

EUROPEAN COMMISSION
DIRECTORATE-GENERAL JRC
JOINT RESEARCH CENTRE
Institute for Energy
Renewable Energy Unit

Ispra, 10 February 2011

**Code of Conduct
on Energy Consumption of Broadband Equipment**

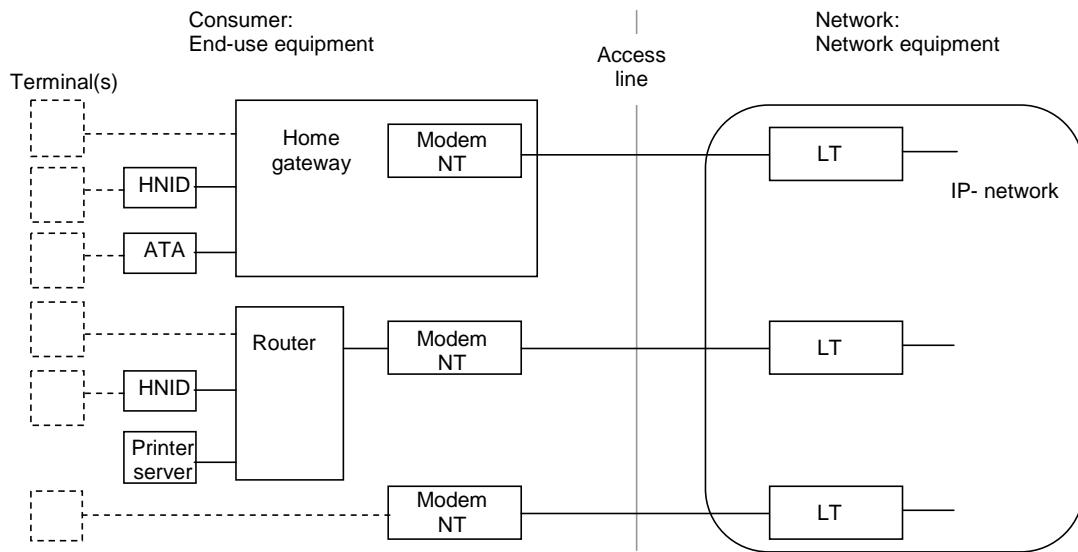
Version 4

10 February 2011

INTRODUCTION

Expectations are that broadband equipment will contribute considerably to the electricity consumption of households in European Community in the near future. Depending on the penetration level, the specifications of the equipment and the requirements of the service provider, a total European consumption of up to 50 TWh per year can be estimated for the year 2015. With the general principles and actions resulting from the implementation of this Code of Conduct the (maximum) electricity consumption could be limited to 25 TWh per year, this is equivalent to 5,5 Millions tons of oil equivalent (TOE) and to total saving of about € 7,5 Billions per year.

The potential new electrical load represented by this equipment needs to be addressed by EU energy and environmental policies. It is important that the electrical efficiency of broadband equipment is maximised.


To help all parties to address the issue of energy efficiency whilst avoiding competitive pressures to raise energy consumption of equipment all service providers, network operators, equipment and component manufacturers are invited to sign this Code of Conduct.

This Code of Conduct sets out the basic principles to be followed by all parties involved in broadband equipment, operating in the European Community, in respect of energy efficient equipment.

1. EQUIPMENT COVERED

This Code of Conduct covers equipment for broadband services both on the customer side as listed in Table 1, and on the network side as listed in Table 2. Note that not all the equipment listed in these tables may yet have a complete set of associated power targets. Any such missing values may be added to future versions of the Code of Conduct, as may any additional technologies that become significant in the Broadband space. Figure 1 below gives examples of home gateway/modem configurations with the boundary between customer premises and network equipment that this Code of Conduct takes into account. Terminals like PCs, TVs are not covered by this Code of Conduct.

Figure 1. Examples of configurations

Broadband access equipment is defined by its incorporation of a transmission technology capable of providing more than 2048 kbit/s (ITU-T recommendation I.113 [1]) full-rate capacity in at least one direction.

When equipment is in an idle state, it needs to be able to provide services with the same quality as in the on-state, or to be able transition to the on-state to deliver the service without introducing a significant additional delay from the user perspective. This requirement holds regardless of whether the service is initiated from the WAN-side, or the LAN-side.

In this Code of Conduct these categories of equipment will subsequently be referred to as “customer premises equipment” (CPE) and “network equipment” or “broadband equipment” in general.

Table 1: Customer premises equipment covered

Type of Customer premises equipment
<p>Home gateways:</p> <ul style="list-style-type: none"> • DSL CPEs (ADSL, ADSL2, ADSL2plus, VDSL2) • Cable CPEs (DOCSIS 2.0 and 3.0) • Optical CPEs (PON and PtP)

- Ethernet router CPEs
- Wireless CPEs (WiMAX, 3G and LTE)

Simple broadband access devices:

- DSL CPEs powered by USB
- Layer 2 ONTs

Home network infrastructure devices:

- Wi-Fi access points
- Small hubs and non-stackable Layer 2 switches
- Powerline adapters
- Alternative LAN technologies (HPNA, MoCA) adapters
- Optical LAN adapter

Other home network devices:

- ATA / VoIP gateway
- VoIP telephone
- Print server

The following equipment is excluded from this version of the code of conduct:

- Terminals like PCs, TVs
- Video Gateways providing Conditional Access “termination”, characterized by their capability to receive select and descramble multiple digital video streams to be rerouted on a home network or/and locally decoded to output audio video content. Video gateways equipped with embedded audio/ video decoding and outputting capability are commonly called “headed” video gateways.
- Enterprise CPE products, intended as those equipment that include one or both of the following characteristics and are typically intended to be used in high end applications and users:
 - works only with other dedicated proprietary controlling device/server
 - is modular (i.e. allowing non-standardized, proprietary LAN or WAN interfaces to be inserted in the equipment).

Table 2: Network equipment covered

Type of Network equipment covered
<ul style="list-style-type: none"> • DSL Network equipment (example: ADSL, ADSL2, ADSL2plus, VDSL2) • Combined DSL/Narrowband Network equipment (example: MSAN where POTS interface is combined with DSL BroadBand interface, etc) • Optical Line Terminations (OLT) for PON- and PtP-networks • Wireless Broadband network equipment (example: Wi-Fi access points for Hotspot application,

WiMAX Radio Base Station)

- Cable service provider equipment
- Powerline service provider equipment

2. AIM

To reduce energy consumption of broadband communication equipment without hampering the fast technological developments and the service provided.

3. COMMITMENT

Signatories of this Code of Conduct agree to make all reasonable efforts to:

- 3.1. Abide by the General Principles contained in Annex A.
- 3.2. Achieve the power consumption targets set out in Annex C, for at least 90% (by number¹) of the new-model items of broadband equipment covered by this Code of Conduct that are introduced to the market after the indicated dates. For an equipment vendor, 'new-model' means equipment that is first brought to market during a given year (note that a simple production optimisation or bug-fix would not necessarily constitute a new-model). For a network operator, 'new-model' means equipment of a particular type and specification being procured for the first time in a given year. For the subsequent manufacture or purchase/installation of the same equipment, the Code of Conduct values pertaining to the original year of introduction/purchase apply. To take into account the time delay network operators need to qualify any new equipment and adapt it to specific needs of their networks, network operators are entitled to apply the targets of the year preceding that it was procured.
- 3.3. Provide end-users with information about power consumption of customer premises equipment (CPE-on-state, CPE-idle-state) and about switching off customer premises equipment in the user manual and/or on the Internet and/or the packaging and/or at the point of sales.
- 3.4. Co-operate with the European Commission and Member State authorities in an annual review of the scope of the Code of Conduct and the power consumption targets for future years.
- 3.5. Co-operate with the European Commission and Member States in monitoring the effectiveness of this Code of Conduct through the reporting form that is available on the homepage of the EU Standby Initiative [3].
- 3.6. Ensure that procurement specifications for broadband equipment are compliant with this Code of Conduct.

Each version of the Code of Conduct, once published, is a standalone document that supersedes all previous versions, and neither refers to nor depends on such versions. When a new version of the Code of Conduct comes into force, it is assumed that companies/organizations who have already signed the Code of Conduct will remain signatories for the new version. However any company/organization may withdraw its signature from the Code of Conduct with no penalty.

¹ For network equipment 'by number' means 'by number of ports', so as to allow for equipment with very different numbers of ports.

MONITORING

Signatories agree to provide information on the power consumption of their equipment which is covered by the Code of Conduct to the European Commission on an annual basis. This should be provided by the end of each March for the previous calendar year. Where a signatory first signs part way through a calendar year, then reporting for that first year should be done from the date of signing, not the beginning of that calendar year.

The anonymous results will be discussed at least once a year by the signatories, the European Commission, Member States and their representatives in order to:

- a) Evaluate the level of compliance and the effectiveness of this Code of Conduct in achieving its aims.
- b) Evaluate current and future developments that influence energy consumption, (i.e. Integrated Circuit development, etc.) with a view to agreeing actions and/or amendments to the Code of Conduct.
- c) Set targets for future time periods.

Reporting: The presentation of the results provided to the Commission will be in the form of the Reporting sheet available on the homepage of the EU Stand-by Initiative [3].

Annex A – General Principles

Signatories of this Code of Conduct should endeavour to make all reasonable efforts to ensure:

For broadband equipment in general

- A.1 Broadband equipment should be designed to meet the CoC power consumption targets. However power management must not unduly impact the user experience, disturb the network, or contravene the applicable standards.
- A.2 Operational and control systems are specified on the presumption that hardware has power management built in, where applicable, i.e. depending on the functionality required of the unit, the hardware will automatically switch to the state with the lowest possible power consumption.²

For customer premises equipment

- A.3 Any external power supplies used for customer premises equipment shall be in accordance with the EU Code of Conduct for External Power Supplies [4]. Power consumption of the external power supply shall be included in the power measurement.
- A.4 Customer premises equipment is designed on the assumption that the equipment may be physically disconnected from the mains or switched off manually by the customer, from time to time, at his or her discretion.
- A.5 Power delivered to other equipment (e.g. over USB or PoE) shall not be included in the power consumption assessment. This further equipment shall be disconnected for the power consumption measurement, except when this is in contradiction with the operation of the product. However, target values are specified for some specific USB devices, as a reference for USB manufacturers, and to be considered separately from the evaluation of the power budget (and related consumption objectives) of the CPEs they can be connected to.

For network equipment

- A.6 Broadband Network equipment should be designed to fulfil the environmental specifications of Class 3.1 for indoor use according to the ETSI Standard EN 300019-1-3 [5], and where appropriate the more extended environmental conditions than Class 3.1 for use at outdoor sites. At remote sites the outdoor cabinet including the Broadband Network equipment shall fulfil class 4.1 according to the ETSI Standard EN 300019-1-4. Broadband Network equipment in the outdoor cabinet should be designed taking in account the characteristics of the cabinet and the outdoor environmental condition; for example in case of free cooling cabinet it should be considered that the equipment

² For WAN-side DSL systems, this function can be activated (with care) for deployed ADSL2/2plus (see BBF TR-202 guidelines). However this is not the case for VDSL2. To this end signatories will endeavour to assist in the improvement of the existing low-power DSL standards, and the development of new ones as appropriate. Until these are available, the focus should be on the reduction of power consumption in DSL-full power state for VDSL2.

inside the cabinet could operate (for short time periods) at temperature up to 60 degrees Celsius. If cooling is necessary it should be preferably cooled with fresh air (fan driven, no refrigeration). The COP (Coefficient of Performance) of new site cooling systems, defined as the ratio of the effective required cooling power to the energy needed for the cooling system, should be more than 10.

Annex B – Definition of operation states

B.1. Definitions of CPE operation states

Off-state:

In the **off-state** the device is not providing any functionality. This state is defined by the Commission Regulation (EC) No 1275/2008 [9].

Idle-state:

In the **idle-state** the device is idle, with all the components being in their individual idle states. In this state the device is not processing or transmitting a significant amount of traffic, but is ready to detect activity.

Transitions between the idle-state and on-state must occur without manual reconfiguration of the device, i.e. they must happen automatically.

The idle-state of a home gateway is defined as all the components of the home gateway being in their idle-state as defined in Table 3.

Table 3: Definition of the idle-state for home gateways

Port / component	Idle-state
Central functions (processor and memory: routing, firewall, OAM (e.g. TR-069), user interface)	Not processing user traffic
WAN interface	<p>Single WAN: Idle (link established, but no user traffic transmission).</p> <p>More details on the physical layer configuration of certain interfaces can be found in the On-state definitions (Table 7). The idle state configuration can be different than in On-state if this does not require a manual reconfiguration by the end user (e.g. in case of DOCSIS 3.0, the CPE could transition to a 1x1 configuration or in case of ADSL2plus to the L2 mode).</p> <p>In case of dual WAN interface³, for backup or alternative purposes, only one of the two ports will be in the above described state, while the second will be disconnected or not active, but able to be</p>

³ It should be noted that CPEs may exist with more than two WAN interfaces (e.g. in case of DSL bonding over more than two copper pairs). In the remainder of this document dual WAN interface CPEs are mentioned as the most common category of multi-WAN CPEs.

	manually or automatically activated in case of need. In case of dual WAN interface for simultaneous operation, both ports will be in the above described state.
LAN Ethernet ports	Ports not connected (or no Ethernet link) but with Ethernet link detection active
Wi-Fi	Beacon on, but no user traffic transmitted, no client associated
Alternative LAN technologies (HPNA, MoCA, Powerline, POF...)	MoCA, Powerline, HPNA or POF capability is activated, but no user traffic transmitted
FXS	1 FXS port with phone connected (200 Ohm / 5m max cable length), phone on-hook, off hook detection active Remaining FXS ports: no phone or other load connected, but able to detect a connection
ISDN S0	1 phone connected (5m max cable length), the phone is powered locally by its own power supply (i.e. it is not powered via the S0 interface), phone on-hook, off hook detection active. Remaining ISDN S0 ports: no phone or other load connected, but able to detect a connection.
FXO	No active call, incoming call detection enabled
DECT interface	No active call, incoming call detection enabled
DECT charging station for DECT handset	DECT handset on cradle, in trickle charge
Backup battery	Battery is fully charged (trickle charging)
USB	No devices connected, detection of USB devices active

When activity is detected on a component the appropriate components transition to the on-state. The transition time should be less than 1 second wherever possible in order to not adversely impact the customer experience. The detection of the Ethernet link may take more than 1 second, but must stay below 3 seconds. This longer transition time can be tolerated in this case because it requires some user interaction to bring up the link (e.g. connect a device or boot a PC).

Note that because only those components required to support the activated service go into their on-state, for a complete device (as opposed to a functional component) there will in fact

be a range of power states. At any given time the CPE should consume the minimum power commensurate with its current level of activity (with the appropriate hysteresis).

Table 4: Definition of the idle-state for simple broadband access devices (modems and NTs)

Port / component	Idle-state
WAN port	Idle (link established, but no user traffic transmission)
LAN port	Idle (link established, but no user traffic transmission), cable length = 5m

Table 5: Definition of the idle-state for Home Network Infrastructure Devices (HNID)

Port / component	Idle-state
Ethernet port	1 port idle (connected, but no user traffic transmission), cable length = 5m, in case of more than 1 port the remaining ports are disconnected but with Ethernet link detection active

The definitions of the idle-state for all other interfaces and functionality are the same as defined in Table 3.

Table 6: Definition of the idle-state for other home networking devices

Port / component	Idle-state
Ethernet port	Port idle (connected, but no user traffic transmission), cable length = 5m: in case of more than 1 port, one is idle and the others are disconnected.”
VoIP/telephony	No active call, call detection active, inactive display
Print server	No print job active

On-state:

The on-state of a home gateway is defined as all the components of the home gateway being in their on-state as defined in Table 7.

For the interfaces carrying user traffic the minimal throughput (UDP, packet 500 bytes) that needs to be considered is indicated as well in Table 7. As this is the minimal traffic load to be applied to a certain interface, some interfaces can carry more traffic in order to accommodate all minimal traffic loads. This excess traffic should be carried on Ethernet LAN interface(s).

Broadband equipment with Ethernet interfaces are encouraged to implement IEEE 802.3az (“Energy Efficient Ethernet”) and enable the technology by default. For copper based Ethernet interfaces (WAN and LAN) supporting IEEE 802.3az (Energy Efficient Ethernet) the measurement equipment connected to such ports must as well support IEEE 802.3az and LLDP for IEEE 802.3az.

Transitions between the idle-state and on-state must occur without manual reconfiguration of the device, i.e. they must happen automatically.

Table 7: Definition of the on-state for home gateways

Port / component	On-state
Central functions (processor and memory: routing, firewall, OAM (e.g. TR-069), user interface)	Processing the user traffic present on the WAN and LAN interfaces
WAN port	<p>Single WAN: Active (link established and passing user traffic)</p> <p>In case of dual WAN interface, for backup or alternative purposes, only one of the two ports will be in the above described state, while the second will be disconnected or not active, but able to be manually or automatically activated in case of need.</p> <p>In case of dual WAN interface for simultaneous operation, both ports will be in the above described state.</p>
ADSL2plus	<p>Line is configured as per Broadband Forum Recommendation TR-100 [13], Table 7.3:</p> <p>Select a valid ADSL2plus specific test profile, configured in rate adaptive mode. Use a test loop of 1250m.</p> <p>The DSL line is active (in showtime) and passing user traffic: 3 Mbit/s downstream, 0,3 Mbit/s upstream</p>
VDSL2 (8, 12a, 17a, but not 30a)	<p>Line is configured as per Broadband Forum Recommendation TR-114 [14] Table 13 (Specific Line Settings):</p> <p>Select a valid VDSL2 profile line combination, for the governing profile bandwidth (namely 8, 12 or 17 MHz), configured in rate adaptive mode. Use a test loop of 300m for the 8 MHz profile and 150m for each of the 12 and 17 MHz profiles.</p> <p>The DSL line is active (in showtime) and passing user traffic: 10 Mbit/s downstream, 2 Mbit/s upstream</p>

VDSL2 (30a)	<p>Line is configured as per Broadband Forum Recommendation TR-114:</p> <p>Note: Since TR-114 does not specify any 30a profile for Region B (Europe), the line shall be configured as above with the following exceptions:</p> <ul style="list-style-type: none"> • VDSL2 Band Profile shall be: Profile 30a, using a valid Annex B PSD mask, configured in rate adaptive mode. • Use a test loop of 100m <p>The DSL line is active (in showtime) and passing user traffic: 20 Mbit/s downstream, 5 Mbit/s upstream</p> <p>TR.114 Issue 2 (under development) will include profile 30a. Once finalized it will have to be used as line configuration reference</p>
Fast Ethernet WAN	link established at 100 Mbit/s and passing user traffic: 20 Mbit/s downstream, 5 Mbit/s upstream
Gigabit Ethernet WAN	link established at 1000 Mbit/s and passing user traffic: 50 Mbit/s downstream, 10 Mbit/s upstream
Fibre Ptp Fast Ethernet WAN	link established at 100 Mbit/s and passing user traffic: 20 Mbit/s downstream, 5 Mbit/s upstream
Fibre Ptp Gigabit Ethernet WAN	link established at 1000 Mbit/s and passing user traffic: 50 Mbit/s downstream, 10 Mbit/s upstream
GPON	passing user traffic: 20 Mbit/s downstream, 5 Mbit/s upstream
1G-EPON	passing user traffic: 20 Mbit/s downstream, 5 Mbit/s upstream
10/1G-EPON	passing user traffic: 50 Mbit/s downstream, 5 Mbit/s upstream
10/10G-EPON	passing user traffic: 50 Mbit/s downstream, 10 Mbit/s upstream
XG-PON1	passing user traffic: 50 Mbit/s downstream, 10 Mbit/s upstream
DOCSIS 2.0	Active with a downstream channel with a modulation type of 256 QAM and an upstream channel with a modulation type of 64 QAM and a symbol rate of 5.12 Ms/s and passing user traffic: 10 Mbit/s downstream, 2 Mbit/s upstream
DOCSIS 3.0	Active with an NxM configuration with N downstream channels with a modulation type of 256 QAM and M upstream channels with a modulation type of 64 QAM and a symbol rate of 5.12 Ms/s. Modem is passing user traffic: 20 Mbit/s downstream, 5 Mbit/s upstream.

	<p>Basic configuration:</p> <ul style="list-style-type: none"> • The basic NxM configuration is a 4x4 configuration. <p>Additional power allowance for each additional 4 downstream channels:</p> <ul style="list-style-type: none"> • The basic NxM configuration is an Nx4 configuration where N is the maximum number of downstream channels supported by the modem. (Testing may be restricted by the number of channels supported by the plant.)
WiMAX, 3G, LTE	passing user traffic: 1 Mbit/s downstream, 200 kbit/s upstream
LAN Fast Ethernet ports	All ports active, link established at 100 Mbit/s, cable length=5m and passing user traffic: concurrent 10 Mbit/s downstream and 10 Mbit/s upstream per port
LAN Gigabit Ethernet ports	All ports active, link established at 1000 Mbit/s, cable length=5m and passing user traffic: concurrent 20 Mbit/s downstream and 20 Mbit/s upstream per port
Wi-Fi 802.11g or 11a	Beacon on, 1 Wi-Fi client associated and 1-5m away from AP in the same room, avoid interference in the same band, with user traffic: concurrent 5 Mbit/s downstream and 5 Mbit/s upstream (where simultaneous dual-band operation is supported, this traffic is used on each of the band)
Wi-Fi 802.11n	Beacon on, 1 Wi-Fi 802.11n client associated and 1-5m away from AP in the same room, avoid interference in the same band, with user traffic: concurrent 10 Mbit/s downstream and 10 Mbit/s upstream (where simultaneous dual-band operation is supported, this traffic is used on each of the band)
Alternative LAN technologies (HPNA, MoCA, Powerline, POF...)	MoCA, Powerline, HPNA or POF capability is activated, with user traffic: concurrent 10 Mbit/s downstream and 10 Mbit/s upstream per interface
FXS	<p>1 phone connected (200 Ohm / loop current of 20 mA / 5m max cable length), off hook, 1 active call.</p> <p>Remaining FXS ports: no phone or other load connected, but able to detect a connection (for those FXS ports the idle targets apply).</p>
ISDN S0	<p>1 phone connected (5m max cable length), the phone is powered locally by its own power supply (i.e. it is not powered via the S0 interface), phone off hook, 1 active call.</p> <p>Remaining ISDN S0 ports: no phone or other load connected,</p>

	but able to detect a connection (for those ISDN S0 ports the idle targets apply).
FXO	1 active call
DECT interface	1 active call
DECT charging station for DECT handset	DECT handset not on cradle, no charging
Backup battery	Battery is fully charged (trickle charging)
USB	No USB device connected, detection of USB devices active
Low speed power line	Active, with traffic: 10 kbit/s
Bluetooth	Active, with traffic: 10 kbit/s
Zigbee	Active, with traffic: 10 kbit/s
Femto cell (Home use, RF power \leq 10mW, RF power 10mW-50mW)	active, client 5m away in the same room, with user traffic: 2 Mbit/s

Table 8: Definition of the on-state for simple broadband access devices (modems and NTs)

Port / component	On-state
WAN port	Active (link established and passing user traffic with the traffic load defined in Table 7 for a given WAN interface type)
LAN port	Active (link established and passing the same amount of user traffic as defined for the WAN port)

For the on-state of Home Network Infrastructure Devices (HNID) the same definitions as listed in Table 7 apply.

Table 9: Definition of the on-state for other home networking devices

Port / component	On-state
Ethernet port	Port active (user traffic transmission to support the functionality of the device as described in the rows below), cable length=5m
VoIP/telephony	1 active call
Print server	Print job active

B.2. Definitions of network operation states

For Broadband-Network-technologies the following states are differentiated:

- Network (e.g. DSL)-stand-by state: This state has the largest power reduction capability and there is no transmission of data possible. It is essential for this state that the device has the capability to respond to an activation request, leading to a direct state change. For example a transition to the Network-full-load state may happen if data has to be transmitted from either side.
- Network (e.g. DSL)-low-load state: This state allows a limited power reduction capability and a limited data transmission is allowed. It is entered automatically from the Network-full-load state after the data transmission during a certain time is lower than a predefined limit. If more than the limited data has to be transmitted from either side a state change to the Network-full-load state is entered automatically. The Network-low-load state may comprise multiple sub-states with history dependent state-transition rules.
- Network (e.g. DSL)-full-load state: This is the state in which a maximal allowed data transmission is possible. The maximum is defined by the physical properties of the line and the settings of the operator.
- For the wireless network equipment also the following states are defined:
 - Full-load-state
 - Medium-load-state
 - Low-load-state

Annex C – Power levels: targets and time schedule

C.1. Customer premises equipment

The customer premises equipment covered by this Code of Conduct (home gateways, home network infrastructure devices and other home network devices) should meet the following maximum power consumption targets in the on-state and in the idle-state (as defined in section B.1). In the off-state it must meet the requirements of the Code of Conduct for External Power Supplies [4].

The equipment should apply all possible energy saving actions, minimizing the overall power consumption whenever possible (e.g. when all or some of its functions are not operating).

The power levels in this document for all states are mean values based on sufficiently long measurement periods (at least 5 minutes) during which the equipment remains continuously in that same state (measurements should only start when the equipment is stable in this state for at least 60 seconds). Power is measured at the 230V AC input.

C.1.1 Home Gateways

The home gateway⁴ is composed of several components, namely a processor plus memory, a WAN interface and several LAN interfaces. Depending on the purpose of a given home gateway different components may be included. The power consumption targets for each type of home gateway are calculated by summing the values of its individual components. The home gateway as a whole has to meet the summed targets for its various modes of operation and activity. Component power consumption values are used to compute the overall home gateway target for a given configuration and mode of operation, but are not themselves normative.

The home gateway must meet the power targets for idle-state and for on-state as defined in section B.1. Depending on the actual state of the individual components, several intermediate power consumption levels for the home gateway exist.

The values per component for the idle-state and the on-state are given in the following tables.

If an interface is able to work in different modes it must establish a link with the highest possible capability and the targets have to be chosen accordingly. This for example applies to Wi-Fi 11n interfaces or Gigabit Ethernet ports i.e. to a Gigabit Ethernet interface a Gigabit Ethernet capable device must be connected for measurement purposes and the Gigabit Ethernet target applies. If a lower capability device is connected, the power consumption should be lower and ideally reach the target of this lower capability technology, i.e. if a Fast Ethernet device is connected to a Gigabit Ethernet port.

In case of Dual WAN, with reference to the definition of states, the calculation of targets for idle and on state will be performed on the basis of the following rules:

⁴ A home gateway is used here as a generic term which encompasses all kinds of access interfaces (e.g. DSL, cable, fibre, etc.)

In case of dual WAN interface for backup or alternative purposes, the backup or alternative interface will be activated when the main interface loses connectivity. The target will be calculated as the sum of the values for both interfaces, reduced by 1.8 W in idle-state and by 2.6 W in on-state. This target must be met under two conditions (and both should be measured and reported):

- The first one, corresponding to the situation when the main WAN interface is active and the backup or alternative interface is disconnected or not active
- The second one, corresponding to the situation when the backup is activated and the main interface is disconnected or not active

In case of dual WAN interface for simultaneous operation, the target will be calculated as sum of the values for both interfaces, reduced by 1.6 W in idle-state and by 2.4 W in on-state to consider that some of the central functions are shared by the two functionalities active at the same time

As an example for dual WAN interface for backup or alternative purposes, let x be the power target of a device with the main interface active and y the power target when the backup or alternative interface is active, the targets correspond to $(x_{LP}+y_{LP}) - 1.8$ W in idle-state and to $(x_{ON}+y_{ON}) - 2.6$ W in on-state.

If the same interfaces work simultaneously, then the targets correspond to $(x_{LP}+y_{LP}) - 1.6$ W in idle-state and to $(x_{ON}+y_{ON}) - 2.4$ W in on-state.

Table 10: Power values for home gateway central functions plus WAN interface

Home gateway central functions plus WAN interface	Tier 2011-2012: 1.1.2011- 31.12.2012		Tier 2013-2014: 1.1.2013 - 31.12.2014	
	Idle-State (W)	On-State (W)	Idle-State (W)	On-State (W)
ADSL2plus	2.6	3.8	2.4	3.4
VDSL2 (8, 12a, 17a, but not 30a)	3.5	6.0	3.2	4.6
VDSL2 (30a)	4.2	6.7	3.9	5.3
Fast Ethernet WAN	2.5	3.3	2.0	3.0
Gigabit Ethernet WAN	3.2	6.2	2.5	5.0
Fibre Ptp Fast Ethernet WAN	2.9	5.6	2.9	5.0
Fibre Ptp Gigabit Ethernet WAN	3.5	6.2	3.2	5.6
GPON	4.0	6.5	3.5	5.0
1G-EPON	3.7	5.5	3.5	4.7
10/1G-EPON	5.1	7.0	4.8	6.2

10/10G-EPON	5.6	8.8	5.3	7.7
XG-PON1	5.1	7.3	4.8	6.5
DOCSIS 2.0	3.7	4.6	3.7	4.6
DOCSIS 3.0 basic configuration	6.2	7.1	4.2	6.2
DOCSIS 3.0 additional power allowance for each additional 4 downstream channels	2.2	2.8	2.0	2.5
WiMAX	7.7	10.6	3.5	6.0
3G	4.0	7.0	3.5	6.0
LTE	4.0	7.0	3.5	6.0

Notes:

- (1) The ONU values shown in Table 10 assume that the home gateway central functions include a Gigabit Ethernet switch functionality (the additional power budget for the PHY interface of the LAN ports will have to be accounted separately).
- (2) The above consumption targets for all ONUs in Table 10 assume the use of optics that meet the PR-30 or PRX-30 power budgets (IEEE 802.3) or ITU-T G.984.2/G.987.2 Class B/B+ power budgets, whichever is applicable.

Table 11: Power values for home gateway LAN interfaces and additional functionality

Home gateway LAN interfaces and additional functionality	Tier 2011-2012: 1.1.2011- 31.12.2012		Tier 2013-2014: 1.1.2013 - 31.12.2014	
	<i>Idle-State</i> (W)	<i>On-State</i> (W)	<i>Idle-State</i> (W)	<i>On-State</i> (W)
1 Fast Ethernet port	0.3	0.4	0.2	0.4
1 Gigabit Ethernet port	0.3	0.9	0.2	0.6
Wi-Fi interface, single band IEEE 802.11g or 11a/h radio ⁵ with up to 23 dBm EIRP	0.7	2.0	0.7	1.5
Wi-Fi interface, single band 11a/h radio ⁵ with up to 30 dBm EIRP	0.7	2.5	0.7	2.5
Wi-Fi interface, single band IEEE 802.11n radio ⁵ with up to 23 dBm EIRP	1.0	2.5	0.8	2.0

⁵ For simultaneous dual-band operation the allowances for the individual radios can be summed up

Wi-Fi interface, single band IEEE 802.11n radio ⁵ with up to 30 dBm EIRP	1.0	3.0	0.8	3.0
Additional allowance per RF chain above a 2x2 MIMO configuration (e.g. for 3x3 and 4x4)	0.1	0.4	0.1	0.3
Alternative LAN technologies (HPNA, POF...)	2.0	2.5	1.5	2.0
MoCA	2.0	2.5	1.8	2.2
Powerline - High speed for broadband home networking (less than or equal to 50MHz bandwidth)	2.5	3.0	2.0	2.7
Powerline - High speed for broadband home networking (greater than 50MHz bandwidth)	2.5	4.7	2.5	4.5
PowerLine - Low speed for smart metering and appliances control	0.9	2.0	0.8	1.5
FXS	0.5	1.5	0.3	1.2
ISDN S0	0.2	0.4	0.2	0.4
FXO	0.4	0.9	0.2	0.9
Emergency fall-back to analog telephone	0.8	0.8	0.6	0.6
DECT GAP	0.75	1.65	0.5	1.0
DECT Cat-iq	0.75	2.0	0.5	1.2
DECT charging station for DECT handset in slow/trickle charge	0.4	0	0.4	0
USB – no load connected	0.25	0.25	0.1	0.1
Built-in back-up battery	0,2	0,2	0,1	0,1
Bluetooth	0.2	0.3	0.1	0.3
Zigbee (or other low power wireless technologies)	0.15	0.15	0.15	0.15
Femto cell (Home use, RF power \leq 10mW)	7.0	8.0	6.0	7.0
Femto cell (Home use, RF power 10mW-50mW)	11.0	12.0	9.0	10.0

RF modulator (TV overlay for fiber network)	3.5	3.5	3.2	3.2
Embedded handsfree system	0.5	0.5	0.5	0.5
Additional Colour Display (typically found in VoIP devices) TFT QVGA and VG	0.5	1.0	0.5	1.0

There are types of home gateway device (e.g. a USB attached DSL modem or pure layer 2 ONTs/ONUs) that are so simple (e.g. only provide layer 2 functionality, does not contain an Ethernet switch, and has a single LAN interface) that it cannot be usefully decomposed into components. The power targets for such devices are given in Table 12.

Table 12: Power targets for simple broadband access devices (modems and NTs)

Equipment	Tier 2011-2012: 1.1.2011- 31.12.2012	Tier 2013-2014: 1.1.2013 - 31.12.2014		
Modem and NT total power target for simple broadband access devices	CPE- Idle-State (W)	CPE-On- State (W)	CPE-Idle- State (W)	CPE-On- State (W)
DSL-modem powered by USB	1.5	1.5	1.5	1.5
GPON ONT/ONU with 1x Gigabit Ethernet LAN port	3.0	5.5	2.5	4.0
1G-EPON ONT/ONU with 1x Gigabit Ethernet LAN port	2.7	4.0	2.3	3.5
10/1G-EPON ONT/ONU with 1x Gigabit Ethernet LAN port	4.1	6.2	3.8	5.7
10/10G-EPON ONT/ONU with 1x Gigabit Ethernet LAN port	4.6	7.9	4.3	7.0
XG-PON1 ONT/ONU with 1x Gigabit Ethernet LAN port	4.1	6.5	3.8	6.0
Fast Ethernet ptp ONT with 1x Fast Ethernet LAN port	3.0	3.0	2.8	2.8
Gigabit Ethernet ptp ONT with 1x Gigabit Ethernet LAN port	3.5	3.5	3.2	3.2

Notes:

- (1) USB Modem Power consumption (W) is defined at the 5V USB Interface.
- (2) The above consumption targets for all ONTs in Table 12 assume the use of optics that meet the PR-30 or PRX-30 power budgets (IEEE 802.3) or ITU-T G.984.2/G.987.2 Class B+ power budgets, whichever is applicable.

(3) If the ONT/ONU has a Fast Ethernet LAN port instead of a Gigabit Ethernet port the power targets are reduced by the difference between a Fast and a Gigabit Ethernet LAN port from Table 11.

C.1.2 USB dongles

For a home gateway with USB ports additional functionality originally not built into the device can also be provided via USB dongles. The power consumption of USB dongles is measured at the DC 5V USB interface.

Please note that the USB devices are considered as not equipped with additional chipsets implementing applications or complex software stacks that will drastically change the power values.

Table 13: Power values for USB dongles

USB dongles	Tier 2011-2012: 1.1.2011- 31.12.2012		Tier 2013-2014: 1.1.2013 - 31.12.2014	
	<i>Idle-State</i> (W)	<i>On-State</i> (W)	<i>Idle-State</i> (W)	<i>On-State</i> (W)
USB powered peripherals and dongles - 3G/4G	0.7	2.45	0.5	1.75
USB powered peripherals and dongles - DECT	0.6	0.8	0.4	0.6
USB powered peripherals and dongles - Wi-Fi interface single IEEE 802.11b/g or 1x1 11n radio ⁶	0.8	2.0	0.8	2.0
USB powered peripherals and dongles - Zigbee (or other low power wireless technologies)	0.1	0.5	0.1	0.4

⁶ For Wi-Fi USB dongles with more than 1 RF chain an allowance for additional RF chains as defined in Table 11 can be added.

C.1.3 Home Network Infrastructure Devices

Table 14: Power targets for Home Network Infrastructure Devices (HNID)

Equipment	Tier 2011-2012: 1.1.2011- 31.12.2012		Tier 2013-2014: 1.1.2013 - 31.12.2014	
	<i>Idle State</i> (W)	<i>On-State</i> (W)	<i>Idle-State</i> (W)	<i>On-State</i> (W)
Wi-Fi Access Points with single band IEEE 802.11b/g or 11a	2.3	3.6	2.2	3.4
Wi-Fi Access Points with single band IEEE 802.11n radio	3.5	5.0	2.3	3.9
Fast Ethernet optical LAN adapters (fiber converter or POF adapter)	3.0	3.0	2.8	2.8
Gigabit Ethernet optical LAN adapters (fiber converter or POF adapter)	3.5	3.5	3.2	3.2
High speed powerline adapters (e.g. HomePlug and G.HN)	3.5	4.5	3.0	4.0
Alternative LAN technologies adapters (HPNA, MoCA,...)	4.5	4.5	3.5	4.0
Small hubs and non-managed 4 port Layer 2 Fast Ethernet switches without CPU (no VPN or VoIP)	1.6	2.0	1.4	2.0
Small hubs and non-managed 4 port Layer 2 Gigabit Ethernet switches without CPU (no VPN or VoIP)	1.8	3.6	1.5	2.8

An HNID is typically a relatively simple device, where 1 Ethernet port is already considered to be part of the initial configuration. For Ethernet switches the 4 ports is already considered to be part of the initial configuration. If an HNID has more Ethernet ports additional allowances for those ports can be added as defined in see Table 11. For more complex HNIDs the same allowances for additional functionality apply as for home gateways (see Table 11).

C.1.4 Other Home Network Devices

Table 15: Power targets for other home network devices

Equipment	Tier 2011-2012: 1.1.2011- 31.12.2012		Tier 2013-2014: 1.1.2013 - 31.12.2014	
	<i>Idle-State</i> (W)	<i>On-State</i> (W)	<i>Idle-State</i> (W)	<i>On-State</i> (W)
ATA / VoIP gateway	1.5	2.2	1.3	2.1
VoIP telephone	3.0	3.7	2.7	3.5
Print server (without Wi-Fi)	2.0	4.0	1.8	3.6

Some types of other home network devices require additional functionality; in that case the same allowances for additional functionality apply as for home gateways (see Table 11).

C.2 Network equipment

The following targets are power consumption targets per port.

- a) All power values measured at the “A” interface as described in the standard ETSI TS 102 533 [8] or at the AC input, in case of directly mains powered systems. For directly mains powered systems, the power limits stated in Table 16 through Table 26, will be increased by 10%.
- b) The stated target figures apply for equipment operating in their native modes only. In other words, the targets for ADSL2plus equipment apply for equipment that are designed to operate natively in ADSL2plus mode and **not** VDSL2 equipment operating in ADSL2plus fallback mode.
- c) Although no target is defined in this version of the broadband Code of Conduct for the energy consumption of VDSL2 equipment when operating in fallback mode, the actual consumption has to be tested and reported within the reporting sheet.

C.2.1 Broadband DSL Network equipment

Table 16: Broadband ports – DSL-full-load-state

Equipment	Tier 2011-2012 (1.1.2011-31.12.2012) (W)	Tier 2013-2014 (1.1.2013-31.12.2014) (W)
ADSL2plus (including ADSL and ADSL2 and with transmission power of 19,8 dBm)	1,2	1,1
VDSL2 (profile 8b)	1,8	1,6
VDSL2 (profile 12a and 17a)	1,6	1,5
VDSL2 (profile 30a)	2,0	1,7

The above values are for fully equipped with maximum configuration DSLAMs with more than 100 ports. For equipment up to 100 ports (and with maximum configuration) 0,3 W per line may be added to the above values, with a minimum value of 10 W for the whole DSLAM.

The additional allowance for the uplink interface (*which is applicable for all Power States (Full, Low & Standby)* is:

- 4,5 W per equipment for each Point to Point 1000Mbit/s interface
- 9,0 W per equipment for each Point to Point 10Gbit/s interface
- 6,0 W per equipment for each Point to Multipoint (GPON) interface
- 5,0 W per equipment for each Point to Multipoint (1G-EPON) interface
- 7,5 W per equipment for each Point to Multipoint (10/1G-EPON) interface
- 9,0 W per equipment for each Point to Multipoint (10/10G-EPON) interface

Table 17: Broadband ports – DSL-low load state⁷

Equipment	Tier 2011-2012 (1.1.2011-31.12.2012) (W)	Tier 2013-2014 (1.1.2013-31.12.2014) (W)
ADSL2plus (including ADSL2)	0,8	0,7
VDSL2 ⁸	1,2	1,0

Start-up/Wake-up times from DSL-low-load-state to DSL-full-load-state should be less than 1 second to guarantee a good quality of service (e.g. voice calls).

Table 18: Broadband ports – DSL-standby-state⁹

Equipment	Tier 2011-2012 (1.1.2011-31.12.2012) (W)	Tier 2013-2014 (1.1.2013-31.12.2014) (W)
ADSL2plus (including ADSL and ADSL2)	0,4	0,3
VDSL2	0,6	0,5

The above values for DSL-low-load and -standby-states are for fully equipped with maximum configuration for DSLAMs with more than 100 ports. For equipment up to 100 ports (and with maximum configuration) 0,3W per line may be added to the above values for the whole DSLAM, with a minimum value of 10W

Start-up/Wake-up times from DSL-standby-state to DSL Full Power-state should be less than 1 second to guarantee a good quality of service (e.g. voice calls).

7 The DSL-low-load State should allow a bit rate of a configurable value (e.g. for keep-alive-signals, voice). The DSL-Low Power State-levels shall not hamper the quality of service. In order to solve the issues caused by non stationary cross talk, further investigations need to be done. They could be attenuated by the application of much longer time intervals between state transitions (15-30 minutes) than those defined today (1-255 sec.). This requirement comes into effect when the issues on the quality of service have been solved by the standardization bodies.

8 The DSL-low load-State is not foreseen today in the standard for VDSL2. Operators and manufacturers are urged, through their representatives in the standardization bodies, to make effort towards low power states with corresponding values, which are indicated here as targets for future standard revisions. This requirement comes into effect when relevant standards are available.

9 A short start up time of <1 second has to be realized to guarantee triple-play functions like VoIP and Video over IP (while the current value for this start up time is around 3 seconds). This requirement comes into effect when relevant standards are available.

To minimize cost/dimensions/power consumption, the network equipments contain chips that control multiple DSL lines (4-8-16) each. If special care is not taken, a single line in DSL-full-load-state could result in a chip fully operational on the other lines also (in low-load or Standby), resulting in an unnecessary waste of energy. The network systems (and their basic components) shall therefore be designed in order to tackle this issue, maximizing the energy savings also in mixed environments with lines in different power states, being this the typical situation found in the network.

C.2.2 Combined DSL/Narrowband Network equipment

Power consumption limits for POTS interface implementation into an MSAN are defined in Table 19. The values defined apply to a testing condition where the line length equivalent resistance (including the CPE resistance) is assumed to be 510 Ohm.

It is further assumed that power consumed by MSAN functionality which is common to both Broadband and POTS is split appropriately across the two functions. For those boards, such as combo interface board and combo main control board, which integrate Broadband and POTS functions, the power consumption of these boards are to be measured separately for each function, i.e. measure Broadband with POTS disabled and vice versa. In case the two functions cannot be fully disabled separately, the power values for each function can be declared in proportion according to the measured total power values.

Table 19: Per-port MSAN POTS power consumption limits

	Tier 2011-2012				Tier 2013-2014			
Per-port MSAN POTS power consumption limits in Watt	'Port State line feed (W)				'Port State line feed (W)			
Port State	40mA	32mA	25mA	20mA	40mA	32mA	25mA	20mA
Not provisioned for POTS 10, ¹¹	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Provisioned for POTS - on-hook 10, ¹²	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Provisioned for POTS - off-hook 10	3	2,3	2,0	1,9	2,6	1,9	1,6	1,5

¹⁰ These figures are additive to those existing in the code of conduct section C.2 (network equipment) for Broadband to form the per port limit for combo operation.

¹¹ Note that this assumes that the port is equipped to supply POTS but has not been configured for use by an end customer.

¹² Note that this excludes any on-hook charging current, which may be drawn by the CPE (up to 3mA in some countries).

The above values are for fully equipped with maximum configuration for MSAN with more than 100 ports. For equipment up to 100 ports (and with maximum configuration) 0,3W per line may be added to the above values for the whole MSAN, with a minimum value of 10W.

It is further assumed that power consumed by MSAN functionality which is common to both Broadband and POTS is split appropriately across the two functions. For those boards, such as combo interface board and combo main control board, which integrate Broadband and POTS functions, the power consumption of these boards are to be measured separately for each function, i.e. measure Broadband with POTS disabled and vice versa. In case the two functions cannot be fully disabled separately, the power values for each function can be declared in proportion according to the measured total power values.

The additional allowance for the uplink interface is:

- 4,5 W per equipment for each Point to Point 1000Mbit/s interface
- 9,0 W per equipment for each Point to Point 10Gbit/s interface
- 6,0 W per equipment for each Point to Multipoint (GPON) interface
- 5,0 W per equipment for each Point to Multipoint (1G-EPON) interface
- 7,5 W per equipment for each Point to Multipoint (10/1G-EPON) interface
- 9,0 W per equipment for each Point to Multipoint (10/10G-EPON) interface

C.2.3 Optical Line Terminations (OLT) for PON- and PtP-networks

Table 20: Optical Line Terminations

Equipment	Tier 2011 (01.01.2011) (W)	Tier 2012 (01.01.2012) (W)	Tier 2013- 2014 (01.01.2013) (W)
GPON (2.5G/1G)			
OLT (GPON, fully equipped with maximum configuration implementing standard Layer-2 (Ethernet) aggregation functionalities, including Multicast)	11	11	8
OLT (GPON, fully equipped with maximum configuration implementing also functionalities at the IP layer such as routing, MPLS, IP QoS), or more advanced L2 functionality (QOS, shaping, policing)	12	12	9
XG-PON1 (10G/2.5G)			
OLT (XG-GPON1 10G/2.5G, fully equipped with maximum configuration implementing standard Layer-2 (Ethernet) aggregation functionalities, including Multicast)	18	15	14
OLT (XG-GPON1 10G/2.5G, fully equipped with maximum configuration implementing also functionalities at the IP layer such as routing, MPLS, IP QoS), or more advanced L2 functionality (QOS, shaping, policing)	19	16	15
Additional per port allowance for 10G GPON and 10G EPON OLT, with independent traffic process component (not embedded in PON MAC) on each line cards, implementing layer-3 functionalities of Edge Router (at least IP/MPLS routing and interface and policy based hierarchical QoS (H-QoS)), providing extendable capability to evolve adding new functionalities currently under discussion, and variable traffic processing functions and/or market specific customization requirements	9	9	7
EPON (1G/1G)			
OLT (1G-EPON, fully equipped with maximum configuration implementing standard Layer-2 (Ethernet) aggregation functionalities, including Multicast)	9	7	7
OLT (1G-EPON, fully equipped with maximum configuration implementing also functionalities at the IP layer such as routing, MPLS, IP QoS), or more advanced L2 functionality (QOS, shaping, policing)	10	8	8
10G/1G EPON			
OLT (10/1G-EPON, fully equipped with maximum configuration implementing standard Layer-2 (Ethernet) aggregation	18	15	14

functionalities, including Multicast)			
OLT (10/1G-EPON, fully equipped with maximum configuration implementing also functionalities at the IP layer such as routing, MPLS, IP QoS), or more advanced L2 functionality (QOS, shaping, policing)	19	16	15
Additional per port allowance for 10G GPON and 10G EPON OLT, with independent traffic process component (not embedded in PON MAC) on each line cards, implementing layer-3 functionalities of Edge Router (at least IP/MPLS routing and interface and policy based hierarchical QoS (H-QoS)), providing extendable capability to evolve adding new functionalities currently under discussion, and variable traffic processing functions and/or market specific customization requirements	9	9	7
10G/10G EPON			
OLT (10/10G-EPON, fully equipped with maximum configuration implementing standard Layer-2 (Ethernet) aggregation functionalities, including Multicast)	19	16	14
OLT (10/10G-EPON, fully equipped with maximum configuration implementing also functionalities at the IP layer such as routing, MPLS, IP QoS), or more advanced L2 functionality (QOS, shaping, policing)	20	17	15
Additional per port allowance for 10G GPON and 10G EPON OLT, with independent traffic process component (not embedded in PON MAC) on each line cards, implementing layer-3 functionalities of Edge Router (at least IP/MPLS routing and interface and policy based hierarchical QoS (H-QoS)), providing extendable capability to evolve adding new functionalities currently under discussion, and variable traffic processing functions and/or market specific customization requirements	9	9	7
PtP 1000Mbps			
OLT (Point to Point up to 1000Mbit/s, up to 100 ports, fully equipped with maximum configuration)	4,5	4,5	4
OLT (Point to Point up to 1000Mbit/s, from 100 and 300 ports, fully equipped with maximum configuration)	2,8	2,8	2,7
OLT (Point to Point up to 1000Mbit/s, with more than 300 ports, fully equipped with maximum configuration)	2	2	1,9
Additional per port allowance for Point to Point up to 1000Mbit/s OLT, with independent traffic process component (not embedded in Lanswitch) on each line cards, implementing layer-3 functionalities of Edge Router (at least IP/MPLS routing and interface and policy based hierarchical QoS (H-QoS)), providing extendable capability to evolve adding new functionalities currently under discussion, and variable traffic processing functions and/or market specific customization requirements	0,4	0,4	0,3
PtP 10Gbps			

OLT (Point to Point at 10Gbit/s, up to 12 ports, fully equipped with maximum configuration)	38	38	28
OLT (Point to Point at 10Gbit/s, from 12 to 42 ports, fully equipped with maximum configuration)	28	28	20
OLT (Point to Point at 10Gbit/s, with more than 42 ports, fully equipped with maximum configuration)	18	18	13

The above values are for fully equipped with maximum configuration OLTs.

The additional allowance for the uplink interface is:

- 4,5 W per equipment for each Point to Point 1000Mbit/s interface
- 9,0 W per equipment for each Point to Point 10Gbit/s interface
- 6,0 W per equipment for each Point to Multipoint (GPON) interface
- 5,0 W per equipment for each Point to Multipoint (1G-EPON) interface
- 7,5 W per equipment for each Point to Multipoint (10/1G-EPON) interface
- 9,0 W per equipment for each Point to Multipoint (10/10G-EPON) interface

The above consumption for GPON, XG-PON1 and E-PON OLT is per port whatever the number of ONU connected to it is.

The above consumption for GPON OLT is with Class B+ (ITU-T G.984.2 amd1) optical modules.

The above consumption for point to point OLT is per user port.

The optical budget for the OLT P2P interfaces shall be in line with IEEE802.3 clause 58 for the 100Base-LX10 and 100Base-BX10 interfaces and IEEE802.3 clause 59 for the 1000Base-LX10 and 1000Base-BX10 interfaces.

The Pt-Pt 10Gbit/s limits are applicable only to Point to Point at 10Gbit/s, fully equipped with maximum configuration that directly connect to Customer Premises Equipment associated with broadband distribution for residential customers and SOHO.

The above power consumption for EPON OLT is per port and with PRX30 class for 10/1G-EPON OLT (IEEE 802.3avTM-2009), PR30 class for 10/10G-EPON (IEEE 802.3avTM-2009) and PR20+ class for 1G-EPON (the standard describing the PR20+ class for 1G-EPON will be released this year, with the name of “Technical requirements for Ethernet passive optical network (EPON)”, CCSA GB/T..

C.2.4 Wireless Broadband network equipment

Table 21: Wi-Fi network equipment

Equipment	Tier 2011-2012 (01.01.11) (W)	Tier 2013-2014 (01.01.2012) (W)
Wi-Fi access points (Hotspot application) 802.11b/g/n or 802.11b/g/a – ON state and Active Standby ¹³	10	8

Table 22: WiMAX network equipment

Equipment	Tier 2011 (01.01.2011) (W)		Tier 2012 (01.01.2012) (W)		Tier 2013-2014 (01.01.2013) (W)	
	2.5GHz	3.5GHz	2.5GHz	3.5GHz	2.5GHz	3.5GHz
WiMAX Radio Base Station (3 sectors) - Full-load-state	715	685	640	610	560	530
WiMAX Radio Base Station (3 sectors) - Medium load -state	670	640	570	550	480	460
WiMAX Radio Base Station (3 sectors) - Low load -state	580	550	480	460	390	370

Configuration of WiMAX Radio Base Station:

- 1) 3 sectors, 2.5GHz/3.5GHz, 10MHz bandwidth channel, 4*4 MIMO, 29:18 DL/UL subframe ratio
- 2) Output power: 28 W (7W*4) (3.5GHz) / 40 W (10W*4) (2.5 GHz) at antenna interface for each sector

For Wimax Radio base station the following states are differentiated:

Full-load-state is the operating mode of the equipment or device where it provides maximum capacity and RF transmit with the maximum output power.

Medium-load-state is the operating mode of the equipment or device where RF transmits with the 50% DL symbol.

Low-load-state is the idle mode of the equipment or device where it works with no traffic and only transmits the Preamble and MAP.

¹³ The On-state is defined with no traffic on the Wi-Fi port. Therefore there is no difference in power consumption between the On-state and the Low-load-state (Active Standby) for this equipment.

Table 23: GSM/EDGE network equipment

Equipment	Tier 2011 (01.01.2011) (W)	Tier 2012 (01.01.2012) (W)	Tier 2013-2014 (01.01.2013) (W)
	0,9/1,8/1,9 GHz	0,9/1,8/1,9 GHz	0,9/1,8/1,9 GHz
GSM/EDGE Radio Base Station (3 sectors) - Full-load-state	1000	950	800
GSM/EDGE Radio Base Station (3 sectors) – Medium load -state	800	750	650
GSM/EDGE Radio Base Station (3 sectors) – Low load -state	650	600	550

1) Three sectors, four carriers per sector (S444)

2) Output power: 20W at antenna interface for each carrier (4*20W for each sector) using 8PSK modulation. For equipment that, differently from Remote Radio Units, are designed to be installed in shelters and will face feeder loss, the output power will have to be incremented by the feeder loss. For the table above, that loss is defined to be 3dB.

For GSM/EDGE Radio base station the following states are differentiated (the state definitions are based on ETSI TS 102 706):

Full-load-state is the operating mode of the equipment or device where BCCH TRX 8 active TS and other TRXs 12 active TS per each sector are transmitting.

Medium-load-state is the operating mode of the equipment where BCCH TRX 8 active TS and other TRXs 6 active TS per each sector are transmitting.

Low-load-state is the idle mode of the equipment or device where it works with no traffic and only transmits common signals where BCCH TRX is transmitting

Table 24: WCDMA/HSDPA network equipment

Equipment	Tier 2011 (01.01.2011) (W)	Tier 2012 (01.01.2012) (W)	Tier 2013-2014 (01.01.2013) (W)
	2.1GHz	2.1GHz	2.1GHz
WCDMA/HSDPA Radio Base Station (3 sectors) - Full-load-state	1000	900	800
WCDMA/HSDPA Radio Base Station (3 sectors) - Medium load -state	910	780	670
WCDMA/HSDPA Radio Base Station (3 sectors) - Low load -	835	690	570

state			
-------	--	--	--

1) 3 sectors, two carrier per sector (S222), Distributed Radio Base station with dual-TX Radio Remote Unit which nominal output power is less than 80W.

2) Output power: Output power: 20W at antenna interface for each radio cell. (20W+20W for each sector). For equipment that, differently from Remote Radio Units, are designed to be installed in shelters and will face feeder loss, the output power will have to be incremented by the feeder loss. For the table above, that loss is defined to be 3dB

For WCDMA/HSDPA Radio base station the following states are differentiated (the state definitions are based on ETSI TS 102 706):

Full-load-state is the operating mode of the equipment or device where it provides maximum capacity and RF transmit CCH plus first fifteen codes

Medium-load-state is the operating mode of the equipment or device where RF transmits CCH plus first three codes

Low-load-state is the idle mode of the equipment or device where it works with no traffic and only transmits primary CPICH

Table 25: Wireless Broadband network equipment – LTE

Equipment	Tier 2011 (01.01.2011) (W)	Tier 2012 (01.01.2012) (W)	Tier 2013-2014 (01.01.2013) (W)
LTE Radio Base Station (3 sectors) - Full- load-state	1200	1100	900
LTE Radio Base Station (3 sectors)- Medium load -state	1080	950	750
LTE Radio Base Station (3 sectors)- Low load -state	800	750	650

Configuration of LTE Radio Base Station:

1) 3 sectors, 2.6GHz, 20MHz bandwidth channel 2*2MIMO

2) Output power: 40W (20W*2) at antenna interface for each sector. For equipment that, differently from Remote Radio Units, are designed to be installed in shelters and will face feeder loss, the output power will have to be incremented by the feeder loss. For the table above, that loss is defined to be 3dB

For LTE Radio base station the following states are differentiated (the state definitions are based on draft ETSI TS 102 706):

Full and Medium-load-state: All REs dedicated to CCHs, reference and synchronisation signals shall be transmitted. In addition a certain number of PRBs dedicated to PDSCH shall be transmitted. The number of transmitted PRBs dedicated to PDSCH shall be calculated as such, that the complete power over the baseband bandwidth (20 MHz) and averaged over one LTE FDD frame (10ms) is 50% (full-load) and 30% (medium load) of the maximum rated power of the cell

Low-load-state: all REs dedicated to CCHs, reference and synchronization signals shall be transmitted

C.2.5 Cable network equipment

Table 26: Cable network equipment

Equipment	Tier 2011 (01.01.2011) (W)	Tier 2012-2013 (01.01.2012) (W)
I-CMTS \leq 32 DS (downstream) ports	65	35
I-CMTS > 32 DS ports	50	30
M-CMTS \leq 280 DS ports	30	30
M-CMTS > 280 DS ports	25	25

I-CMTS = Integrated Cable Modem Termination System

M-CMTS = includes CMTS and EQAM (Edge Quadrature Amplitude Modulator)

All the numbers mentioned above are per downstream channel (or QAM) and for fully equipped with maximum configuration.

The additional allowance for the uplink interface is:

- 4,5 W per equipment for each Point to Point 1000Mbit/s interface
- 9,0 W per equipment for each Point to Point 10Gbit/s interface
- 6,0 W per equipment for each Point to Multipoint (GPON) interface
- 5,0 W per equipment for each Point to Multipoint (1G-EPON) interface
- 7,5 W per equipment for each Point to Multipoint (10/1G-EPON) interface
- 9,0 W per equipment for each Point to Multipoint (10/10G-EPON) interface

C.2.6 Powerline network equipment

Access powerline networks have not reached a high importance in Europe yet. When powerline networks will be developed, additional power targets for power line access equipment should be included in this Code of Conduct.

Annex D – Example Home Gateway Power Consumption Targets

The home gateway power consumption targets are computed from the components according to the configuration (profile) of the home gateway. Some example profiles are provided below. Home gateways having these exact configurations must meet these power targets, and by using this approach it is possible to create the targets that must be met for a home gateway of arbitrary functionality.

ADSL Home Gateway

ADSL home gateway with 4 Fast Ethernet ports, a single radio 802.11b/g Wi-Fi interface and 2 USB ports:

- in idle-state: all Ethernet ports disconnected, no traffic on Wi-Fi
- in on-state: all Ethernet ports active, traffic on Wi-Fi

Function	idle-state		on-state	
	2011/2012	2013/2014	2011/2012	2013/2014
Central functions + ADSL WAN interface	2.6	2.4	3.8	3.4
4 Fast Ethernet ports	$4 \times 0.3 = 1.2$	$4 \times 0.2 = 0.8$	$4 \times 0.4 = 1.6$	$4 \times 0.4 = 1.6$
single radio IEEE 802.11b/g Wi-Fi interface (23 dBm EIRP)	0.7	0.7	2.0	1.5
USB ports	$2 \times 0.25 = 0.5$	$2 \times 0.1 = 0.2$	$2 \times 0.25 = 0.5$	$2 \times 0.1 = 0.2$
Total equipment	5.0W	4.1W	7.9W	6.7W

VDSL2 Home Gateway

VDSL2 home gateway with 4 Gigabit Ethernet ports, a single radio 802.11n Wi-Fi interface, 2 USB ports and 2 FXS ports:

- in idle-state: all Ethernet ports disconnected, no traffic on Wi-Fi, no active voice call
- in on-state: all Ethernet ports active, traffic on Wi-Fi, 1 active voice call (the second FXS port has no device connected and for this port the idle target needs to be considered)

Function	idle-state	on-state
-----------------	-------------------	-----------------

	2011/2012	2013/2014	2011/2012	2013/2014
Central functions + VDSL2 WAN interface (17a)	3.5	3.2	6.0	4.6
4 Gigabit Ethernet ports	$4 \times 0.3 = 1.2$	$4 \times 0.2 = 0.8$	$4 \times 0.9 = 3.6$	$4 \times 0.6 = 2.4$
single IEEE 802.11n radio Wi-Fi interface with 3 RF chains 3x3 MIMO (23 dBm)	$1.0 + 0.1 = 1.1$	$0.8 + 0.1 = 0.9$	$2.5 + 0.4 = 2.9$	$2.0 + 0.4 = 2.4$
USB ports	$2 \times 0.25 = 0.5$	$2 \times 0.1 = 0.2$	$2 \times 0.25 = 0.5$	$2 \times 0.1 = 0.2$
FXS ports	$2 \times 0.5 = 1.0$	$2 \times 0.3 = 0.6$	$1.5 + 0.5 = 2.0$	$1.2 + 0.3 = 1.5$
Total equipment	7.3W	5.7W	15.0W	11.1W

Ethernet router with 4 Fast Ethernet LAN ports

Fast Ethernet router with 1 WAN and 4 LAN Ethernet ports:

- in idle-state: all LAN Ethernet ports disconnected
- in on-state: all LAN Ethernet ports active

Function	idle-state		on-state	
	2011/2012	2013/2014	2011/2012	2013/2014
Central functions + Fast Ethernet WAN interface	2.5	2.0	3.3	3.0
4 Fast Ethernet ports	$4 \times 0.3 = 1.2$	$4 \times 0.2 = 0.8$	$4 \times 0.4 = 1.6$	$4 \times 0.4 = 1.6$
Total equipment	3.7W	2.8W	4.9W	4.6W

Cable DOCSIS 3.0 CPE

DOCSIS 3.0 CPE in 8x4 configuration with 1 Gigabit Ethernet port:

- in idle-state: the Ethernet port is disconnected
- in on-state: the Ethernet port is active

Function	idle-state	on-state

	2011/2012	2013/2014	2011/2012	2013/2014
Central functions + DOCSIS 3.0 basic configuration WAN interface	6.2	4.2	7.1	6.2
1 DOCSIS 3.0 Additional power allowance for the additional 4 downstream channels	2.2	2.0	2.8	2.5
1 Gigabit Ethernet port	0.3	0.2	0.9	0.6
Total equipment	8.7W	6.4W	10.8W	9.3W

Complex HNID: dual-band 11n access point with 4 Gigabit Ethernet ports

Function	idle-state		on-state	
	2011/2012	2013/2014	2011/2012	2013/2014
Wi-Fi Access Points with single band IEEE 802.11n radio (23 dBm), 2x2 MIMO	3.5	2.3	5.0	3.9
single IEEE 802.11n radio Wi-Fi interface (23 dBm), 2x2 MIMO	1.0	0.8	2.5	2.0
3 additional Gigabit Ethernet ports	$3 \times 0.3 = 0.9$	$3 \times 0.2 = 0.6$	$3 \times 0.9 = 2.7$	$3 \times 0.6 = 1.8$
Total equipment	5.4W	3.7W	10.2W	7.7W

Annex E – Reporting Form

See Reporting Sheet on the homepage of the EU Standby Initiative [3].

The reporting spreadsheet should be filled in on the basis of equipment capability, in particular the actual number of ports on cards or chassis should be entered, regardless of any design or regulatory constraints which may result in the suboptimal use of those cards.

For Network Operators, the tier to be used for compliance purposes should be that pertaining to the year when equipment of a given type was ordered for the first time.

Annex F – Test methods

Customer premises equipment

Customer premises equipment with an external power supply shall be measured 230V AC input in all states (when existing) as they are described in Annex B.1. In the future, standardization bodies like ETSI could provide a more detailed specification for the measurement of the power consumption in different states.

Network equipment

The values given in Annex C.2 are indicating the averaged power consumption per port for a fully equipped system as delivered by the manufacturer.

Systems powered by DC Voltage shall comply with the standard ETSI EN 300 132-2 "Environmental Engineering (EE); Power supply interface at the input to telecommunications equipment; Part 2: Operated by direct current (dc)" [7]. The method of power measurement shall comply with the Technical Specification ETSI ES 102 533 "Environmental Engineering (EE); Measurement Methods and limits for Energy Consumption in Broadband Telecommunication Networks Equipment" [8].

In case of systems powered directly by AC mains voltage, the power consumption will have to be measured at the AC input. For such systems, the power limits stated in Table 16 through Table 26: , may be increased by 10%.

The power limits have to be fulfilled for the system operating at ambient temperature (23+/- 2°C).

Note: for both Customer premises and Network equipment the xDSL test conditions under which energy consumption is measured should be representative of the scenario(s) under which network equipment or CPE is to be deployed (e.g. selection of band plan for VDSL2). The Broadband Forum and ETSI EE provide xDSL test plans, which may be used prior to the general availability of a unified test methodology which is fully compatible with the Code of Conduct.

In the Spirit of industry harmonization, ETSI EE and the Broadband Forum will collaborate on the review/definition of the Broadband Energy efficiency measurement methods standards and test plans for xDSL CPE and network equipment published by ETSI with the aim of making joint recommendations for the next revision of the Code of Conduct.

Annex G – List of abbreviations

<i>1G-EPON</i>	EPON operating at 1 Gbit/s downstream and 1Gbit/s upstream (IEEE Std. 802.3ah-2004)
<i>10/1G-EPON</i>	EPON operating at 10 Gbit/s downstream and 1Gbit/s upstream (IEEE Std. 802.3av-2009)
<i>10/10G-EPON</i>	EPON operating at 10 Gbit/s downstream and 10Gbit/s upstream (IEEE Std.802.3av-2009)
<i>ADSL</i>	<i>Asymmetric Digital Subscriber Line</i>
<i>ADSL2plus</i>	<i>Second generation ADSL with extended bandwidth</i>
<i>ATA</i>	<i>Analogue Terminal Adapter</i>
<i>CoC</i>	<i>Code of Conduct</i>
<i>COP</i>	<i>Coefficient Of Performance</i>
<i>CPE</i>	<i>Customer Premises Equipment</i>
<i>DECT</i>	<i>Digital Enhanced Cordless Telecommunications</i>
<i>DOCSIS</i>	<i>Data Over Cable Service Interface Specification</i>
<i>DSL</i>	<i>Digital Subscriber Line</i>
<i>DSLAM</i>	<i>Digital Subscriber Line Access Multiplexer</i>
<i>EPON</i>	<i>Ethernet Passive Optical Network, as specified by IEEE 802.3</i>
<i>ETSI</i>	<i>European Telecommunications Standards Institute</i>
<i>FXO</i>	<i>Foreign eXchange Office</i>
<i>FXS</i>	<i>Foreign eXchange Station</i>
<i>GPON</i>	<i>Gigabit Passive Optical Network</i>
<i>GSM/EDGE</i>	<i>Global System for Mobile communication/Enhanced Datarate GSM Evolution</i>
<i>HPNA</i>	<i>Home PNA Alliance</i>
<i>IEEE</i>	<i>Institute of Electrical and Electronics Engineers</i>
<i>IP</i>	<i>Internet Protocol</i>
<i>ITU</i>	<i>International Telecommunication Union</i>
<i>LAN</i>	<i>Local Area Network</i>
<i>LT</i>	<i>Line Termination</i>
<i>LTE</i>	<i>Long Term Evolution</i>
<i>MoCA</i>	<i>Multimedia over Coax Alliance</i>
<i>MSAN</i>	<i>Multi Service Access Node</i>
<i>NAT</i>	<i>Network Address Translation</i>
<i>NT</i>	<i>Network Termination</i>
<i>ONT</i>	<i>Optical Network Termination</i>
<i>ONU</i>	<i>Optical Network Unit</i>
<i>PtP</i>	<i>Point-to-Point Optical Network</i>
<i>PLC</i>	<i>PowerLine Communication</i>
<i>PoE</i>	<i>Power over Ethernet</i>
<i>PON</i>	<i>Passive Optical Network</i>
<i>POTS</i>	<i>Plain Old Telephone Service</i>
<i>SOHO</i>	<i>Small Office, Home Office</i>
<i>USB</i>	<i>Universal Serial Bus</i>
<i>VDSL2</i>	<i>Very High Speed Digital Subscriber Line 2nd generation</i>
<i>VoIP</i>	<i>Voice over IP</i>
<i>WAN</i>	<i>Wide Area Network</i>
<i>WCDMA/HSDPA</i>	<i>Wideband Code Division Multiple Access/High Speed Packet Access</i>
<i>Wi-Fi</i>	<i>Wireless Fidelity; technology using 802.11 standards</i>
<i>XG-PON1</i>	<i>10-Gigabit passive optical network</i>

Annex H – List of references

- [1] ITU-T recommendation I.113 Vocabulary of terms for broadband aspects of ISDN
- [2] Code of Conduct for Digital TV Services (version 7 – 15 January 2008),
http://re.jrc.ec.europa.eu/energyefficiency/html/standby_initiative.htm
- [3] Reporting sheet CoC BB equipment
http://re.jrc.ec.europa.eu/energyefficiency/html/standby_initiative_broadband%20communication.htm
- [4] EU Code of Conduct for External Power Supplies Version 3 of 28.11.2008,
http://re.jrc.ec.europa.eu/energyefficiency/html/standby_initiative_External%20Power%20Supplies.htm
- [5] ETSI Standard EN 300019-1-3 European Standard, Environmental Engineering (EE); Environmental conditions and environmental tests for telecommunications equipment; Part 1-3: Classification of environmental conditions; Stationary use at weather protected locations
- [6] EU Code of Conduct on Energy Efficiency of Broadband Equipment Version 3 of November 18th 2008
- [7] ETSI EN 300 132-2 European Standard, Equipment Engineering (EE); Power supply interface at the input to telecommunications equipment; Part 2: Operated by direct current (dc)
- [8] ETSI TS 102 533, Technical Specification, Environmental Engineering (EE), Measurement Methods and limits for Energy Consumption in Broadband Telecommunication Networks Equipment
- [9] COMMISSION REGULATION (EC) No 1275/2008 of 17 December 2008 implementing Directive 2005/32/EC of the European Parliament and of the Council with regard to ecodesign requirements for standby and off mode electric power consumption of electrical and electronic household and office equipment
- [10] ETSI TS 102 706, Technical Specification, Environmental Engineering (EE), Energy Efficiency of Wireless Access Network Equipment
- [11] IEEE Std. 802.3TM-2008, IEEE Standard for Information technology- Telecommunications and information systems-Local and metropolitan area networks- Specific requirements, Part3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) access method and Physical Layer specifications IEEE Std. 802.3ahTM-2004: Amendment to IEEE Std. 802.3TM-2003: Media Access Control Parameters, Physical Layers, and Management Parameters for Subscriber Access Networks, now part of IEEE Std.
- [12] 802.3TM-2008 IEEE Std. 802.3avTM-2009, Amendment to IEEE Std. 802.3TM-2008: Physical Layer Specifications and Management Parameters for 10 Gb/s Passive Optical Networks

- [13] Broadband Forum TR-100 Issue 1 (March 8, 2007), ADSL2/ADSL2plus Performance Test Plan, <http://www.broadband-forum.org/technical/download/TR-100.pdf>
- [14] Broadband Forum TR-114 Issue 1 (November 2009), VDSL2 Performance Test Plan, <http://www.broadband-forum.org/technical/download/TR-114.pdf>
- [15] ITU-T Recommendation G.992 Asymmetric digital subscriber line (ADSL) transceivers
- [16] ITU-T Recommendation G.993 Very high speed digital subscriber line transceivers 2 (VDSL2)
- [17] ITU-T Recommendation G.984 Gigabit-capable passive optical networks (GPON): General characteristics
- [18] ETSI ES 203 215 “Environmental Engineering (EE); Measurement Methods and Limits for Power Consumption in Broadband Telecommunication Networks Equipment”

**Code of Conduct
On Energy Consumption of Broadband Equipment**

SIGNING FORM

The organisation/company/

.....

signs the Code of Conduct on Energy Consumption of Broadband Equipment and commits itself to abide to the principles described in point 3 “Commitment” for the equipment it produces, buys, installs or specifies.

The organisation, through regular upgrade reports, will keep the European Commission informed on the implementation of the Code of Conduct of Broadband Equipment.

for the organisation

Director or person authorised to sign:

Name:

Managerial Function:

Address

Tel. / Fax.

Email:

Date:

Signature

Please send the signed form to:

**Paolo Bertoldi
European Commission - DG JRC
TP 450
I-21027 Ispra (VA)
tel. +39 0332 78 9299 (secretary 9145)
fax. +39 0332 78 9992**

E-mail: paolo.bertoldi@ec.europa.eu