
{
 FLADDR i;

 for (i = dest; i < dest+numbytes; i++) {
 FLASH_ByteWrite (i, *src++);
 }
}

//---
// FLASH_Read
//---
//
// Return Value :
// 1) char *dest - pointer to destination bytes
// Parameters :
// 1) char *dest - pointer to destination bytes
// 2) FLADDR src - address of source bytes in Flash
// valid range is 0x0000 to 0x1DFE for 8K Flash devices
// valid range is 0x0000 to 0x0FFE for 4K Flash devices
// valid range is 0x0000 to 0x07FE for 2K Flash devices
// 3) unsigned int numbytes - the number of bytes to read
// valid range is range of integer
//
// This routine copies <numbytes> from the linear FLASH address <src> to
// <dest>.
// <dest> + <numbytes> must be less than 0x1DFE/0x0FFE/0x07FE.
//
//---

char * FLASH_Read (char *dest, FLADDR src, unsigned int numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++) {
 *dest++ = FLASH_ByteRead (src+i);
 }
 return dest;
}

152 Rev. 0.3

AN201
//---
// FLASH_Copy
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR dest - pointer to destination bytes in Flash
// valid range is 0x0000 to 0x1DFE for 8K Flash devices
// valid range is 0x0000 to 0x0FFE for 4K Flash devices
// valid range is 0x0000 to 0x07FE for 2K Flash devices
// 2) FLADDR src - address of source bytes in Flash
// valid range is 0x0000 to 0x1DFE for 8K Flash devices
// valid range is 0x0000 to 0x0FFE for 4K Flash devices
// valid range is 0x0000 to 0x07FE for 2K Flash devices
// 3) unsigned int numbytes - the number of bytes to copy
// valid range is range of integer
//
// This routine copies <numbytes> from <src> to the linear FLASH address
// <dest>. The destination bytes must be erased to 0xFF before writing.
// <dest>/<src> + <numbytes> must be less than 0x1DFE/0x0FFE/0x07FE.
//
//---

void FLASH_Copy (FLADDR dest, FLADDR src, unsigned int numbytes)
{
 FLADDR i;

 for (i = 0; i < numbytes; i++)
 {
 FLASH_ByteWrite ((FLADDR) dest+i, FLASH_ByteRead((FLADDR) src+i));
 }
}

//---
// FLASH_Fill
//---
//
// Return Value : None
// Parameters :
// 1) FLADDR addr - starting address of bytes to fill in Flash
// valid range is 0x0000 to 0x1DFE for 8K Flash devices
// valid range is 0x0000 to 0x0FFE for 4K Flash devices
// valid range is 0x0000 to 0x07FE for 2K Flash devices
// 2) ULONG length - number of bytes to fill
// range is total Flash size
// 3) UCHAR fill - the character used the Flash should be filled with
//
// This routine fills the FLASH beginning at <addr> with <length> bytes.
// The target bytes must be erased before writing to them.
// <addr> + <length> must be less than 0x1DFE/0x0FFE/0x07FE.
//
//---

void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill)
{
 FLADDR i;

 for (i = 0; i < length; i++) {
 FLASH_ByteWrite (addr+i, fill);
 }
}

//---
Rev. 0.3 153

AN201

// End Of File
//---
154 Rev. 0.3

AN201

7.15.4. F520_FlashUtils.h
//---
// F520_FlashUtils.h
//---
// Copyright 2006 Silicon Laboratories, Inc.
// http://www.silabs.com
//
// Program Description:
//
// This program contains several useful utilities for writing and updating
// FLASH memory.
//
// FID: 52X000004
// Target: C8051F520/1/2/3/4/5/6/7; C8051F530/1/2/3/4/5/6/7
// Tool chain: Keil C51 8.00
// Command Line: None
//
//
// Release 1.0
// -Initial Revision (GP)
// -29 SEP 2006
//

//---
// Open Header #define
//---

#ifndef _F520_FLASHUTILS_H_
#define _F520_FLASHUTILS_H_

//---
// Includes
//---

#include "F520_FlashPrimitives.h"

//---
// Exported Function Prototypes
//---

// FLASH read/write/erase routines
void FLASH_Write (FLADDR dest, char *src, unsigned int numbytes);
char * FLASH_Read (char *dest, FLADDR src, unsigned int numbytes);
void FLASH_Clear (FLADDR addr, unsigned int numbytes);

// FLASH update/copy routines
void FLASH_Update (FLADDR dest, char *src, unsigned int numbytes);
void FLASH_Copy (FLADDR dest, FLADDR src, unsigned int numbytes);

// FLASH test routines
void FLASH_Fill (FLADDR addr, ULONG length, UCHAR fill);

//---
// Close Header #define
//---

#endif // _F520_FLASHUTILS_H_

//---
// End Of File
//---
Rev. 0.3 155

AN201
DOCUMENT CHANGE LIST

Revision 0.1 to Revision 0.2
Updated list of relevant devices.
Add all new content to "6. Flash Write and Erase
Guidelines" on page 10.
Added example code for 'F340 devices.
Added example code for 'F326/7 devices.
Fixed example code for 'F320 devices.

Revision 0.2 to Revision 0.3
Added C8051F41x and C8051F52x-53x
documentation
Added clarification of the RSTSRC register in "4.4.
Example Code Implementation Notes" on page 8.
156 Rev. 0.3

AN201
NOTES:
Rev. 0.3 157

AN201
CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Email: MCUinfo@silabs.com
Internet: www.silabs.com

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
158 Rev. 0.3

	1. Introduction
	2. Key Points
	3. Flash Essentials
	3.1. Flash Organization
	Figure 1. Flash Memory Organization and Security for the C8051F30x Series

	3.2. Device Specific Notes
	3.2.1. C8051F12x Code Banking
	3.2.2. C8051F3xx, C8051F4xx, and C8051F5xx Flash Unlock Bytes
	3.2.3. C8051F0xx, C8051F12x, C8051F2xx, C8051F34x, C8051F35x, and C8051F41x Flash Timing
	3.2.4. C8051F4xx and C8051F5xx VDD Monitor Level

	3.3. Flash Read, Write, and Erase Operations

	4. Basic Flash operations
	4.1. Reading A Byte
	4.2. Writing A Byte
	4.3. Erasing a Page
	4.4. Example Code Implementation Notes

	5. Advanced Flash Operations
	6. Flash Write and Erase Guidelines
	6.1. VDD Maintenance and the VDD Monitor
	Table 1. VDD Monitor Enabling

	6.2. PSWE Maintenance
	6.3. System Clock

	7. Example Code
	7.1. ‘F000
	7.1.1. F000_FlashPrimitives.c
	7.1.2. F000_FlashPrimitives.h
	7.1.3. F000_FlashUtils.c
	7.1.4. F000_FlashUtils.h

	7.2. ‘F020
	7.2.1. F020_FlashPrimitives.c
	7.2.2. F020_FlashPrimitives.h
	7.2.3. F020_FlashUtils.c
	7.2.4. F020_FlashUtils.h

	7.3. ‘F040
	7.3.1. F040_FlashPrimitives.c
	7.3.2. F040_FlashPrimitives.h
	7.3.3. F040_FlashUtils.c
	7.3.4. F040_FlashUtils.h

	7.4. ‘F060
	7.4.1. F060_FlashPrimitives.c
	7.4.2. F060_FlashPrimitives.h
	7.4.3. F060_FlashUtils.c
	7.4.4. F060_FlashUtils.h

	7.5. ‘F120
	7.5.1. F120_FlashPrimitives.c
	7.5.2. F120_FlashPrimitives.h
	7.5.3. F120_FlashUtils.c
	7.5.4. F120_FlashUtils.h

	7.6. ‘F200
	7.6.1. F200_FlashPrimitives.c
	7.6.2. F200_FlashPrimitives.h
	7.6.3. F200_FlashUtils.c
	7.6.4. F200_FlashUtils.h

	7.7. ‘F300
	7.7.1. F300_FlashPrimitives.c
	7.7.2. F300_FlashPrimitives.h
	7.7.3. F300_FlashUtils.c
	7.7.4. F300_FlashUtils.h

	7.8. ‘F310
	7.8.1. F310_FlashPrimitives.c
	7.8.2. F310_FlashPrimitives.h
	7.8.3. F310_FlashUtils.c
	7.8.4. F310_FlashUtils.h

	7.9. ‘F320
	7.9.1. F320_FlashPrimitives.c
	7.9.2. F320_FlashPrimitives.h
	7.9.3. F320_FlashUtils.c
	7.9.4. F320_FlashUtils.h

	7.10. ‘F326/7
	7.10.1. F326_FlashPrimitives.c
	7.10.2. F326_FlashPrimitives.h
	7.10.3. F326_FlashUtils.c
	7.10.4. F326_FlashUtils.h

	7.11. ‘F330
	7.11.1. F330_FlashPrimitives.c
	7.11.2. F330_FlashPrimitives.h
	7.11.3. F330_FlashUtils.c
	7.11.4. F330_FlashUtils.h

	7.12. ‘F340
	7.12.1. F340_FlashPrimitives.c
	7.12.2. F340_FlashPrimitives.h
	7.12.3. F340_FlashUtils.c
	7.12.4. F340_FlashUtils.h

	7.13. ‘F350
	7.13.1. F350_FlashPrimitives.c
	7.13.2. F350_FlashPrimitives.h
	7.13.3. F350_FlashUtils.c
	7.13.4. F330_FlashUtils.h

	7.14. ‘F410
	7.14.1. F410_FlashPrimitives.c
	7.14.2. F410_FlashPrimitives.h
	7.14.3. F410_FlashUtils.c
	7.14.4. F410_FlashUtils.h

	7.15. ‘F520
	7.15.1. F520_FlashPrimitives.c
	7.15.2. F520_FlashPrimitives.h
	7.15.3. F520_FlashUtils.c
	7.15.4. F520_FlashUtils.h

	Document Change List
	Contact Information

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

