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Abstract

The power consumption of mobile devices is an increasing issue. As the devices become faster
and provide more features they consume more power and this results in less battery life. This
project was started to reduce the power consumption of two platforms the TP-Link TL-
WR703N and the Raspberry Pi. By developing a power management system which allows
the platforms to monitor their own current consumption and respond intelligently when
then battery is low. Although the project didn't succeed in developing a power management
system it does provide the means for the platforms to monitor their own current usage using
the developed current monitor. The current monitor is used to compare the Raspberry Pi
and the TP-Link TL-WR703N to determine which platform is more appropriate for the
ongoing Mobile Backpack Router project. Existing Linux power management features have
been explored and found but unfortunately aren't implemented in the two platforms.
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1. Introduction

The Linux SoC Power Management project was started to compare and reduce the power
consumption of two platforms, the TP-Link TL-WR703N and the Raspberry Pi with the
required peripherals connected, with the aim of allowing both platforms to monitor their own
power consumption and respond accordingly to a low power situation. This is to prolong
their active state when being powered from a portable power source such as a battery. This
is going to be achieved by developing a power management system to maintain the current
consumption status and decide when devices should be placed into a low power state.
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2. Background

2.1. TP-Link TL-WR703N

The TP-Link TL-WR703N is a commercial Wireless N 3G capable portable router, using an
Atheros AR9331 SoC (System on a Chip). The Atheros AR9331 consists of,

• the Atheros AR7240 CPU (a MIPS 24kc core) operating at 400MHz

• a Wireless N 150Mbps adapter

• a 10/100Mb wired Ethernet adapter

• a USB 2.0 controller

With the AR9331 is 32MB of RAM, a 4MB �ash chip, Ethernet port, USB 2.0 port and a
Micro USB port. The Micro USB port is only used to provide the router with power at 5v
with a current draw of 185mA and the USB 2.0 port is intended for the 3G USB Modem. The
router ships with proprietary TP-Link �rmware, however OpenWrt have ported their Linux
distribution to the platform which will be used within this project.[29] The only standard
way of communicating with the TL-WR703N is via the Ethernet or Wireless interfaces using
either the telnet or the secure shell protocol.

2.2. Raspberry Pi

The Raspberry Pi is a single board computer which uses a Broadcom BCM2835 SoC. The
Broadcom BCM2835 consist of,

• an ARM1176JZF-S CPU operating at 700MHz

• a Broadcom Dual Core VideoCore IV GPU with con�gurable CPU/GPU RAM split

• a Digital Signal Processor

• a USB 2.0 controller

With the Broadcom BCM2835 is 256MB of RAM, an external Ethernet controller with an
Ethernet port, a Micro USB port, an external USB 2.0 hub with 2 USB ports, a HDMI port,
a Composite RC socket, a DSI connector, a 3.5mm audio jack, an SD card reader, a GPIO
header and UART header. Unlike the TP-Link TL-WR703N, the Raspberry Pi doesn't have
any persistent storage such as a �ash chip, so instead using SD card is required to boot from
and save user data to. The Raspberry Pi is designed to be used with a mouse, keyboard and
a monitor but can be communicated with remotely by using the Ethernet interface with the
secure shell protocol. The Raspberry Pi o�cially has support for ArchLinux, Debian and
Fedora Linux distributions.[30]
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2.3. Related Project

The Linux SoC Power Management project stems from the Backpack Router project as a
solution to reducing the power consumption will aid this projects in its development.
The Backpack Router project uses the Ubiquiti RouterStation which is being powered

by a 15V Lithium Ion battery. The RouterStation has a USB hub with a USB 3G modem
connected to the USB header.
On the internal mini-PCI sockets are 3 WiFi adapters which are the Ubiquiti Xtream-

eRange 2 with a 2.4GHz omnidirectional 5dBi antenna connected to each one of them. Each
of the 3 WiFi adapter has di�erent roles, one of them is used to create the access point to
allow mobile devices to connect to it. Another is used to provided the MANET protocol
ad-hoc link to another backpack router and the last one is used to connect to other APs to
receive an Internet connection.
The backhual connection to the internet used by the router depends on the available

options with a WiFi connection being the preferred choice. If a WiFi connection doesn't
exist it will attempt to connect to the 3G network, and when this fails it will attempt to
connect via Satellite being provided by a separate WiFi AP. When there is no backhual
connection available the router will use a MANET protocol to ad-hoc with another visible
mobile router.[10]
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3. Current Monitor

3.1. Research

3.1.1. Battery Monitor ICs

There are a number of ICs (Integrated Circuits) which can monitor current usage to our
requirements but no pre-built device which means a circuit will be developed around the
chosen IC. The requirements of the IC are that it needs to be able to monitor current and
communicate the readings to the platforms.
The DS2438 is developed by Maxim and called the �Smart Battery Monitor� it provides

the ability to monitor current, voltage and temperature and accumulates the discharge and
charge current. It provides a 1-Wire bus interface which is developed by Maxim and is used
to communicate the readings back to another device, even so its called the 1-Wire bus it
requires two wires the ground and the data. This is because a circuit is required to read the
bits across the wire by measuring the di�erence in voltage high for 1 and low for 0.[1]
The DS2762 is developed by Maxim and called the �High-Precision Li+ Battery Monitor

With Alerts� and provides the ability to monitor current, voltage and temperature and
accumulates current. Like the DS2438 it also uses the 1-Wire bus interface which is used to
reads the measurements from the registers and con�gure the IC. Unlike the DS2438 it can
be purchased with an internal 25mOhm sense register and also provides a Li+ Safety circuit
which prevents over and under voltage protection and over current and short protection. It
also has to ability to provide alerts to the host when the accumulated current or temperature
has exceeded the user con�gurable limits.[23]
The DS2745 is developed by Maxim and called the �Low-Cost I2C Battery Monitor� it

provides the ability to monitor the current, the voltage and the temperature and accumu-
lates current. Another feature the DS2745 has is a low power mode which stops all the
measurement activity and only allows access to the current accumulators and the con�gura-
tion registers using the I2C bus.
The I2C bus is known as a 2-Wire serial bus and requires a clock(SCL), a data(SDA)

and a ground wire. The clock wire is used to synchronize the data over the data wire. The
ground is used to create a circuit so the voltage can be measured to sense when the SCL
and SDA wires go high and low.
Data is transmitted on the SDA wire in 8 bits per sequence with the SCL wire pulsed

by the sender to signal the start of a sequence. Each bit is acknowledge by the receiver by
sending an acknowledgment bit to the sender. When the sequence is over the send pulses
the SCL wire to signal its ready to receive the next byte.[24]
The BQ26231 is a Texas Instruments �Low-Cost Battery Coulomb Counter For Embedded

Portable Applications� and features the ability to monitor Li-Ion, Li-Pol and NiMH batteries.
The BQ26231 monitors the current and voltage of the battery and also has accumulators for
charge, discharge and self discharge to show the total charge and discharge of the battery
over time.
Retrieving the readings from the BQ2631 requires using the HDQ interface which is a

single wire interface and requires a data and ground wire. The BQ2631 has the ability to
calibrate itself and all the host has to do is tell the BQ2631 to calibrate.[25]
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3.1.2. Existing applications

The DS2438 has already been used in an existing router based project called �11km Wireless
Link to a Remote Site� by the �ICTP-ITU-URSI School on Wireless Networking for Devel-
opment�. The project involved using two Linksys WRT 54 GL routers one as a client to the
original base station and the other as a local AP to create a repeater which was placed 11km
away from the original base station.
A Smart Battery Monitor was developed which uses a DS2438, a MAX1614 and a DS2406

with a lead acid battery. The MAX1614 is a �High-Side, n-Channel MOSFET Switch Driver�
which is used to connect and disconnect the load from the battery. The DS2438 is used to
monitor the voltage of the battery and when it drops below 10.5v the DS2406 which is a
�Dual Addressable Switch Plus 1Kb Memory� is used to instruct the MAX1614 to disconnect
the load which turns the routers o�. This is done via the 1-Wire bus, to connect the load
again requires using the push button provided. Unfortunately even so a Smart Battery
Circuit with the ability to automatically power on the router when the battery was charged
was designed and tested in the lab it was never deployed due to a lack of parts.[9]
The DS2438 is built into the Crossbow Stargate Processor Module which was developed

by multiple research groups within Intel. The platform uses the Intel PXA255 Xscale RISC
based processor running at 400MHz with an Intel SA1111 StrongArm companion chip for
multiple I/O access. The Stargate also provides a PCMCIA and Compact Flash connector,
a 51-pin expansion connector for IRIS/MICAz/MICA2 Motes based peripherals such as
Crossbows family of wireless network sensors, headers for 2 serial ports and an I2C device
and has the option of a Lithium Ion battery.
The Crossbow Stargate has the ability of adding the daughter board which provides a

RS232 serial port, 10/100mb Ethernet port, USB support and a JTAG interface. The
datasheet doesn't directly identify the DS2438 it only shows a Gas Gauge in the Stargate's
block diagram.[26] The report by Vladislav Petkov titled �Using the DS2438 Battery Moni-
tor on Crossbow's Stargate� identi�es and describes the DS2438 on the Crossbow Stargate
Processor Module and also discusses how to utilize the abilities of the DS2438.[7]

3.1.3. Battery Monitor IC decision

The battery monitor IC that will be used to implement the current monitor is the DS2438
because it has all the necessary features and uses the 1-Wire bus.
The DS2762 also has the necessary features and implements the 1-Wire bus but it also

provides a Li+ Safety circuit and the ability to alert the host on the battery state. These
extra features are unnecessary for this project because the current being drawn by the
platforms is being monitored and not the state of a battery.
The DS2745 uses the I2C bus which poses a problem when connecting it to the TP-Link

TL-WR703N as it requires two GPIOs, one for the SCL and the other for the SDA. This
is a problem because the TL-WR703N requires some modi�cation to the gain access to the
unused GPIOs. Modifying the TL-WR703N to access one is risky enough but trying to get
access to two GPIOs provides an even greater risk of damaging the platform.
The BQ26231 uses Texas Instruments own HDQ interface to communicate with the host

which uses 1 wire for data. The Linux support for the HDQ interface is only available for
the TI OMAP 2430/3430 platforms which means it can't be used with the GPIOs on the
Raspberry Pi and the TL-WR703N.
The DS2438 has been used in a previously documented project such as the �11km Wireless

Link to a Remote Site� and the commercial product called the Crossbow Stargate Processor
Module. When researching the DS2762, DS2745 and the BQ26231 I failed to �nd an example
of these ICs being used in a project.
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3.2. Design and Implementation

3.2.1. Current monitor design

The designed current monitor uses a DS2438 �Smart Battery Monitor� IC instead of the
other ICs researched due to availability and ease of programming. A 1-Wire Bus Interface
to retrieve the readings can be connected to the GPIOs on both the Raspberry Pi and the
TP-Link TL-WR703N, and controlled using an existing kernel module.
Figure 3.1 shows the circuit diagram for the current monitor with the components labeled.

USB-GND is connected to VSENSE+ and ROUTER-GND is connected to VSENS- across
this are the components R1, R2 and C1. R1 is a 50mOhm resistor known as Rsense, the volt-
age is measured across this resistor by the DS2438 and used for the current measurements.
C1 is a 0.1 microfarad tantalum capacitor and R2 is 100kOhm resistor and these imple-
ment an RC low pass �lter with a cuto� of approximately 15.9Hz which �lters interference,
according to the data sheet this doesn't have to be implemented but is recommended[1].
VDD is connected to ROUTER-5V and USB-5V which is VCC on the USB A and MICRO-

B USB plugs, C3 which is a 220 microfarad electrolytic capacitor is used to decouple AC
noise and smooths voltage ripple on the 5v supply. DQ is the 1-Wire Bus interface and
is connected to R3 which is a 4.7kOhm resistor which is also connected to ROUTER-5V
and USB-5V this pulls DQ up to 5V and then terminates as an RJ-11 Plug which is the
standard connector for 1-Wire Bus devices. The 4.7kOhm resistor is necessary because the
DS2438 DQ pin is open drain meaning if there wasn't a pull up resistor then the voltage
would remain at 0.3v at all times.
VAD is connected to C2 which is another 220 microfarad electrolytic capacitor which

decouples AC noise and smooths voltage ripple, VAD could then be connected to the battery
to get an accurate voltage reading to determine the state of charge. The resistors used have
a 1% resistance tolerance which means they are within 1% of their value, this provides a level
accuracy especially since the voltage across the Rsense resistor is measured and its value is
used in the equation to retrieve the current draw. The current monitor was designed to be
used with a USB power supply as both the Raspberry Pi and TP-Link TL-WR703N use
Micro USB as the power connector.
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Figure 3.1.: Current Monitor Circuit Diagram

Figure 3.2 shows the PCB layout from the top of the board. The components are labeled
exactly the same as the circuit diagram with the addition of LK1 which is a link used to
connect the VAD track over the top of the ground track to the header on the board.

Figure 3.2.: Current Monitor PCB Layout

3.2.2. Modi�cations for the Raspberry Pi

The version of the current monitor shown in Figures 3.1 and 3.2 only works with the TP-
Link TL-WR703N and not the Raspberry Pi. This is due to DQ being pulled up to +5V
power rail - the Raspberry Pi's GPIOs can only support 3.3V logic levels, otherwise damage
occurs[2].
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The solution is to add a 3.6V zener diode across DQ and GND to prevent more than 3.6V
being pulled to DQ. The reason a 3.6V zener diode is being used instead of a 3.3V one is
because of the 4.7kOhm resistor connected to DQ and +5V power rail. The resistor prevents
all the current passing to DQ if the zener diode were to go fault and short to ground, however
the resistor also lowers the voltage.
When a 3.3V zener diode was used it lowered the voltage to 2.47V, which posed a problem

for the DS2438. The 2.47v reading was close to the low value of 2.4V rated for DQ by the
DS2438, so by using a 3.6v zener diode it raised the voltage by 0.30v, making it 2.77v -
which is an acceptable voltage.
Figure 3.3 is the circuit diagram of the current monitor modi�ed for the Raspberry Pi.

The diagram is the same as Figure 3.1 with the addition of Z1 which is connected to DQ
and GND this is the 3.6v zener diode.

Figure 3.3.: Raspberry Pi Current Monitor Circuit Diagram

Figure 3.4 is the PCB layout for the current monitor for the Raspberry Pi and shows the
position of Z1 which is the 3.6v zener diode.

14



Figure 3.4.: Raspberry Pi Current Monitor PCB Layout

Connecting the current monitor to the Raspberry Pi is straight forward as the GPIOs
are exposed as pins on the board and just requires an RJ11 cable with pin headers being
produced[2].

3.2.3. Modi�cations to the TP-Link

Connecting the current monitor to the TP-Link TL-WR703N required some modi�cation.
The R17 surface mount resistor pulls GPIO29 to ground because its not being used[3]. To
use the GPIO requires unsoldering the surface mount resistor and connecting a wire to the
GPIO header and another wire to ground as the 1-Wire Bus requires the signal and the
ground. For the ground the R17 pad wasn't used instead a ground point was found near the
R17 resistor with a larger surface area which is easier to soldier. Very �ne wire was used to
solder to the GPIO pad and then attached to an RJ11 cable because the ground pad was
large the RJ11 cable could be soldiered straight to it. The �ne wire was then glued to the
top of the Atheros SoC to prevent the wire from being pulled o� the board. The RJ11 cable
is glued to and sticks out of the TP-Link TL-WR703N case as a dongle and a coupler is used
to connect the RJ11 plug to the RJ11plug of the current monitor.

3.2.4. Further alterations to support USB device monitoring

The Current Monitors have been further altered from the original designs to support the
ability to monitor the load of a platform and a powered USB hub together. This is necessary
because of Raspberry Pi's requirement of a powered USB hub to support high power USB
devices as the internal hub can't provide more than 100mA of current.[22]
The alteration includes the addition of a DC Output Power Supply Lead from Maplin

code AQ81C which requires and provides the ability to change the DC jack as the size of
the DC jack varies between di�erent USB hubs and takes a maximum of 3A of current. The
size of DC jack the Dynamode USB-H40-A2.0 4 Port USB hub requires is a 3.5x1.35mm DC
jack. The following circuit diagrams show the positive side of the DC Output Power Supply
Lead has been wired to the ROUTER-5V side and the negative to the ROUTER-GND side
of both current monitors.
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3.2.5. Calibrating the current monitor

The DS2438 comes factory per-calibrated but its recommended to calibrate the DS2438 to
ensure the current reading is 0 when no platforms are connected. The calibration data is
known as the o�set and stored in the o�set register. When a current reading is taken the
measurement is added to the o�set and the result is stored in the current registers. Writing to
the o�set register involves writing the o�set to the o�set bytes on the page in the scratchpad
and then sending the command to commit that page to the EEPROM.
The procedure to calibrate the DS2438 involves disconnecting the platform from the cur-

rent monitor and powering it using a separate power supply. The IAD bit is disabled in
the status/con�g register which disable current monitoring and then a zero is written to the
o�set register. The IAD bit is then enabled and a current reading is taken after which the
IAD bit is disabled again. The reading taken is inverted using two's compliment and written
to the o�set register. Finally the IAD bit is enabled again and the DS2438 is now calibrated.

3.2.6. Verifying the DS2438 results

Verifying the results of the DS2438 required another device to be developed which allows
two multimeters to be connected between the power supply and the current monitor.
The device consits of two terminals, a USB socket and a lead with a USB plug on a piece

of Veriboard. One terminal is used to monitor the voltage and the other terminal is for
monitoring the current, the board also has a jumper which connects the current terminals
together so voltage can be tested alone. This is required because the multimeter needs to
be connected in series to the circuit to be able to monitor the current. Voltage is measured
in parallel across the 5V and ground.
The USB socket is fully wired to the USB plug which allows individual USB peripherals

to be tested with the multimeter as data is required to initial certain peripherals. The
multimeter that was used to verify the current is a UNI-T UT60E which measures DC
current in the ranges of 400 to 4000 microamps, 40 to 400 milliamps and 4 to 10 amps.
The accuracy of each range is +-(1%+2) in microamps, +-(1.2%+3) in milliamps and

+-(1.5%+5) in amps. The meter was used in the 4A range by using the provided accuracy
speci�cation this will produce the error of the reading and the two possibilities for the exact
reading from the meter.

3.3. Con�guring the Platforms for the Current Monitor

3.3.1. TP-Link TL-WR703N

As OpenWrt is being used on the TP-Link TL-WR703N to use the current monitor requires
compiling OpenWrt with the required kernel modules enabled. These kernel modules are
wire, w1-gpio-custom and w1-gpio. The wire kernel module adds support for the Dallas
1-wire bus, w1-gpio-custom adds the ability to specify up to 3 di�erent GPIOs as 3 di�erent
buses to be used for the 1-wire bus as parameters at the launch of the module and w1-gpio
is the w1 GPIO bus master driver.
A patch had to be applied to the code that handled communicating on the 1-wire bus in

the wire module. The patch added the ability to disable IRQ interrupts when performing
reading, writing and resetting the bus operations and increasing the amount of time the bus
master holds the bus low during the reset operation from 480 to 500 microseconds[4]. This
patch is necessary because there are a limited number of microseconds to read bits being
transmitted across the bus if an interrupt was to occur. The result was that the bus master
could miss a bit and corrupt the overall result.

16



Another patch was required in the w1-gpio-custom module to prevent a segmentation fault
occurring when trying to launch the module. This was due to a change within the w1-gpio
module which added a callback function pointer to enable and disable the external pull-up
resistor to let devices on the bus know if the processor is driving the bus or not[5]. The
w1-gpio-custom module didn't initialize the pointer which caused the segmentation fault, as
there isn't a function to handle this callback and was initialized to 0.
Every time the TP-Link TL-WR703N is �ashed the con�guration �les are erased which

means the w1-gpio-custom module would need to be recon�gured each time. Modifying the
MakeFile by adding just the AutoLoad option won't work since parameters can't be speci�ed.
Instead, a patch can be applied to functions.sh in the base-�les package which updates the
script to look for a con�guration �le in �/etc/con�g� with the module's name in the uci
con�g format and applies the parameters when loading the module[6]. After modifying the
w1-gpio-custom package to include a con�guration �le and place it into the correct folder
when OpenWrt is compiled, the module con�guration is now built into the ROM.
The kernel itself can contain speci�c module drivers for 1-wire devices, but there isn't a

module available for the DS2438, so a default generic �le descriptor called �rw� is provided
to give raw read and write access to the device.

3.3.2. Raspberry Pi

The Raspberry Pi loads its �rmware and boots from the SD card. Using the provided Debian
image for the Raspberry Pi required updating the �rmware in the boot partition to boot the
kernel compiled from the latest Raspberry Pi kernel source. The Raspberry Pi also required
the enabling of the kernel modules such as wire, w1-gpio and the addition of the patched
w1-gpio-custom module from OpenWrt, and inserting into the kernel sources.
When booting from the compiled kernel and con�guring the modules, using the test pro-

gram it frequently took 3 to 4 attempts to get a read from the DS2438 without a CRC
failure. Original thought suggested the addition of the zener diode added noise to the signal
but after trying the modi�ed current monitor on the TP-Link TL-WR703N the test program
read from the DS2438 perfectly every time with the CRCs matching.
The patch for wire module hadn't been applied to the Raspberry Pi kernel source, and the

OpenWrt patch failed to apply. This is because the Raspberry Pi kernel is based on 3.1.9
and the OpenWrt kernel is based on 3.3.8. After comparing the kernel source for the wire
kernel modules with the OpenWrt kernel which has the patch applied, all the original w1
modules in the Raspberry Pi kernel source were updated to the level of the OpenWrt kernel.
During the comparison there was a di�erence in the method w1_read_bit, before the

patch used on the OpenWrt kernel. The method didn't disable IRQs, and this was the cause
of the corruption. A new patch was generated to �x this issue, and to add the w1-gpio-
custom module. After this new kernel was compiled and booted the test program read the
DS2348 perfectly every time with the CRCs matching.
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4. Power Management

4.1. Introduction

When it comes to power management there are two major standards Advanced Power Man-
agement (APM) and Advanced Con�guration and Power Interface (ACPI).
APM was developed by Microsoft and Intel and allows the operating system to send power

management instructions to the BIOS which then controls the power states of the devices
and the system. The BIOS can also generate events which the operating systems APM
driver polls to be informed of events such as a low battery noti�cation.[12]
ACPI is the successor of APM as it removed the need for the operating system to talk to

the BIOS to change the power state of the devices and the system. It was designed to be
far more than just a power management solution but also replace the Plug and Play BIOS
and the MultiProcessor speci�cations.[11]
However ACPI and APM are only available for desktop computers, laptops, netbooks

and not embedded devices such as the Raspberry Pi and the TP-Link TL-WR703N. There
is no set standard to manage the power consumption across embedded devices. Each of
the devices will have unique speci�c hardware interfaces developed for dealing with power
management.
Looking into these speci�c interfaces could provide the ability to reduce power consump-

tion if they are implemented for the hardware within the Linux kernel. Implementing these
interfaces would require having the data sheet for the SoC which describes the various reg-
isters available to con�gure the hardware but this is proprietary information and won't be
easy to get hold of. Any progress made on implementing the di�erent available interfaces
won't be portable between the TP-Link TL-WR703N and the Raspberry Pi.
There are some generic interface which will be compatible across the platforms like the

ability to disable network interfaces such as the wireless interface to reduce power consump-
tion as this is tailored towards the wireless interface and its drivers and the Linux network
architecture.

4.2. Linux Power Management Frameworks

The Linux kernel supports both the APM and ACPI power management standards and
implements a power management framework that adds the ability to place the whole system
into sleep, suspend and hibernate. The power states themselves have to be implemented
across all the device modules for the system to be able to enter the state fully.
The �Runtime Power Management Framework for I/O Devices� adds the ability to control

the power state of individual devices connected to the system while the system is running
as opposed to placing the whole system into a di�erent power state. The support for this
framework has to be implemented into the device drivers.[20]
The Linux USB core has the ability to allow the kernel to autosuspend individual USB

devices when they are idle for a period of time and for the USB device to remotely wakeup
the system. By default autosuspend is disabled on all USB devices except USB hubs because
certain USB devices fail to implement the standard correctly. The usbcore can be con�gured
to enable or disable autosuspend and remote wakeup. The number of milliseconds individual
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peripherals have to be idle before the kernel suspends them is also con�gurable. The �Run-
time Power Management Framework for I/O Devices� has to be implemented and enabled
for the usbcore to enable these power management features.[21]
There are two CPU power management frameworks cpufreq and cpuidle, the cpufreq

framework implements the ability to adjust the CPU clock speed and the cpuidle framework
places the processor into a sleep mode when the CPU is idle.[13]
The pm_qos framework provides power management for quality of service this allows sub-

systems, applications and drivers to register their performance requirements by setting one
of the available parameters. These parameters include cpu_dma_latency, network_latency
and network_throughput. The second power management for quality of service framework
provides an API to manage per device latency requirements.[15][16]
The mac80211 infrastructure for wireless cards supports the pm_qos framework and has

the ability to dynamically save power when the device is associated to a network and is
receiving no tra�c for a certain amount of time. When dynamic power saving is on the
wireless interface will sleep for the DTIM interval.[17] The AP assists it clients by bu�ering
their frames while they are in a low power mode. The DTIM is an element which is sent in
certain beacon frames from the AP which indicates to clients in low power modes that there
are bu�ered frames to collect.
When the DTIM is sent is determined by a value which indicates in how many beacon

frames to send the DTIM, if the value was 1 it would be sent every beacon frame if the value
was 10 it would be sent every 10 frames.[18] The interval at which beacon frames are sent is
controlled by the Target Beacon Transmission Time Time (TBTT) which speci�es in Time
Units (TU) when the AP must send a beacon to its clients. A Time Unit represent 1024
microseconds a default value is 100 TU which is 102400 microseconds.[19] When the DTIM
is sent the wireless interface wakes up and collects the bu�ered frames waiting for it.
The network latency pm_qos parameter a�ects whether dynamic power management is on

or o�, if an application speci�es a network latency which is greater than the beacon interval
then dynamic power management will be o� for the duration the application requires that
network latency. If the value is greater than the beacon interval then it is compared with
the DTIM interval to see if power management can be enabled to ensure the bu�ered frames
can be delivered within each DTIM interval instead of at each beacon.[17]
The dynamic power mode can only really assist the wireless interface when it is in managed

mode and not being used in master mode which means if the router was being as a wireless
router than this feature would have no use but the TTBT and the DTIM could be tweaked
to reduce power consumption on the AP and allow its clients to spend more time in a low
power state.
Unfortunately even so mac80211 supports these power saving features there not imple-

mented across every single wireless device module which uses the infrastructure. This means
the choice of wireless USB dongle can have an e�ect on the ability to reduce the amount of
current being consumed.

4.3. Extensions of Linux Power Management

Android is an operating system which runs on embedded devices such as smartphones and sits
on top of the Linux kernel. As the Linux kernel provides basic power management interfaces
Android implements its own power management layer on top of the kernel. Applications
request resources such as CPU, wireless and GPS using wakelocks which hold the device in
an active state. When no wakelock exists for the speci�c device then it is powered down.[14]
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4.4. Examining The Platforms

The TP-Link TL-WR703N Linux kernel source code doesn't implement cpufreq framework
which means the cpufreq tool can't be used to change the CPU clock speed. The cpuidle
framework isn't implemented which means there is no method of putting the CPU into a
deep sleep when its idle. There is no code implemented within the kernel to put the TP-Link
TL-WR703N into a low power state such as sleep, suspend or hibernate and power o�.
If the wireless interface isn't needed then it can be completely disabled by setting the

wireless disabled option in the con�guration �les this causes a 30mA drop in the current
usage. Using ifcon�g to take the wireless interface down just leaves the interface uncon�gured
and powered as ifcon�g couldn't detect the wireless interface but iwcon�g and iw was able
to.
The USB power management capabilities aren't enabled by default because they require

the �Runtime Power Management Framework for I/O Devices� which is also disabled because
the TL-WR703N doesn't have any power management capabilities.
The Raspberry Pi Linux kernel source code is also missing the cpufreq and cpuidle frame-

works and doesn't implement the methods to suspend sleep or hibernate however there is a
method to power o� the Pi but it doesn't actually power the system down instead it begins
performing the steps to reboot the system and then tells the GPU not to reboot and the
system then remains in a halt state.
The Raspberry Pi doesn't have a wireless interface which means the chipset of the chosen

wireless USB dongle will have an a�ect on whether or not the wireless interface can be placed
into a low power mode.
The Raspberry Pi's GPU has its own RISC based core which boots the Pi by loading

the GPU �rmware and kernel image from the SD card and then starting the ARM core.
Unfortunately this means the GPU cannot be disabled as it is a necessary component. The
sound card also has very limited support within Linux and provides no way to disable or
suspend the device. As with the TL-WR703N the USB power management is also disabled
because of the lack of any power management implementation for the platform.
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5. Testing Environment Setup

5.1. Application

5.1.1. Logging application

A test program was written in C which uses this �le descriptor to send commands to the
DS2438 to retrieve the temperature, voltage, current, discharge accumulator and the elapsed
time. The DS2438 calculates and transmits the CRC over the 1-Wire Bus, and the test
program uses the DOW CRC look up method as described in the Maxim application note 27
to validate the communication.[27] Both results are compared to determine is the received
data is accurate. The commands and how the values are stored and calculated are described
in the DS2438 Datasheet[1].
When building the test application I found the datasheet was unclear on how the CCA,

DCA and ICA registers increment instead a paper called �Using the DS2438 Battery Monitor
on Crossbow's Stargate� written by Vladislav Perkov which discusses using the DS2348 on the
Crossbow Stargate describes how these registers are incremented. The paper also provides
details on the ICA and DCA registers and provides the formulas to retrieve the Ah and mAh
from the DCA register value[7].
The logging application called ds2438_logger was developed from the test program. The

�rst version of the logging application, took an interval in milliseconds, a sample number
and a �le path as parameters and queried the current monitor at the interval for the sample
number of times, producing a �le using the �le path parameter which contains the results.
During the initial testing of the logging application an issue was discovered which caused

the last number of results to all be equal when the application was querying the current
monitor for a large number of times. This issue was caused by the rw �le descriptor which
reached a point were it wouldn't allow anymore writing to and reading from and so the value
in the bu�er was the same. The solution was to close and reopen the �le descriptor when
the exact number of bytes to write to and read from wasn't returned by the write and read
methods.

5.1.2. Logging daemon

The logging application was converted into a daemon to allow init to load the application
on startup which required an init.d script to be written which launched the daemon with
the speci�c parameters. The ability for the logging daemon to control the led using a bash
script was also added to allow for the monitoring of the logging without being connected to
the platforms by Ethernet or Wi-Fi as this consumes power and will a�ect the results. The
led blinks a certain number of times depending on the status of the logging for example two
blinks means the logging has started and three blinks means the logging has �nished.
At this point a new feature was added which adds the ability to turn speci�c devices on and

o� by calling a bash script with parameters. Three new parameters called interface which
represents the device to bring up and down, up-time in milliseconds is the time to bring the
device up and down-time in milliseconds is the time to bring the device down during the
test were added to the logging daemon. This is to allow the logger to capture the di�erence
between the power consumption when the network interfaces and external peripherals are in
di�erent power states.
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During the execution of the logging daemon on boot the logger would always catch the
end of the boot process this was shown by the high current usage and then the sudden drop
followed by leveling out. To solve this issue required implementing another parameter called
wait which allowed the logger to wait the speci�ed number of milliseconds before beginning
logging. This would require the timing of the boot process to get the wait value to be
speci�ed as the parameter.

5.1.3. Further development

During development to monitor the power consumption of the Raspberry Pi, some new
features were added to the logging daemon to collect more information during the tests.
This new information includes the voltage and temperature from the DS2438.
The voltage is important as an sudden drop could potentially bring the test points on the

Raspberry Pi below the stable range. As the current usage increase this places strain on
the power supply and the voltage tends to drop so there should be a direct link between the
current usage and the voltage drop. The temperature of the environment the power supply
is being used in can a�ect how e�ciently it functions this means the power supply might
produce a lower voltage or withstand less current.
Monitoring the CPU usage is important as the more time the CPU is spent active the

more current the platforms will draw. The CPU usage is monitored by taking multiple
readings of a processes CPU time, measured in a unit called �ji�y�, for each state from the
�/proc/stat� �le descriptor and calculating the percentage di�erence of the ji�es the CPU
has been active as opposed to idle from the total di�erence. It's for this reason there is no
CPU usage record for the zero time interval. A ji�y is roughly 1/100th of a second on most
CPU architectures, but is kernel and platform dependent.
The test application has separate methods to retrieve the current, temperature and volt-

age. These methods were used in the logging application but caused an issue with the
interval time being constantly exceeded. This is because each of the separate methods read
the DS2438 which results in 3 separate reads. However the voltage, temperature and current
are stored within the same page in the EEPROM, meaning the page only needs to be read
once. A new method was created which extracts all the necessary data from the EEPROM
using only one read which solved the issue.
Network benchmark applications such as iperf can give a good insight into the current

and CPU cost of transferring large amounts of data over a network. This is why the logging
daemon has been extended to have the ability to launch iperf as a client. As this only
shows the platform generating and transferring tra�c a new feature and program called
iperf_signal was developed. The logging daemon connects to the client running iperf_signal
and sends a message this causes the client to start iperf to an iperf server which is running
on another client connected to the platform. The logging daemon can also start an iperf
server before logging has begun to allow the client to connect to itself and produce results
of the platform processing tra�c.
During the implementation of the network benchmark feature an issue occurred which

resulted in the results �le containing repetitions of the same data and missing parts when
the logging daemon sent the message to the clients to start iperf. The solution to this was
to use �ush to �ush all the data to the �le before the call was made to the clients.
The program developed to calibrate the DS2438 is based on the existing code base for the

logging daemon as follows the procedure discussed in the datasheet to calibrate the DS2438.
The logging daemon only sends commands to and reads data from the DS2438. The existing
write method was simple and had no veri�cation of the data written to the scratchpad. This
means if data corruption was to occur there was no way to check and the corrupted data
would be committed to the EEPROM.
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The improved write command writes the data to scratchpad reads it back and compares
the CRC of the data written to the CRC of the data read. If the CRC's match then the
command to commit the data to the EEPROM is sent. Otherwise a total of 10 attempts
are made to write the data and when these fail the operation is abandoned and the failure is
reported to the user. The error caused by the circuit necessary to the DS2438 was 14.6mA
for both of the current monitors.

5.2. Designing A Suitable Baseline Test

There are a number of key factors which need to be taken into account when designing a
test using the logging daemon and the current monitor. One of these factors is the a�ect on
power consumption when the logging daemon is running. The act of querying the current
monitor will consume power which means the more often you query the current monitor the
more power will be consumed by the process over time. However if you query the current
monitor with a longer interval the results might not show any current changes which happen
in a small amount of time such as current spikes.
The logging daemon records the results to a �le on the internal �le system the act of

creating a �le and then constantly writing to it will consume current even if only a small
amount and will still be re�ected in the results.
The DS2438 takes a current reading every 27 milliseconds, and it is not possible to align

the queries for when the logger takes a reading, as there is no way of knowing what stage
the DS2438. If it was switching between two values due to inaccuracies, then you could end
up with the same value for most of the results.
Another factor, is the additional processes which could be running on the platforms during

the logging and could result in an occasional higher current usage which would a�ect the
overall results. This would require disabling all the non necessary services when the logging
begins.
The 1-Wire modules disable IRQs when the DS2438 is queried which a�ects the other

devices on the platforms as they are unable to generate an interrupt for any events that
happen. This means the current usage could be recorded as lower than it actually is due to
these events being ignored when the reading is taken.
After all these factors are taken into account the tests themselves will need to record

the power consumption of the platforms without any peripherals connected and then slowly
introduce di�erent peripherals in the di�erent tests. As connecting an Ethernet cable will
cause the Ethernet interface to consume power and as of yet there isn't the means to disable
it from within Linux the only way disabling the Ethernet interface is to not connect a cable.
Each test will run from boot with a wait time of 20 seconds to ensure the boot process has

�nished with a 100ms reading interval for 1000 times which means each test will run for a
100 seconds. Initial test showed that a 100ms interval was fast enough to catch any sudden
changes in current usage without being too fast that the readings overran their intervals.
Running for a 1000 times ensures any repeating patterns in current usage are represented in
the results without ending up with too many data points.

5.3. Issues With The Raspberry Pi

The �R-Pi Troubleshooting� wiki page in the �Troubleshooting power problems� section
mentions two test points on the Pi which are used to read a voltage using a multimeter
set on the 20V range. The voltage reading should be in the range of 4.75V to 5.25V which
indicates the Raspberry Pi has enough voltage to function correctly. If the voltage is not
within the range then this indicates a problem with the power supply.[22]
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The Lipo Rider Pro is a 5v USB power supply which can uses either a Lithium Polymer or
Lithium Ion battery to provide the power. It also preforms the charging of the battery using
either a solar panel or a Mini USB power supply and provides a maximum current output
of 1A. The Lipo Rider Pro was used with a charged Lithium Polymer 3.7V 2000mAH when
testing it with the Raspberry Pi. On connecting the Lipo Rider Pro to the Raspberry Pi,
the Raspberry Pi appeared to boot but after checking the two test points the voltage reading
was 4.66V which indicates there isn't enough voltage for the Pi to function correctly.
The Maplin 2 Port USB Charger Model N13KG is mains powered and provides an output

of DC 5v 2.1A. On connecting the USB charger to the Pi, the Pi booted successfully and
the voltage reading from the test points was 4.83V which indicates there is enough voltage
for the Pi to function correctly.
Due to the requirement of a powered USB hub for high powered USB peripherals the

Dynamode USB-H40-A2.0 was chosen because it has 4 USB ports and a DC jack socket. It
also comes with a DC 5V 1000mA mains power supply but the USB hub will be powered by
the DC jack on the current monitors. On connecting a high powered USB peripheral such as
a 3G modem to the hub while the hub was connected to the Raspberry Pi. The Raspberry
Pi's test points voltage read 4.79V which is within the range and indicates the Raspberry Pi
will function correctly. However this reading was taken when the 3G modem was in an idle
state and the voltage can drop further when the 3G modem is connected and transferring
data over the network this is because the Raspberry Pi and the USB hub will share the same
power supply.
The powered USB hub provides power to the host which causes an issue with the Raspberry

Pi as it attempts to boot from the powered USB hub. The result of this is the Raspberry Pi
being in a state of limbo, when the actual power supply is attached the Raspberry Pi doesn't
continue to boot. The only solution to this is to disconnect both the power supply and the
powered USB hub from the Raspberry Pi. Then connect the power supply �rst and then the
powered USB hub, even then the Raspberry Pi's USB hub can crash and results in no USB
peripherals including the powered USB hub being detected. This is until the Raspberry Pi
is reset by disconnecting and connecting the power supply.
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6. Testing Results

6.1. TP-Link TL-WR703N

6.1.1. Idle Average Current Usage

The TP-Link TL-WR703N was tested using the current monitor by individually adding
and enabling di�erent network interfaces and monitoring the current while the interfaces
were connected to a network but not sending or receiving data. This gives an idea of
the idle current draw of the network interfaces compared with the TL-WR703N with no
interfaces connected or enabled. The tests ran for 100 seconds with a reading taken every
100 milliseconds. The current readings were averaged to produce �gure 6.1.

Figure 6.1.: TL-WR703N Idle Average Current Usage

Figure 6.1 shows the TL-WR703N was drawing 67mA when the platform was idle and with
no network interfaces enabled or connected. The current draw increased to 102mA when
an Ethernet cable was connected. This shows the Ethernet interface caused an increase
of 35mA. With the internal wireless interface enabled the current draw increased to 97mA
which is an increase of 30mA. This shows the Ethernet interface draws 5mA more than the
wireless interface.
The largest current increase occurred when the Edimax EW-7711UAn wireless USB dongle

was connected. The current reached 193mA which is an increase of 126mA when compared
with the TL-WR703N and a 96mA increase when compared with the internal wireless in-
terface. Both of the wireless interfaces were con�gured as access points with power saving
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enabled because it is enforced when the wireless interface is in AP mode.

6.1.2. Scenario Tests

The TL-WR703N was tested in di�erent usage scenarios which are routing packets from the
internal wireless interface to the Edimax EW-7711UAn USB wireless dongle, sending and
receiving data from the internal wireless interface and sending and receiving data from the
Ethernet interface.
These tests also include monitoring the CPU usage of the TL-WR703N to determine the

amount of current being drawn by the CPU. This is because iperf is being used to generate
the data being sent and log the data being received. Monitoring the current draw of the
platform when the CPU is under di�erent amounts of load will give an idea of the amount
of current iperf is consuming.
During each test the iperf bandwidth will be doubled each time up to 64Mbps. The trans-

port protocol used will be UDP because iperf only allows UDP when setting the bandwidth.
This means that packet loss between the iperf client and the server will be an issue.
Each wireless scenarios will be tested both with and without encryption enabled. This is

to monitor if the encryption scheme causes an increased CPU usage and a greater current
draw. The encryption scheme chosen for the tests is WPA2-PSK because it is the most
widely used encryption scheme and doesn't require a lot of con�guration.
The internal wireless interface was con�gured as an AP using the Wireless N standard

with a theoretical maximum bandwidth of 72Mbps.
Each test will run for 100 seconds with a reading interval of 100 milliseconds. The network

interface will be sending or receiving for 60, seconds, starting at 20 seconds and �nishing at
80. This will produce a current graph showing the entire 100 seconds of the test with the
current rising and dropping due to the network activity.
The average current and CPU usage networking activity graphs will be produce from the

average of the 60 seconds the network interface was active.
The CPU graphs are produced from the same setup as each scenario with the exception

that iperf isn't running. Instead an application called cpulimit which limits an application
to a certain amount of CPU usage. Cpulimit will be running a test application which wastes
CPU cycles by counting down. Each CPU graph will include the idle current usage for the
network interface being tested.

6.1.2.1. Sending data wireless

The following set graphs show the TL-WR703N sending data to another TL-WR703N using
the internal wireless interface.
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Figure 6.2.: TL-WR703N Wireless Open CPU Percentage Current Usage

Figure 6.3.: TL-WR703N Wireless Open Sending Data

Figure 6.3 shows the maximum bandwidth of the internal wireless interface was 62.5Mbps
when iperf was set at 64Mbps. At this point the TL-WR703N was drawing 289mA of current
and using 53% of the CPU. By using �gure 6.2 we can see the TL-WR703N draws 115mA at

27



53% CPU usage. This means the internal wireless interface was drawing 174mA of current
while sending data at 62.5Mbps.
At 31.9Mbps the TL-WR703N was drawing 276mA and using 46% of the CPU. The

platform draws 113mA at 46% which means the wireless interface draws 163mA of current.
The current draw at 16Mbps is 168mA and the CPU usage is 28%. The platform uses 108mA
when the CPU is at 28%. The current draw of the wireless interface is 55mA at 16Mbps.
Comparing the di�erences in current increase when the bandwidth is doubled shows the

internal wireless interface began reaching the maximum amount of current draw at 31.9Mbps.
This is because the di�erence between 31.9Mbps and 62.5Mbps is 11mA compared with
16Mbps and 32Mbps which is 108mA.
The di�erence in CPU usage between 16Mbps and 31.9Mbps is 18% and between 31.9Mbps

and 62.5Mbps its 7%. This shows the CPU isn't working as hard even so the bandwidth
was doubled. This is because the internal wireless interface couldn't send any faster which
means the CPU wasn't doing as much work.

Figure 6.4.: TL-WR703N Wireless WPA2-PSK CPU Percentage Current Usage
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Figure 6.5.: TL-WR703N Wireless WPA2-PSK Sending Data

Figure 6.5 shows the maximum bandwidth the internal wireless interface achieved was
61.4Mbps with WPA2-PSK was enabled. This is a slight drop when compared with the
unencrypted test.
At 61.4Mbps the current draw is 293mA with 61% CPU usage. Comparing the CPU usage

with �gure 6.4 this shows the TL-WR703N draws 117mA at 61%. This means the wireless
interface is drawing 176mA which is a 2mA more than the unencrypted test even so the
wireless interface is transferring at a slightly slower speed.
The current draw is 225mA at 31.9Mbps with a CPU usage of 57%. The TL-WR703N

is using 117mA at 57% CPU which is the same amount of current as 61% CPU usage.
The internal wireless interface is using 108mA. Comparing the current usage of the wireless
interface at 31.9Mbps with the current usage at 61.4Mbps it's a di�erence of 68mA.
When the internal wireless interface is transferring at 16Mbps the current draw is 165mA

and the CPU usage is 30%. The TL-WR703N draws 108mA at 30% CPU usage which
means the wireless interface is drawing 57mA. When comparing the CPU usage between the
61.4Mbps and the 31.9Mbps bandwidth it's a di�erence of 4%. Between the 16Mbps and
the 31.9Mbps bandwidth the CPU usage di�erence is 27% which shows the CPU is doing
less work when the bandwidth is doubled from 32Mbps.
Unlike the unencrypted test the di�erence between 61.4Mbps and 31.9Mbps is greater

than the di�erence between 31.9Mbps and 16Mbps. This is because the WPA2-PSK is
adding an overhead which causes the internal wireless interface to require more current
when transferring at faster speeds.
However like the unencrypted test the CPU usage di�erence has decreased because the

internal wireless interface can't transfer any faster and therefore the CPU isn't doing as
much work.
Comparing �gure 6.2 with �gure 6.4 shows that overall the TL-WR703N was drawing

more current with WPA2-PSK enabled.
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6.1.2.2. Receiving data wireless

The next set of graphs show the TL-WR703N receiving data from another TL-WR703N
using the internal wireless interface.

Figure 6.6.: TL-WR703N Wireless Open Receiving Data

When the client was sending at 63.9Mbps the TL-WR703N was receiving at 56Mbps and
the current draw was 123mA with the CPU usage at 33%. The TL-WR703N draws 110mA
at 33% CPU usage based on �gure 6.2 which shows the wireless interface was drawing 13mA
to receive at 56Mbps.
When the TL-WR703N was receiving at 31.7Mbps it was drawing 125mA and using 24%

of the CPU. The TL-WR703N uses 106mA when the CPU is at 24%. This indicates the in-
ternal wireless interface is using 19mA. The current draw dropped when receiving at 56Mbps
because the client was sending at 63.9Mbps. The packet loss increased to 12% from 1.1%
at 31.7Mbps. This shows the wireless interface was performing less work because it couldn't
handle the transfer speed and was dropping packets.
The CPU usage carries on increasing because the iperf server is logging the packets being

received as well as the ones missing and generating a report to send back to the client.
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Figure 6.7.: TL-WR703N Wireless WPA2-PSK Receiving Data

When WPA2-PSK is enabled the maximum speed the internal wireless interface was able
to receive at is 55.2Mbps with a current draw of 125mA and a CPU usage of 35%. The
client was sending at 63.6Mbps which results in a packet loss of 13%. Figure 6.4 shows the
TL-WR703N uses 109mA at 35% CPU usage this indicates the internal wireless interface
was drawing 16mA of current.
When the TL-WR703N was receiving at 31.7Mbps the client was sending at 62Mbps which

is 0.83% packet loss. The current was 127mA and the CPU usage was 25%. When the CPU
usage is at 25% the TL-WR703N draws 107mA of current. This means the internal wireless
interface is drawing 20mA of current.
This is a current drop of 4mA from 31.7Mbps to 55.2Mbps. Again like the unencrypted test

the CPU usage is increasing because of iperf but the overall maximum received bandwidth
is 55.2Mbps which is slower than the 56Mbps.

6.1.2.3. Routing data wireless

The following graphs show the TL-WR703N routing data between two TL-WR703Ns using
the internal wireless interface and the Edimax wireless USB dongle. One of the TL-WR703Ns
is the iperf server and connected to the Edimax wireless interface and the other one is the
iperf client and connected to the internal wireless interface.
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Figure 6.8.: TL-WR703N Wireless Open Routing CPU Usage Percentage

Figure 6.9.: TL-WR703N Wireless Open Routing Between Two Interfaces

The highest bandwidth which reached the server was 7.75Mbps when the client was sending
at 8Mbps with a packet loss of 2.8%. The current draw was 254mA and the CPU usage was
14%. Figure 6.8 shows the TL-WR703N uses 229mA at 14% CPU usage. This means both
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of the wireless interfaces are using 25mA of current.
The second highest bandwidth was 7.67Mbps when the client was set to 64Mbps with

a packet loss of 88%. The current draw was 261mA and the CPU usage was 6%. The
TL-WR703N draws 225mA at 6%. Both of the wireless interfaces are drawing 36mA.
The CPU usage dropped from 11% at 7.34Mbps to 6% at 7.67Mbps and increased back to

14% at 7.75Mbps. This is di�erent compared to the sending and receiving graphs because the
higher the bandwidth usually means the higher the CPU usage. The CPU usage �ickering
could indicate how many packets are being routed from one interface to another. There is
an opportunity for packets to be lost in the air between the two pairs of wireless interfaces.

Figure 6.10.: TL-WR703N Wireless WPA2-PSK Routing CPU Usage Percentage
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Figure 6.11.: TL-WR703N Wireless WPA2-PSK Routing Between Two Interfaces

When WPA2-PSK is enabled the maximum bandwidth reaching the server is 5.98Mbps
when the client is sending at 32Mbps which is a packet loss of 82%. The current usage is
258mA and the CPU usage is 4%. Comparing the CPU usage with �gure 6.10 shows the
TL-WR703N draws 225mA of current at 4% CPU usage.
This means both the wireless interfaces are drawing 33mA. The next highest bandwidth

is 5.96Mbps when the client sending at 64Mbps which indicates a packet loss of 92%. The
current draw is 254mA and has a CPU usage of 4%. Both of the wireless interfaces are
drawing 29mA.

6.1.2.4. Sending data Ethernet

The next graphs show the TL-WR703N sending data to another TL-WR703N using the
Ethernet interface.
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Figure 6.12.: TL-WR703N Ethernet CPU Usage Percentage

Figure 6.13.: TL-WR703N Ethernet Sending Data

Figure 6.13 shows that at 63.9Mbps the current draw was 134mA and the CPU usage was
60%. The TL-WR703N uses 120mA at 20% CPU usage which is shown by �gure 6.12. The
Ethernet interface was using 14mA of current when transferring at 63.9Mbps. At 32Mbps
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the CPU usage was 31% and the current draw was 119mA.
The TL-WR703N draws 113mA at 31% CPU usage which means the Ethernet interface

was drawing 6mA at 32Mbps. When the Ethernet interface was transferring at 16Mbps the
current draw was 111mA with a CPU usage of 16%. At 16% CPU usage the TL-WR703N
draws 107mA. This indicates the Ethernet interface is drawing 4mA of current. The current
di�erence between 16Mbps and 32Mbps is 2mA and between 32Mbps and 63.9Mbps is 8mA.
The 4Mbps bandwidth current usage is 104mA and the CPU usage is 5%. The TL-

WR703N uses 104mA at 5% CPU usage. This means at 4Mbps the CPU is causing the
current usage and the Ethernet interface isn't drawing more than its idle current.

6.1.2.5. Receiving data Ethernet

The next graph shows the TL-WR703N receiving data from another TL-WR703N via the
Ethernet interface.

100

Figure 6.14.: TL-WR703N Ethernet Receiving Data

At 61.9Mbps the client was sending at 63.6Mbps and the current usage was 130mA with
a CPU usage of 38%. This is shown by �gure 6.14. Figure 6.12 shows the TL-WR703N uses
115mA at 38% CPU usage. This means the Ethernet interface is using 15mA of current to
receive at 63.1Mbps.
When the Ethernet interface was receiving at 31.9Mbps the current draw was 118mA with

a CPU usage of 16%. At 16% CPU usage the TL-WR703N uses 107mA. This means the
Ethernet interface is using 11mA of current to receive at 31.9Mbps.
At 16Mbps the current usage was 111mA and the CPU usage was 8%. The TL-WR703N

draws 104mA at 8% CPU usage which means the Ethernet interface is drawing 7mA to
receive at 16Mbps.
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6.2. Raspberry Pi

6.2.1. Idle Average Current Usage

The Raspberry Pi was tested by connecting a powered USB hub and then attaching network
interfaces to the hub. The current monitor then monitored the current while the network
interfaces are connected to a network but not sending or receiving data.
This gives an idea of the current draw while the network interfaces are idle compared

to the Raspberry Pi with no network interface attached or enabled. The idle current tests
ran for 100 seconds with readings taken every 100 milliseconds. The current readings were
averaged and the result produced �gure 6.15.

Figure 6.15.: Raspberry Pi Idle Average Current Usage

Figure 6.15 shows the idle average current for the Raspberry Pi is 335mA with no network
interfaces connected or enabled. When the powered hub is attached, the current draw
increases to 395mA which means the hub is drawing 60mA. With the Edimax wireless USB
dongle attached to the hub the current increases to 513mA.
This is an increase of 118mA when compared with the hub reading which means the

Edimax wireless USB dongle is drawing 118mA of current. With just an Ethernet cable
attached the current draw is 388mA which is an increase of 53mA over the idle Raspberry
Pi reading. This means the Ethernet interface is drawing 53mA.

6.2.2. Scenario Tests

The Raspberry Pi was tested in the similar scenarios to the TP-Link TL-WR703N. Taking
into account the Raspberry Pi has no internal wireless interface and requires a powered USB
hub. The scenarios are routing packets between two Edimax EW-7711UAn USB wireless
dongle, sending and receiving data using one Edimax wireless USB dongle and sending and
receiving data from the Ethernet interface.
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The CPU usage is also being monitored because iperf is being used to generate the data
being sent and received. The bandwidth was be doubled each time up to 64Mbps. The
transport protocol used is UDP because iperf enforces the protocol when the bandwidth is
set.
Each wireless scenario was tested both with and without encryption using the WPA2-PSK

encryption scheme. Both of the Edimax wireless USB dongles were con�gured to use the
Wireless N standard with a theoretical maximum bandwidth of 72Mbps.
Each test ran for 100 with a reading taken every 100 milliseconds. The network interface

will be sending or receiving data for 60 seconds starting at 20 seconds and �nishing at 80.
This is the same setup as the TL-WR703N and will produce the same amount of readings and
provide a graph showing a sudden increase and drop in current when the network interface
is active.
The CPU usage graphs are produced in the same manner as the TL-WR703N with cpulimit

being used to limit the amount of CPU usage the countdown application can use. The graphs
also include the idle current of the network interface.
Unfortunately there was a strange anomily when the CPU tests were being executed

which caused the CPU usage to be 20% higher after the 60% mark which means at 60%
CPU limiting the CPU usage was recorded at 80%.
When running the wireless scenario tests the Raspberry Pi became very unstable and

would often crash. The reading from the test points was 4.75V which is the low boundary
for the test points voltage range. If the Raspberry Pi was to start performing lots of tasks
the voltage would drop below the boundary and possible cause the Pi to crash. A sudden
surge of current caused by connecting or disconnect the wireless dongle or the Ethernet cable
could also cause the Pi to crash.

6.2.2.1. Sending data wireless

The following set of graphs show the Raspberry Pi sending data to a TL-WR703N using the
Edimax wireless USB dongle.
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Figure 6.16.: Raspberry Pi Wireless Open CPU Percent Current Usage

Figure 6.17.: Raspberry Pi Wireless Open Sending Data

Figure 6.17 shows the maximum bandwidth the wireless interface could transmit at is
37.8Mbps with a current draw of 569mA and a CPU usage of 89%. Comparing the CPU
usage with �gure 6.16 shows the current draw of the Raspberry Pi when the CPU usage is at
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89% is 542mA. This means the wireless interface was drawing 27mA to transfer at 37.8Mbps.
At 28.3Mbps the CPU usage was 78% with a current draw of 562mA. The Raspberry Pi's

current draw at 78% CPU usage is 539mA. This means the wireless interface was drawing
23mA at 28.3Mbps.
When the wireless interface was transferring at 16Mbps the current draw was 544mA with

a CPU usage of 47%. The Raspberry Pi draws 523mA at 47% CPU usage which means the
wireless interface was drawing 21mA.
The di�erence between 16Mbps and 28.3Mbps was 2mA and between 28.3Mbps and

37.8Mbps is 4mA. This is a small increase even so the bandwidth was doubled each time.
This shows most of the current was consumed by the CPU running iperf to generate data
to send.

Figure 6.18.: Raspberry Pi Wireless WPA2-PSK CPU Percent Current Usage
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Figure 6.19.: Raspberry Pi Wireless WPA2-PSK Sending Data

Figure 6.18 shows the maximum transfer speed with WPA2-PSK enabled is 37.5Mbps.
The current draw was 568mA and the CPU usage was 90%. The Raspberry Pi uses 541mA
at 90% CPU usage this was shown by �gure 6.18. The wireless interface is using 27mA to
transfer at 37.5Mbps.
When the wireless interface was transferring at 27.5Mbps the current draw is 567mA and

the CPU usage was 75%. At 75% CPU usage the Raspberry Pi draws 539mA of current
which means the wireless interface is drawing 28mA of current.
At 15.9Mbps the CPU usage was 48% and the current draw was 548mA. When the Rasp-

berry Pi was at 48% CPU usage the current draw is 524mA which means the wireless interface
is drawing 24mA.
The di�erence between 15.9Mbps and 27.5Mbps current draw is 4mA and between 27.5Mbps

and 37.5Mbps was a 1mA decrease from 27.5Mbps. The overall current draw leveled of at
27.5Mbps while the CPU usage keeps climbing.
Comparing this with unencrypted version of the test shows the WPA2-PSK encryption

hasn't added an overhead to the Raspberry Pi. The maiximum bandwidth was only 0.2Mbps
di�erent from the unencrypted test with 1% more CPU usage.

6.2.2.2. Receiving data wireless

The next graphs show the Raspberry Pi running the iperf server receiving data from a
TL-WR703N running the iperf client using the Edimax wireless USB dongle.
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Figure 6.20.: Raspberry Pi Wireless Open Receiving Data

Figure 6.20 shows the maximum received bandwidth was 51.5Mbps with a current draw
of 548mA and a CPU usage of 80%. Comparing the CPU usage to �gure 6.16 shows the
Raspberry Pi uses 541mA at 80%. This means the wireless interface is using 7mA of current
to receive at 51.5Mbps.
At 31.6Mbps the current draw is 539mA and the CPU usage was 47%. The Raspberry Pi

draws 523mA at 47% CPU usage which means the wireless interface is drawing 16mA.
At 16Mbps the CPU usage is 29% and the current draw was 528mA. When the Raspberry

Pi is at 29% the current draw was 517mA. This means the wireless interface is using 11mA.
The wireless interface draws the most current at 31.6Mbps and then drops by 9mA at
51.5Mbps.
This is because the packet loss was 19% at 51.5Mbps and only 1.2% at 31.6Mbps. This

means the wireless interface isn't receiving packets for a larger proportion of the time the
network interface was active. This resulted in a lower current draw average.

42



Figure 6.21.: Raspberry Pi Wireless WPA2-PSK Receiving Data

When WPA2-PSK is enabled the maximum received bandwidth is 42.6Mbps shown by
�gure 6.21. The current draw was 545mA and the CPU usage was 65%. When the CPU
usage is compared with �gure 6.18. The Raspberry Pi draws 535mA at 65% which means
the wireless interface draws 10mA at 42.6Mbps.
When the wireless interface was receiving at 31.6Mbps the CPU usage was 47% and the

current draw was 538mA. At 47% CPU the Raspberry Pi draws 524mA which means the
wireless interface was drawing 14mA of current.
At 16Mbps the current draw is 527mA and the CPU usage was 29%. When the Raspberry

Pi was using 29% of the CPU the current draw is 517mA. This means the wireless interface
was drawing 10mA of current. The packet loss at 42.6Mbps was 33% compared with 1.5%
at 31.6Mbps. This caused a lower average current draw even so it was receiving faster than
31.6Mbps.

6.2.2.3. Routing data wireless

The following set of graphs show the Raspberry Pi routing tra�c between two Edimax
wireless USB dongles with a TL-WR703N connected on each one of them. One of the
TL-WR703Ns is the iperf server and the other one is the iperf client.
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Figure 6.22.: Raspberry Pi Wireless Open Routing CPU Usage Percentage

Figure 6.23.: Raspberry Pi Wireless Open Routing Between Two Interfaces

Figure 6.23 shows the maximum bandwidth to the server was 7.57Mbps when the client
was sending at 32Mbps with a CPU usage of 25% and a current draw of 665mA. The
Raspberry Pi's current draw at 25% CPU usage was 635mA which is shown by �gure 6.22.
This means both of the wireless interfaces are drawing 30mA.
The next fastest bandwidth achieved was 7.34Mbps when the client was sending at 16Mbps.

The current draw was 666mA with a CPU usage of 25%. This indicates that both the wire-
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less interfaces are drawing 31mA. At 7.3Mbps the client was sending at 8Mbps and the
current draw was 661mA and the CPU usage was 26%. When the CPU usage was at 26%
the current draw is 636mA which indicates that both of the wireless interfaces are drawing
25mA.
When the client was sending at 64Mbps the throughput of the Raspberry Pi was 7.05Mbps.

The CPU usage was 24% and the current draw was 666mA. At 24% CPU usage the Raspberry
Pi draws 635mA of current. This means both of the wireless interfaces are drawing 31mA.
The current drops by 6mA between 7.05Mbps and 7.3Mbps even so the bandwidth was

higher this is because the client was sending at 8Mbps with a packet loss of 9.9% compared
with the client sending at 64Mbps with a packet loss of 90%. The slower transmission rate
from the client allowed the Raspberry Pi to receive and route packets to the server which is
why there was an increase in CPU usage.
The current drop indicates there was less work on both of the wireless interfaces part as

less data was being sent over the same amount of time.

Figure 6.24.: Raspberry Pi Wireless WPA2-PSK Routing CPU Usage Percentage
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Figure 6.25.: Raspberry Pi Wireless WPA2-PSK Routing Between Two Interfaces

Figure 6.25 shows the maximum bandwidth achieved withWPA2-PSK enabled is 7.72Mbps
when the client was sending at 8Mbps. This indicates a packet loss of 4.9%. The current
draw was 660mA and the CPU usage was 25%. Figure 6.24 shows the Raspberry Pi draws
634mA when the CPU usage is 25% which indicates that both of the wireless interfaces draw
26mA.
At 7.35Mbps of throughput the client was sending at 32Mbps. The CPU usage was 25%

and the current draw was 668mA. When the Raspberry Pi was using 25% of the CPU the
current draw was 634mA. This means both of the wireless interfaces are drawing 34mA.
When the client was sending at 64Mbps the router was routing tra�c at 6.95Mbps with

a current draw of 669mA and uses 24% of the CPU. At 24% CPU usage the Raspberry Pi
draws 633mA which means both of the wireless interfaces are drawing 36mA.
At 6.74Mbps the current draw was 668mA and the CPU usage was 23%. The Raspberry

Pi draws 633mA at 23% CPU usage which means both of the wireless interfaces draw 35mA
of current. The current drops at 7.72Mbps because the client was sending at 8Mbps. At
7.35Mbps the client was sending at 32Mbps. Receiving at 8Mbps is less work for the wireless
interface than receiving at 32Mbps.

6.2.2.4. Sending data Ethernet

The next set of graphs show the Raspberry Pi sending data over the Ethernet interface to a
TL-WR703N.
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Figure 6.26.: Raspberry Pi Ethernet CPU Usage Percentage

Figure 6.27.: Raspberry Pi Ethernet Sending Data

Figure 6.27 shows the Raspberry Pi draws 409mA with a CPU usage of 60% at 63.7Mbps.
The Raspberry Pi draws 408mA of current when the CPU usage was 60%. This is shown by
�gure 6.26. This means the Ethernet interface was only drawing 1mA of current.
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At 32Mbps the CPU usage was 34% and the current draw was 400mA. The current draw
at 34% was 392mA which shows the Ethernet interface was drawing 8mA of current. At
16Mbps the current draw was 393mA with a CPU usage of 17%. The CPU usage of the
Raspberry Pi at 17% was 388mA which shows the Ethernet interface was drawing 5mA of
current.

6.2.2.5. Receiving data Ethernet

The next graph shows the Raspberry Pi receiving data from a TL-WR703N via the Ethernet
interface.

Figure 6.28.: Raspberry Pi Ethernet Receiving Data

Figure 6.28 shows that at 63.7Mbps the current draw was 403mA and the CPU usage
was 22%. The Raspberry Pi draws 389mA at 22% CPU usage which means the Ethernet
interface was drawing 14mA.
When the Ethernet interface was receiving at 32Mbps the CPU usage was 19% and the

current draw was 398mA. When the Raspberry Pi was at 19% CPU usage the current draw
was 388mA. The Ethernet interface was drawing 10mA.
At 16Mbps the current draw was 393mA and the CPU usage was 14%. When the Rasp-

berry Pi's CPU was at 14% the current draw was 388mA. The Ethernet interface draws 5mA
of current at 16Mbps.

6.3. Comparing the platform results

After preforming the current monitoring and CPU usage tests with both platforms in dif-
ferent scenarios I have determined the TP-Link TL-WR703N uses less current overall than
the Raspberry Pi. The idle current for the TL-WR703N was 67mA compared to 335mA for
the Raspberry Pi which is an increase of 268mA over the TL-WR703N.
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When the platforms are used in a wireless scenario the Raspberry Pi requires a powered
USB hub which adds an overhead of 66mA plus the current cost of the wireless USB dongle
which was 118mA. This adds a total of 184mA on top of the idle current which creates a
total of 519mA current draw. The TL-WR703N integrated wireless interface draws 30mA
when its idle which is a total of 97mA when the wireless is active and the platform is idle.
The Edimax wireless USB dongle managed a top data rate of 37.5Mbps and drew 27mA

on top of the 118mA idle which is a total of 145mA when sending data. Using �gure 6.3
shows that if the TL-WR703N was sending at 37.5Mbps the entire platform would draw
278mA comparing the 47% CPU usage to �gure 6.2 shows the TL-WR703N draws 113mA
at 47% CPU usage which means the wireless interface is drawing 165mA. Adding the 30mA
idle current to the 165mA brings the total to 195mA.
This shows the TL-WR703N's internal wireless interface draws 50mA more than the Ed-

imax wireless USB dongle. With the current draw of the required powered USB hub for
the Raspberry Pi this brings the total current draw to 211mA which is 16mA over the
TL-WR703N.
During the receiving data scenario the Edimax wireless USB dongle managed to receive

at 51.5Mbps with a current draw of 7mA. When this is added to the 118mA idle current
this becomes 125mA for the Edimax wireless USB dongle and with the hub this is increased
to 191mA.
The TL-WR703N draws 124mA when transferring at 51.5Mbps with a CPU usage of 32%

as shown by �gure 6.6. When the TL-WR703N is at 32% CPU usage the current draw is
110mA shown by �gure 6.2. This means the wireless interface is drawing 14mA to receive
at 51.5Mbps and with the idle current the total is 44mA. Compared against the Edimax
wireless USB dongle this is a di�erence of 81mA.
If we ignore the idle current draw we can see the TL-WR703N's internal wireless interface

is doing more work to receive the data at 51.5Mbps then the Edimax wireless USB dongle.
This is because the Edimax wireless USB dongle has a high gain wireless antenna as opposed
to the TL-WR703N's antenna which is a copper strip on the PCB.
The maximum transfer rate of the TL-WR703N's internal wireless interface while send-

ing data was 62.5Mbps compared with the 37.5Mbps of the Edimax wireless USB dongle
connected to the Raspberry Pi. This is a decrease of 24.7Mbps.
The limit of the Edimax wireless USB dongle transfer speed could be caused by the USB

2.0 bus even so the theoretical maximum bandwidth of USB 2.0 is 480Mbps. However the
wireless interface is connected through two USB hubs, the one built into the Raspberry Pi
and the powered USB hub.
USB hubs add an extract delay due to the recalculating of the time left before the next

Start-Of-Frame packet.[28] This delay wouldn't exist if the wireless interface was directly
connected to the Raspberry Pi's USB host controller built into the BCM2835 SoC. The TL-
WR703N's internal wireless interface is built directly into the SoC and most likely connected
to the processor using a proprietary bus.
When WPA2-PSK is enabled the maximum transfer speed of the TL-WR703N's internal

wireless interface achieved while sending was 61.4Mbps with a CPU usage of 61%. On the
Raspberry Pi the maximum transfer speed of the Edimax wireless USB dongle while sending
with WPA2-PSK enabled was 37.5Mbps with a CPU usage of 90%. This is a CPU usage
increase of 8% on the TL-WR703N and 1% on the Raspberry Pi compared with 62.5Mbps
at 53% CPU usage on the TL-WR703N and 37.5Mbps at 89% on the Raspberry Pi. At
31.9Mbps on the TL-WR703N the CPU usage was 57%.
The Raspberry Pi at 27.5Mbps has 75% CPU usage. On the TL-WR703N this is a increase

of 11% and on the Raspberry Pi it's a decrease of 2% compared with 46% CPU usage at
31.9Mbps on the TL-WR703N and the 78% CPU usage at 28.3Mbps on the Raspberry
Pi. Based on these results WPA2-PSK adds an overhead to the TL-WR703N and not the
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Raspberry Pi.
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7. Evaluation & Conclusion

7.1. Evaluation

This project originally intended to produce a power management system which could by
used on mobile devices which run Linux. The idea was to gather information about the
existing power consumption of the TP-Link TL-WR703N and the Raspberry Pi and then
make changes and investigate if any improvements have been made. It was a requirement
that the power management system was intelligent and had the ability to inform the platform
on how much power it was consuming.
When I researched current monitoring I couldn't �nd an existing device which met the

requirements. Instead I came across the battery monitoring ICs which provide an interface
to access the readings. When developing the current monitor I ran into problems with the
Raspberry Pi such as the logic level di�erence between the GPIOs of the TL-WR703N and
the Raspberry Pi.
Once the current monitor was �nished I then developed the logging software which I ran

into minor issues with such as the 'rw' �le descriptor not reading or writing to the device
after so many reads and writes have been performed which took a small amount of time to
debug. The logging software was designed to run at boot so the logging process would begin
without requiring user intervention as this would increase the amount of current being used.
This is due to the fact I would be connected via the Ethernet or wireless interface.
The next step was to test di�erent peripherals such as a 3G USB modem, USB webcam,

USB temperature and humidity sensor and USB wireless dongles. However when attempting
to connect a USB 3G modem to the Raspberry Pi I discovered the modem would connect
and disconnect from Pi. After researching the Raspberry Pi's issues with USB peripherals
I discovered the 100mA USB device limit and the two voltage test points which indicate if
the Raspberry Pi is being powered correctly.
A powered USB hub was purchased to allow devices which require more than 100mA of

current to be connected but modi�cation had to be made to the current monitor to allow it
to include the draw of the hub and the devices connected to the hub.
Investigating the Raspberry Pi's test point voltage revealed the power supply that was

currently being used wasn't providing enough voltage because it couldn't provide the current
for the Raspberry Pi. After trying a number of di�erent power supplies the Maplin 4 port
USB charger was found which could provide enough voltage to power the Raspberry Pi.
When I began testing with the current monitor I realised that I needed to add the ability

to monitor the CPU usage to the logging application. This is because the activity of the
CPU causes the platforms to draw more current. It's also required to separate how much
current individual peripherals are drawing from the current cost of the CPU using them.
The test I decided to preform using the current monitor show the platforms as nodes in

a network sending and receiving data and their ability to route tra�c from one network to
another. This relates the results back to the Backpack Router project which is the origin of
this project.
Unfortunately I only managed to test the wireless USB dongle. If I had more time I would

begin testing the other peripherals in di�erent scenarios such as streaming a USB webcam
over the wireless interface. The networking tests required the platforms to be con�gured
with the ability to support wireless USB dongles which meant compiling the kernel modules.
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With the TP-Link TL-WR703N this wasn't an issue as all the required packages are built
into OpenWRT. However with the Raspberry Pi the kernel is quite old. This required the
compat-wireless package which allows the latest wireless kernel drivers to work with older
kernels by compiling a compatibility module along with the modded wireless kernel modules.
During testing the Raspberry Pi struggled with the wireless USB dongles as any slight

change to the setup would cause the Raspberry Pi to crash. This includes connecting an
Ethernet cable or removing a wireless USB dongle. The only solution to reset the Raspberry
Pi was to disconnect it from the power supply.
The test points voltage on the Raspberry Pi was 4.75V which is the low boundary of the

acceptable voltage range. Connecting and disconnecting the Ethernet cable or peripheral
would have caused a current surge which would bring the voltage down further.
When gathering CPU usage at di�erent usage amounts on the Raspberry Pi I ran into

an issue with the CPU usage slowly increase to a point when it became 10% more than the
limit. This behavior didn't occur on the TL-WR703N as the usage was always 3% more
than the limit.
Some of the CPU usage results on the Raspberry Pi have been corrupted as they have

been recorded as �NaN�. This didn't occur on the TP-Link TL-WR703N.
The Ethernet sending data scenario results on the Raspberry Pi has an invalid result. The

current the Ethernet card was drawing at 63.7Mbps is 1mA but at 32Mbps it was 8mA. This
doesn't follow the usual trend as the Ethernet card sends at a higher bandwidth the current
increases. I would except a 1mA increase over the idle current at 2Mbps. If I had more time
I would test the scenario again and investigate how this could have happened.
When I was researching power management on Linux for the platforms I discovered there

wasn't any implementations to allow for the Raspberry Pi and TP-Link TL-WR703N to
enter into a low power state. However there was a method of automatically placing USB
devices into suspend. This feature was disabled by default on the platforms but if I had
more time I would have enabled and tested if this feature could have been used reliable to
reduce power consumption.

7.2. Future Work

This project didn't reach the end goal of producing a power management system. Instead
its set the foundations for a project to start developing the means to intelligently monitor
power consumption based on the current draw.
A future project could build upon this work and develop a battery management system

based upon the current monitor. This battery management system would allow the platform
to monitor the charge and discharge state of the battery. The platform can then make a
decision as to whether or not to turn the connected peripherals o�.
The battery will be trickle charged using solar panels which means the battery management

system has to be able to monitor the current going into and out of the battery. Another
DS2438 IC is required to monitor the charging current ans will be connected to the charging
side of the circuit. This will allow the battery management system to provide two readings.
These readings allow the platform to monitor how much current is going into the battery
and how much current is being consumed powering the platform. The battery management
system would only require 1 GPIO as more than one 1-Wire bus device can be on the same
bus.
If the platform is consuming more current than the solar panel is placing into the battery

then the battery isn't being charged and all the charging current is going towards the plat-
form. The platform can then change its behavior and reduce its current consumption to less
than the charging current this would allow some of the current to go towards the battery.
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Research could be preformed into �nding ways to handle the lack of power management
implementations for the platforms and �nding a way of placing connected peripherals into
a low power state.

7.3. Conclusion

One of the primary objectives of the project was to reduce the power consumption of the
TP-Link TL-WR703N and the Raspberry Pi using power management interfaces built into
Linux. However after discovering both platforms are missing the necessary Linux support to
utilise these interfaces. Reducing power consumption would require more research and time
than this project can cover.
The current monitor provides the ability to record the current consumption of the TL-

WR703N and the Raspberry Pi which allows the comparison of both platforms to be pre-
formed. However it needs further development before it can be used as part of a power
management solution.
The tests I decided to preform on both platforms give a basic idea of how each platform

preforms as a node on a network. However I didn't design or run any tests using di�erent
USB peripherals.
After comparing the power consumption of the TL-WR703N and the Raspberry Pi based

on the preformed tests. I have determined the TL-WR703N is best suited for the Backpack
Router project.
The idle current of the TL-WR703N is lower than the Raspberry Pi. The TL-WR703N

has a built in wireless interface which is a lot faster than using a wireless USB dongle on
the Raspberry Pi. The internal wireless interface on the TL-WR703N requires more power
to send data than the Edimax wireless USB dongle which was used on the Raspberry Pi.
The TL-WR703N does require more CPU usage to transfer at higher data rates with

WPA2-PSK enabled. This could cause a problem if the router was preforming other tasks
while transferring on an encrypted connection.
The Raspberry Pi became unstable when a wireless USB dongle was connected which

means it would be unreliable to be used as the Backpack Router.
Although this project didn't meet the main objective of producing a power management

system it has created some fundamental foundations into exploring the power consumption
of embedded platforms. The current monitor is compatible with any platform that has
support for the 1-Wire bus and a spare GPIO. The logging application requires Linux and
would need compiling for the architecture.
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